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Abstract: Recently, count regression models have been used to model over-
dispersed and zero-inflated count response variable that is affected by one
or more covariates. Generalized Poisson (GP) and negative binomial (NB)
regression models have been suggested to deal with over-dispersion. Zero-
inflated count regression models such as the zero-inflated Poisson (ZIP),
zero-inflated negative binomial (ZINB) and zero-inflated generalized Pois-
son (ZIGP) regression models have been used to handle count data with
many zeros. The aim of this study is to model the number of C. caretta
hatchlings dying from exposure to the sun. We present an evaluation frame-
work to the suitability of applying the Poisson, NB, GP, ZIP and ZIGP
to zoological data set where the count data may exhibit evidence of many
zeros and over-dispersion. Estimation of the model parameters using the
method of maximum likelihood (ML) is provided. Based on the score test
and the goodness of fit measure for zoological data, the GP regression model
performs better than other count regression models.

Key words: Count regression models, maximum likelihood, over-dispersion,
zero-inflation, zoological data.

1. Introduction

Poisson regression is a standard model for analysis of count data. While
the Poisson regression model may be the foremost candidate, it rarely explains
the data due to several important constraints. One important constraint in the
Poisson regression model is that the mean of the distribution must be equal to
the variance. If this assumption is not valid, then the standard errors, usually
estimated by the ML method, will be biased and the test statistics derived from
the models will be incorrect. When the sample variance is larger (or smaller) than
the sample mean, the data is said to exhibit over-dispersion (or under-dispersion).
In overcoming the problem of over-dispersion, several researchers (Lawless, 1987;
Famoye, 1993) employed the NB and GP regression models instead of the Poisson
regression model. In these regression models, the estimates of the regression
parameters are obtained by incorporating a dispersion parameter.
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A feature of many count data sets is the presence of many zero observa-
tions relative to the Poisson assumption. This feature may be accounted for by
over-dispersion in the data set. Over-dispersion has the tendency to increase
the proportion of zeros and whenever there are many zeros relative to Poisson
assumption, the NB and GP regression models tend to improve the fit of the
data.

If there are many zero counts in the data, two states may be assumed to better
reflect the situation. One of the states is the structural zero (or zero count) state
where the only counts are zeros. The other state is the sampling zero state where
the counts could be zeros or values greater than zero. Famoye and Singh (2006)
illustrated these states with the number of accidents that adult drivers aged 65-
70 had during the last five years. Those adults who did not drive in the last
five years would have zero accident and they belong to the structural zero state.
Those who drove and did not have any accidents belong to the sampling zero
state. The probability of the structural zero state and the mean number of the
event counts in the sampling zero state may depend on the covariates. Sometimes
this probability and mean are unrelated while at other times the probability may
assume a simple function of the mean.

In recent years, there has been considerable interest in using the ZIP model
to fit count data in order to allow for the presence of too many zeros. ZIP re-
gression models were considered as a mixture of a zero point mass and a Poisson
distribution and were first used to study soldering defects on print wiring boards
(Lambert, 1992). Lambert points out that the probability of a perfect state (i.e.,
zero defect state) and the mean of the imperfect state (i.e., non-zero defect state)
depends on the covariates. On the other hand, to account for over-dispersion (or
under-dispersion) in the Poisson part, generalizations of the model are possible.
These include ZINB regression model for over-dispersion situation and ZIGP re-
gression model for over- or under-dispersion situation. Heilbron (1994) proposed
the use of ZINB regression models to assess the covariate effect on high-risk het-
erosexual behavior. Gupta et al. (1996) proposed the use of the zero-adjusted
generalized Poisson model to analyze over-dispersed fetal movement data and the
death notice of data of London times. Famoye and Singh (2006) extended their
work (Gupta et al., 1996) to a more general situation where the count dependent
variable is affected by some covariates. Famoye and Singh (2006) noted cases
where the ZIP regression models were inadequate and the ZINB regression model
could not be fitted to an observed data set. This realization motivated them
to develop a ZIGP regression model for modeling over-dispersed count data with
too many zeros. For illustration, they applied ZIGP regression model to domestic
violence data.

In this paper, the Poisson, NB, GP, ZIP and ZIGP regression models will be
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used to model the zoological data set which is described in section 2. In section
3, we present a review of the count regression models, estimation of model pa-
rameters, goodness of fit test and score test. The results of applying the count
regression models to model the number of C. caretta hatchlings dying from expo-
sure to the sun are presented in section 4. The paper ends with conclusion and
discussion in section 5.

2. Description of Zoological Data

The zoological data were collected from field studies realized in 1991-1993
on Dalyan Beach in Turkey (Canbolat, 1997). The responses yi, (i = 1, . . . , 72)
are the number of C. caretta hatchlings dying from exposure to the sun. The
reason for the deaths is that they hesitate to walk. Thus, their walk takes a long
time thereby exposing them to too much sun light and this causes death. While
the number of C. caretta hatchlings emerging from the nests for the years 1991-
1993 are, respectively, 4804, 4377 and 4704, the deaths of C. caretta hatchlings
due to sun during the same periods are 48, 51 and 59. The yi’s ranged in size
from 0 to 23. There are three qualitative factors: Area (A1-A6), distance from
the sea (D1-D4) and year (1991-1993). Dalyan Beach is constructed from three
main areas: the strait, the lake and the small beach. Approximately 80% of
the nesting in Dalyan Beach occurs in the strait. Thus, the strait is divided
into four equal one-kilometer pieces, (A1: 0-1 kilometer of the strait, A2: 1-
2 kilometers of the strait, A3: 2-3 kilometers of the strait, A4: 3-4 kilometers
of the strait) and has been evaluated separately from the lake (A5) and the
small beach (A6). The distances of the nests from the sea are D1 (0-10 meters),
D2 (10-20 meters), D3 (20-30 meters) and D4 (≥ 30 meters). For the results
in this paper, binary indicator covariates were used to represent main effects
(five for areas, three for distance from the sea and two for year), and log-linear
specification µi = µ(xi) = exp(

∑11
j=1 xijβj), i = 1, . . . , 72, was employed. The

data are summarized for each level of these three factors in Table 1.
The zoological data include both structural zeros and sampling zeros. If no

C. caretta hatchlings emerge from the nests, the number of C. caretta hatchlings
dying from exposure to the sun is automatically zero. If C. caretta hatchlings
emerge from the nests, the number of C. caretta hatchlings dying from exposure
to the sun may be zero or greater than zero. The zeros from the first state occur
with probability pi (C. caretta hatchlings did not emerge from the nests in 12
cells of Table 1). The second state occurs with probability 1 − pi (no C. caretta
hatchlings die from exposure to the sun in 29 cells of Table 1).



494 İlknur Özmen and Felix Famoye

Table 1: The number of C. caretta hatchlings dying from exposure to the sun
on Dalyan Beach in Turkey

1991 1992 1993

Area D1 D2 D3 D4 D1 D2 D3 D4 D1 D D3 D4

A1 0 17 1 7 0 2 5 0∗ 1 0 0 0
A2 2 7 2 2 0 1 8 0 23 9 7 3
A3 0 0 0 0 0 3 1 0∗ 3 1 4 0∗

A4 0 0 0 0 0 1 0 0 0∗ 0 0 0∗

A5 8 1 0∗ 0∗ 4 3 0∗ 0∗ 0 0 0 0∗

A6 0 0 1 0∗ 0 1 0 22 0∗ 0 2 6

∗The zeros denote structural zeros. The others denote sampling zeros.

3. Regression Models and Parameter Estimation

The Poisson regression model is given by

p(µi, yi) =
exp(−µi)µ

yi
i

yi!
, yi = 0, 1, . . . (3.1)

where µi = µi(xi) = exp(
∑p

j=1 xijβj), i = 1, 2, . . . , n, xi = (xi1 = 1, xi2, . . . , xip)
is the i-th row of covariate matrix X, and β = (β1, . . . , βp) are unknown p-
dimensional column vector of parameters. In the Poisson regression model, the
mean of the distribution is equal to the variance, i.e. E(Yi|xi) = V ar(Yi|xi) = µi.
Details of the Poisson regression model are given in Frome et al. (1973) and Frome
(1983).

The Poisson regression model is usually restrictive for count data, leading
to alternative models like the NB and GP regression models. One way this
restriction manifests itself is that in many applications a Poisson density predicts
the probability of a zero count to be considerably less than is actually observed
in the data. This is termed excess zeros problem, as there are more zeros in
the data than the Poisson predicts. The second and more obvious way that the
Poisson is deficient is that for a count data, the variance usually exceeds the
mean, a feature called over-dispersion. If there is significant over-dispersion in
the distribution of the count, the estimates from the Poisson regression model
will be consistent, but inefficient. The standard errors in the Poisson regression
model will be biased downward. This situation could lead the investigator to
make incorrect statistical inferences about the significance of the covariates. The
NB and GP regression models provide an alternative to the Poisson regression
model. The NB regression model has been used to deal with only over-dispersion
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(Lawless, 1987). The GP regression model has been used to deal with over- and
under-dispersion (Famoye, 1993). Therefore, a statistical test of over-dispersion
is highly desirable after fitting a Poisson regression model.

The standard form of the NB distribution used in regression applications
specifies that µi = µi(xi) = exp(

∑p
i=1 xijβj). The standard form includes the

dispersion parameter α and the conditional variance function, which is quadratic
in the mean. The NB regression model with the mean E(Yi|xi) = µi and variance
V ar(Yi|xi) = µi(1 + αµi) is given by Lawless (1987) as

p(µi, α, yi) =
Γ(yi + α−1)
yi!Γ(α−1)

(
αµi

1 + αµi

)yi
(

1
1 + αµi

)α−1

, yi = 0, 1, . . . (3.2)

where Γ(·) denotes the gamma function and the dispersion parameter α is un-
known. In the limit as α goes to 0, (3.2) yields the Poisson regression model.
When α > 0, there is over-dispersion.

The GP regression model provides an alternative to Poisson regression model
for over- and under-dispersion (Famoye, 1993). It is a good competitor to the
NB regression model when the count data is over-dispersed. This model can be
written as

p(µi, α, yi) =
(

µi

1 + αµi

)yi (1 + αyi)yi−1

yi!
exp

(−µi(1 + αyi)
1 + αµi

)
, (3.3)

yi = 0, 1, . . .. The mean of Yi is given by E(Yi|xi) = µi and the variance of Yi

is given by V ar(Yi|xi) = µi(1 + αµi)2. In model (3.3), α is called dispersion
parameter. When α = 0, the GP regression model (3.3) reduces to the Poisson
regression model (3.1) and this is a case of equi-dispersion. When α > 0 (or when
α < 0), the GP regression model represents count data with over-dispersion (or
under-dispersion).

Sometimes there are too many zeros in the count dependent variable than
are predicted by the Poisson regression model, resulting in an overall poor fit
of the model to the data. Zero-inflated count (ZIP, ZINB and ZIGP) regression
models address this problem of excess zeros. One cause of over-dispersion that
is expressed above may be the presence of more zeros than expected for the
Poisson regression model. The NB, GP, ZINB and ZIGP regression models can be
appropriate for the over-dispersion situation. For count data with more zeros than
expected, several models have been proposed, for example the “hurdle model”
(Mullahy, 1986), the “ZIP regression model” (Lambert, 1992), the “two-part
model” (Heilbron, 1994), the “semi-parametric model” (Gurmu, 1997). Details
of these models are also given in Ridout et al. (1998). The ZINB regression
model has been proposed by Heilbron (1994) and Ridout et al. (2001) and the
ZIGP regression model has been proposed by Famoye and Singh (2006).
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If Yi are independent random variables having a zero-inflated count distri-
bution, the zeros are assumed to arise in two ways corresponding to distinct
underlying states. The first state occurs with probability pi and produces only
zeros, while the second state occurs with probability (1 − pi) and leads to the
Poisson, NB and GP count with mean µi. In general, the zeros from the first state
are called structural zeros and those from the second state are called sampling
zeros.

Consider discrete nonnegative random variable Yi with a zero-inflated count
distribution, where pi and µi denote respectively the proportion of zeros and the
mean in the Poisson, NB or GP distribution. The distribution of Yi is given as

Pr(Yi = yi) = pi + (1 − pi)Pr(Ki = 0) yi = 0
= (1 − pi)Pr(Ki = yi), yi > 0 (3.4)

The overall probability of zero count is a combination of probabilities of zeros
from each state, weighted by the probability of being in that state, i.e. pi + (1−
pi)Pr(Ki = 0), where Pr(Ki = 0) is a Poisson, NB or GP probability with zero
event that occurs by chance. On the other hand, the probability of positive counts
is given by (1 − pi)Pr(Ki = yi) where Pr(Ki = yi) is the Poisson, NB or GP
probability with positive counts. Hence, by combining pi+(1−pi)Pr(Ki = 0) and
(1 − pi)Pr(Ki = yi), the zero-inflated count regression model can be expressed
as in (3.4). In (3.4), 0 < pi < 1 so those extra zeros in the data are explicitly
modeled. For positive value of pi, it represents zero-inflated distribution. When
pi is allowed to be negative, it represents zero-deflated distribution. However,
zero-deflation rarely occurs in practice. The ZIP, ZINB and ZIGP regression
models are summarized in Table 2.

Table 2: Probability functions, expected value and variance of zero-inflated
count regression models

Models Pr(Ki = yi) E(Yi) V ar(Yi)

ZIP exp(−µi)µ
yi
i

yi!
(1 − pi)µi E(Yi)(1 + piµi))

ZINB Γ(yi+α−1)
yi!Γ(α−1)

(αµi

A

)yi
(

1
A

)α−1

(1 − pi)µi E(Yi)(A + piµi)

ZIGP
(µi

A

)yi (1+αyi)yi−1

yi!
exp

(−µi(1+αyi)
A

)
(1 − pi)µi E(Yi)(A2 + piµi)

A = (1 + αµi) for short.

Lambert (1992) proposed that be formulated as a logit transformation such
that logit(pi) = log(p1/(1 − pi)) =

∑m
j=1 zijδj , where zi = (zi1 = 1, zi2, . . . , zim)
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is the i-th row of covariate matrix Z and δ = (δ1, . . . , δm) are unknown m-
dimensional column vector of parameters. The mean µi = µi(xi) satisfies a
log-linear relationship with covariates such that log(µi) =

∑p
j=1 xijβj , where

xi = (xi1 = 1, xi2, . . . , xip) is the i-th row of covariate matrix X, β = (β1, . . . , βp)
are unknown p-dimensional column vector of parameters. Both the nonnegative
functions pi and µi are linear functions of some covariates. The covariates affect-
ing pi and µi may or may not be the same. In the case of dissimilar covariates,
the pi and µi of the ZIP, ZINB and ZIGP regression models can be expressed as

µi = exp(
p∑

j=1

xijβj)

pi =
exp(

∑m
j=1 zijδj)

1 + exp(
∑m

j=1 zijδj)
(3.5)

In the case of similar covariates, affecting both pi and µi, the number of the
parameters can be reduced by treating pi as a function of µi (see Lambert (1992)).

In the count regression model, the response (the dependent variable yi),
namely, the number of C. caretta hatchlings dying from exposure to the sun,
is a nonnegative integer and has a Poisson, or NB or GP distribution. Param-
eters in the count regression models are estimated by ML method. The ML
method starts from the construction of the log-likelihood functions (L). Using
the method of ML, the parameter estimates in Poisson, NB and GP regression
models are, respectively, given by Frome (1983), Lawless (1987) and Famoye
(1993). They discuss the use of algorithms for solving the system of the ML
equations. For the zero-inflated count regression models, the inflation is modeled
through ωi = pi/(1−pi) = exp(

∑m
j=1 zijδj). Since we did not consider any covari-

ate as zij , we used only a column of 1’s for zi1. Hence ωi = exp(zi1δ) = exp(δ).
We used the SPLUS nonlinear optimization function “nlminb” to obtain the ML
estimates of the parameters.

The goodness of fit of the count regression models for model selection can
be based on the log-likelihood value or deviance statistic. We use the deviance
statistic to measure the goodness of fit of the regression models. The deviance,
based on a likelihood ratio statistic, is a measure of the goodness of fit. This is
defined as D = −[L(µ̂i; yi) − L(yi; yi)]. It has been shown that the deviance can
be approximated by a chi-square distribution with n− k degrees of freedom (n is
number of observations or cells and k is number of estimated parameters) when
µ̂i is large. The deviance can be used to assess the adequacy of various regression
models. The regression model with the smallest value of the deviance, among the
regression models considered, is usually taken as the best model for fitting the
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given data. The log-likelihood functions and deviances for the count regression
models are available from the first author.

The NB and GP regression models reduce to the Poisson regression model
when α = 0. To assess the significance of the dispersion parameter, we test
the hypothesis H0 : α = 0 against H1 : α �= 0. Whenever H0 is rejected, it
is recommended to use the NB or GP regression model in place of the Poisson
regression model. To carry out the test, one may use the asymptotically normal
Wald type “t” statistic defined as the ratio of the estimate of α to its standard
error.

A score test is used to test whether there are too many zeros for the Poisson
and the generalized Poisson models to adequately fit the data. The reader is
referred to Famoye and Singh (2006) for a discussion of the score test for zero
inflation with respect to ZIGP regression model.

4. Results

To understand how the different count regression models fit the zoological
data, we examine the fit of various regression models to the number of C. caretta
hatchlings dying from exposure to the sun. The results of using the Poisson, NB,
GP, ZIP and ZIGP regression models are given in Table 3.

First, we consider the Poisson regression model. Based on the deviance in
Table 3, the Poisson regression model does not provide an adequate fit to the
zoological data. The observed proportion of zeros is 56.9% for the zoological data,
but the Poisson regression model predicts a proportion of zeros as 28.6%, which
is an under-estimation of the observed proportion of zeros. In such a situation, it
would be appropriate to estimate the ZIP regression model. Is the ZIP regression
model statistically preferred over the Poisson regression model? We apply the
score test to check whether the ZIP regression model is a significant improvement
over the Poisson regression model. To test for zero inflation, the value of the
score statistic is calculated as 100.68. This value is significant at 0.05 level when
compared to the χ2

0.05;1 = 3.841. That is, the value of the score statistic provides
evidence that many zeros are observed for the Poisson distribution. Although the
ZIP regression model does better in predicting the zero proportion (estimated
proportion of zeros is 57.0%), the zero inflation parameter (δ) associated with
zi1 is not significant for the ZIP regression model in Table 3. The Poisson and
ZIP regression coefficients are quite different in magnitude; the standard errors
for the ZIP regression coefficients tend to be larger than those for the Poisson
regression coefficients.

We consider the NB and GP regression models which include a dispersion
parameter. The test of α = 0 by using the asymptotic Wald statistic showed that
α is significantly different from zero for the NB and GP regression models in Table
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3. The Poisson regression model is not appropriate for zoological data since we
reject the hypothesis H0 : α = 0. The deviances for the Poisson, ZIP, NB and GP
regression models are, respectively, 321.08, 250.96, 58.83 and 53.68, which also
indicate that modeling over-dispersed data using NB and GP regression models
are better than the Poisson and ZIP regression models. In Table 3, there is a
significant negative relationship between the A4 area (3-4 kilometer of the strait)
and the number of C. caretta hatchlings dying from exposure to the sun in the
NB and GP regression models. Thus, the deaths from exposure to the sun of C.
caretta hatchlings are low in the farthest zone of the strait area.

5. Conclusion and Discussion

The application addressed in this paper involves the estimation of Poisson,
NB, GP, ZIP and ZIGP regression models to predict the number of C. caretta
hatchlings dying from exposure to the sun. Since count data frequently exhibit
over-dispersion in addition to possible zero inflation, an obvious methodology is
to use a model that can accommodate over-dispersion and zero-inflation.

We also consider the ZINB and ZIGP regression models in terms of both zero
inflation and over-dispersion situation. The ZINB and ZIGP regression models
are alternates to the ZIP regression model when there is a situation of zero
inflation. The ZINB regression model did not converge in fitting the zoological
data. Lambert (1992), Famoye and Singh (2006) also observed similar problem in
fitting ZINB regression model to observed data sets. The ZIGP regression model
is a competitor to the ZINB regression model when there is both over-dispersion
and zero inflation. For this reason, we apply the ZIGP regression model for
modeling over-dispersed zoological data with many zeros. We apply a score test
that tests whether the ZIGP regression model is a significant improvement over
the GP regression model. The value of the score statistic is 0.63. This value is not
significant at 0.05 level when compared to the tabulated chi-square distribution
with one degree of freedom. Based on this result, the ZIGP regression model
provides an adequate (but not better than GP) fit to the data. In Table 3, the
zero inflation parameter (δ) associated with zi1 is not significant for the ZIGP
regression model.

Although the zoological data has about 56.9% observed proportion of zeros,
our results in section 4 showed that the ZIP regression model is not appropriate
for fitting it. However, the ZIGP model provides a similar fit as the GP model. It
appears the 56.9% of zeros does not constitute zero-inflation when one considers
a regression model that incorporates dispersion parameter. Thus, over-dispersion
in the zoological data can be a result of unobserved heterogeneity. Based on the
findings shown in the previous section, the NB and GP regression models seem
to perform better than the Poisson and ZIP regression models. The deviances
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of the NB and GP regression models that incorporate dispersion parameter are
very close; a slight preference might be given to the GP regression model which
has the smallest deviance.

Table 3: Results of fitting Poisson, NB, GP, ZIP and ZIGP regression models

Variable Poisson NB GP ZIP ZIGP

Intercept 0.9561 1.0202 2.0529 1.9939 2.3405
0.2507∗ 0.7869 1.6332 0.2662∗ 1.0974∗

A2 0.6624 0.6745 0.5932 0.1145 0.0074
0.2143∗ 0.7971 1.6164 0.2187 1.0444

A3 −1.0116 −1.0178 −1.1567 −1.0002 −1.4919
0.3371∗ 0.8561 1.5919 0.3934∗ 1.1679

A4 −3.4965 −3.6372 −4.0047 −3.6715 −4.1585
1.0150∗ 1.2579∗ 1.6938∗ 1.0657∗ 1.4431∗

A5 −0.7239 −0.8738 −1.6485 −0.6433 −1.6201
0.3046∗ 0.8300 1.4160 0.3584 1.0358

A6 −0.0308 −0.0384 0.9315 0.1055 0.0097
0.2481 0.8713 2.6098 0.2765 1.3853

D2 0.1151 0.1390 −0.3354 −0.5055 −0.5907
0.2148 0.7085 1.0802 0.2469∗ 0.8534

D3 −0.2796 −0.5063 −1.1837 −0.9005 −1.3293
0.2380 0.7139 1.2123 0.2749∗ 0.9244

D4 −0.0247 −0.2760 −1.7356 −0.1984 −1.2478
0.2222 0.8172 1.7812 0.2698 1.2079

1992 0.0606 0.3864 0.2840 0.3207 0.6312
0.2011 0.6226 1.3373 0.2255 0.7767

1993 0.2063 0.1028 −0.2755 0.2268 0.2338
0.1944 0.6793 1.5324 0.2212 0.9168

δ NA NA NA −0.095 −0.8218
0.2728 0.6675

Estimated dispersion NA 2.6311 0.8682 NA 0.4000
parameter (α) 0.7100∗ 0.2144∗ 0.2048
Estimated proportion 28.6 56.5 56.1 57.0 57.2
of zeros (%)
Log-likelihood −203.37 −116.91 −117.45 −146.98 −116.75
Deviance 312.08 58.83 53.68 250.96 59.41
Degree of freedom 61 60 60 60 59

∗means significant at 0.05 level. Standard errors of estimates are presented on
the next rows.
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