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Abstract-We examine an econometric model of counts of worker 
absences due to illness in a sluggishly adjusting hedonic labor market. We 
compare three estimators that parameterize the conditional variance-least 
squares, Poisson, and negative binomial pseudo maximum likelihood-to 
generalized least squares (GLS) using nonparametric estimates of the 
conditional variance. Our data support the hedonic absenteeism model. 
Semiparametric GLS coefficients are similar in sign, magnitude, and 
statistical significance to coefficients where the mean and variance of the 
errors are specified ex ante. In our data, coefficient estimates are sensitive 
to a regressor list but not to the econometric technique, including 
correcting for possible heteroskedasticity of unknown form. 

I. Introduction 

T HE NUMBER of days sick, the number of visits to a 
physician, the number of jobs held, and the number of 

purchases of a good or service are examples of microeco- 
nomic data that are counts of events in an interval of time. 
We investigate the causes of worker absenteeism via a 
discrete regression model where the dependent variable 
measures the number of times a worker is absent from a job 
in a year. The regression function is linearly exponential, a 
specification commonly applied to count data to ensure 
nonnegative conditional expectations. (See Hausman et al. 
(1984), Cameron and Trivedi (1986), and Cameron et al. 
(1988).) In the context of examining the microeconometrics 
of worker absenteeism our research compares the empirical 
performance of semiparametric generalized least-squares 
(GLS) estimators with the empirical performance of popular 
estimators of count data models. 

The theoretical model underlying our absence count 
regressions admits sluggish adjustment to hedonic labor 
market equilibrium. We examine four models: least squares, 
Poisson, negative binomial pseudo maximum likelihood, 
and generalized least squares with heteroskedasticity of 
unknown form. Regression coefficients and standard errors 
are generally similar across the econometric models we 
estimated. In our data the underlying economic model 
(equilibrium versus sluggish adjustment) is much more 

important to the parameter estimates than the regression 
model, including correcting for subtle heteroskedasticity. 

II. A Microeconometric Model of Worker 
Absenteeism 

The ideal microeconometric model of worker absentee- 
ism has several distinguishing properties (Avery and Hotz 
(1984), Barmby et al. (1991)). First, absences depend on 
both personal (supply) and job (demand) characteristics. 
Second, work attendance is a dynamic decision with possi- 
bly sluggish adjustment in the short run to a changing 
economic environment. Third, because absences are counts, 
conditional variances are typically a function of absences' 
conditional means (Patil (1970)). Least-squares regression 
produces inefficient estimators when absence counts are the 
dependent variable, and ignoring the accompanying condi- 
tional heteroskedasticity yields inconsistent standard errors 
and invalidates hypothesis tests. Because it is not obvious 
how to parametrize the heteroskedasticity in an absence 
count model, it is desirable to minimize the number of ex 
ante assumptions. The union of desirable econometric 
dimensions of a model of worker absenteeism suggests that 
investigating semiparametric regressions of individual ab- 
sence counts on the worker's personal and job characteris- 
tics and past absenteeism could prove informative. To our 
knowledge, we present the first microeconometric absentee- 
ism model jointly recognizing supply and demand forces, 
sluggish adjustment, and allowing heteroskedasticity of 
unknown form. 

The economic structure underlying labor market out- 
comes involving job attributes, including the regularity of 
work attendance, is the theory of hedonic labor market 
outcomes (Rosen (1986)). A matching of workers and firms 
in the labor market produces a locus of wage-absenteeism 
pairings that is positioned by the personal traits of workers, 
the economic and technological characteristics of employ- 
ers, and the encompassing institutional and legal environ- 
ment. For some issues, a researcher must uncover the 
employers' cost functions and workers' utility functions 
supporting the hedonic locus. Stringent a priori restrictions 
are needed to identify the complete structure of hedonic 
equilibrium models (Brown and Rosen (1982), Epple (1987), 
and Kahn and Lang (1988)). Alternatively, a researcher can 
numerically simulate hedonic equilibrium over a set of cost 
and utility function parameters (Kniesner and Leeth (1995)). 
Our interest is in robustly estimating the market locus of 
matches of pay and nonwage characteristics of employment. 

When absenteeism is an aspect of the employment 
relationship, hedonic labor market equilibrium is described 
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algebraically as 

Wi = f(ai, Ci; Si, Di, Ei, i) (1) 

where i indexes individuals, W is the wage rate, a is the 
absence rate, C is the vector of other nonwage characteristics 
of employment, fa < 0 and fc ! 0, depending on whether 
the worker views the particular nonwage characteristic as an 
(un)desirable aspect of employment. The information condi- 
tioning the hedonic locus in (1) includes a vector of the 
worker's personal and economic characteristics (S), a vector 
of the employing firm's technological and economic traits 
(D), the surrounding legal and institutional environment (E), 
and a stochastic error term with unknown distribution (E) to 
emphasize that the labor market outcomes described in (1) 
incorporate unpredictable random components. 

Because we study absenteeism and workers in our data 
have only a few pay grades (P), we estimated the inverse 
hedonic locus 

ai = f-I(Pi, Ci; Si, Di, Ei, Ei) (2) 

Moreover, family and production schedules can be difficult 
to change quickly. A sluggish adjustment version of the 
inverse hedonic equilibrium locus (2), 

ai = f- I(a -ji, Pi, Ci; Si, Di, Ei, Ei) (3) 

where j = 1, . . . , T indexes the time period, acknowledges 
that absenteeism may be part of a worker's short-run labor 
supply decision with the adjustment in work attendance due 
to new health or economic circumstances distributed over 
time.' Semiparametric count data regressions of the lagged 
adjustment absenteeism equation (3) encompass the desir- 
able characteristics of a microeconometric model of worker 
absenteeism (Avery and Hotz (1984)). 

III. Count Data Models-Econometric Background 

Our econometric estimates of the theoretical absenteeism 
equation (3) have 

E(ai I X) = exp (X'p0) (4) 

where Xi is the vector of explanatory variables [a1ji, Pi, Ci; 
Si, Di, EJ] and Po is a vector of unknown parameters. The 
linear exponential specification of the absence rate in (4) is 
common in count data models to ensure a positive condi- 
tional expectation estimate. (See Gourieroux et al. (1984a, 
b), Hausman et al. (1984), Cameron and Trivedi (1986), and 
Gurmu and Trivedi (1993).) Unlike other specifications 

ensuring positive conditional means, such as a logistic 
curve, the linear exponential specification (4) emits conve- 
nient economic interpretations. 

A. Basic Count Data Specifications 

Given our ex ante choice of a linear exponential regres- 
sion model of absence counts in (4), we note that for any 
vector of functions g(X) the moment restriction 

E[(ai- exp (X'0o))g(X1) Xi] = 0 (5) 

holds. The moment restriction in (5) is the basis for many 
estimators. 

Because absenteeism is the sum of absences in an interval 
of given length, an obvious first econometric specification is 
the Poisson, where E(ajIXi) = exp (Xa3Po) = Var (aiIXi). The 
choice of g(Xi) = Xi in (5) produces the Poisson pseudo 
maximum-likelihood estimator2 (PMLE) of Po, which solves 

z [ai - exp (XiP)]Xj = 0. (6) 

The asymptotic variance of the Poisson PMLE in (5) and (6) 
is 

E[XiX exp (X 
o)]-'E(X1Xu'io)E[X.X 

exp (X',o)]-l. (7) 

When the underlying model is Poisson and or, = exp (X&30) 
the estimator is fully efficient. Choosing g(Xi) = Xi 
exp (X 0o)W(Xi), where W(Xi) are weights depending on the 
regressors, produces the weighted least squares estimator 
solving the equation 

z [ai - exp (XiP)]Xi exp (Xa3)W(Xi) = 0 (8) 

which has asymptotic variance 

E[XiX' exp 
(2Xa3O)W(Xj)]f'E[XjXi 

X exp(2X po) W(X,)2uy'] - IE[XiX exp (2X ',O)W(Xj)] (9) 

Among the class of weighted least-squares estimators the 
most efficient uses the weights W(Xi) = vi2, which is termed 
infeasible GLS. Notice that the infeasible GLS and the 
Poisson maximum likelihood (when the underlying distribu- 
tion is indeed Poisson) are asymptotically equally efficient. 

1 We acknowledge that lagged absences (aji) may not be uncorrelated 
with the current errors (e,), but developing an instrumental-variables count 
data estimator to confront the possible econometric consequences of a 
lagged dependent variable in a cross-section context is tangential to our 
research objectives. As an alternative we present regressions where lagged 
absences are removed from the regressor list. 

2 Pseudo maximum likelihood refers to the case where an ex ante 
specified probability distribution may not be the true distribution, but 
maximum-likelihood estimation is used as though the specified distribu- 
tion applied. In general, model misspecification leads to an inconsistent 
estimator. In the special case where the number of absences realized is 
specified to have a distribution belonging to the linear exponential family 
the PMLE is consistent if the mean is correctly specified. (See Gourieroux 
et al. (1984a), Cameron and Trivedi (1986), and McCullagh and Nelder 
(1989).) 
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An assumed equality between the mean and the variance 
is restrictive in economic applications, and this is why 
researchers have proposed more general count data models 
(Cameron and Trivedi (1986), Lawless (1987), and Gurmu 
and Trivedi (1993)). A popular generalization is the com- 
pound Poisson, where 

Pr ai = =iIxi 

exp [-exp (X'po + i)] exp [Bi(Xi30 + Ei)] 
(10) 

X h(Ei) d(Ei) 

and h(Ei) is the probability density function of Ei. For 
convenience, researchers sometimes assume that ui = exp (Ei) 
is distributed as a IF(q, cL). When there is a constant term in 
X'3, there is no loss of generality in setting E[exp (Ei)] = 1, 
which means that ac = 4+- = Var [exp (Ei)], and the 
conditional distribution of ai given bi is negative binomial. 
Specifically, 

F(a'- + wi) 
Pr Jai = 8ilXi} = (11) 

X [aoexp(XI0)]8i[1 + ac exp (X 

The negative binomial PMLE maximizes the likelihood 
based on the probability distribution (1 1).3 The estimator we 
are describing can be inconsistent when exp (Ei) does not 
have a gamma distribution (Gourieroux et al. (1984b)).4 It is 
then interesting to propose simple estimation methods 
leading to consistent estimators for all possible distributions 
h(Ei) having second moments. 

Assuming that E[exp (Ei)] = 1 and Var [exp (Ei)] = '12 in 
(10), 

E[ai|Xi] = exp (Xl30) (12) 
Var (aiIXi) = exp (X 30o)[1 + r2 exp (Xipo)]. 

In the negative binomial case 92= a. Feasible GLS based 
on the variance specification in (12) is always consistent, but 
less efficient than negative binomial maximum likelihood 
when the true conditional distribution is (11) (Gourieroux et 
al. (1984a, b) and McCullagh and Nelder (1989)). 

To cover a wide range of specifications representative of 
the count data literature, we study linear exponential absen- 
teeism parameter estimates from least squares, Poisson 
PMLE, negative binomial PMLE, and an optimal GLS that 
we now explain. 

B. Variance of Unknown Form 

There is no obvious a priori reason to begin with a 
particular specification for the variance of absenteeism such 
as (12). An alternative approach that we use is linear 
exponential absences in (4) plus a nonparametric function 
for the conditional variances 

1or = Var (aiIXi). (13) 

The conditional mean from (4) and the conditional variance 
in (13) form the semiparametric count data model we apply 
to absenteeism data for London bus drivers. We also 
estimated the hedonic absenteeism locus with semiparamet- 
ric GLS using as estimated conditional variances 

= [aj 
- exp (14) 

where , is a preliminary root-n consistent parameter esti- 
mate, and wij are nonparametric k nearest neighbor (nn) 
probablistic weights (see appendix A). Specifically, we used 
so-called uniform k nn weights to estimate the variances in 
(14) (Robinson (1987a)).5 

The semiparametric GLS estimator we applied estimates 
,Bo via the solution to 

E [ai - exp (Xi')]X1 exp (X or)&72 = 0 (15) 

Under regularity conditions the vector , that solves the 
first-order condition (15) has asymptotic variance 

AsyVar Inl/2(^ - Io)l Io 

= E[XiX exp (2X'P)7f. - (16) 

The semiparametric efficiency bound in (16) cannot be 
bettered under the information set in the model, equation (4) 
(Chamberlain (1987)). 

Regularity conditions needed for asymptotic normality of 
the solution to semiparametric GLS are similar to the 
moment conditions needed for asymptotic normality of 
GLS. Our nearest neighbor weights require that the smooth- 
ing parameter, k = number of nearest neighbors, increase 
with the sample size but at a slower rate (Robinson (1987a) 

3Lawless (1987) provides a computationally convenient expression for 
the negative binomial likelihood. 

4Notice that the maximum likelihood solves simultaneously k equations 
such as (8), corresponding to the derivatives of the log likelihood function 
with respect to 13 and an additional equation corresponding to the 
derivative with respect to (x. 

5 In general, given observations {(Y1, xi), . . . , (y,, xn)| of the stochastic 
pair (Y, X), a nonparametric estimate of E(YIX = x) is a weighted average 
of Yj's, where the weights depend on how close the corresponding Xj is to x. 
Specifically, k nn estimates are a weighted average of the Yj's such that the 
corresponding Xj is one of the kX's closest to x, according to the scaled 
Euclidean distance. As the number of observations increases, the number 
of Xj's close to x also increases, which intuitively explains why the number 
of terms in the weighted average (the number of nearest neighbors) must 
increase with the sample size. So, fixed weights in the estimated 
conditional variances in (14), such that wij = 1 if i = j and w,; = 0 
otherwise, produce an inconsistent estimator. In appendix A we formally 
explain the k nn weights; For more discussion see also Hardle (1990) and 
Delgado and Robinson (1992). 
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and Delgado (1992)). We examine two different nearest 
neighbor specifications (k = n1/2 and k = n3/5) to illustrate 
how sensitive the procedure is to the choice of the number of 
nearest neighbors. We also estimate the covariance matrix 
implied by (16) using both the corresponding sample analog 
and Eicker-White heteroskedasticity robust procedures, as 
recommended by Robinson (1987b), to protect against a 
possibly poor choice of the number of nearest neighbors in a 
finite sample. Specifically, we also estimated the coefficient 
(co)variances I- by 

. . (17) 
X n - ii(ri 2- 

where Xi = Xi exp 
(X!3) 

and i7 = ai - exp 
(X!3). 

For the 
linear exponential specification (4) we present robust stan- 
dard errors of the least squares plus Poisson and negative 
binomial PMLE coefficients (White (1982)). 

Recapitulation. In examining count models of worker 
absences we first estimated least squares, then Poisson and 
negative binomial PMLE. For maximum generality we 
provide semiparametric GLS estimates using the initial P's 
from least squares.6 

IV. Empirical Results 

Our data cover absences by persons working for London 
buses as conductors, drivers, and single-person operators 
during January 1, 1981, to December 31, 1985.7 Information 
on absences includes the starting and returning dates, reason, 
and justification. Also our data include personal characteris- 
tics, including sex, age, and home address, plus job-related 
characteristics, including garage name and starting date of 
work. There are over 200,000 absence histories for 17,720 
workers. We restricted the sample to persons employed in all 
five years (12,549) minus cases for which we could not 
determine garage location, leaving 5501 workers.8 

A. Econometric Strategy 

Because the medical documentation required for a given 
type of absence changed during the sample years, we 
focused on 1985 absenteeism. The frequency distribution of 
absences in our data and the physical and institutional 
differences among absenteeism spell groups, in particular 
medical documentation required, made it natural to group 
spells as 1-7 days, 8-14 days, and 14+ days. Because 

short-term absences are the absences most subject to indi- 
vidual discretion, and short-term absences have the most 
interpersonal variation, the dependent variable in our regres- 
sion is the number of absence spells of one week or less.9 

We estimate a linear exponential regression of ai 
absence spells of seven days or less in 1985 on the vector 
Xi-[a-li, a-2i, Pi, Ci; Si, Di, EJ], which is the regression 
model capturing the outcomes of hedonic labor markets with 
sluggish adjustment described theoretically by equations (3) 
and (4). Given the regressor vector contains lagged absentee- 
ism, personal characteristics, and workplace characteristics 
(Xi), the conditional expectation of absenteeism is exp (X 3o), 
where Po is the unknown vector of parameters to estimate. 
The workers' personal and workplace characteristics regres- 
sors include age, sex, marital status, health, length of service 
with the bus company, distance of journey to work, and plant 
size as metered by the number of people working in the bus 
garage (Jones (1971)). 

We present results from four estimators: least squares, 
Poisson, negative binomial PMLE, and a semiparametric 
GLS estimator that was iterated until convergence from the 
least-squares coefficient estimates. To illustrate the sensitiv- 
ity of the semiparametric estimates of the choice of the 
number of nearest neighbors (k), we report two different 
choices, k = [n1/2] and k = [n3/5]. For all regression models 
we report robust and unrobust standard errors (Eicker (1963) 
and White (1980, 1982)). 

Unlike least squares and semiparametric GLS, the Pois- 
son and negative binomial PMLEs are not weighted least- 
squares procedures. However, the Poisson PMLE can be 
computed by means of an iterative weighted least-squares 
procedure. The negative binomial PMLE can also be com- 
puted by means of an iterative procedure, where in a first 
step the objective function is concentrated with respect to ox, 
and then ,B is estimated by iterative least squares. The 
resulting ,B is substituted into the objective function, which 
is then optimized with respect to ct. The procedure is then 
repeated until convergence. It is important to recognize that 
neither Poisson nor negative binomial PMLE can be ex- 
pressed as solving equations such as (8). 

Economic Focus. Before discussing regression results 
we want to foreshadow our contribution to the economic 
literature on worker absenteeism. Because our data are for a 
single employer in a single city, we did not estimate the 
effects of potentially important absenteeism policies, such as 
sick leave benefits and work schedule flexibility. We also 
examine how workplace health hazards affect absenteeism 
only to the extent that distance from the bus garage to the 
center of London reflects worker health risks due to pollu- 
tion or stress. Our emphasis is on whether two core results 

6 Computer programs for estimating semiparametric regressions are 
described in Delgado (1993). 

7 Norman and Spratling (1956) investigated absences caused by sickness 
among the personnel of the London Transport Company. Cornwall and 
Raffle (1961) studied the absenteeism of women bus conductors in London 
during 1953-1957. 

8 Regression variables are defined in appendix B. 

9 As a point of reference, other studies have typically measured 
absenteeism as a logistic of either the proportion of time absent during a 
survey reference period, such as the two weeks prior to the survey, or as 
whether the person was absent from work on the survey date. See, for 
example, Allen (1981a, b) and Barmby et al. (1991). 
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from the microeconometric literature on absenteeism ap- 
peared in our count data regressions. Specifically, do we find 
a substantial negative impact of age on absences coupled 
with statistically insignificant effects of other demographic 
characteristics (Allen (1981a, b))? 

B. Coefficient Estimates 

The results in table 1 support a sluggish adjustment 
hedonic model of worker absenteeism. Pay level and 
absenteeism vary inversely, ceteris paribus. Because we 
have two effective pay grades in our data for London buses, 
accepting the hedonic labor market interpretation requires 
rejecting the null hypothesis that the coefficient of Driver is 
zero against the alternative that the coefficient of Driver is 
negative. All specifications in table 1 have significantly 
lower absence rates for the higher wage workers-drivers.10 
The coefficients of the two lagged dependent variables 
Abs84 and Abs83, are significantly positive across models, 
and their sum is in the range of 0.13 to 0.20, so that the 
estimated long-run effects of regressors on absenteeism are 
about 15% to 25% larger than the short-run effects of 
regressors on absenteeism. Satisfied that we can interpret the 
regressions in table 1 in the spirit of hedonic labor markets 
with sluggish adjustment to changing economic circum- 
stances, we now turn our attention to how the remaining 
coefficient estimates square with the existing microeconomet- 
ric literature on worker absenteeism. 

A well-known result in the absenteeism literature is that 
more mature workers are absent less often. In all regressions 
in table 1 the short-run elasticity of age is significantly 
negative, so that a firm whose workers are 10% older than 
average will have 5% to 9% fewer short-term absence spells. 
Also consistent with previous research is a haphazard 
pattern of demographic effects. Although the effects of 
gender and health status (as captured by long-term absence 
spells, LongAbs) are insignificant, the coefficient of Family 
is generally significant and implies that married workers 
have about 7% to 10% higher absenteeism in the short run, 
with the estimated effects of marriage larger in the regres- 
sions with variance of unknown form than in their counter- 
parts with the first two error moments specified ex ante. 
Overall the results in table 1 are consistent with the 
theoretical model guiding our empirical research, and the 
coefficient estimates conform to the pattern appearing in 
previous microeconomic research on worker absenteeism. 

C. Model Selection Results 

Although the estimator with variance of unknown form 
removes heteroskedasticity, the semiparametric regressions 

in the last two columns of table 1 can be viewed as slightly 
less efficient than the Poisson PMLE in the first column of 
table 1. To elaborate, the robust standard errors of the 
Poisson PMLE in column 1 tend to be about 10% smaller 
than the robust standard errors of the coefficients of the 
regression models in table 1 that permit ex ante unspecified 
heteroskedasticity. The difference between robust and unro- 
bust standard errors is an indication of the correct specifica- 
tion of the models. Standard error differences are larger for 
the negative binomial PMLE than for the rest of the 
estimators. The differences between (un)robust standard 
errors for the Poisson PMLE are relatively small, which 
suggests that the Poisson specification is not bad. However, 
as we will soon note, a test for overdispersion rejects the 
Poisson specification. Where coefficients' signs, magni- 
tudes, and statistical significance are concerned, it makes 
little difference in our data whether we used least squares, 
Poisson or negative binomial PMLE, or semiparametric 
GLS. 

A convenient additional check of the Poisson absenteeism 
model is a regression-based test for equality of the condi- 
tional mean and conditional variance (Cameron and Trivedi 
(1990)). We tested the equidispersion property of the 
Poisson absence count regression model in the first column 
of table 1 by testing the null hypothesis, Ho: ot = 0, in the 
artificial regression 

[ai - exp (X'3)]2 
-1 = ot exp (XPB) + error. (18) 

exp (Xi,) 

Rejecting the null hypothesis HO: ct = 0 rejects the Poisson 
specification because the estimated conditional mean and 
variance are not equal. In the regression-based test of 
equality of conditional mean and conditional variance in 
equation (18) ac = 0.19 with a t = 15.4 so that our data reject 
the Poisson specification against the more general alterna- 
tive, where (r2 = exp (X!,3)[1 + ot exp (Xa3)].11 However, 
because ac is small, the distinction between Poisson and 
negative binomial PMLE should not be overemphasized. 

Whether the Poisson or the negative binomial specifica- 
tions are (un)convincing, the semiparametric GLS seems a 
sensible alternative. 

D. Robustness Checks 

We also examined the robustness of our results to an 
increase in the number of nearest neighbors and to two 

10 We note that the coefficient of the dummy variable for the driver 
reflects the absence rate effects of the entire vector of attributes of the 
driver occupation, including higher education and possibly greater job 
satisfaction. We do not claim that the coefficient of Driver reflects only 
higher pay, but that in order not to reject the hedonic interpretation of our 
absenteeism count regression the coefficient of Driver need be signifi- 
cantly greater than zero. 

11 To elaborate, we rejected the null hypothesis of equidispersion by 
rejecting the hypothesis Ho: o = 0 in the ancillary regression (18). The 
95% confidence interval for &, which is [0.166, 0.214], emphasizes the low 
level of overdispersion. In our raw data the ratio of the variance of 
absences to the mean of absences is Var (abs)/mean (abs) = (2.33)2/2.17 = 
2.5. When conditioning on the regressors X, the mean scaled variance will 
fall below 2.0. The point is that there is not much overdispersion in our 
data. 
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TABLE 1.-ESTIMATES OF SLUGGISH ADJUSTMENT MODELS OF WORKER ABSENTEEISMa (n = 5501) 

Regressor {Mean/Std. Dev.| PMLE (Poisson)b PMLE (NegBin)c NLLSd SEMIPARe (k= n1) SEMIPAR (k = n315) 

Intercept 4.1779 4.1374 4.1781 3.8483 4.0758 
(0.6202)f (0.7545)f (0.6579)f (0.7334)f (0.7231)f 
[0.79391f [1.2818]f [0.9449]f [0.85481f [0.8534]f 

Abs84 0.1318 0.1492 0.1116 0.1308 0.1249 
12.866/2.7101 (0.0040)f (0.0056)f (0.0036)f (0.0045)f (0.0042)f 

[0.0061]f [0.0203]f [0.0068]f [0.00661f [0.00671f 

Abs83 0.0373 0.0502 0.0206 0.0265 0.0271 
12.862/2.9441 (0.0036)f (0.005 1)f (0.0032)f (0.0041)f (0.0040)f 

[0.0074]f [0.0291] [0.0095]g [0.0106]g [0.0107]g 

Log (Age) -0.7445 -0.8087 -0.5211 -0.8701 -0.8096 
13.749/0.2341 (0.0503)f (0.0606)f (0.0530)f (0.0596)f (0.588)f 

[0.0658]f [0.1214]f [0.0789]f [0.0734]f [0.07331f 

Doctor -0.3517 -0.3444 -0.3239 -0.3776 -0.3687 
10.551/0.3051 (0.0474)f (0.0593)f (0.0504)f (0.0553)f (0.0548)f 

[0.0589]f [0.1034]f [0.0754]f [0.0651]f [0.0655]f 

Driver -0.0069 -0.0653 -0.0737 -0.0939 -0.0889 
10.645/0.4751 (0.0236)f (0.0255)f (0.0209)f (0.0234)9 (0.0231)f 

[0.0262]g [0.0484] [0.0322]g [0.0288]f [0.0289]f 

Log (Employees) 0.1094 0.0794 0.1920 0.1621 0.1572 
15.531/0.3631 (0.0253)f (0.0323)9 (0.0264)f (0.0290)f (0.0288)f 

[0.0367]f [0.0999] [0.055l]f [0.0455]f [0.0475]f 

Family 0.0749 0.0972 0.0156 0.1033 0.0736 
10.774/0.4181 (0.0247)f (0.0308)f (0.0254) (0.0295)f (0.0289)9 

[0.0312]g [0.0556] [0.0371] [0.0340]f [0.0327]g 

Garage -0.4887 -0.4308 -0.6631 -0.4440 -0.4873 
14.474/0.0741 (0.1294)f (0.1595)f (0.1399)f (0.15 18)f (0.1505)f 

[0.1638]f [0.2995] [0.2074]f [0.1777]g [0.1771]f 

Home 0.0689 0.0882 0.0454 0.0772 0.0713 
{0.099/0.2991 (0.0292)9 (0.0373)9 (0.0286) (0.0333)9 (0.0330)9 

[0.0463] [0.1331] [0.0675] [0.0592] [0.619] 

LongAbs -0.0228 -0.0265 -0.0306 -0.0243 -0.0255 
10.616/0.9141 (0.0099)g (0.0126)9 (0.0099)f (0.0117)9 (0.0117)9 

[0.0148] [0.0389] [0.0173] [0.0176] [0.0179] 

Lost84 -0.0009 -0.0012 -0.0007 -0.0009 -0.0007 
123.212/40.0151 (0.0003)f (0.0003)f (0.0003)9 (0.0003)f (0.0003)9 

[0.00031f [0.0009] [0.0006] [0.0006] [0.0006] 

Lost83 0.0015 0.0016 0.0010 0.0014 0.0012 
121.222/40.7841 (0.0002)f (0.0002)f (0.0002)f (0.0003)f (0.0003)f 

[0.0003]f [0.0004]f [0.0005]g [0.0005]f [0.0005]g 

Male -0.0485 -0.0644 -0.0229 -0.0497 -0.0612 
10.930/0.2551 (0.0369) (0-0479) (0.0363) (0.0409) (0.0407) 

[0.0482] [0.0944] [0.0609] [0.0546] [0.0515] 

Log (Service) 0.1523 0.1783 0.0553 0.2819 0.2189 
12.215/1.2261 (0.0161)f (0.0235)f (0.0188)f (0.0175)f (0.0178)f 

[0.0167]f [0.0411]f [0.0207]f [0.0167]f [0.01641f 

ShortAbs 0.4021 0.4176 0.3127 0.3937 0.3758 
10.412/0.2851 (0.0524)f (0.0659)f (0.0583)f (0.0612)f (0.0609)f 

[0.06291f [0.11561f [0.07901f [0.07041f [0.07091f 

ESS = - 16,978.8 18,393.9 17,696.0 
LL = -9634.7 -9386.9 - 

R2= 0.41 0.41 0.39 0.38 0.38 

Absences = exp (X', + e,). The dependent variable in all regressions is absences in 1985, which has mean 2.172 and standard deviation 2.332. Nonrobust standard errors are in parentheges ( ), robust standard errors 
are in square brackets [ ]. 

b Poisson pseudo maximum likelihood. 
c Negative binomial pseudo maximum likelihood. 
d Nonlinear least squares. 
'Semiparamietric generalized least squares using nonlinear least-squares residuals. 
Significanct at the 1% level. 
Significant at the 5% level. 
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changes in the regressor list. Comparing results in the last 
two columns of table 1 illustrates that as the number of 
nearest neighbors increases from n1/2 to n3/5, the coefficient 
estimates from the model with variance of unknown form 
move closer to the least-squares coefficient estimates, gener- 
ally declining in absolute value.12 The coefficient of 
(male * family) was insignificant when we added the interac- 
tion between gender and marital status to the regressor list in 
table 2, which suggests that the greater absenteeism among 
women, ceteris paribus, is not caused by child care duties. 
When we ignored sluggishly adjusting work attendance and 
estimated the regressions in table 2 without the potentially 
endogenous lagged absence rates Abs83 and Abs84, the 
partial effects of the other regressors on absences, particu- 
larly sex and age, were magnified as expected. The conclu- 
sion to be drawn from our robustness checks is that in our 
data the choice of the theoretical model to estimate, specifi- 
cally the regressor list, is much more important to the results 
than whether or not to use specialized count data regression 
models, such as Poisson or negative binomial PMLE, or 
whether to permit a general form of heteroskedasticity. 

E. Goodness of Fit 

We report R2 values based on Pearson's residuals, as 
suggested by Cameron and Windmeijer (1996). The Pearson 
residuals are the raw residuals standardized by the estimated 
standard deviation. Let us define Pi = exp (Xf3). The R2 for 
the Poisson model is then 

n 

y (y, -P)21Ai 
i=l1 

R= 1- (19) 

(y, _-)2/y 
i=l 

where y = (1/n) In yi is the Poisson PMLE under the 
restriction that all the coefficients be zero except the 
intercept. The R2 for the negative binomial is 

n 

^ 
Y -P)2/(pi - p2) 

-~ ~~y i=lP 
-oti 

R2= 1- (20) 

E (Y=1 y)2/(y oty 

TABLE 2.-ABSENTEEISM REGRESSIONS OMIrTING LAGGED ABSENCESa 

(n = 5501) 

PMLE PMLE SEMIPARe 
Regressor (Poisson)b (NegBin)c NLLSd (k = n1/2) 

Intercept 7.0615 7.0901 6.776 6.3134 
(0.6106)f (0.8944)f (0.8186)f (0.9205)f 
[0.9011]f [1.9711]f [0.9599]f [1.0077]f 

Log (Age) -1.2638 -1.2943 -1.1637 -1.4997 
(0.0496)f (0.0948)f (0.0686)f (0.0745)f 
[0.0704]f [0.1699]f [0.0762]f [0.0769]f 

Doctor -0.4314 -0.4982 -0.3299 -0.4196 
(0.0467)f (0.0686)f (0.0648)f (0.0705)f 
[0.0654]f [0.1452]f [0.0697]f [0.0723]f 

Driver -0.0689 -0.0805 -0.0506 -0.0801 
(0.0204)f (0.0298) (0.0272) (0.0301)f 
[0.0301]g [0.0678] [0.0328] [0.0329]g 

Log 0.1803 0.1548 0.2159 0.1833 
(Employees) (0.0258)f (0.0372)f (0.0352)f (0.0379)f 

[0.0388]f [0.0808] [0.0414]f [0.0427]f 

Family -0.0336 -0.0587 0.0199 0.0363 
(0.0684) (0.1136) (0.0827) (0.0973) 
[0.1026] [0.3174] [0.1115] [0.1268] 

Garage -0.7362 -0.7325 -0.7359 -0.4722 
(0.1270)f (0.1920)f (0.1720)f (0.1868)9 
[0.1775]f [0.4146] [0.1879]f [0.1962]g 

Home 0.1525 0.1477 0.1649 0.2114 
(0.0291)f (0.0470)f (0.0355)f (0.041 I)f 
[0.0432]f [0.1203] [0-0475]f [0.0487]f 

LongAbs 0.1161 0.1176 0.1032 0.1281 
(0.0094)f (0.0159)f (0.01 14)f (0.0129)f 
[0.0142]f [0.0476]f [0.0162]f [0.0161]f 

Lost84 0.0021 0.0033 0.0013 0.0021 
(0.0002)f (0.0003)f (0.0002)f (0.0003)f 
[0.0003]f [0.0014]9 [0.0004]f [0.0004]f 

Lost83 0.0024 0.0036 0.0018 0.0022 
(0.0002)f (0.0003)f (0.0002)f (0.0002)f 
[0.0003]f [0.0018]f [0.0004]f [0.0004]f 

Male -0.2251 -0.2186 -0.2230 -0.2693 
(0.0488)f (0.0714)f (0.0575)f (0.0677)f 
[0.0662]f [0.1741] [0.0697]f [0.0735]f 

Male * 0.1555 0.1926 0.0883 0.1404 
Family (0.0734) (0.1190) (0.0905) (0.1072) 

[0.1110] [0.3272] [0.1200] [0.1352] 

Log 0.2724 0.3234 0.1856 0.4101 
(Service) (0.0164)f (0.282)f (0.252)f (0.0228)f 

[0.198]f [0.0573]f [0.0250]f [0.0149]f 

ShortAbs 0.5504 0.6749 0.4173 0.5268 
(0.0499)f (0.0767)f (0.0694)f (0.0749)f 
[0.0680]f [0.1640]f [0.0716]f [0.0750]f 

ESS= 22910.8 23891.3 
LL = -10,947 -10,140 
R2= 0.20 0.20 0.16 0.20 

Absences = exp (X', + e). The dependent variable in all regressions in absences in 1985, which has 
mean 2.172 and standard deviation 2.332. Nonrobust standard errors are in parentheses ( ), robust standard 
errors are in square brackets [ 1. 

b Poisson pseudo maximum likelihood. 
c Negative binomial pseudo maximum likelihood. 
d Nonlinear least squares. 
e Semiparametric generalized least squares using nonlinear least-squares residuals. 
f Significant at the 1% level. 
9 Significant at the 5% level. 

12 In a linear model with only one regressor, the mean-squared error of 
the conditional expectation knn estimate is minimized by a k that is 
proportional to n415 (Hardle 1990). However, an optimal k is a function of 
the number of regressors, and k = n415 is also not necessarily optimal for 
our count data regression models with heteroskedasticity of unknown 
form. It is popular to choose k = n 1/2. To the best of our knowledge there is 
no evidence concerning the optimal, or data-dependent k in the semipara- 
metric models we estimated and present here. 
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The R2 for the semiparametric GLS is 

n 

f (Yi _ pi)2&2i2 

R2= 1- (21) 

(y.i -*)/&2 
i=l 

where ye is the semiparametric GLS estimate of the 
intercept under the restriction that all the slope coefficients 
are zero. The R2 for the semiparametric GLS in (21) was 
suggested by Buse (1973) in the context of GLS estimation 
with known variance. Finally, in the goodness-of-fit measure 
for the (nonlinear) least-squares estimates we use the usual 
raw residuals so that 

n 

f (y, - p)2 

R2= 
n 

f (Yi - -)2 

As expected, all R2 values are similar because the 
regression models are identical and only the weights differ 
across estimators. In table 1, R2 is about 0.4 and in table 2, 
where the lagged dependent variable is deleted, R2 is about 
0.2-which are commonly appearing values in cross-section 
regression contexts. 

V. Conclusion 

How valuable are estimators of count data models with 
error variance of unknown form when applied to worker 
absenteeism? We examined the relative benefits of semipara- 
metric estimation where heteroskedasticity of unknown 
form may be present in the context of a hedonic econometric 
model of employee absences incorporating sluggish adjust- 
ment to changing economic circumstances. Our empirical 
results support the hedonic theoretical model. Overdisper- 
sion tests rejected the Poisson specification. Other paramet- 
ric estimators used, namely, negative binomial PMLE and 
least squares, are consistent so that coefficient point esti- 
mates are much more sensitive to the economic model 
estimated (regressor list, in particular) than to the estimation 
method applied. The semiparametric GLS estimator has the 
advantage of being asymptotically efficient with known 
asymptotic covariance matrix. Inferences based on the 
semiparametric procedure we present are always valid 
asymptotically and more efficient than the estimators that 
parametrize the conditional variance incorrectly. 

Our application to worker absences showed how semipa- 
rametric GLS is a sensible procedure to follow in practice. 
Estimates are computationally easy to obtain, and the 
practitioner is always sure that inferences are correct and 
efficient asymptotically without having to pay attention to 

the functional form of the conditional variances or any other 
feature of the data generating process. Our estimated 
semiparametric GLS coefficients are similar in sign, magni- 
tude, and significance to parallel regression coefficients 
estimated with ex ante variance specifications. 

REFERENCES 

Allen, Steven G., "An Empirical Model for Work Attendance," this 
REVIEW 63 (1981 a), 77-87. 

"Compensation, Safety, and Absenteeism: Evidence from the 
Paper Industry," Industrial and LaborRelations Review 34(1981b), 
207-218. 

Avery, Robert B., and V. Joseph Hotz, "Statistical Models for Analyzing 
Absentee Behavior," in Paul S.,Goodman, Robert S. Atkin, and 
Associates, Absenteeism (San Francisco: Jossey-Bass, 1984), 158- 
193. 

Barmby, Timothy A., Christopher D. Orme, and J. G. Treble, "Worker 
Absenteeism: An Analysis Using Micro Data," Economic Journal 
101 (1991), 214-229. 

Brown, James N., and Harvey S. Rosen, "On the Estimation of Structural 
Hedonic Price Models," Econometrica 50 (1982), 765-768. 

Buse, A., "Goodness of Fit in Generalized Least Squares Estimation," 
American Statistician 27 (1973), 106-108. 

Cameron, A. Colin, and Pravin K. Trivedi, "Econometric Models Based on 
Count Data: Comparisons and Applications of Some Estimators and 
Tests," Journal of Applied Econometrics 1 (1986), 29-53. 
"Regression-Base Tests for Overdispersion in the Poisson model," 

Journal of Econometrics 46 (1990), 347-364. 
Cameron, A. Colin, Pravin K. Trivedi, Frank Milne, and John Piggott, "A 

Microeconomic Model of the Demand for Health Care and Health 
Insurance in Australia," Review of Economic Studies 55 (1988), 
85-106. 

Cameron, A. Colin, and Frank A. G. Windmeijer, "R-Squared Measures 
for Count Data Regression Models with Applications to Health 
Care Utilization," Journal of Business and Economic Statistics 14 
(1996), 209-220. 

Chamberlain, Gary, "Asymptotic Efficiency in Estimation with Condi- 
tional Moment Restrictions," Journal of Econometrics 34 (1987), 
305-334. 

Cornwall, C. J., and P. A. Raffle, "Sickness Absence of Women Bus 
Conductors in London Transport 1953-57," British Journal of 
Industrial Medicine 18 (1961), 197-212. 

Delgado, Miguel A., "Semiparametric Generalized Least Squares in the 
Multivariate Nonlinear Regression Model," Econometric Theory 8 
(1992), 203-222. 
"Computing Nonparametric Functional Estimates in Semiparamet- 

ric Problems," Econometric Reviews 12 (1993), 25-128. 
Delgado, Miguel A., and Peter A. Robinson, "Nonparametric and Semipa- 

rametric Methods for Econometric Research," Journal of Economic 
Surveys 6 (1992), 1-50. 

Eicker, F., "Asymptotic Normality and Consistency of the Least Squares 
Estimators for Families for Linear Regressions," Annals of Math- 
ematical Statistics 34 (1963), 447-456. 

Epple, Dennis, "Hedonic Prices and Implicit Markets: Estimating Demand 
and Supply Functions for Differentiated Products," Journal of 
Political Economy 95 (1987), 59-80. 

Gourieroux, C., A. Montfort, and A. Trognon, "Pseudo Maximum 
Likelihood Methods: Theory," Econometrica 52 (1984a), 681-700. 
"Pseudo Maximum Likelihood Methods: Applications to Poisson 

Models," Econometrica 52 (1984b), 701-720. 
Gurmu, Shifferaw, and Pravin K. Trivedi, "Recent Developments in 

Models of Event Counts: A Survey," Department of Economics, 
Indiana University, Bloomington, Working Paper (May 1993). 

Hardle, Wolfgang, Applied Nonparametric Regression. (Cambridge, UK: 
Cambridge University Press, 1990). 

Hausman, Jerry, Bronwyn H. Hall, and Zvi Griliches, "Econometric 
Models for Count Data with an Application to the Patents-R&D 
Relationship," Econometrica 52 (1984), 909-938. 

Jones, R. M., "Absenteeism," Manpower Papers 4. (London: Department 
of Employment, 1971). 

8



HEDONIC MODEL OF WORKER ABSENTEEISM 49 

Kahn, Shulamit, and Kevin Lang, "Efficient Estimation of Structural 
Hedonic Systems," International Economic Review 29 (1988), 
157-166. 

Kniesner, Thomas J., and John D. Leeth, Simulating Workplace Safety 
Policy (Boston and Dordrecht: Kluwer Academic Publishers, 
1995). 

Lawless, J. F., "Negative Binomial and Mixed Poisson Regression," 
Canadian Journal of Statistics 15 (1987), 209-225. 

McCullagh, P., and J. A. Nelder, Generalized Linear Models, 2nd ed. 
(London: Chapman and Hall, 1989). 

Norman, L., and F. M. Spratling, "Health in Industry: A Contribution to the 
Study of Sickness Absence," in Experience in London Transport 
(London: Butterworth, 1956). 

Patil, G. P., Random Counts in Scientific Work, vol. 1 (University Park, PA, 
and London: Pennsylvania State University Press, 1970). 

Robinson, Peter M., "Asymptotically Efficient Estimation in the Presence 
of Heteroskedasticity of Unknown Form," Econometrica 55 (1987a), 
875-891. 

"Adaptive Estimation of Heteroskedastic Regression Models," 
Revista de Econometrica 7 (1987b), 5-28. 

Rosen, Sherwin, "The Theory of Equalizing Differences," in Orley 
Ashenfelter and Richard Layard (eds.), The Handbook of Labor 
Economics (Amsterdam: North-Holland, 1986), 641-692. 

Stone, C. J. (with discussion), "Consistent Nonparametric Regression," 
Annals of Statistics 5 (1977), 595-645. 

White, Halbert, "A Heteroskedasticity-Consistent Covariance Matrix 
Estimator, and a Direct Test for Heteroskedasticity," Econometrica 
48 (1980), 817-838. 

"Maximum Likelihood Estimation of Misspecified Models," 
Econometrica 50 (1982), 1-25. 

APPENDIX A 

k Nearest Neighbor (nn) Weights 

Let Xi, be the rth element of Xi and define 

Sr2 = (n-1I) -, (Xri-Xr)2 (A.1) 

Xr = n-lE ri 1 < r -- q (A.2) 

Pij [ (Xri-Xrj)2/s, i, j = 1, . n; i j (A.3) 

for a sequence knk = such that k < n and 1/k + kln - 0 as n - oo. 
In the absence of ties among the X"'s the knn weights are defined as 

Il/k; Pij 
`_ 

Pik, i 

Wii = lo e>Pk(A.4) 0; Pij> Pik- 

The uniform knn are intuitively appealing because all the nonparametric 
estimates can be viewed as local averages around the point at which one 
evaluates the regression. With the knn estimates one decides how many 
points to use in the local averages. Note that the own observation does not 
enter in the local average, so the estimate is known as a "leave one out." 

Our data set does not have ties because age has been scaled in days to 
avoid the ties problem. When ties are present in the data, a tie-breaking rule 
must be introduced, as suggested by Stone (1977) and amplified by 
Robinson (1987a). 

APPENDIX B 

Variable Dictionary 

Absences Number of absence spells of seven days or less in 1985 
Abs83 Number of absence spells in 1983 
Abs84 Number of absence spells in 1984 
Age Years of age 
Doctor Proportion of times absent during 1981-1984 that worker 

showed a doctor's certificate; equals zero if worker has 
not been absent during the four years 

Driver Dummy variable; worker is driver 
Employees Number of people working in garage 
Family Dummy variable; worker has a spouse or dependent 
Garage Distance from garage to center of London (index) 
Home Dummy variable; distance from garage to home is in 99th 

percentile 
LongAbs Number of absence spells greater than seven days in 1985 
Lost83 Days absent in 1983 
Lost84 Days absent in 1984 
Male Dummy variable; worker is a man 
Service Years of service with firm 
ShortAbs Proportion of absences that were one-day duration during 

1983-1984; equals zero if worker had no absences 
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