
MINI-REVIEW

Coumarin: a novel player in microbial quorum sensing and biofilm
formation inhibition

F. Jerry Reen1,2
& José A. Gutiérrez-Barranquero3

& María L. Parages4 & Fergal O´Gara2,5

Received: 21 November 2017 /Revised: 15 January 2018 /Accepted: 15 January 2018 /Published online: 1 February 2018
# The Author(s) 2018. This article is an open access publication

Abstract

Antibiotic resistance is a growing threat worldwide, causing serious problems in the treatment of microbial infections. The

discovery and development of new drugs is urgently needed to overcome this problem which has greatly undermined the clinical

effectiveness of conventional antibiotics. An intricate cell-cell communication system termed quorum sensing (QS) and the

coordinated multicellular behaviour of biofilm formation have both been identified as promising targets for the treatment and

clinical management of microbial infections. QS systems allow bacteria to adapt rapidly to harsh conditions, and are known to

promote the formation of antibiotic tolerant biofilm communities. It is well known that biofilm is a recalcitrant mode of growth

and it also increases bacterial resistance to conventional antibiotics. The pharmacological properties of coumarins have been well

described, and these have included several that possess antimicrobial properties. More recently, reports have highlighted the

potential role of coumarins as alternative therapeutic strategies based on their ability to block the QS signalling systems and to

inhibit the formation of biofilms in clinically relevant pathogens. In addition to human infections, coumarins have also been

found to be effective in controlling plant pathogens, infections in aquaculture, food spoilage and in reducing biofouling caused by

eukaryotic organisms. Thus, the coumarin class of small molecule natural product are emerging as a promising strategy to combat

bacterial infections in the new era of antimicrobial resistance.
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Introduction

The indiscriminate use of antibiotics has brought us to the

brink of a new era where the emergence of multidrug-

resistant bacterial and fungal pathogens poses one of the

major health issues of global concern (Fernandez and

Hancock 2012; Tanwar et al. 2014). The rapid decline in

the discovery of novel antibiotics in the last two decades

has coincided with the emergence of resistance to all

known classes of clinically used antibiotics. While the ur-

gent need to discover and develop novel strategies to com-

bat microbial infections is recognised, how this is best

achieved is less clear. The case for growth-limiting antibi-

otics remains strong, and decorated derivatives of existing

antibiotics continue to make it to the clinic. However, with

the possible exception of the newly discovered teixobactin

(Ling et al. 2015), resistance to newly introduced antibi-

otics is likely to emerge in the short rather than the long

term. A particularly notable case is the recent reports of

resistance to the polymyxin class of antibiotic, long

regarded a salvage therapy for which transmissible resis-

tance was unlikely to emerge. This was largely due to the

fact that polymyxins target the cell membrane, and there-

fore plasmid-encoded resistance would be more difficult to

achieve. However, reports from China and the USA have
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confirmed the transmission of plasmid-encoded resistance

among Escherichia coli isolates (Liu et al. 2016).

Owing largely to the challenges associated with antibi-

otic resistance and the dearth of new antibiotics in the

development pipeline, researchers have pursued alterna-

tive strategies to manage microbial infections. One of the

best developed of these are strategies that target a micro-

bial signalling system termed quorum sensing (QS)

(Cegelski et al. 2008; Cooper and Shlaes 2011; LaSarre

and Federle 2013). QS is a cell to cell communication

signalling system that controls the expression of, in some

cases, hundreds of genes related to virulence phenotypes

in clinical human pathogens (Papenfort and Bassler 2016).

QS regulons are known to vary between species, as indeed

does the spectrum of virulence-related phenotypes that

falls under QS control (Whiteley et al. 2017). Biofilm for-

mation is one of the most important virulence phenotypes

of opportunistic human pathogens, and it is under the con-

trol of the QS system in several important pathogenic or-

ganisms. A structured community of bacteria that requires

intact cell-cell communication for its initiation and matu-

ration, the biofilm lifestyle poses a significant challenge to

the effectiveness of conventional antibiotics and is consid-

ered a breeding ground for antibiotic resistance (Hoiby

et al. 2011). In recent years, increasing attention has been

paid to finding novel therapeutic strategies specifically

targeting QS signalling systems and the biofilm mode of

growth, providing the pillar upon which the future of next-

generation antivirulence therapies would be forged (de la

Fuente-Nunez et al. 2014; Kalia 2013; Njoroge and

Sperandio 2009). Sourcing these compounds has followed

quite diverse paths with bioprospecting of natural ecosys-

tems and synthetic remodelling occurring separately and

as integrated endeavours. Plant phenolics have delivered a

broad range of bioactive compounds, many of which are

now being considered for their anti-infective potential.

The bioactive potential of different environments and

their associated organisms have been established over the

last number of decades, with soil and more recently marine

life proving to be a rich source of novel compounds that

may be exploited as QS inhibitors and antibiofilm agents

(Gutierrez-Barranquero et al. 2017; Kalia 2013; Manefield

et al. 2002; Miquel et al. 2016; Rabin et al. 2015;

Rasmussen et al. 2005; Sayem et al. 2011). Plant second-

ary metabolites, and specifically plant phenolic com-

pounds (Slobodnikova et al. 2016), have been widely used

for decades because of their great pharmacological prop-

erties (Venugopala et al. 2013). Coumarins are a large

family of naturally derived fused benzene and a-pyrone

rings found primarily in a wide range of plant sources.

Some coumarins are regarded as phytoalexins which are

plant resistance compounds that are biosynthesised by

plant tissues in response to pathogenic infection (Yang

et al. 2017). Members of the coumarin class of compound

have also been identified in bacteria and fungi, such as

novobiocin and coumermycin isolated from Streptomyces

(Eustaquio et al. 2003), and aflatoxins isolated from dif-

ferent Aspergillus species (Kumar et al. 2016).

The role of coumarins as antimicrobial molecules has been

extensively studied to date (Al-Majedy et al. 2016) with com-

pounds having long chain hydrocarbon substitutions being

particularly active (Venugopala et al. 2013). Among many

other relevant therapeutic activities, coumarins are notable

for their role as anticancer, anti-inflammatory, antimicrobial,

anti-oxidant and anticoagulant bioactive compounds (Joubert

et al. 2017; Kapp et al. 2017; Mandlik et al. 2016; Venugopala

et al. 2013). Structurally, these naturally produced coumarins

comprise a diverse spectrum of modifications from the parent

molecule (Murray 2002), with pyrano- and furano-coumarins

being particularly pharmacologically active. However, some-

what surprisingly, the parent molecule coumarin possesses

very low antibacterial activity, in contrast to its decorated

counterparts. Rather than being biologically inactive, it would

appear that coumarin plays a more subtle role in the natural

ecosystem, one where governance of microbial behaviour is

controlled through suppression of QS signalling and the for-

mation of biofilms (Fig. 1). Recent reports on the role of

coumarins as QS inhibitors and antibiofilm agents

(Gutierrez-Barranquero et al. 2015; Lee et al. 2014) have

drawn the attention of many research groups to the potential

of coumarin as a natural non-toxic anti-infective. This review

provides an insight into the bioactivity of the coumarin class

of plant phenolics with particular emphasis on the emerging

role of coumarin as a novel QS inhibitor and antibiofilm agent

across a broad spectrum of microbial pathogens.

Coumarins from diverse ecological sources possess
potent antimicrobial activity

Plant extracts have long been known to possess beneficial

activities for human health, and have been used since an-

cient times as medicines, particularly in Oriental cultures.

Although the basis of these health-promoting properties is

still only partly understood, the effectiveness of plant ex-

tracts as sources of lead compounds for modern drug de-

velopment underpins the importance of these natural

sources of bioactive compounds. Apart from the develop-

ment of potent therapeutics for the treatment of cancer,

inflammation and other clinical conditions, plant extracts

have also provided a range of compounds that target mi-

crobial pathogens. The coumarin class of phenolic com-

pound derived from plant extract have received consider-

able attention based on their antimicrobial properties, and

are emerging as a promising candidate for next generation

antimicrobial development.
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The antibacterial and anti-oxidant activities of several

coumarins and pyranocoumarins isolated from the roots

of Ferulago campestris were reported against gram-

negative and gram-positive pathogens. These included

Staphylococcus aureus, Salmonella enterica serovar

Typhi, Enterobacter cloacae and Enterobacter aerogenes

(MIC 16–32 μg/mL) as well as the digestive tract pathogen

Helicobacter pylori (MIC 5–25 μg/mL) (Basile et al.

2009). Similarly, Prangos hulusii root extracts yielded a

new prenylated coumarin in addition to nine that were pre-

viously characterised. The root extract and its prenylated

coumarins were found to exhibit antimicrobial activity

against clinical pathogens including Bacillus subtilis and

Klebsiella pneumoniae (MIC 5–125 μg/mL) (Tan et al.

2017). Methanol extracts prepared from seven plants

grown in Finland were found to produce antimicrobial ac-

tivity against bacterial and fungal pathogens, although the

activities of six natural coumarin compounds were report-

edly weak, with the exception of the inhibitory effect

against the fungal pathogen Fusarium culmorum (Ojala

et al. 2000). Three new coumarin derivatives and three new

furanocoumarins were isolated from the fern Cyclosorus

interruptus (Willd.) H. Itô (Quadri-Spinelli et al. 2000). One

of the former and two of the latter were found to possess

antibacterial activity. An aryl coumarin glucoside, asphodelin

A 4’-O-β-D-glucoside, isolated from Asphodelus

microcarpus exhibited antibacterial activity against

S. aureus, E. coli and Pseudomonas aeruginosa as well as

modest antifungal activity against the fungal pathogens

Candida albicans and Botrytis cinerea (El-Seedi 2007).

Interestingly, the bulbs and roots of A. microcarpus have long

been used by Bedouin tribes as an antimicrobial agent. Kayser

and Kolodziej working with simple coumarins described

broad diversity regarding growth inhibitory activity with min-

imum inhibitory concentrations ranging from 0.9 to >

12.4 μM (Kayser and Kolodziej 1999). Pathogens tested in-

cluded S. aureus, beta-hemolyt ic Streptococcus,

Streptococcus pneumoniae, E. coli, K. pneumoniae, P.

aeruginosa, Proteus mirabilis and Haemophilus influenzae.

While coumarins with a methoxy function at C-7 and, if pres-

ent, an OH group at either the C-6 or the C-8 position were

invariably effective, the presence of an aromatic dimethoxy

arrangement was found to be favourable against those micro-

organisms which require special growth factors (beta-

haemo ly t i c S t rep tococcus , S . pneumon iae and

H. influenzae). However, in spite of the broad range of activity

of coumarin compounds, the simple coumarin structure itself

has very low antibacterial activity. The reason for this loss of

activity in the absence of long hydrocarbon chains or other

decorations is not yet understood. However, recent reports

have suggested that, rather than limiting the growth of micro-

bial pathogens, coumarin itself can target a key microbial cell-

cell communication system and with it, the ability to inhibit

antibiotic tolerant colonisation structures called biofilms.

Fig. 1 The coumarin class of plant phenolic compound have been shown

to possess several important pharmacological properties. More recently, a

role in the modulation of microbial behaviour has emerged, with several

reports describing interference with cell-cell communication (quorum

sensing) and the formation of multicellular microbial structures

(biofilms). Particular emphasis has been placed on the ability of

coumarins to disrupt AI-1 and AI-2 signalling in a range of important

microbial pathogens
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Coumarins as anti-QS and antibiofilm agents
against clinically relevant pathogens

Coumarins were first considered as potential anti-QS and

antibiofilm compounds following a virtual QS inhibitor screen

of a Traditional Chinese Medicine library by docking analysis

against the Agrobacterium tumefaciens QS transcriptional ac-

tivator protein TraR (Zeng et al. 2008). This study revealed

that esculetin (6,7-dihydroxycoumarin) and esculin were

structurally compatible with the TraR signal binding site.

Although this study did not explore the QS inhibitory function

experimentally, the authors did demonstrate that both couma-

rin derivatives were able to inhibit the P. aeruginosa biofilms

at a concentration of 200 μM. In a separate study, Brackman

and colleagues showed that both of these molecules have a

moderate ability to suppress the biofilm formation of two spe-

cies of the Burkholderia cepacia complex (Brackman et al.

2009). Moreover, in this case, the authors were able to dem-

onstrate inhibition of QS signalling using biosensor reporter

strains (Brackman et al. 2009). Two furocoumarins isolated

from grapefruit juice, bergamottin and dihydroxybergamottin,

were able to suppress QS biofilm formation in E. coli

O157:H7 up to 72 and 58.3%, respectively (Girennavar

et al. 2008). Antibiofilm activity of these compounds against

S. enterica serovar Typhimurium (15.5 and 46.5%, respective-

ly) and P. aeruginosa (18.1 and 27.3%, respectively) was

more modest (Girennavar et al. 2008). In this latter study,

the authors demonstrated how both furocoumarins were able

to inhibit AI-1 (N-acyl homoserine lactones, AHLs) and AI-2

(furanosyl borate diester) signalling using Tn5 mutants of

Vibrio harveyi as reporter strains. Following this, an interest-

ing study conducted by Durig et al. (2010) using a chemo-

informatic approach targeting the Chinese natural product da-

tabase (CNPD) developed a series of 2nd and 3rd generation

compounds from ellagic acid using a coumarin scaffold.

Esculetin (2nd generation) was found to be a potent

antibiofilm agent towards S. aureus strain 8324, but did not

affect biofilm formation of S. aureus NCTC4671 or ATCC

27957. The 3rd generation compound fisetin was shown

to be active against all three strains (Durig et al. 2010). A

virtual docking approach also identified nodakenetin and

fraxin (two coumarin compounds extracted from

Peucedanum decursivum (Miq). Maxim and Fraxinus

chinensis Roxb., respectively) as putative QS inhibitors,

with the antibiofilm ability of both subsequently demon-

strated in Pseudomonas aeruginosa and to a lesser extent

Stenotrophomonas maltophilia (Ding et al. 2011).

More recently, attention has switched to the simple couma-

rin compound, with several studies revealing a broad spectrum

of antivirulence activity. Lee et al. (2014) carried out a screen

of 560 phytochemicals to identify new antibiofilm compounds

against E. coli O157:H7. Restricting the second round of

screening only to hits where the biofilm reduction was above

70%, only four compounds met the requirement, one of them

being a sesquiterpene coumarin (Lee et al. 2014). Following

this, the authors subsequently investigated the role of eight

different coumarins [coumarin, coumarin-3-carboxylic acid,

dephnetin, ellagic acid, esculetin, 4-hydroxycoumarin,

scopoletin and umbelliferone (7-hydroxycoumarin)] for

antibiofilm activity against the E. coli O157:H7 strain.

Similar to coladonin, coumarin and umbelliferone showed

the highest biofilm inhibition, reaching values of 80 and

90%, respectively. qRT-PCR analysis revealed that neither

compound impacted on AI-2 signalling, with expression of

the luxS gene encoding the synthase responsible for AI-2

production being unaffected in the presence of either cou-

marin or umbelliferone. However, expression of the QS-

controlled lsrA gene was decreased in response to either

compound. As such, the anti-QS activity of these coumarin

compounds remains to be determined, as does its role if any

in the biofilm suppression activity of coumarins against this

important human pathogen.

Confirmation of the QSI activity of coumarin came from a

study by our own group in 2015 where we analysed the QS

mode of action of coumarin with a combination of direct and

signal competition biosensor assays (Gutierrez-Barranquero

et al. 2015). The QS inhibition biosensor reporter strains

Serratia marcescens SP15, Chromobacterium violaceum

DSM 30191 A. tumefaciens NTL4 all showed pigment inhi-

bition in the presence of increasing concentrations of couma-

rin. These findings were independent of any growth-related

effects. In addition, signal competition assays using the QS

biosensor reporter strains S. marcescens SP19, C. violaceum

CV026 and A. tumefaciens NTL4 (adding specific AHLs)

suggested an AHL-specific interference. In order to further

establish the QSI activity of coumarin, and to determine

whether or not it extended to a clinically relevant pathogen,

P. aeruginosa PA14 was selected for analysis. Coumarin de-

creased the expression of the QS-related genes pqsA and rhlI

in Pseudomonas aeruginosa PA14. Coumarin also inhibited

biofilm formation in this pathogen, along with several other

virulence phenotypes including swarming motility and phen-

azine production. The broad-spectrum activity of coumarin

was revealed by demonstrating inhibition of biofilm formation

of other gram-negative and gram-positive bacteria (E. coli,

Edwardsiella tarda, Vibrio anguillarum and S. aureus), pro-

tease activity (S. maltophilia and B. cepacia) and biolumines-

cence (Allivibrio fischeri). Taken together, these data support a

role for coumarin in the suppression of QS and biofilm for-

mation in clinically relevant pathogens (Fig. 2). However,

further mechanistic studies will be required before coumarin

can be considered a universal QS and biofilm inhibitor. This is

particularly true in light of the multitude of QS systems in

different bacterial species affected and the current lack of mo-

lecular mechanism to explain the possible anti-QS and

antibiofilm effects of coumarin.
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Warfarin an important coumarin derivative that is widely

used as an oral anticoagulant agent worldwide (Pirmohamed

2006) was tested for antibiofilm activity against E. coli and

found to reduce biofilm formation by 40% when tested at

7.5 mM (Ojima et al. 2016). A lower concentration of 5 mM

warfarin did not significantly impact biofilm formation

(Ojima et al. 2016). In the same study, lactoferrin (a milk

protein that shows a wide range of biological properties, in-

cluding antimicrobial function) and ampicillin (a β-lactam

antibiotic) were shown to promote biofilm formation in

E. coli when administered at subinhibitory concentrations.

Interestingly, the authors demonstrated that in the presence

of either compound, warfarin significantly decreased biofilm

formation of E. coli by 50% at a concentration of 5 mM. This

study adds another layer of complexity to the mode of action

of coumarins, supporting the idea that some could impact

biofilm formation promoted by subinhibitory concentrations

of other molecules.

Non-clinical biotechnological applications
of coumarin QSI and antibiofilm activity

As might be expected, the role of coumarins in QSI and bio-

film formation inhibition has been typically tested in human

bacterial pathogens that cause serious health problems in hos-

pitals. However, recent studies have also exploited the anti-QS

and antibiofilm properties of coumarins in other systems.

Fig. 2 A schematic overview of

coumarin structures and their anti-

infective properties. Compounds

for which anti-biofilm properties

have been established are

presented on the left, while those

with dual activity are presented on

the right

Appl Microbiol Biotechnol (2018) 102:2063–2073 2067



Bacterial wilt a disease elicited by R. solanacearum pro-

duces severe economic losses to important crops such as to-

mato, potato, tobacco and eggplant in tropical and subtropical

regions worldwide. As coumarins have been reported previ-

ously for their antibacterial activities (Barot et al. 2015), 18

different coumarin derivatives including some hydroxylated

variations were tested for antibacterial and antibiofilm activity

against R. solanacearum (Yang et al. 2016). From the 18 cou-

marin tested, 4 of them showed the highest biofilm formation

inhibition, coumarin, and three different hydroxycoumarins

(umbelliferone, esculetin and dephnetin). It is worth noting

that the best antimicrobial activities were also displayed by

these same coumarins, raising the possibility that the biofilm

suppression may simply reflect the limitation of growth under

these conditions. The authors subsequently followed up this

study with analysis of umbelliferone and its antivirulence ac-

tivity against R. solanacearum (Yang et al. 2017). The type

three secretion system (T3SS) and biofilm formation were

both suppressed.

Marine biofouling is the accumulation of micro- and

macro-organisms on submerged structures in seawater.

Currently, it is a persistence problem that causes severe eco-

nomic losses and also has an impact from an ecological point

of view (Callow and Callow 2011). A recent study described

the role of 7-hydroxy-4-methylcoumarin as an effective agent

against biofouling, inhibiting both the settlement as well as the

byssogenesis of mussels (Perez et al. 2016). Although the role

of coumarin as a novel QS inhibitor has been demonstrated

previously (Gutierrez-Barranquero et al. 2015), there was no

attempt to explore whether coumarin could be used as a pro-

tective treatment in aquaculture. In this sense, Zhang and

coworkers (2017) analysed the protective role of coumarin

in relation to infection by Vibrio splendidus in an aquaculture

model of Apostichopus japonicas (Zhang et al. 2017). The

authors observed that coumarin could interfere with the induc-

tion of QS-regulated virulence genes by cell-free supernatants

and ethyl acetate extracts of V. splendidus shown to possess

AHLs by activation of C. violaceum CV026. Thus, they pro-

posed that coumarin could be used as a QS inhibitor to possi-

bly modulate V. splendidus infections in future aquaculture

applications. The authors also reported that coumarin did not

exhibit any effect on biofilm formation, possibly due to the

fact that V. splendidus showed poor ability to develop in vitro

biofilms on polystyrene microtitre plates (Zhang et al. 2017).

Finally, Hou and coworkers analysed the ability of

dihydrocoumarin to inhibit the biofilm formation of Hafnia

alvei, a bacterium that is mainly found in spoiled food (Hou

et al. 2017). Biofilm formation in this organism has previously

been linked to QS, although its contribution to persistence and

spoilage per se remains to be fully elucidated (Viana et al.

2009). The authors demonstrated the capacity of

dihydrocoumarin in the inhibition of violacein production by

C. violaceum CV026, and also, observed a high impact on the

reduction of biofilm formation at approximately 90%. These

findings indicate that dihydrocoumarin could be a useful QS

inhibitor or antibiofilm agent for potential development in

controlling food spoilage organisms (Bai and Rai 2011).

Structure-function analysis of the QSI
and antibiofilm activity of coumarins

Previous studies had investigated structure-function relation-

ships of coumarins linked to antibacterial activity. As couma-

rin has been identified as a potent antivirulence molecule, and

because different substitutions in specific sites of the coumarin

molecule can affect its biological activity (Barot et al. 2015), a

SAR analysis was a logical undertaking in relation to under-

standing QSI and antibiofilm activity. D'Almeida et al. (2017)

followed such an approach to test if the different substitutions

on the coumarin structure could affect the QSI activity

(D'Almeida et al. 2017). Using P. aeruginosa and

C. violaceum as test species, D’Almeida and colleagues

(D'Almeida et al. 2017) performed a comparison of seven

structurally related coumarins (coumarin and different hy-

droxylated derivatives). Initially using a bioassay with the

QS biosensor C. violaceum CV026, and adding exogenous

hexanoyl homoserine lactone (HHL), the authors demonstrat-

ed that all the different coumarins tested, with the exception of

4-hydroxycoumarin and dihydrocoumarin, were able to inhib-

it the violacein production. In a follow-up test using

C. violaceum ATCC 12472, the authors observed that both

4-hydroxycoumarin and dihydrocoumarin were indeed able

to reduce the percentage of violacein production, although to

a lesser extent compared to the other coumarins tested. Finally,

the authors tested the capacity of the different coumarins to

inhibit biofilm formation of P. aeruginosa. Esculetin,

umbell i ferone and coumarin showed the highest

P. aeruginosa biofilm inhibition, while 4-hydroxycorumarin

and dihydrocoumarin presented the lowest activity in this re-

gard. This contrasts with the relatively low antibiofilm activity

of esculetin towards E. coli described by Lee et al. (2014), and

suggests that species or strain heterogeneity may play some

role in this response. The low activity associated with hydrox-

ylated coumarins has previously been reported in E. coli with

respect to biofilm formation (Lee et al. 2014). Hydroxylation

at position 4 or position 8 (dephnetin) of the coumarin struc-

ture was found to dramatically diminish antibiofilm activity

while the same modification at position 7 led to enhanced

activity. Di-hydroxylation of coumarin at positions 6 and 7

(esculetin) led to a reduction in activity compared to simple

coumarin in this study. Replacing the 6-hydroxy group with a

6-methoxy group (scopoletin) did not affect antibiofilm activ-

ity, while decoration at position 3 with a carboxy group di-

minished activity compared with the parent compound (Lee

et al. 2014). The introduction of a sesquiterpene in position 7
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(coladonin) neither enhanced nor diminished activity with re-

spect to coumarin.

Structural modifications of the coumarin framework have

also been undertaken with the aim of developing more effec-

tive pharmacologically active coumarins (Saleem et al. 2010).

Several synthetic coumarins with a variety of pharmacophoric

groups at C-3, C-4 and C-7 positions have been intensively

screened for antimicrobial, anti-HIV, anticancer, lipid-lower-

ing, anti-oxidant and anticoagulation activities (Kulkarni et al.

2006). Hydroxylation of coumarins at the C-6, C-7 or C-8

position was shown to significantly enhance the antibacterial

activity against R. solanacearum (Yang et al. 2016). Guan and

coworkers showed that decoration of the coumarin framework

with methoxyacrylate moieties derived from natural

strobilurin A can generate possible lead compounds for devel-

oping novel fungicides (Guan et al. 2011). Potent antimicro-

bial and anti-inflammatory activities have been described for

C4-substituted aryloxymethyl, arylaminomethyl and

dichloroacetamidomethyl coumarins, along with the corre-

sponding 1-azacoumarins (Kulkarni et al . 2006).

Kalkhambkar and colleagues reported the synthesis of a series

of new fluorinated coumarins and 1-aza coumarins

(Kalkhambkar et al. 2008). Introduction of fluorine at the 4′-

position in the aryloxy and arylamino moieties of both cou-

marin and 1-aza-coumarin was found to enhance the antimi-

crobial properties of the compounds. Analgesic and anti-

inflammatory properties were also enhanced in these modified

compounds. More recently, a series of novel coumarin–benz-

imidazole hybrids were designed and synthesised.

Compounds showed broad-spectrum antibacterial activity

against P. aeruginosa, S. aureus, Bacillus subtilis and

P. vulgaris (Singh et al. 2017).

Conclusion and future challenges

The importance of developing new anti-infective compounds

with a real possibility of clinical use is underscored by recent

reports of a severe lack of pipeline compounds with antimi-

crobial activity. Not alone is antibiotic resistance on the in-

crease, and the discovery of new antibiotics long since passed

into rapid decline, but the introduction of new chemical enti-

ties has also plateaued (Reen et al. 2015). Therefore, there is

an urgent need to develop innovative new compounds that can

either (i) directly address the threat of superbugs and resistant

pathogens or (ii) enable conventional antibiotics to do so.

Over the last decade, coumarins have received considerable

attention in this regard, being isolated from natural sources,

chemically decorated or synthetically derived. Apart from

exhibiting antibacterial, antifungal and antiviral activity, sev-

eral members of the coumarin class of compound target cell-

cell signalling through QSI, and the aggregation of multicel-

lular communities of biofilms (summarised in Table 1). Future

studies will no doubt focus on improved properties from the

perspective of increased bioactivity and clinical compatibility.

However, understanding the role of these compounds in their

natural ecosystem may also uncover new applications for this

biotechnologically important class of molecule.

From the perspective of understanding the ecological role

of coumarins, focus and attention will naturally veer towards

the rhizosphere interactome where these compounds are

thought to play a considerable role. Exuded from the roots

of plants, the antibacterial and antifungal activity of coumarins

is thought to affect the dynamics of the resident microbiota,

and its interplay with other constituents of this rich ecosystem

with high species richness. However, while we often view

antimicrobials as weapons, whether this is the case in a natural

ecosystem, or whether the low concentrations act as signals

remains to be established. In this sense, the QSI and

antibiofilm activity for coumarins, and the structural spec-

ificity that underpins this activity, could reflect a more

subtle role for these compounds in situ. The aforemen-

tioned activities would enable the plant to moderate local-

ised microbiota with a lesser threat of resistant pathogens

adapting to the growth-limiting activity of its antimicrobial

counterparts. It is also possible that the presence of QSI

and antibiofilm compounds in the rhizosphere may in-

crease the effectiveness of antimicrobials, restricting mi-

crobes to planktonic antibiotic susceptible growth.

The molecular mechanism by which coumarins effect their

QSI and antibiofilm activity remains to be determined. While

suppression of QS could explain some of the antibiofilm ac-

tivity, the interactions that govern this impact remain

uncharacterised. It is also worth noting that coumarins can

disrupt both AI-1 and AI-2 signalling in some cases, both

structurally distinct systems for which a unifying principle

remains to be elucidated. From the perspective of biofilm

inhibition, the ability of coumarin to interfere with biofilms

in both gram-negative and gram-positive pathogens suggests

that QS signalling alone is unlikely to explain its mechanism

of action. In some cases, growth-limiting effects of coumarins

cannot be ruled out. The coumarin concentrations used in

these studies ranged from 1 μg/ml (Girennavar et al. 2008)

to 1.5 mg/ml (Ojima et al. 2016), with limited investigation of

the impact of these active compounds on the growth of target

pathogens. Both biofilm and QS are cell density-dependent

multicellular phenotypes, and as such can be significantly al-

tered by reductions in growth rate or biomass. Therefore,

growth kinetic assays and dose dependency curves will be

needed to establish the growth independence and true QS

and biofilm inhibitory activity of these compounds.

Furthermore, while some of the studies cited used analytical

technologies such as liquid chromatography mass spectrome-

try and thin layer chromatography for QS detection, several

studies relied solely on activation or suppression of pigment

production in classical biosensor strains. Although widely
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used for the identification of QS producing/inhibiting isolates,

off-target effects have been reported, highlighting the need for

confirmatory analysis (Defoirdt et al. 2013). Therefore, it is

clear that further studies on the mechanism are needed to

support the ongoing development of derivative compounds

towards clinical use.

From a pharmacological perspective, the applicability of

coumarin in clinical applications would appear to be

favourable. Although liver toxicity in rodents has been report-

ed (Felter et al. 2006), and cancerogenic activity was reported

in early studies on the simple coumarin structure (Lake 1999),

coumarin is not genotoxic. Therefore, exposure to coumarin in

food or cosmetics products is not thought to pose any risk to

humans (Lee et al. 2014). A therapeutic dose of 0.64 mg/kg of

body weight is considered safe and will guide the clinical

application of these compounds going forward (Felter et al.

2006). Hence, structure-function studies and chemical modi-

fications linked to improved bioactivity will be crucial in en-

suring that these compounds can be brought through clinical

testing and find application in the management of infections.

This is by no means a foregone conclusion and it should be

noted that despite almost 20 years of research into QSI and

antibiofilm compounds, the commercial route to the clinic for

these promising molecules has yet to be reached. The natural

Table 1 Coumarin targets QS and biofilm formation in pathogenic bacteria

Coumarin compound Target organism Conc (μg/ml) QSI Antibiofilm Reference

Coumarin E. coli O157:H7 50 lsrA +++ (Lee et al. 2014)

Umbelliferone E. coli O157:H7 50 lsrA +++

Coladonin E. coli O157:H7 50 +++

Coumarin-3-carboxylic acid E. coli O157:H7 50 ++

Dephnetin E. coli O157:H7 50 ++

Ellagic acid E. coli O157:H7 50 ++

Esculetin E. coli O157:H7 50 ++

4-Hydroxycoumarin E. coli O157:H7 50 ++

Scopoletin E. coli O157:H7 50 ++

Coumarin P. aeruginosa 200 rhl, pqsA ++ (Gutierrez-Barranquero

et al. 2015)Coumarin Edwardsiella tarda 200 +

Coumarin E. coli MUH 200 ++

Coumarin S. aureus NCDO949 200 ++

Coumarin V. anguillarum 200 ++

Coumarin A. fischeri 200 Bioluminescence

Dihydroxybergamottin V. harveyii 1 BB886 luxP Tn5 (Girennavar et al. 2008)

BB170 luxN Tn5

Bergamottin V. harveyii 1 BB886 luxP Tn5

BB170 luxN Tn5

Dihydroxybergamottin E. coli 1 +++

Bergamottin E. coli 1 +++

Dihydroxybergamottin S. typhimurium 1 +

Bergamottin S. typhimurium 1 ++

Dihydroxybergamottin P. aeruginosa 1 +

Bergamottin P. aeruginosa 1 ++

Esculetin S. aureus 8324 128 +++ (Durig et al. 2010)

Fisetin S. aureus 8324 16 +++

Fisetin S. aureus NCTC 16 +++

Fisetin S. aureus ATCC 16 +++

Nodakenetin P. aeruginosa 81 +++ (Ding et al. 2011)

Nodakenetin S. maltophilia 81 ++

Fraxin P. aeruginosa 74 ++

Fraxin S. maltophilia 74 +

Umbelliferone R. solanocearum 50 +++ (Yang et al. 2017)

Coumarin V. splendidus 985 Vsm, Vsh (Zhang et al. 2017)

Warfarin E. coli 1540 ++ (Ojima et al. 2016)
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product status of coumarins and their relatively benign toxic-

ity may help to bridge this gap.
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