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Abstract: In the search for new environmental friendly antifouling (AF) agents, four 

coumarins were isolated from the herbal plant Cnidium monnieri, known as osthole (1), 

imperatorin (2), isopimpinellin (3) and auraptenol (4). Furthermore, five coumarin 

derivatives, namely 8-epoxypentylcoumarin (5), meranzin hydrate (6), 2'-deoxymetranzin 

hydrate (7), 8-methylbutenalcoumarin (8), and micromarin-F (9) were synthesized from 

osthole. Compounds 1, 2, 4, 7 showed high inhibitory activities against larval settlement of 

Balanus albicostatus with EC50 values of 4.64, 3.39, 3.38, 4.67 μg mL−1. Compound 8 

could significantly inhibit larval settlement of Bugula neritina with an EC50 value of  

3.87 μg mL−1. The impact of functional groups on anti-larval settlement activities 

suggested that the groups on C-5' and C-2'/C-3' of isoamylene chian could affect the  

AF activities. 

Keywords: antifouling activity; Cnidium monnieri; coumarins; osthole;  

structure-activity relationship 
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1. Introduction 

Marine biofouling on man-made structures causes serious technical and economic problems by 

threatening mariculture facilities, shipping facilities, vessels, and seawater pipelines [1–6]. Although 

the metal-based biocides such as tributyltin and cuprous oxide can effectively control biofouling, they 

also affect non-target organisms and are difficult to degrade [7,8]. Thus, the International Maritime 

Organization (IMO Resolution A., 895 21, 25/11/1999) established the ban of antifouling coatings 

containing tributyltin (TBT). Furthermore, the discharge of copper from antifouling paints is currently 

under scrutiny in many countries, because the cuprous oxide is associated with heavy metal pollution 

and high environmental risk. Obviously, there is a high demand for new antifouling (AF) agents that 

are not only effective but also environmentally friendly. Since the natural products already exist in the 

environment and are commonly biodegradable, it is suggested that these natural products with AF 

activity are promising and are environmentally friendly alternatives for classical AF agents [3,9–11]. 

So far, most of the AF natural products have been obtained from marine organisms [9,11–19], but 

some natural products, which were found in herbal plants, have also proved to be AF agents [20,21]. 

Compared with marine organisms, many species of herbal plants are easily obtained on an industrial 

scale because of the rapid development of the herbal industry [22]. Cnidium monnieri, one of the most 

popular traditional herbs, has a wide distribution in China. Its fruits have been used for treatment of 

impotence, renal disease, dermatosis, and colpitis [23]. The lipophilic extract of C. monnieri fruits can 

significantly inhibit the settlement of cyprids [20]. 

The barnacle Balanus albicostatus and bryozoan Bugula neritina were chosen for screening AF 

agents as model organisms. The barnacle B. albicostatus is one of the dominant fouling species in East 

Asian waters and is a great threat to mariculture facilities, shipping facilities, vessels, and seawater 

pipelines [24–26]. The marine bryozoan B. neritina is an important fouling organism in tropical and 

temperate waters and attached to seawater cages, buoys and dock pilings at certain times of the  

year [27–29]. Both B. albicostatus and B. neritina are excellent species for anti-fouling bioassays 

because their adults can be easily collected and the larvae can be conveniently maintained in controlled 

laboratory conditions [20,30]. 

In this study, four coumarins including osthole have been isolated from the fruits of C. monnieri, 

and have been tested for AF activities against B. albicostatus and B. neritina. Furthermore, five other 

coumarins were synthesized from osthole and tested for AF properties. These five synthesic coumarins 

occuring only in trace amounts in nature were difficult to purify from the plant, but were easy to obtain 

through a simple synthesis processes. Among these compounds, osthole was the main chemical 

composition of C. monnieri fruits [31]. In China, osthole has been isolated from the widely cultivated 

herbal plant C. monnieri and commercialized as medicine or pesticide [32]. Consequently, osthole is in 

abundant supply at low price on the market, which makes it possible for large-scale antifouling testing. 

Also, because these coumarins share a similar molecular skeleton, the relationship between the 

functional groups and AF activity are discussed. 
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2. Results and Discussion 

2.1. Isolation, Synthesis and Identification of These Compounds  

Four natural products were purified from the fruits of C. monnieri, and five other compounds, 

which occur in trace amounts in nature, were obtained by chemical synthesis. General chemical 

structure characteristics of these compounds are described in the supplementary materials. The 

spectrum data were consistent with those of references, and nine compounds were identified as  

osthole (1) [33], imperatorin (2) [34,35], isopimpinellin (3) [36], auraptenol (4) [37],  

8-epoxypentylcoumarin (5) [38], meranzin hydrate (6) [36], 2'-deoxymetranzin hydrate (7) [36],  

8-methylbutenalcoumarin (8) [39], and micromarin-F (9) [39,40]. 

2.2. AF Activity of Compounds 

The EC50 and LC50 values of Compounds 1–9 against B. albicostatus and B. neritina are 

summarized in Table 1. The detailed rates of settlement and mortality against B. albicostatus and  

B. neritina for Compounds 1–9 are shown in the supplementary materials. The standard requirement 

established by the US Navy program as a potency criterion for natural antifoulants was that of being 

active at less than 25 μg mL−1 in static bioassays [9]. All compounds except meranzinhydrate (6) had 

EC50 values lower than 25 μg mL−1 and showed inhibitory activities against barnacle settlement. 

Among these, Compounds 1, 2, 4, and 7 showed high inhibitory activities against barnacle settlement 

with EC50 values <5 μg mL−1. The calculated therapeutic ratio (LC50/EC50) of greater than one was 

considered for potential use in environmentally compatible AF coatings [41]. The AF compounds with 

LC50/EC50 ratio higher than 15.0 were considered as non-toxic AF agents, and the compounds with a 

LC50/EC50 ratio lower than 5.0 were considered as toxic AF agents [19,21]. The recent opinion states 

that the degradable compounds with a low LC50/EC50 ratio may still be considered when selecting 

candidate compounds [19]. The LC50/EC50 ratio of Compounds 1, 2, 4, 5, 7 and 8 was higher than 5.0, 

indicating that these compounds are low-toxicity AF agents against the settlement of B. albicostatus 

larvae. All compounds except for 2, 3 and 5 showed inhibitory activities against bryozoan B. neritina 

settlement with EC50 values <25 μg mL−1, and the EC50 value of Compound 8 was lower than 5 μg mL−1. 

All compounds showed no significant mortality effect on B. neritina at a concentration of 50 μg mL−1. 

Table 1. Antilarval settlement activities of Compounds (1–9) against Balanus albicostatus 

and Bugula neritina. 

Tested sample 
B. albicostatus B. neritina 

EC50(μg mL−1) LC50(μg mL−1) LC50/EC50 EC50(μg mL−1) 
osthole (1) 4.64 37.42 8.06 7.56 

imperatorin (2) 3.39 49.93 14.7 >50 
isopimpinellin (3) 11.31 >50 UD >50 

auraptenol (4) 3.38 39.47 11.7 22.59 
8-epoxypentylcoumarin (5) 7.46 >50 >6.7 37.29 

Meranzin hydrate (6) 35.36 >100 UD 18.23 
2'-deoxymetranzin hydrate (7) 4.67 >50 >10.7 9.06 
8-methylbutenalcoumarin (8) 6.77 >100 >14.8 3.87 

micromarin-F (9) 10.93 33.36 3.1 12.38 
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In previous research, we reported that the crude extracts of six common Chinese herbs showed AF 

activities against the cyprids of B. albicostatus, and we also identified two AF compounds from 

Sophora flavescens [20]. In this study, we have identified four AF compounds (osthole, imperatorin, 

isopimpinellin, auraptenol) from the fruits of another Chinese herbal plant Cnidium monnieri. The 

results further demonstrate the value of herbal plants as a source of AF agents. Osthole (1) showed 

significant inhibitory activities against both B. albicostatus and B. neritina. Furthermore, some osthole 

derivatives (5, 7, 8 and 9) also showed established AF activity. It was suggested that the compound 

osthole should be considered as a potential lead compound for the design of new AF agents.  

2.3. Impact of the Functional Groups on Antilarval Settlement Activities 

Because the nine compounds have a basic coumarin skeleton (benzo-α-pyrone ring) with different 

functional groups, the impact of functional groups on anti-larval settlement activities could be 

estimated to obtain preliminary information about the structure-activity relationship (SAR). In order to 

discuss the impact of functional groups, the concentration unit of bioassay results was converted to 

micromole per milliliter as shown in Figures 1 and 2. 

Figure 1. EC50 values of Compounds 1–9 against larval settlement of B. albicostatus.  

 

Figure 2. EC50 values of Compounds 1–9 against larval settlement of B. neritina.  

 

Compounds 1, 8 and 9 were the first subgroup to be compared. They have the same coumarin 

structures, except that the C-5' groups were 5'-CH3 (1), 5'-CHO (8), 5'- CH2OH (9), respectively  

(as shown in Figure 3). The EC50 values against B. albicostatus were 5'-CH3 (19.01 μmol mL−1)  
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< 5'-CHO (26.24 μmol mL−1) < 5'-CH2OH (42.04 μmol mL−1), and the EC50 values against B. neritina 

were 5'-CHO (15.00 μmol mL−1) < 5'-CH3 (30.98 μmol mL−1) < 5'-CH2OH (47.62 μmol mL−1). It was 

suggested that C-5' groups could affect the activities. 

Figure 3. The scheme of the synthetic procedure and the chemical structures of 

Compounds 5-9. Reagents: (a) m-CPBA, CH2Cl2, 0 °C; (b) H2SO4, THF-H2O, room temp; 

(c) Hg(AcO)2, NaOH, THF-H2O, room temp; (d) SeO2, DMSO-EtOH, reflux; (e) sodium 

borohydride, ethanol. 
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Compounds 1, 5, 6 and 7 have the same structures, except that the groups between C-2' and C-3' 

have a double bond (1), expoy (5), dihydroxy (6), hydroxy (7), respectively (as shown in Figure 2). 

The EC50 values against B. albicostatus were hydroxy (17.17 μmol mL−1) < double bond  

(19.01 μmol mL−1) < expoy (28.69 μmol mL−1) < dihydroxy (127.19 μmol mL−1), and The EC50 values 

against B. neritina were double bond (30.98 μmol mL−1) < hydroxy (33.31 μmol mL−1) < dihydroxy 

(65.58 μmol mL−1) < expoy (143.42 μmol mL−1). It was suggested that groups between C-2' and C-3' 

could affect the activities too. 

The linear furanocoumarin 2 has the same isoamylene chain as simple Coumarin 1 (as shown in 

Figure 4). They have close EC50 values against B. albicostatus (Compound 1, 19.01 μmol mL−1 and 

Compound 2, 12.56 μmol mL−1) but different EC50 values against B. neritina (Compound 1,  
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19.01 μmol mL−1 and Compound 2, >185.19 μmol mL−1). It seems that the existence of the furan ring 

could affect the activity against B. neritina. 

Figure 4. The chemical structures of Compounds 1–4. 
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3. Experimental Section  

3.1. Plant Material and Extraction 

The fruits of C. monnieri, which were collected from Zhejiang Province, China in October 2006, 

were purchased from a local medicine store in Xiamen, Fujian Province, China. The plant material was 

identified by Dr. Yang Qiu, Department of Pharmacy, Xiamen University. A voucher specimen  

(SCZ-2006-10) is now deposited at the College of Oceanography and Environmental Science, Xiamen 

University. The fruits of C. monnieri (2.5 kg) were extracted with methanol (3 L) by maceration for  

2 weeks at room temperature. The extract was desiccated by a vacuum rotary evaporator. The extract 

was dissolved in water and the solution was partitioned with EtOAc to obtain the EtOAc extract in 

yield of 35.6 g. 

3.2. Isolation of Bioactive Compounds and Structural Identification 

The EtOAc extract (35.6 g) from C. monnieri was chromatographed over a silica gel column using 

a gradient solvent system (petroleum ether-EtOAc = 20:1→1:1) to give five subfractions (F1–F5). The 

F2 fraction was separated over silica gel (petroleum ether-EtOAc = 12:1) to yield Compounds 1 (5 g) 

and 2 (750 mg). The F3 fraction was separated over silica gel (petroleum ether-EtOAc = 8:1) to yield 

Compound 3 (32 mg). The F4 fraction was separated over silica gel (petroleum ether-EtOAc = 5:1) and 

Sephadex LH-20 filtration (MeOH) to yield Compound 4 (12 mg). 

The nuclear magnetic resonance (NMR) spectra were recorded with a Bruker Avance-600 FT NMR 

spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) in CDCl3 with Tetramethylsilan (TMS) 

as a reference. electrospray ionization mass spectrometry (ESI-MS) data were recorded on an AB 
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3200Q TRAP spectrometer (AB SCIEX, Boston, MA, USA). Structural elucidation of the pure 

compounds was based on interpretation of their spectral data (NMR, MS) and comparison with 

published values. 

3.3. Chemical Synthesis of Osthole Derivatives 

Compounds 5–9 were prepared by standard organic synthesis procedures described in  

references [39,42,43], and the synthesis of these osthole derivatives is illustrated in Figure 2.  

Epoxide 5 was prepared by the epoxidation of 1 with m-chloroperbenzoic acid (m-CPBA). Diol 6 was 

synthesized from 5 by acid hydrolysis. Tertiary alcohol 7 was prepared by the oxymercuration of 1. 

Aldehyde 8 was synthesized from 2 with the oxidant SeO2. Secondary alcohol 9 was prepared by the 

reduction of 8. The synthetic procedures are described in the supplementary materials. 

3.4. AF Assay 

The barnacle B. albicostatus and the bryozoan B. neritina were used to test the AF activities of the 

natural products and synthetic derivatives. Adults of B. albicostatus were collected from the intertidal 

zone in Xiamen, Fujian Province, China. Based on the methods of references [9,20], after being 

released from the adults, the I–II stage nauplii were collected and reared to metamorphosis with  

Chaetoceros muelleri as food source. The larvae, which were metamorphosed to the cyprid stage, were 

stored in the dark at 5 °C until use for bioassays. Adult colonies of B. neritina were collected from a 

fish farm near Pozhao Island, Zhangzhou, Fujian Province, China. After exposure to the overhead 

room light, the adults released the larvae, which were harvested and immediately used [44]. Test 

samples were dissolved in EtOAc and the methods for measuring activities were based on  

references [9,20,44]. Percentages of larval settlement, swimming and death were calculated. The EC50 

value (the concentration that reduced the settlement rate by 50% relative to the control) and LC50 

value (the concentration that resulted in 50% mortality) of the compounds were calculated using the 

Spearman–Karber method [45]. The differences between the experimental treatments and controls 

were analyzed with one-way ANOVA followed by a Dunnet post hoc test. The significance level was 

defined as p < 0.05. 

4. Conclusions  

In conclusion, four coumarins were isolated from the herb C. monnieri, five other coumarins were 

prepared by chemical synthesis from osthol. All compounds were identified and tested for AF 

activities; most of them showed inhibitory activities against barnacle or bryozoan settlement. Among 

these compounds, osthole could be considered as a good lead compound in AF agent discovery, since 

it was present in a high quantity, was of simple structure and had substantial AF activities against both 

B. albicostatus and B. neritina. Furthermore, some preliminary information about the structure-activity 

relationship of these coumarins was given and the results showed that the groups on C-5' and C-2'/C-3' 

of the isoamylene chain could affect the AF activities. 
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