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Abstract

We consider a positive-valued time series whose conditional distribution has a time-

varying mean, which may depend on exogenous variables. The main applications con-

cern count or duration data. Under a contraction condition on the mean function,

it is shown that stationarity and ergodicity hold when the mean and stochastic or-

ders of the conditional distribution are the same. The latter condition holds for the

exponential family parametrized by the mean, but also for many other distributions.

We also provide conditions for the existence of marginal moments and for the geomet-

ric decay of the beta-mixing coefficients. Simulation experiments and illustrations on

series of stock market volumes and of greenhouse gas concentrations show that the

multiplicative-error form of usual duration models deserves to be relaxed, as allowed

in the present paper.
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1 Introduction

Models for nonnegative time series include the Autoregressive Conditional Duration (ACD)

model introduced by Engle and Russell (1998) to analyse durations between events (such as

trades, quotes, price changes), the Conditional AutoRegressive Range (CARR) model intro-

duced by Chou (2005) to study the range of an asset during a trading day, the more general

Multiplicative Error Model (MEM) introduced by Engle (2002) and count time series models

such as the INteger-valued AutoRegressive (INAR) studied by Al-Osh and Alzaid (1987) or

the Poisson INteger GARCH (INGARCH) studied by Ferland, Latour and Oraichi (2006).

Count time series models have been used in various domains, in particular economics, finance,

insurance, environmental science, social science and epidemiology (see Davis, Holan, Lund

and Ravishanker (2016) and the references therein). For MEM-like models, the stationary

solutions are obtained explicitly, like for GARCH models, as function of the parameters and

the rescaled iid innovations of the model (see e.g. Francq and Zaköıan, 2010). INGARCH-

type count time series models are not defined by means of an iid white noise, but by assuming

a discrete conditional distribution with a time-varying parameter depending on the past val-

ues. Since the primary goal of these time series models is to forecast the future level of

the observed series, that parameter is generally the conditional mean. The absence of an

iid sequence in the definition of these models prevents exhibiting an explicit solution. The

fact that the support of the conditional distribution is countable also prevents using the

theory of the Markov chains with continuous state space (see Meyn and Tweedie, 2012). As

a consequence, studying the probabilistic structure of most count time series models is not

obvious (see Fokianos, Rahbek and Tjøstheim, 2009, Tjøstheim, 2012, Davis, Holan, Lund

and Ravishanker, 2016). Ferland, Latour and Oraichi (2006) obtained stationarity results

for INGARCH models with Poisson conditional distribution of linear intensity parameter.

Neumann (2011) proved the absolute regularity and relaxed the linearity assumption on

the Poisson intensity parameter. Doukhan and Neumann (2017) showed the absolute reg-

ularity for a much broader class of processes. Franke (2010) and Doukhan, Fokianos and

Tjøstheim (2012, 2013) studied the weak dependence of nonlinear Poisson autoregressions.
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Douc, Doukhan and Moulines (2013) gave conditions on the associated Markov kernel for

stationarity and ergodicity of a first-order observation-driven time series valued in N. These

results have been extended to more general observation-driven models by Douc, Roueff and

Sim (2015, 2016) and Sim, Douc and Roueff (2016). Gonçalves, Mendes-Lopes and Silva

(2015) showed the stationarity and ergodicity of the INGARCH model with compound Pois-

son conditional distributions. Davis and Liu (2016) showed stationarity and mixing prop-

erties when the conditional distribution belongs to the one-parameter exponential family of

distributions. The latter reference builds explicit solutions of count time series as limits of

functions of quantiles of an iid sequence. The present paper adopts the same strategy. The

assumption that the conditional distribution belongs to the exponential family is however

restrictive. In particular, that assumption precludes the zero-inflated distributions and hur-

dle models, which proved to be useful to deal with count data sets that have an excess of

zero counts (see e.g. Gurmu and Trivedi, 1996).

The main aim of the present paper is to give stationarity and ergodicity conditions for

conditional distributions that are not restricted to belong to the one-parameter exponential

family. In addition we will allow the conditional mean to depend on covariates, which seems

relevant for some applications.

We thus consider a stochastic process of interest {Yt, t ∈ Z} valued in the set [0,∞), and

a stochastic process of exogenous explonatory variables {X t, t ∈ Z} valued in R
r. Let Ft be

the information set available at time t, i.e. the sigma-field generated by {Yu,Xu, u ≤ t}.

When there is no exogenous variable, i.e. when Ft = σ(Yu, u ≤ t), the most frequent

specifications of λt := E(Yt | Ft−1) is the linear equation

λt = ω +

q
∑

i=1

αiYt−i +

p
∑

j=1

βjλt−j, (1.1)

where ω > 0, αi ≥ 0 and βj ≥ 0. The standard ACD duration models and MEMs are of the

form

Yt = λtzt, (1.2)

where (λt) satisfies (1.1) and (zt) is an iid sequence of positive variables of mean 1, for
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instance of exponential distribution of rate parameter 1. Note that for time series of counts,

i.e. when Yt is valued in N, the sequence zt = Yt/λt cannot be independent, in general.

Even for duration models for which the support of Yt is [0,∞), assuming that zt and λt

are independent is very restrictive. In particular, this implies that the conditional variance

Var(Yt | Ft−1) is proportional to λ
2
t , whatever the distribution of zt. In the numerical part of

this paper, the independence between zt and λt will be assessed by bootstrapping the distance

covariance test of Székely, Rizzo and Bakirov (2007). For more versatile duration time series

models, it is thus of interest to relax the MEM specification (1.2), by only specifying a

conditional distribution with mean λt.

We refer to a distribution of Yt given Ft−1 with mean (1.1) as a positive linear POLI(p, q)

model. If, as for INGARCH (p, q) models, the distribution of Yt given Ft−1 is integer-valued,

the model is intended to represent time series of counts. If, as for the above-mentioned

extension of the ACD models, the distribution of Yt given Ft−1 is valued in (0,∞), the POLI

model could suit for some time series of duration or volume, for instance.

Even if many references mention the possibility of adding exogenous variables in count

or duration time series models (see e.g. Cameron and Trivedi, 2001), we are only aware of

few references focusing on exogenous variables, the paper on Poisson autoregresssion with

exogenous covariates (PARX) by Agosto, Cavaliere, Kristensen and Rahbek (2016) and that

of Liboschik, Fokianos and Fried (2017) which also considers negative binomial conditional

distributions and has the R companion package tscount (see also the R package acp of

Siakoulis, 2015). In the PARX model, we have

λt = ω +

q
∑

i=1

αiYt−i +

p
∑

j=1

βjλt−j + π
⊤
X t−1, (1.3)

where the components of X t = (x1,t, . . . , xr,t)
⊤ are (transformed to) nonnegative numbers

and π = (π1, . . . , πr)
⊤ ≥ 0 componentwise. We also consider more general specifications of

the form

λt = g(Yt−1, . . . , Yt−q, λt−1, . . . , λt−p) + π(X t−1), (1.4)

where the functions g and π are values in [0,∞).
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We do not make a specific parametric assumption on the conditional distribution of Yt

given Ft−1, but we assume that its stochastic order increases with its mean. More precisely,

let Fλ be a family of cumulative distribution functions (cdf) indexed by the mean λ =
∫

ydFλ(y) ∈ R. Assume that, within this family, the stochastic order is equal to the mean

order, i.e.

λ ≤ λ∗ ⇒ Fλ(y) ≥ Fλ∗(y), ∀y ∈ R. (1.5)

We shall refer to (1.5) as the stochastic-equal-mean order property. Section 2 gives examples

of cdf satisfying this property. Section 3 assumes a linear conditional mean of the form (1.3)

and Section 4 considers the more general specification (1.4). Section 5 proposes a test of

independence between zt and λt in the duration model (1.2). Monte Carlo experiments and

illustrations on series of trading volume and greenhouse gas concentrations are presented.

Concluding remarks are given in Section 6. It is shown that a positive-valued time series

whose conditional cdf satisfies (1.5) and the mean verifies mild regularity conditions is sta-

tionary and ergodic. When Yt is valued in N, we show that the β-mixing coefficients have

exponential decay rate. For some particular POLI models, necessary and sufficient conditions

for the existence of moments are also provided.

2 Examples of distributions with stochastic-equal-mean

order

We first recall that the exponential family is included in the class of the distributions for

which the conditional stochastic order is equal to the conditional mean order, and we notice

that the conditional distribution of any ACD-MEM model also satisfies the stochastic-equal-

mean order property. We then give other examples of such conditional distributions which, to

our knowledge, are not yet fully considered in existing count or duration time series models.
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2.1 One-parameter exponential family

Using Yu (2009), Davis and Liu (2012) demonstrated (see Proposition 6 and the discussion

after (2.1) in their paper) that (1.5) holds true when Fλ is the cdf of a one-parameter

exponential family on [0,∞). A distribution Fλ is said to belong to such an exponential

family if, with respect to a σ-finite measure, it admits a density of the form

gλ(y) = h(y) exp {ηy − A(η)} 1{y≥0}, (2.1)

for some scalar natural parameter η = η(λ) and some twice differentiable cumulant generat-

ing function A(η). It is known that λ = A′(η). For example Fλ can be the cdf of the Poisson

distribution with intensity parameter λ = eη. Recall that a random variable Y follows a

negative binomial, Y ∼ NB (r, p), of parameters r > 0 and p ∈ (0, 1) if

P (Y = k) =
Γ(k + r)

k!Γ(r)
pr (1− p)k , k ∈ N.

We have λ = r(1 − p)/p. This distribution also belongs to the exponential family when

p = r/(λ+ r)) and r is fixed (with η = log(1− p)).

2.2 Standard multiplicative ACD-type models

Let F−
λ be the quantile function associated to the cdf Fλ. Note that (1.5) is equivalent to

λ ≤ λ∗ ⇒ F−
λ (u) ≤ F−

λ∗(u), ∀u ∈ (0, 1). (2.2)

By positive homogeneity of the quantile function, conditional on Ft−1, the quantile function

of Yt satisfying (1.2) is

F−
λt
(α) = λtF

−(α),

where F− is the quantile function of zt. Therefore the conditional distribution of any standard

ACD model satisfies the stochastic-equal-mean order property (2.2).
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2.3 Negative binomial NB (r, p) with fixed p

For any fixed p, the negative binomial distribution Fλ with parameter r = pλ/(1 − p)

apparently does not belong to the one-parameter exponential family. The next Lemma shows

that this family of distribution however satisfies (1.5). Write X ≤st Y when the random

variable Y stochastically dominates the random variable X, i.e. if P (X ≤ y) ≥ P (Y ≤ y)

for all y.

Lemma 2.1 If X ∼ NB(r1, p) and Y ∼ NB(r2, p) with r1 ≤ r2, then X ≤st Y .

The previous lemma is quite obvious and can probably be found somewhere in the literature,

but we did not find a precise reference of such a result. For completeness, we thus give a

proof in Appendix.

2.4 Gamma distributions

A random variable Y is said to be Gamma distributed Γ(a, b) with shape parameters a > 0

and rate parameter b > 0 if it admits the density g(y) = Γ−1(a)baya−1e−by1{y>0}. We have

λ := EY = a/b. For fixed a, the distribution Γ(a, a/λ) readily belongs to the exponential

family (2.1). For fixed b, the distribution Γ(λb, b) is not of the form (2.1). However, denoting

by gλ(y) the density of that Γ(λb, b) distribution, it can be seen that when λ < λ∗ the

likelihood ratio gλ(y)/gλ∗(y) is a decreasing function, which entails (1.5). Note that if Yt |

Ft−1 ∼ Γ(λtb, b), then Var(Yt | Ft−1) = λt/b. This entails that (Yt) does not follow an ACD

model of the form (1.2), for which the variance is proportional to λ2t .

2.5 Zero-inflated distributions

There exists numerous instances of count data sets with excess zeros with respect to a

baseline model, for example the Poisson distribution (see e.g. Ridout, Demétrio and Hinde,

1998). One solution consists in assuming that a random element Y of the data set has a
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zero-inflated Poisson (ZIP) distribution, given by

P (Y = k) =







τ + (1− τ)e−λ if k = 0

(1− τ)e−λ λk

k!
if k > 0.

(2.3)

If τ ∈ [0, 1] the ZIP distribution is that of a mixture of a proportion τ of variables that

structurally always take the zero value and a proportion 1 − τ of variables that follow the

Poisson distribution with intensity λ. When τ ∈ [−e−λ/(1 − e−λ), 0) and λ > 0, the ZIP

distribution is actually zero-deflated. The same law can be obtained with the hurdle model

which assumes that a proportion τ of variables always take the zero value and a proportion

1− τ of variables follow the zero-truncated Poisson distribution

P (Y = k) =







τ if k = 0

(1−τ)e−λλk

(1−e−λ)k!
if k > 0.

More generally, assume that the baseline cdf is not necessarily Poisson but the cdf Fλ,

and define two zero-inflated distributions by

P (Y ≤ y) = τ + (1− τ)Fλ(y), P (Y ∗ ≤ y) = τ + (1− τ)Fλ∗(y), (2.4)

for all y ≥ 0 and P (Y ≤ y) = P (Y ∗ ≤ y) = 0 for all y < 0 , where τ ∈ [0, 1] is some extra

zero probability. The following lemma shows that if the family of distributions Fλ satisfies

(1.5) then this is also the case for the zero-inflated distributions.

Lemma 2.2 If (1.5) and (2.4) hold true, then EY ≤ EY ∗ entails Y ≤st Y
∗.

3 Stationarity in the linear conditional mean case

First consider the strict stationarity and ergodicity of the general POLI-X model (1.3).

Ergodicity entails the strong law of large numbers, and is thus a fundamental tool for studying

the asymptotic properties of estimators and test statistics.
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Proposition 3.1 Let {Fλ, λ ∈ (0,∞)} be a family of cdf on [0,∞) (i.e. Fλ(y) = 0 for all

y < 0) satisfying (1.5). There exists a stationary (and ergodic) sequence (Yt) such that

P (Yt ≤ y | Ft−1) = Fλt
(y), (3.1)

where λt satisfies either (1.1) or (1.3) with (X t) stationary and ergodic, if

q
∑

i=1

αi +

p
∑

j=1

βj < 1. (3.2)

Conversely, if there exists a solution of (3.1) such that EYt = m < ∞, then Eπ⊤
X t < ∞

and (3.2) holds.

The strict stationarity condition (3.2) does not depend on the exogenous variables. This

is not surprising since adding covariates remains to substitute a stationary intercept ωt =

ω +
∑r

i=1 πixi,t−1 for the constant ω in λt, and it is known (at least for conditional cdf

belonging to the exponential family) that the stationarity condition does not depend on

the intercept. Francq and Thieu (2018) made a similar comment on GARCH models with

exogenous variables. Note also that the stationary solution defined in the proof has a causal

Bernoulli shift representation of the form

Yt = ϕ(Ut, Ut−1, . . . ;X t−1,X t−2, . . . ),

where the sequences (Ut) and (X t) are independent and (Ut) is iid. It follows that, under the

conditions of Proposition 3.1, the condition (3.2) also entails that the multivariate process

(YtX
⊤
t )

⊤ is stationary and ergodic.

We now give conditions for the existence of moments for the POLI(1,1) model.

Proposition 3.2 Let {Fλ, λ ∈ (0,∞)} be a family of cdf on [0,∞) satisfying (1.5). As-

sume that, for Y ∼ Fλ(y) and some integer ℓ ≥ 2, there exist nonnegative coefficients

aj(0), aj(1), . . . , aj(j) for all j ≤ ℓ such that

EY j =

j
∑

i=0

aj(i)λ
i for j = 1, . . . , ℓ. (3.3)
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Under (3.2), let (Yt) be a stationary sequence such that P (Yt ≤ y | Ft−1) = Fλt
(y), where λt

satisfies (1.1) with p = q = 1. We have EY ℓ
t <∞ if and only if

ℓ
∑

j=0

a(j)

(

ℓ

j

)

αjβℓ−j < 1, (3.4)

where a(0) = a(1) = 1 and a(j) = aj(j) for j ≥ 2.

Example 3.1 (NB(r, pt)) The first momentsmi = EY i of Y following the NB (r, r/(λ+ r))

distribution are

m1 = λ, m2 = λ+
1 + r

r
λ2, m3 = λ+ 3

1 + r

r
λ2 +

2 + 3r + r2

r2
λ3,

m4 = λ+ 7
1 + r

r
λ2 + 6

2 + 3r + r2

r2
λ3 +

6 + 11r + 6r2 + r3

r3
λ4.

It follows that (3.3) holds with

a(2) =
1 + r

r
, a(3) =

2 + 3r + r2

r2
, a(4) =

6 + 11r + 6r2 + r3

r3
.

Proposition 3.2 shows that the POLI(1,1) model with NB(r, r/(λt+ r)) conditional distribu-

tion admits a moment of

order 2 iff (α + β)2 +
α2

r
< 1, (3.5)

order 3 iff (α + β)3 +
3α2(α + β)

r
+

2α3

r2
< 1, (3.6)

order 4 iff (α + β)4 +
6α2(α + β)2

r
+
α3(11α + 8β)

r2
+

6α4

r3
< 1. (3.7)

Figure 1 displays these moment conditions when r = 1.
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Figure 1: Moment conditions for the INGARCH(1,1) process with NB(r, pt) conditional

distribution.

The condition (3.5) has been given by Christou and Fokianos (2014) and (3.7) by Ahmad

and Francq (2016), but without formal proof.

Example 3.2 (NB(rt, p)) Now consider the INGARCH(1,1) model with NB(pλt/(1−p), p)

conditional distribution. By Jain and Consul (1971), the moments mℓ = EY ℓ of Y ∼

NB(r, p) satisfy

mℓ = pλ

ℓ−1
∑

j=0

(

ℓ− 1

j

)

(

mj +
1−p

λp
mj+1

)

, ℓ ≥ 1.

It follows that

m1 = λ, m2 = λ2 +
1

p
λ, m3 = λ3 +

3

p
λ2 +

2− p

p2
λ,

and, more generally, (3.3) holds with a(j) = aj (j) = 1 for all j. We then have

ℓ
∑

j=0

a(j)

(

ℓ

j

)

αjβℓ−j = (α + β)j,
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and Proposition 3.2 shows that this INGARCH(1,1) model admits moments of any orders if

and only if α + β < 1.

4 Extension to nonlinear conditional means

Let B be the Borel sigma-algebra of R∞. For h ≥ 0, let the β-mixing coefficient (also called

absolute regularity coefficient)

β(h) = E sup
A∈B

|P {(Yh, Yh+1, . . . ) ∈ A | Y0, Y−1, . . . } − P {(Yh, Yh+1, . . . ) ∈ A}| .

We now give conditions for stationarity and ergodicity when the conditional mean has the

general form (1.4). For integer-valued observations, we also show the geometric decrease of

the β-mixing coefficients. The geometric decrease of the β-mixing coefficients is a stronger

property than the ergodicity, which entails the central limit theorem under some moment

conditions.

Proposition 4.1 Let {Fλ, λ ∈ (0,∞)} be a family of cdf on [0,∞) satisfying (1.5), and let

(X t) be a stationary and ergodic process. Assume that the function g(y1, . . . , yq, λ1, . . . , λp)

is such that, for all (yi, y
′
i) ∈ [0,+∞)2, i = 1, . . . , q for all (λj, λ

′
j) ∈ (0,∞)2, j = 1, . . . , p,

∣

∣g(y1, . . . , yq, λ1, . . . , λp)− g(y′1, . . . , y
′
q, λ

′
1, . . . , λ

′
p)
∣

∣

≤

q
∑

i=1

αi|yi − y′i|+

p
∑

j=1

βj|λj − λ′j|.

If
q
∑

i=1

αi +

p
∑

j=1

βj < 1, (4.1)

then there exists a stationary and ergodic sequence (Yt) such that the distribution of Yt

conditional on Ft−1 is Fλt
, where λt satisfies (1.4). Moreover, if Yt is valued in N, there

exist constants K > 0 and ρ ∈ (0, 1) such that

β(h) ≤ Kρh, h ≥ 0.
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5 Testing the multiplicative form of duration models

Instead of a standard ACD duration model with the multiplicative (MEM) form (1.2), the

present paper suggests a more general POLI model with a conditional distribution that is

not constrained by the MEM structure. The variable zt = Yt/λt is independent of λt :=

E(Yt | Ft−1) in model (1.2), whereas the two variables are uncorrelated but not necessarily

independent in the POLI model. In particular the conditional variance of a POLI model is

not constrained to be proportional to λ2t . It is thus of interest to test

H0 : zt and λt are independent, (5.1)

without specifying a particular alternative model. Based on observations Y1, . . . , Yn, the

hypothesis H0 can be tested by using the empirical distance covariance (see Székely et al.

(2007), Rizzo and Szḱely (2016), and the references therein)

V2
n =

∫

∣

∣ϕ̂z,λ(t, s)− ϕ̂z(t)ϕ̂λ(s)
∣

∣

2
w(t, s)dtds,

where ϕ̂z,λ, ϕ̂z and ϕ̂λ are respectively empirical estimators of the characteristic functions

of (zt, λt), zt and λt. As shown in Székely, Rizzo and Bakirov (2007), a relevant choice of

weighting function is w(t, s) proportional to t−2s−2. Under the null and the existence of

marginal moments, nV2
n converges in distribution. The limiting distribution depends on the

marginal laws of the two variables zt and λt in the iid case. Davis, Matsui, Mikosch and Wan

(2018) recently showed that the nice properties of the distance covariance and correlation

can also be extended to time series. In our framework, the sequence (zt, λt)t≥1 is not iid

under the null, and λt is not directly observable, but can be approximated by λ̃t(θ̂) where θ̂

is a consistent estimator of the parameter θ = (ω, α1, . . . , βp,π
⊤)⊤ and

λ̃t(θ) = ω +

q
∑

i=1

αiYt−i +

p
∑

j=1

βjλ̃t−j(θ) + π
⊤
X t−1, t ≥ q + 1,

where λ̃q(θ), . . . , λ̃q+1−p(θ) are fixed initial values. A natural choice for the estimator of

the unknown true parameter value θ0 ∈ Θ is the exponential quasi-maximum likelihood
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estimator (QMLE) defined by

θ̂ = argmin
θ∈Θ

n
∑

t=q+1

Yt/λ̃t(θ) + log(λ̃t(θ)). (5.2)

We propose to approximate the distribution of V2
n by the bootstrap distribution of the

variable V∗2
n defined in the following resampling scheme:

(i) Calculate θ̂ = θn(Y1, . . . , Yn), the test statistics V2
n = V2

n(Y1, . . . , Yn), and the resid-

uals ẑt = Yt/λ̃t(θ̂) for t = q + 1, . . . , n. Denote by Fn the empirical distribution of

{ẑt/sn, t = 1 + q, . . . , n} where sn =
∑n

t=q+1 ẑt/(n − q) (with this scaling factor, the

expectation of the distribution Fn is equal to 1).

(ii) Generate Y ∗
1 , . . . , Y

∗
n where Y ∗

t = z∗t λ̃
∗

t (θ̂), the z
∗
t ’s are independent and Fn-distributed,

and λ̃
∗

t (θ) is defined as λ̃t(θ) with Yt−i replaced by Y ∗
t−i. Calculate θ̂

∗
= θn(Y

∗
1 , . . . , Y

∗
n )

and the test statistics V∗2
n = V2

n(Y
∗
1 , . . . , Y

∗
n )

(iv) Repeat step (ii) B times and calculate the corresponding test statistics V∗2
n,1, . . . ,V

∗2
n,B.

(v) At the nominal significance level α ∈ (0, 1), reject H0 if V2
n > V∗2

n,(B−[αB]), where

V∗2
n,(1) ≤ . . . ≤ V∗2

n,(B) denote the corresponding order statistics.

The validity, i.e. the consistency under the null and the alternative, of an apparently sim-

ilar resampling scheme has been proven in Francq, Jiménez-Gamero and Meintanis (2017).

However, our framework is not the same, since the above-mentioned paper concerns spheric-

ity tests based on the empirical characteristic function. Proving the validity of the present

algorithm does not seem trivial and will be the topic of future research.

Of course, when one wants to test a given ACD model against a particular POLI model, a

standard–and often more efficient–alternative to the previous omnibus test consists in com-

paring the likelihood of the two models. This will be illustrated in an empirical application

below.
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5.1 Monte Carlo experiments

We simulated two data generating processes (DGP), one which satisfies H0 and the other

which does not. The first DGP is an ACD(1,1) model Yt = λtzt where λt = ω+αYt−1+βλt−1

with (ω, α, β) = (0.5, 0.1, 0.89), and the zt’s are independent with exponential distribution of

mean 1. The other DGP (denoted H1 in Table 1) is a POLI model of conditional distribution

Γ(bλt, b) with b = 0.01 and λt which follows the same equation as in the first DGP. We used

the resampling algorithm with B = 99 replications. Table 1 displays the empirical relative

frequency of rejection over N = 1000 independent replications of the two DGP’s, for the

sample sizes n = 500 and n = 1000. The exercise is computationally demanding since

N × (B+1)×2×2 = 400000 models have to be estimated and as many distance covariances

have to be computed (leading to around 3 days of computations on a personal laptop).

Table 1 shows that the error of first kind is well controlled when α = 1%, but the test is

n = 500 n = 1000

DGP α = 1% α = 5% α = 10% α = 1% α = 5% α = 10%

H0 1.2 3.0 5.8 0.7 3.8 6.7

H1 54.0 86.0 95.2 73.8 96.5 99.2

Table 1: Percentages of rejections of the bootstrapped distance covariance test.

slightly conservative at levels α = 5% and α = 10%. Indeed, over N = 1000 replications of a

test with nominal level α = 1% (respectively 5% and 10%), the empirical relative frequency

of rejection should vary between 0.2% and 1.9% (respectively 3.2% and 6.9%, and 7.5% and

12.5%) with probability 0.99. Despite the fact it is conservative, the distance covariance test

is surprisingly powerful in our Monte Carlo setting. Of course, for other alternative models,

that omnibus test of independence may be less powerful. For instance, when the conditional

distribution of the DGP is Γ(bλt, b) with larger b, the power is smaller. This is not surprising

because the variance λt/b of zt ∼ Γ(bλt, b) is a decreasing function of b and, since the variable

zt tends to become constant when b increases, it is harder and harder to detect a relationship
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between zt and any other variable.

5.2 S&P 500 transaction volume

Consider the series (Yt) of the S&P 500 transaction volume from 3/10/2013 to 3/10/2018,

which corresponds to 1260 values (downloaded on Yahoo! Finance). Fitting a POLI(2,2)

model (1.1), the parameter estimates of the QMLE (5.2) are ω̂ = 0.870, α̂1 = 0.499,

α̂2 = 0.130, β̂1 = 0.004, β̂2 = 0.122. As shown in the bottom-left panel of Figure 2,

the autocorrelation function (ACF) of the residuals ẑt = Yt/λ̃t(θ̂) no longer shows any sign

of dynamics. The distance covariance test however rejects the standard MEM-ACD model in

which zt and λt are independendent. Indeed, a kernel density estimator of the boostrapped

distribution of V2
n under the null is displayed at the bottom-right panel of Figure 2. The

value of V2
n computed on the observations, indicated by a cross on the figure, is located

at the extreme right of the distribution, which gives strong evidence for rejecting the null.

Actually, the observed value of the distance covariance is larger than all the B = 199 boot-

strapp replications used to approximate the distribution of V2
n under the null. The estimated

p-value is thus 1/200 = 0.005.

5.3 Greenhouse gas concentrations

Lucas et al. (2015) studied a large network data set of greenhouse gas (GHG) concentrations

collected by tracers located at different areas in California. The left panel of Figure 3 displays

the time series obtained by one of these tracers. The partial autocorrelogram suggests

that a simple POLI(1, 0) model could summarize the dynamics of the conditional mean.

The distance covariance test is not conclusive, since the p-values of the test generally vary

between 2% and 14% among the different series of GHG concentrations. On the time series

plot, one can see a concentration of observations around zero, which precludes a continuous

conditional distribution such as the Gamma law. We thus investigated the use of zero-

inflated conditional distributions. In particular, we found that for a large majority of series,

a zero-inflated Γ(λb, b) distribution has a higher likelihood than a zero-inflated Γ(a, a/λ)
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Figure 2: S&P 500 transaction volume from 3/10/2013 to 3/10/2018, ACF on the observed

series, ACF on the residuals of the POLI(2,2) model, distribution of the distance covariance

under the null hypothesis of multiplicative form, and observed distance covariance (cross

symbol).
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distribution. Since the variance of the former law is not proportional to the square of its

mean, this suggests that a multiplicative model of the form (1.2) is inadequate. For the

greenhouse gas time series, we thus propose the model

λt = ω + αYt−1, Yt | Ft−1 ∼ τδ0 + (1− τ)Γ(λtb, b),

with obvious notation for the mixing distribution. On the series displayed in Figure 3, the

maximum-likelihood estimates of the parameters are ω̂ = 0.0024, α̂ = 0.834, τ̂ = 0.186 and

b̂ = 245.2.
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Figure 3: Greenhouse gas time series concentration every 6 hours from May 10 to July 31,

2010, and empirical partial autocorrelations of the time series.

6 Conclusion

Proving the ergodicity of count time series models is a notorious tricky problem, for which the

present paper gives a simple solution. This also applies to more general positive-valued series.

The illustrations presented in Section 5 suggest that some real series are better represented

by a POLI model than by a model of the form (1.2). This gives a motivation for relaxing the
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usual multiplicative form of the ACD-like models, even if the probabilistic structure of the

model is then complicated by the absence of an explicit iid innovation sequence. Note that

the positivity of the observations is not fundamental for some of the results. In particular,

one could easily obtain sufficient stationarity conditions without this assumption. Moreover,

our results can be applied to positive-valued transformations of a non-positive series ǫt. For

example, the square of a GARCH has the ACD form ǫ2t = σ2
tη

2
t where the volatility σt is

independent of the iid sequence ηt. Since the multiplicative form of the GARCH model

entails strong restrictions, such as a constant conditional kurtosis, it could be of interest to

consider a POLI model on ǫ2t . This is a topic that we leave for future researches.

A Proofs

Proof of Lemma 2.1

Note that the result is trivial when the number of failures r1 and r2 are integers. More

generally, note that the likelihood ratio

P {NB(r2, p) = k}

P {NB(r1, p) = k}
= pr2−r1

k
∏

i=1

r2 + k − i

r1 + k − i

increases with k, which is known to entail the required stochastic dominance (see e.g. The-

orem 1 in Lehmann (1955)). �

Proof of Lemma 2.2

Assume (1.5), (2.4) and EY = (1 − τ)λ ≤ EY ∗ = (1 − τ)λ∗. Then for y ≥ 0 we have

P (Y ≤ y) = τ + (1− τ)Fλ(y) ≥ τ + (1− τ)Fλ∗(y) = P (Y ∗ ≤ y) and the result follows. �

Proof of Proposition 3.1

Assume (1.3) with (X t) stationary and ergodic, for which (1.1) can be considered as a

particular case.

If there exists m ∈ (0,∞) such that such that m = EYt = Eλt for all t, then

(

1−

q
∑

i=1

αi +

p
∑

j=1

βj

)

m = ω + Eπ⊤
X t.
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Under the positivity constraints on the parameters and exogenous variables, this equality

entails (3.2) and Eπ⊤
X t <∞.

It thus remains to show that (3.2) is sufficient for the existence of a strictly stationary

and ergodic solution to (3.1). Let (Ut) be an iid sequence of random variables uniformly

distributed in [0, 1], independent of the sequence (X t). For t ∈ Z, let Y
(k)
t = λ

(k)
t = 0 when

k ≤ 0 and, for k > 0, let

Y
(k)
t = F−

λ
(k)
t

(Ut), λ
(k)
t = ω +

q
∑

i=1

αiY
(k−i)
t−i +

p
∑

j=1

βjλ
(k−j)
t−j + π

⊤
X t−1. (A.1)

For k ≥ 2, we have

λ
(k)
t = ψk(Ut−1, . . . , Ut−k+1; Xs, s < t),

where ψk : [0, 1]k × [0,∞)∞ → [0,∞) is a measurable function. Therefore, for any k, the

sequences
(

λ
(k)
t

)

t
and

(

Y
(k)
t

)

t
are stationary and ergodic. Let F

(k)
t−1 and F∗

t−1 be the sigma-

fields generated by
{

Y
(k−i)
t−i , i > 0;Xs, s < t

}

and {Us,Xs, s < t}, respectively. We have

E
(

Y
(k)
t | F

(k)
t−1

)

= E
(

Y
(k)
t | F∗

t−1

)

= λ
(k)
t ,

P
(

Y
(k)
t ≤ y | F

(k)
t−1

)

= P
(

F−

λ
(k)
t

(Ut) ≤ y | F∗
t−1

)

= F
λ
(k)
t

(y).

We have used the well known result that F−
λ (U) has the cdf Fλ when U is uniformly dis-

tributed in [0, 1]. To show the existence of a solution to (3.1), with Ft−1 replaced by F∗
t−1,

it is now sufficient to show that

λt = lim
k→∞

λ
(k)
t exists almost surely (a.s.) in [0,+∞). (A.2)

Taking the limit as k → ∞ in both sides of the equalities in (A.1), the solution will be then

given by Yt = limk→∞ Y
(k)
t = F−

λt
(Ut) a.s. We then note that the distribution of Yt given

F∗
t−1 is the same as that of Yt given Ft−1 since λt is Ft−1-measurable.

We now show (A.2) under (3.2). We first prove that, for all k,

0 ≤ λ
(k−1)
t ≤ λ

(k)
t a.s. (A.3)
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and

E
(

Y
(k)
t − Y

(k−1)
t

)

= E
(

λ
(k)
t − λ

(k−1)
t

)

∈ [0,∞). (A.4)

Clearly, (A.3) and (A.4) hold true for k ≤ 0. Assume (A.3) is satisfied for k ≤ k0, then

using (2.2) we have

λ
(k0+1)
t = ω +

q
∑

i=1

αiF
−

λ
(k0+1−i)
t−i

(Ut−i) +

p
∑

j=1

βjλ
(k0+1−j)
t−j +

r
∑

i=1

πixi,t−1

≥ ω +

q
∑

i=1

αiF
−

λ
(k0−i)
t−i

(Ut−i) +

p
∑

j=1

βjλ
(k0−j)
t−j +

r
∑

i=1

πixi,t−1 = λ
(k0)
t .

Therefore the inequalities in (A.3) are shown by induction. Now note that EX
(k)
t = Eλ

(k)
t

exists for any fixed k, and for all positive parameters. It follows that (A.4) holds true. In

the case p = q = 1, we then have

E
∣

∣

∣
λ
(k)
t − λ

(k−1)
t

∣

∣

∣
= (α + β)E

(

λ
(k−1)
t−1 − λ

(k−2)
t−1

)

= (α + β)k−1 ω.

More generally, with obvious convention, under (3.2) we have

E
∣

∣

∣
λ
(k)
t − λ

(k−1)
t

∣

∣

∣
=

max(p,q)
∑

i=1

(αi + βi)E
(

λ
(k−i)
t−i − λ

(k−i−1)
t−i

)

≤ Kρk, ∀k ≥ 1,

with K > 0 and ρ ∈ (0, 1). This entails that the sequence
{

λ
(k)
t

}

k
converges in L1 and a.s.

under (3.2). Moreover, since

λt = ψ(Ut−1, Ut−2, . . . ; X t−1,X t−2, . . . ),

where ψ : [0, 1]∞ × [0,∞)∞ → [0,∞) is a measurable function, the sequence (λt) is ergodic.

�

Proof of Proposition 3.2

Let the notation ms = EXs
t when the moment exists, and b(ℓ) =

∑ℓ−1
i=0 aℓ(i)Eλ

i
t. Then

(3.3) entails mℓ = a(ℓ)Eλℓt + b(ℓ).

We first show EY 2
t <∞ iff (3.4) holds with ℓ = 2. The latter condition writes

ρ := (α + β)2 + {a(2)− 1}α2 < 1. (A.5)
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Since m2 = a(2)Eλ2t + b(2), we have

m2 = a(2)
{

ω2 + α2m2 + 2ω(α + β)m1

}

+ (β2 + 2αβ) {m2 − b(2)}+ b(2)

=
{

a(2)α2 + β2 + 2αβ
}

m2 +K,

where

K = a(2)
{

ω2 + 2ω(α + β)m1

}

+ b(2)
(

1− β2 − 2αβ
)

> 0.

Therefore EX2
t < ∞ entails (A.5). To show that (A.5) is also sufficient, recall that it has

been shown in the proof of Proposition 3.1 that

Yt = lim
k→∞

↑ Y
(k)
t .

By the monotone convergence theorem, to prove that m2 exists it thus suffices to prove that

limk→∞m
(k)
2 is finite, where m

(k)
s denotes EY

(k)s
t (which is finite for all s ≥ 0 and all k).

Letting µ
(k)
s = Eλ

(k)s
t and b(k)(ℓ) =

∑ℓ−1
i=0 aℓ(i)Eλ

(k)i
t we have

m
(k)
2 = a(2)µ

(k)
2 + b(k)(2)

= a(2)
{

ω2 + α2m
(k−1)
2 + 2ω(α + β)m

(k−1)
1

}

+(β2 + 2αβ)
{

m
(k−1)
2 − b(k−1)(2)

}

+ b(k)(2)

=
{

a(2)α2 + β2 + 2αβ
}

m
(k−1)
2 +K(k),

where

K(k) = a(2)
{

ω2 + 2ω(α + β)m
(k−1)
1

}

+ b(k)(2)− b(k−1)(2)
(

β2 + 2αβ
)

→ K

a.s. as k → ∞, since we have seen in the proof of Proposition 3.1 that (3.2) entails

limk→∞m
(k)
1 = limk→∞ µ

(k)
1 = m1. We thus have

m
(k)
2 ≤ ρm

(k−1)
2 + 2K ≤ 2K

∞
∑

i=0

ρi <∞

under (A.5). It follows that m2 = limk→∞ ↑ m
(k)
2 <∞ under (A.5).
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The proof of (3.4) is complete in the case ℓ = 2. Now consider the general case, arguing

by induction on ℓ ≥ 3. We have

mℓ = a(ℓ)

{

ℓ
∑

j=0

(

ℓ

j

)

αjβℓ−jEXj
t−1λ

ℓ−j
t−1 +Rℓ

}

+ b(ℓ)

= a(ℓ)αℓmℓ +
ℓ−1
∑

j=0

a(j)

(

ℓ

j

)

αjβℓ−j {mℓ − b(ℓ)}+ a(ℓ)R(ℓ) + b(ℓ),

where the term R(ℓ) is a linear combination of 1, Eλt, . . . , Eλ
ℓ−1
t with positive coefficients.

By induction, one can assume that R(ℓ) and b(ℓ) are finite under (3.4). It follows that (3.4)

is necessary to have mℓ finite. The converse is shown as in the case ℓ = 2. �

Proof of Proposition 4.1

As in the proof of Proposition 3.1, consider an iid sequence (Ut) of random variables

uniformly distributed in [0, 1], independent of the sequence (X t), and define Y
(k)
t = λ

(k)
t = 0

when k ≤ 0 and, when k > 0,

Y
(k)
t = F−

λ
(k)
t

(Ut), (A.6)

λ
(k)
t = g(Y

(k−1)
t−1 , . . . , Y

(k−q)
t−q , λ

(k−1)
t−1 , . . . , λ

(k−p)
t−p ) + π(X t−1).

By the argument of the proof of Proposition 3.1, to show the existence of a stationary

solution it suffices to show the almost sure convergence (A.2) of λ
(k)
t as k → ∞. In view of

(2.2), we have

E
{

|Y
(k)
t − Y

(k−1)
t | λ

(k)
t , λ

(k−1)
t

}

= E
∣

∣

∣
λ
(k)
t − λ

(k−1)
t

∣

∣

∣
.

Therefore

E
∣

∣

∣
Y

(k)
t − Y

(k−1)
t

∣

∣

∣
= E

∣

∣

∣
λ
(k)
t − λ

(k−1)
t

∣

∣

∣
.

It follows that, under (4.1),

E
∣

∣

∣
λ
(k)
t − λ

(k−1)
t

∣

∣

∣
≤

p∨q
∑

i=1

(αi + βi)E
∣

∣

∣
λ
(k−i)
t−i − λ

(k−i−1)
t−i

∣

∣

∣
≤ Kρk, ∀k ≥ 1,

for some constans K > 0 and ρ ∈ (0, 1). The proof of the existence of a stationary solution

follows.
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Now assume (4.1) and Yt is valued in N. For i = 1, 2, define stationary processes by

Y
[i]
t = F−

λ
[i]
t

(Ut), λ
[i]
t = g(Y

[i]
t−1, . . . , Y

[i]
t−q, λ

[i]
t−1, . . . , λ

[i]
t−p) + π(X t−1),

for t ≥ 1, where

Z
[1]
0 = (Y

[1]
0 , . . . , Y

[1]
1−q, λ

[1]
0 , . . . , λ

[1]
1−p)

and

Z
[2]
0 = (Y

[2]
0 , . . . , Y

[2]
1−q, λ

[2]
0 , . . . , λ

[2]
1−p)

are independent and follow the stationary law of

Zt := (Yt−1, . . . , Yt−q, λt−1, . . . , λt−p).

By the coupling arguments used to show (5.6) in Davis and Liu (2016) or (5.9) in Neumann

(2011), we have

β(h) = E sup
A∈B

|P {(Yh, Yh+1, . . . ) ∈ A | Z0} − P {(Yh, Yh+1, . . . ) ∈ A}|

= E sup
A∈B

∣

∣

∣
P
{

(Y
[1]
h , Y

[1]
h+1, . . . ) ∈ A | Z

[1]
0

}

− P
{

(Y
[2]
h , Y

[2]
h+1, . . . ) ∈ A | Z

[1]
0

}∣

∣

∣

≤
∞
∑

k=0

P
(

Y
[1]
h+k 6= Y

[2]
h+k

)

≤
∞
∑

k=0

E
∣

∣

∣
Y

[1]
h+k − Y

[2]
h+k

∣

∣

∣
,

with obvious notation. The last inequality holds because
∣

∣

∣
Y

[1]
h+k − Y

[2]
h+k

∣

∣

∣
is valued in N. Now,

note that (2.2) implies that

E
(

|Y
[1]
t − Y

[2]
t | λ

[1]
t , λ

[2]
t

)

= |λ
[1]
t − λ

[2]
t |.

Therefore

E|Y
[1]
t − Y

[2]
t | = E|λ

[1]
t − λ

[2]
t | ≤

q
∑

i=1

αiE|Y
[1]
t−i − Y

[2]
t−i|+

p
∑

j=1

βjE|λ
[1]
t−j − λ

[2]
t−j| ≤ Kρt,

and the conclusion follows. �
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[21] Francq, C., Jiménez-Gamero, M.D., and Meintanis, S.G. (2017) Tests for conditional

ellipticity in multivariate GARCH models. Journal of Econometrics 196, 305–319.

[22] Francq, C. and Zakoian, J.-M. (2010) GARCH models: structure, statistical inference

and financial applications. John Wiley & Sons.

[23] Franke J. (2010) Weak dependence of functional INGARCH processes. Technical report,

University of Kaiserslautern.
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