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Abstract. If the continuum hypothesis holds, R 2 is the union of countably many 
sets, none spanning a right triangle. Some partial results are obtained concerning 
the following conjecture of the first author: R 2 is the union of countably many sets, 
none spanning an isosceles triangle. Finally, it is shown that R s can be colored with 
countably many colors with no monochromatic rational distance. 

Introduction 

In the presence of the axiom of  choice it is possible to decompose the plane into 
a "few ... .  small" pieces. "Few"  usually means countable, while "small" can have 
various meanings. Davies proved, for example, that the plane can be the union 
of  countably many graphs (here graph means a congruent copy of  { ( x , f ( x ) ) :  x e 

R} for some real function f, see [2]). In another paper [3] Davies confirmed the 
conjecture of  the first author, showing that, assuming the continuum hypothesis 
(CH), the plane can be partitioned into countably many pieces, with every distance 
occurring in every piece at most once. This was later extended to R" by Kunen 
[10]. In the first part of this paper we show that under the CH, the plane can be 
decomposed into countably many pieces, none spanning a right-angled triangle. 
This was first proved, but not published, by the first author, answering a question 
of  Fajtlowicz (Houston). It was announced in [5] and [8]. Later, but indepen- 
dently, the second author rediscovered Theorem 1 when answering a question 
of  Hetyei, Jr. (Budapest). If the CH does not hold, no such decomposition exists; 
this fact is a trivial corollary of  a well-known polarized partition theorem (see 
[7]). The positive result can be extended to the exclusion of triangles containing 
an angle in a predetermined countable set. With only the help of  the axiom of  
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choice, Ceder  showed that the equilateral triangle can be excluded (or, any 
triangle similar to any one in a predetermined countable set, see [1]). We 
conjecture t h a t ~ a g a i n  without using the C H ~ e v e n  isosceles triangles can be 
excluded, but we have only been able to prove a weaker result, namely, that the 
plane can be decomposed into countably many  pieces, none containing 
x, Yo, Y~ , . . . ,  with all the distances d(x, y~) the same. This makes it possible to 
show that 2 so can be arbitrarily large while in the plane of  the union of  N~ sets, 
none spanning an isosceles triangle. 

Finally, we show that R 3 can be decomposed into countably many pieces, 
none spanning a rational distance. The corresponding result for R 2 follows easily 
from an old result of  the first author and Hajnal [4] (see also [8]), namely, if a 
graph does not contain a complete bipartite graph on two, resp. N~ vertices, then 
it is countably chromatic. This idea, however, no longer works for the three- 
dimensional space, therefore we use another approach. We conjecture that the 
result can be extended to every R ~. 

We use standard set-theoretical notation. If  S is a set, ]S[ is its cardinality, 
[S] <°~, [S] °" denote the collections of finite, resp. countably infinite, subsets of  
S. d(x, y) is the distance between x and y. 

Theorem 1. I f  CH holds, then the plane can be colored with countably many colors 
with no monochromatic right.angled triangle. 

We notice that it is not known if this result holds for every R ~. 

Proof. By transfinite recursion on a < to~, we construct H,~, a countable set of  
points on the plane, and ~f~, a countable collection of  lines and circles. We 
require that our sets extend each other and be sufficiently closed: 

As, 

Using 

(1) For ~ < ~ < ~ l ,  H~c_H~, ~ .  
(2) I f  • < o~i is the limit, then HA = U {Ha : ~ < ~} and ~ = U { ~  : ~ < 4}. 
(3) U {H~ : ~ < o~d = g ~. 
(4) i f  ~ y ~ H~, x ~ y, then their connecting line as well as their Thales circle 

(5) I f  ~ y, z ~ H~ are not collinear, then the circle containing them is in ~ .  
(6) The elements of  the intersection of  any two different members of  ~ are 

in H~. 
(7) The center of  every circle in ~ is in H~. 
(8) I f  x e C ~ ~g~, x e H~, C is a circle, then the antipodal of  x on C is also 

in H~. 
(9) I f  L ~ ~ is a line, x e H~ c~ L, then the line perpendicular to L at x is also 

in ~ .  

by assumption, the CH holds, there is a well-ordering of R:  into type to~. 
that, we can build H ~ t ~  by Skolem-type closure arguments. 
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Let to denote the set of  natural numbers. [to]o, will therefore be the collection 
of infinite sets of  natural numbers. By transfinite recursion on a < to~ we build 
functions ~o : [ . .J~ -> [to]~ and f :  [_JH~ ~ to such that: 

(10) I f  C ~  ~ is a circle, then [ to-~(C)I_<2.  
(11) I f  C ~ ~ is a circle, i c ~ (C) ,  x, y ~ C, f ( x )  = f ( y )  = i, then x, y are not 

antipodal. 
(12) I f  C ~  ~ is a circle, i ~ ( C ) ,  there can be at most two points x on C 

with f ( x )  = i. 
(13) I f  L e  ~ is a line, i~  ~,(L), then there is at most one x e  L with f ( x )  = i. 
(14) I f  L~, L2 e ~ are lines, {x} -- L1 c~ L2, then f ( x )  ~ ~(L~) c~ ~p(L2). 
(15) I f  x, y~ H~+~-H~, x ~  y, then f ( x ) ~  f(y) .  
(16) I f e ~  ~ ,  x~e,  x~H~,  then f ( x ) ~ ( e ) .  

First we prove that our conditions ensure that there will be no monochromatic  
(by f )  right-angled triangles. In order to show this, assume that x, y, z form a 
right angle at y and f ( x ) = f ( y )  = f ( z ) =  i. Let C be the circle containing x, y, z; 
note that x and z are antipodal. Then i e ~ ( C )  contradicts (11) and i ~ ( C )  
contradicts (12). 

Assume that a < to~, and ~ , f  have already been defined on H~, ~,~. We extend 
them to H~+~, ~+1 .  Our first remark is that we do not have to care about (11) 
when extending f, q~. Assume that C c ~ + l  - ~ is a circle, x~, y~, x2, Y2, x3, Y3 
are six points on C, and, for t = 1, 2, 3, f ( x , ) = f ( y , ) .  Then, by (15), three of  the 
points are in H~, so C ~ ~ by (5). This means that when f on H~+~ is defined 
we can define ~ ( C )  to satisfy (10) and (11). To save (12), observe that a circle 
C s ~+~ - ~ can contain only two points from H~ (by (5)), so if they have the 
same color, we can ensure that, when coloring (H~+~-H~)r~  C, no new point 
gets that color. 

By (6), for every x e H,~+I - H~, only one e ~ ~ can contain x, so we must 
choose f ( x )  as an element of  this (possible) ~p(e). This gives an infinite set of  
candidates for f (x) .  I f  we color the elements of  H~÷~-  H~ in an to-sequence, at 
every step only finitely many possibilities are ruled out by (15). 

I f  L e  ~+~ - ~,, is a line, let go, g ~ , . . . ,  enumerate those lines g~ ~ ~ which 
are perpendicular to L, and define xi by {x~} = g~ c~ L. By (6) and (9), x~ 
H~+~-  H,,. To ensure (14) and (16) we have to ensure f (x~)e  ~o(g~),f(x~)~ ~p(L). 
Also, ~o(L)c__ t o - { f ( x o ) , f ( x ~ ) , . . . }  must be infinite. These requirements can be 
met by an inductive selection of  colors. Condition (13) can also be met i f x  ~ H~, 
x e L ,  and L e  ~ , + ~ -  ~,, is a line, then we can ensure f ( x ) # f ( y )  for y e L m  
(H~,+, -H~) .  [] 

Next we give the easy converse to Theorem 1. 

Theorem 2. I f  the CH does not hold, then the plane cannot be colored with countably 
many colors with no monochromatic right-angled triangle. 

Proof Assume that 2~o> NI,  select N2 parallel lines, {e~: a <to2}, and N1 lines 
perpendicular to them, {f~:fl  < to1}. Color the edges of  the complete bipartite 



328 P. Erd6s and P. Komj~ith 

graph {x~, ya: a < to2,/3 < to~} as follows. I f  the color of the point in the intersec- 
tion of  e~ and fe is i, then we color the edge between x,, and y~ by i. By an old 
result o f  the first author and Hajnal, there are a(0)  < a(1)  < to2,/3(0) </3(1) < to~ 
with all the edges {x,,(,), Y~o)} having the same color. But this obviously gives a 
monochromatic  rectangle. [] 

Theorem 3. There is a well-ordering, <,  of R 2, and functions F, G such that 
F (C)~[C]  <0" for every circle C, G(x)e[R2] <~ for every point xeR2,  and, 
moreover: 

(1) If  the center of the circle C is x, and y ~ C - F( C), then x < y and x ~ G(y). 

Proof. We show by transfinite induction on K = IX] that for every infinite X ___ R 2 

there exists a well-ordering, < ,  of X, and functions F, G with F(C) ~ [C]  <°' for 
every circle C, G(x) E [ X ]  <~' for every x E X, and: 

(1') I f  the center of  circle C is x, and y E ( C n X )  - F ( C ) ,  then x ~ G(y) and, 
if x e X, then x < y. 

We call X c_ R 2 closed, if: 

(2) For every x, y, z ~ X not coUinear, the center of  the circle through them 
is in X. 

(3) I f  x~, x2 e X, y e R 2 is a point such that d (xt ,  y), d (x2, y) both occur as 
distances in X, then y ~ X. 

These conditions mean that X is a subalgebra of  a certain algebra. Standard 
arguments show that every infinite X can be embedded into a closed set of  the 
same cardinality. It suffices, therefore, to prove (1') for closed X. 

I f  X is countable, we can enumerate as {xo, x~, . . .} ,  we define the well-order 
as Xo<Xl<"  • " and take F ( C ) =  C n { x o , . . .  ,xi-~} for circle C, where x~ is the 
center of  C, and G(xi) = {Xo, . . . ,  xH} ,  

Assume now that X is closed, and Ixt = K > ~o. Decompose X as the con- 
tinuous, increasing union of  {X,: a < K} with JX,~ t < K for c~ < K, all X~ closed. 

By the inductive hypothesis, there are appropriate  <~, F~, Go on X~+~. We 
order X as follows: x < y  whenever x s X ~ , + I - X , ,  y~X~+1-X~,  and either 
a </3, or  else a =/3 and x < , y .  This is clearly a well-order. I f  x ~ X , + t - X ~ ,  
then, as X~ is closed, by (3), there can only be one y ~ X ,  such that d(x,y)  
occurs as a distance in X~. Put G ( x ) =  G,,(x)u{y}.  

Assume that C is a circle. I f l C  n X I -  < 2, we can take F ( C )  = C n X. Otherwise, 
C ' s  center, x, is in X. Let y < K be the smallest ordinal with IC n Xr+d-> 3, and 
ot < K such that x ~ X,,+I - X , .  By (2), a -< 7. Put 

(4) F(C)=(Cc~X~,)uF~,(C).  

To show (1'), assume that C is a circle, x is its center, xeX, ,+t-X~, ,  and 
y e ( C n X ) - F ( C ) .  Let y be as in the previous paragraph.  By (4), y t t X  v. I f  
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y E Xv+l - X~, then x E G~(y) c G(y) ,  If  y ~t Xv÷l, then d(x, y) occurs in X,÷1, 
so x E G(y) .  [] 

Corollary I. There exists an f :  R 2 ~ to such that if C is a circle with center x, then 
{y E C: f ( y )  =f (x )}  is finite. 

Proof. Along the welt-ordering of Theorem 3, define f ( x )  such that if y < x, 
y E G(x) ,  then f ( x ) # f ( y ) .  I f  C is a circle with center x and y ~  F ( C )  (a finite 
set), then f ( x ) ~ f ( y )  by our construction. [] 

For the notation appearing in the following results, such as ccc (countable 
chain condition), MA (Martin 's  axiom), etc., we refer the reader to [9]. 

Theorem 4. There is a ccc poser which adds an to-coloring of  the (old) R 2 with 
no monochromatic isosceles triangle. 

Proof. Let f : R 2 ~ t o  be as in the previous corollary, i.e., if C is a circle with 
center x, and y ~  F(C) ,  then f ( x ) # f ( y ) ,  p will be an element of  our poset P if 
p is a function with D o m ( p ) E  [R2] < ' ,  R a n ( p ) ~  to, p refines f, i.e., p ( x ) = p ( y )  
implies f ( x )  = f ( y ) ,  and, for every i, p - l ( i )  does not contain an isosceles triangle. 
We define q - p if q extends p as a function. 

In order to show that P is ccc, assume that p,  (or <tot)  are NI conditions. 
Without loss of  generality, we can assume that D o m ( p ~ ) =  S w S~, with S c~ S~ = 
S~ n S~ = O for a ~ fl, I so l  = n ,  and S~ = {x(a, 0 ) , . . . ,  x(a,  n -  1)}. We can also 
assume that p~lS =p~lS, p~(x(a,  i))= p~(x(/3, i)), and f ( x ( a ,  i ) )= f (x ( f l ,  i)) for 
i<n ,  a < / 3 < t o ~ .  For every a <to~ there is an e > 0  such that all distances in 
Dom(p~) are larger than e, and the difference between any two different distances 
is also bigger than e. Again, we may assume that this e is the same for every p~. 
By separability, we can further shrink to get 

d(x(a ,  i), x(fl, i)) < e/2 for i < n, a < fl < to1. 

I f  p~ w p~ is not a condition, S w S,~ w S~ contains a monochromatic  isosceles 
triangle. This triangle must contain a point in S~ and another in S~. I f  two points 
in the triangle are in S~, one in Sa, say they are x(oe, i), x (a , j ) ,  x(fl, k), the only 
possibility is that d ( x( a, i ), x(fl,  k ) ) = d ( x( a, j ), x([3, k ) ). Now 

ld(x(a ,  i), x (a ,  k)) - d ( x ( a , j ) ,  x(a,  k))] < e, 

so x(a,  i), x (a , j ) ,  x(o~, k) form an isosceles monochromatic  triangle, which is 
impossible. 

Assume now that s E S, x(a ,  i), xO3,j) form a forbidden triangle. The only 
possibility is that d(s, x (a ,  i)) = d(s, x(fl, j)) .  By using e, i =j .  This means that 
if  C is the circle around s, containing x(a,  i), then x(fl, j )  is in F(C) .  For every 
a there can only be finitely many such/3's,  so by Hajnars  set mapping theorem 
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(this case is, in fact, trivial), there are a </3 with no such configuration, i.e., p~, 
p~ are compatible. (We even get N~ pairwise compatible elements.) [] 

Corollary 2. 

(el) I f  MA~ holds, then every X c R 2 with IX]-< K can be colored with countably 
many colors, with no monochromatic isosceles triangle. 

(b) It is consistent that 2 so is arbitrarily large, and R 2 can be colored with N~ 
colors without monochromatic isosceles triangles. 

Proof. (a) Standard from Theorem 4. 
(b) Add the poset of  Theorem 4 ~o~ times iteratedly, with finite 

supports. [] 

From now on, let Q denote the set of rational numbers (actually any countable 
subset of  R works). 

A subset E _c R 3 is called a combinatorial line, if there is a line L, and a point 
x ~  L, such that E = {y e L: d(x, y )~  Q}. Obviously, [El = No. Given xl, x2e R 3, 
x~ ~ x2, only countably many combinatorial lines contain both x~ and x2 (as y is 
determined by d(y, x~), d(y, x2)). If  E, a combinatorial line, is given, the set of 
those points y, for which d(x, y) ~ Q holds for every x e E, is a countable collection 
of  disjoint circles. 

We remind the reader that a set A _c to is of density zero (or of  density one), if 

lim IA c~{O, 1 , . . . ,  n -1} l  =0  (or 1). 
n ~ o o  n 

(As the reader will probably observe, this notion is too strong here, we only need 
the properties that every infinite set contains an infinite subset of  density zero, 
and finitely many density zero sets cannot cover co.) 

Theorem 5. Assume that X c_ R 3 and a set ~o(x) ~ [to] ~' of density one is assigned 
to every x E X. Then there is a coloring f : X -~ to such that f ( x ) e ~o ( x ) (x~  X ) , / f  
d(x,  y ) ~  Q, then f ( x )  ~ f ( y ) ,  and, i f  E is a combinatorial line, then {f(x):  x e  E} 
has density zero. 

Proof. We call X c_ R 3 closed, if: 

(1) For xt ,  x2 e X, x~ ~ x2, E is a combinatorial line with xi,  x2 e E, then E c_ X. 
(2) Ifx~, x2, xa e X are not collinear, y has d(xi,  y) ~ Q (i = 1, 2, 3), then y e X. 

Similarly to Theorems 1 and 3, from the facts mentioned after the definition 
of  a combinatorial line, every X can be embedded into a dosed  set of  size 
max([XI, No). It suffices, therefore, to prove the theorem for closed sets. Again, 
we do this by transfinite induction on IX I. 
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I f  I X ] - N o ,  enumerate  x as {Xo, x~, . . .}  and choose by induct ion on i an 
f(x~) ~ ~o(xi) with f(x~) ~f(x~) f o r j  < i, and f(x~) > 2'. Assume now that  IXf -- ,, > 
No and X is closed. We build an increasing, cont inuous chain o f  closed sets 
{X~: a < K }  with IXol <,~ (~ < ~ ) ,  and l,J {X~: a < r } = X .  We color  X~+~-X,~ 
by transfinite recursion on a. I f  we are at the a t h  step, assume that f~ =flX~ is 
already given. For  x c X,~+~- X , ,  put  

~o~(x) = to - {f~ (y): y e X~, d(x, y) e Q}. 

As X ,  is closed, and xeX~+~-X~, the set { y e  X~: d(x,y)e Q} is either empty,  
a one-element  set, or  a combinatorial  line. Therefore,  ~o~(x) is o f  density one. 
We can now apply our  theorem on X,+1 - X~ with ~p(x) c~ ~,,(x) to get g,~ : X~+t - 
X,, ~oJ. Then f,~+~ =f,~ w g,~ obviously has the desired properties. To end, we 
check that i f f = U  {f,,: a < r}, then f maps every combinatorial  line into a set 
o f  density zero. Assume E is a combinatorial  line, put  

c~ = mint/3 < K: IXo n El>-2}. 

Now a is o f  the form a ' +  1. E - X,~, contains all but at most  one element o f  E, 
so our  condit ions will be met. [ ]  

Corollary 3. There is a coloring f : R3-~o) with f ( x ) ~  f(y)  whenever d(x,y) is 
rational 

Proof. Take ~o(x)=~o for every x c  R 3 and apply Theorem 5. 
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