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COUNTABLE DIMENSIONAL UNIVERSAL SETS

ROMAN POL1

Abstract. The main results of this paper are a construction of a countable union of
zero dimensional sets in the Hubert cube whose complement does not contain any
subset of finite dimension n > 1 (Theorem 2.1, Corollary 2.3) and a construction of
universal sets for the transfini te extension of the Menger-Urysohn inductive dimen-
sion (Theorem 2.2, Corollary 2.4).

1. Terminology and notation. All spaces considered in this paper are metrizable
and separable. Our terminology follows Kuratowski [Ku] and Nagata [Na 2].

1.1. Notation. We denote by / the interval [-1,1], Ix is the countable product of
/, i.e. the Hubert cube, p¡: I00 -* I is the projection onto the z'th coordinate, P is
the set of the irrationals from / and « is the set of natural numbers. Given a point
t e I, we let Q, = {(Xf, x2,... ) e I00: x, = t}.

1.2. Partitions. A partition in a space X between a pair of disjoint sets A and B is
a closed set L such that X \ L = U U V, where U and V are disjoint open sets with
A c U and R c V.

1.3. Countable dimensional spaces and the transfinite inductive dimension ind. A
space X is countable dimensional if it is a countable union X = {jf=lXi of zero
dimensional sets X¡ [Hu].

The transfinite dimension ind is the extension by transfinite induction of the
classical Menger-Urysohn inductive dimension: ind X = -1 means X = 0, ind X <
a if and only if each point x in X can be separated in X from any closed set not
containing x by a partition L with ind L < a, a being an ordinal, we let ind X be
the smallest ordinal a with ind X < a if such an ordinal exists, and we put
ind X = oo otherwise. If ind ^#00, then ind X is a countable ordinal, X having a
countable base.

The transfinite dimension ind was first discussed by Hurewicz [Hu, §5], [H-W, p.
50] (although the idea goes back to Urysohn's memoir [Ur, p. 66]). A comprehensive
survey of the topic is given by Engelking [En 2].

Hurewicz [Hu, En 2, 4.1, 4.15] proved that for a complete space X, ind X =h 00 if
and only if X is countable dimensional and that each space X with ind X # 00 has a
countable dimensional compactification.
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256 ROMAN POL

1.4. Hereditarily infinite dimensional spaces. We say that an infinite dimensional
space X is hereditarily infinite dimensional (hereditarily uncountable dimensional) if
each nonempty subset of X is either zero dimensional or infinite dimensional
(uncountable dimensional), cf. [G-S, Wa, Tu].

2. Introduction. The following two theorems are main results of this paper.

2.1. Theorem. There exists a countable dimensional set C in the Hilbert cube I°°
such that for each countable dimensional subset A of 700 the difference A\C is at most
zero dimensional.

2.2. Theorem. For each countable ordinal a there exists a Gs-set Ea in Ix with
transfinite inductive dimension ind Ea = a such that for every Gs-set G in Ira with
ind G < a there is an irrational (e/ for which G n Q, = EaC\ Qn where Q, =
{(Xf,x2,...)<z-Ix: Xf = t).

Since each separable metrizable space embeds in Io0, Theorem 2.1 yields the
following corollary.

2.3. Corollary. Each uncountable dimensional separable metrizable space contains
a countable dimensional subset with hereditarily uncountable dimensional complement.

Each subset of I00 can be enlarged to a Gs-set in Ix with the same transfinite
dimension ind [En 2, 5.5] and hence the sets Ea in Theorem 2.2 have the following
property:

2.4. Corollary. For each countable ordinal a, every separable metrizable space X
with ind X < a can be embedded homeomorphically into the space Ea.

Therefore, Ea is a universal space in the class of separable metrizable spaces with
transfinite dimension ind < a. The question about the existence of such universal
spaces for a > w0 was asked by Engelking [En 2, Problem 5.11], cf. also Luxemburg
[Lu 2, Problem 8.4].

Using the zero dimensional set E0 described in Theorem 2.2 one obtains the
following fact (cf. §4.2):

2.5. Corollary. There exists a countable dimensional GSa-set Ex in Ix such that
for every countable dimensional GSa-set G in I°° there is an irrational t e / with
GnQt = Exn Q,.

The results of this paper are based implicitly on a notion of " universal functions"
for a given collection of sets and some related diagonal arguments; these ideas go
back to the origins of descriptive set theory, cf. Moschovakis [Mo, Remark 15 on p.
63], Kuratowski [Ku, §30, XIII]. Certain " universal functions" for the collections of
compacta in I00 with transfinite dimension ind < a have been considered in [Po 2,
§4] and a significant part of the present paper is a modification and an extension of
the methods from [Po 2, §4].

Theorem 2.1 can be proved by making use of the zero dimensional universal set
F0 described in Theorem 2.2 (cf. Remark 4.2.1). We give, however, an independent
direct proof of this theorem (though based on the same ideas as the construction of
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countable dimensional universal sets 257

the sets Ea in Theorem 2.2). This proof also provides a simple construction of sets
with properties only slightly weaker than those of E0, £,,... (for finite a) and the
set Ex in Corollary 2.5.

The paper is organized as follows.
In §3.1 we construct a "universal sequence" of sets for zero dimensional sets in

/°° and in §3.2 we intensify certain singular properties of these sets, following an
idea from Walsh [Wa], to obtain the countable dimensional set C described in
Theorem 2.1.

In §4.1 we construct " universal functions" Ma c P x I00, in the product of the
irrationals and the Hilbert cube, for the collection of Gs-sets in I°° with transfinite
dimension ind < a and in §4.2 we apply a standard diagonal construction to get
from these Ma's the sets Ea described in Theorem 2.2.

§5 is a slight departure from the main subject of this paper (and it is formally
independent of the other sections). We define here, by a method similar to that in
§3.1, a " universal sequence" of partitions between the opposite faces in 7°°, and we
use these partitions along a path outlined by Walsh [Wa, §§3 and 7] to obtain a
rather unexpectedly simple construction of hereditarily infinite dimensional com-
pacta.

In §6 we collect some comments related to the subject of this paper.
I would hke to thank Henryk Toruhczyk for pointing out a direct argument used

in the proofs of property (I) in §3.1 and Lemma 4.1.3(h), which simphfied my
original proofs.

3. A countable union of O-dimensional sets in I00 whose complement has no subsets
of dimension n > 1. In this section we give a proof of Theorem 2.1.

3.1. A universal sequence Nx, N2,... for O-dimensional sets in 7°°. Let F be an
arbitrary set in / homeomorphic to the irrationals P, let T be the space of all
homeomorphic embeddings h: Ix -* I00 of the Hilbert cube into itself endowed
with the topology of uniform convergence and let

u = (Uf,u2,...): F-> T X T X ■■■
be a continuous map of the set F onto the countable product of the completely
metrizable separable space T, cf. [Ku, §36, II].

For each / = 1,2,... we let
(1)    AT = {(Xf,x2,...) G vT00: Xf G Fand m,(x1)(x1, x2,...) g P X P X ••• }.

We shall verify that the sets N¡ have the following two properties, where for each
ÍG/,

Q,= {(xf,x2,...)eIx:Xf = t}

(cf. §4.2(1) and (II)):
(I) The sets N¡ are zero dimensional.
(II) Given an arbitrary sequence Gx,G2,... of zero dimensional sets in Ix there

exists t G F such that G¡ C\ Q, c AT n Q, for each i = 1,2,....
Proof of (I). Let QT = {(xx, x2,...) g F00: xx g F} and let, for each /' g w, a

continuous map /,: QT -» T X /°° be defined by

fi(xx,X2,...) = (xx,Ui(Xf)(Xf,X2,...)).
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258 ROMAN POL

The map f¡ is closed (the projection QT -* F being parallel to a compact factor,
see [Bo, Chapter I, §§10, 1 and 2]) and injective (the maps u,(t) being embeddings),
and hence /, embeds QT homeomorphically into the product F X Ix. Property (I)
follows now from the fact that f¡ embeds AT into the zero dimensional space
T x (P x P x ■■■).

Proof of (II). We shall use the following universal property of the product of the
irrationals P X P X • • • established by Nagata [Na 1, Na 2, VI.2.A] (a simple proof
is given in §6.4):

3.1.1. Lemma (Nagata). For each zero dimensional set G in a metrizable separable
space X there exists a homeomorphic embedding h: X -* Ix such that h(G) c P X P
X-

Let Gf, G2,... be an arbitrary sequence of zero dimensional sets in Ix and, for
each /' g to, let h¡: Ix -» Ix be an embedding such that

(2) hj(Gi)<zPx Px ■■•-

Let us choose a t G F such that

(3) u(t) = (ux(t),U2(t),...) = (hf,h2,...).

Then, for each i g u, we have (see (2), (3), (1))

G,n Q, c {(t,x2,x3,...): hi(t,x2,x3,...)^PX P X •••}

= {(/,x2,jc3,...): ui(t)(t,x2,x3,...)(zPx PX--} =Nir\Q„

which proves property (II).
We close this section with an observation that property (II) yields, by a simple

diagonal argument, the following property of the union
00

(4) #00=11 AJ.

(III) If A is a subset of Ix disjoint from Nx whose projection onto the first coordinate
contains the set T, then A is uncountable dimensional.

Assume on the contrary that A = Ux=lG„ where the sets G¡ are zero dimensional.
By property (II) there exists a t g F such that G, n Qt<z N¡ n Q, for all i g u and
hence 0 ± A r\ Q, = \Jx=fG¡ D Q, <z Nx n Qt, contradicting the fact that A was
disjoint from Nx.

3.2. Proof of Theorem 2.1. Reasoning in this section follows some ideas of
Walsh [Wa].

Let Tf,T2,... be a sequence of topological copies of the irrationals in /, with
pairwise disjoint closures in /, such that each nondegenerate interval in / contains
some T¡.

For each / g u, the construction described in §3.1 with F = T¡ yields a countable
dimensional set N^ in 7°° such that (see property (III)) each subset in I°° disjoint
from A^'* whose projection onto the first coordinate contains F, is uncountable
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dimensional. Therefore, the countable dimensional set

C = A£> U N^ U ■ ■ •

has the following property:
(IV) If A is a countable dimensional set in Ix disjoint from C then the projection of

A onto the first coordinate does not contain any nondegenerate interval in I, i.e. the
projection is zero dimensional.

Let w,: Ix -* Ix be the permutation of the coordinates interchanging the first
coordinate with the <th one and let C¡ = ir¡(C') for i g w. Each countable dimen-
sional set C, has then the property analogous to that of C stated in (IV), where the
first coordinate is replaced by the ith one. The countable dimensional set C = Cx U
C2 U ••• satisfies the assertion of Theorem 2.1: if A is a nonempty countable
dimensional set in Ix disjoint from C then, A being disjoint from each C„ for every
/' G to the projection p¡(A) of A onto the /'th coordinate is zero dimensional and so
is the set A c n°°=1/7,(^), cf. Walsh [Wa, §3].

4. Universal sets for the transfinite extension of the inductive Menger-Urysohn
dimension. In this section we construct the sets Ea described in Theorem 2.2 and we
prove Corollary 2.5.

4.1. Universal functions Ma. Given a set S in the product P X Ix of the irrationals
P and the Hilbert cube Ix, for each / g P, we let

(1) S(t)= {xg/00: (f,jc)e S).

4.1.1. Proposition. For each countable ordinal a there exists a Gs-set Ma in
P X Ix such that

(i) ind Ma = a,
(ii) for each Gs-set G in Ix with ind G < a there is a t G P with Ma(t) = G.

Proof. Let pf. Ix -» I be the projection onto the /th coordinate and let

(2) C,-p;\-\),    Dt = Pll0),    H,=pjx(0),

i.e. H¡ is a partition between the pair C, and D¡ of the ¿th opposite faces in Ix. Let

(3) Z = /-\U{C2,._1UF>2,._1:/ = 1,2,...}.

We shall construct the sets Ma by transfinite induction. Let M_x = 0 and let us
assume that for some ordinal a the sets Mß with ß < a have been already
constructed. We shall define the set Ma.

(I) Let us split the set of even natural numbers into disjoint infinite sets 2_,, 20,
2,,..., 2^,..., ß < a, and let T be the space of all homeomorphic embeddings h:
Ix -» Ix satisfying the following two conditions

(*) if x G h'x(Z) and F is a closed set in Ix not containing x, then h(x) g C2i and
h(F) c D2i for some i G u;

(**) iff g Z, then indh-\Z n Hf) < ß.
We shall consider T with the topology of uniform convergence.
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4.1.2. Lemma. For each Gs-set G in Ix with ind G < a there exists an embedding
h g T such that G = h-\Z).

Proof. Let 38 be a countable base in Ix. Let us consider the collection of all
pairs (A, B) of disjoint closed sets in Ix, each of which being a finite sum of the
closures of the elements of 38 such that there exists a partition L in Ix between A
and B with ind(L n G) = y < a, let y (A, B) be the minimal such ordinal y for the
pair (A, B), and finally, let us arrange this collection of pairs into a sequence
(Af, Bf), (A2, B2),... letting y(i) = y(At, R,). Choose an injection t: a -* « such
that t(z') g 2 (í) and let fy. Ix -* I be continuous maps with

(4) frK-1) = A„       fyx(l) = R„
(5) ind{Gnfyx(0)) = y(i).

Let /00\G = I1UI2U-'-, where X¡ are compact sets and let g¡: Ix -* [0,1]
be continuous maps with g¡x(l) = X¡. Let us finally split the odd natural numbers
into two disjoint infinite sets 2' and 2" and let us choose bijections v: 2' -* u and
p: 2" -* a.

An embedding h: Ix -* Ix with required properties can be defined now by
h(xux2, ...) = (yv y2,...) where

'&C/)(*i»*2»---).    if./e2',

(6) y.= \2X*JP if ye 2",
f(Xf,X2,...), if 7 = t(i),

1 if ii 2'U2"Ut(w).

The first two formulas in (6) guarantee that h is an embedding and G = h~x(Z).
Given an x g G and a closed set F in Ix not containing x, the assumption
ind G < a yields the existence of a pair (A^Bf) such that x g A¡ and F c R; (cf.
[En 1, Lemma 1.2.9]). Then (see (2), (4), (5) and (6)), x g h-\CTÍ¡)), F c h-\Dr{¡))
and ind h~x(Z Pi tVt(i)) = ind(G n /,_1(0)) = y(0- Therefore h satisfies condition (*)
and condition (**) holds for all j g t(w) (recall that t(z') g 2 (IA But if j is an
even number not belonging to t(w), the last formula in (6) shows that h(I°°) n //■
= 0 and so (**) is satisfied also in that case.

(II) For each even number 2/ let ß(i) be the ordinal such that 2i g 2^,-j (see (I)).
Let us consider an embedding h g T, where T is the space defined in (I). For every
even number 2/ property (**) and universality of the set Mß(i) yield the existence of
an irrational i, g P such that
(7) h-1(ZriH2i) = Mm(ti).
Let A c T X F X P X ... be the space of all sequences (h, tv t2,...) such that for
each i g u the pair (h, t¡) satisfies condition (7). The space A being metrizable and
separable, there exists a subset 5 of the irrationals in / and a continuous map
u = (w0, «,, u2,... ): S -* A onto A (cf. [Ku, §36, III]). Let us define a continuous
map k: S X Ix -> /" by k(s, x) = u0(s)(x) and let
(8) M = {(í,x)g Sx/°°: «0(i)(x)e Z} = ik_1(Z),

(9) L, = {(i,x) G S X /»: Wo(í)(x) g H2i) = k~x(H2,).
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4.1.3. Lemma. The set M and the sets L¡ have the following properties:
(i) for each  Gs-set G in I°°  with  ind G < a there exists an s g S such that

M(s) = G,
(ii) ind(L,n M)< /?(/), *'e u,
(iii) ind M = a.

Proof, (i) Let G be a Gs-set in Ix with ind G < a. By Lemma 4.1.2 there exists
an embedding h e T such that G = h~l(Z) and since u0(S) = T, h = u0(s) for
some seX. Then (see (8)) M(s) = uQ(s)'x(Z) = G.

(ii) By (7), for each s g S and /' g <o, we have

Uo(í)-1(zni/2i) = Mw(«¡(í)),

i.e. (see (8) and (9))

(10) (MnLi)(s) = MßU)(ui(s)).

For each /' g to define a continuous map g,: S X Ix -* S X P X Ix by

g¡(s,x)= (s,u¡(s),x).

The map g, homeomorphically embeds the set M n L, into the product S X Mß(i)
(see (10)) and therefore ind(M n L,) < ind A/^ = ß(/'), the space S being zero
dimensional.

(iii) Let (s, x) g M and let F be a closed set in S X Ix not containing (s, x).
Since u0(s) g T, property (*) in (I) and (8) yield the existence of an i e u such that
u0(s)(x) g C2i and u0(s)(F(s)) c £>2/. Therefore the set L, separates in S X Ix
the point (s, x) from the closed set Ffl({s) X I°°) (see (9)). The projection
S X Ix -* S parallel to the compact factor being closed, there exists an open and
closed neighborhood Wof s in 5 such that L,n (W X Ix) is a partition in S X Ix
between the point (s, x) and the set F. Since, by (ii), ind(M C\ L¡) < a, this shows
that ind M < a and it completes the proof, as ind M ^ a, by (i).

(Ill) It remains to modify slightly the set M constructed in (II) to obtain a Gs-set
in P X Ix satisfying conditions (i) and (ii) in Lemma 4.1.3.

By (8), M is a Gs-set in S X Ix c P x Ix and therefore there exists a Gs-set M*
in P X Ix such that ind M* = ind M and M* D (S X Ix) = M, cf. [En 2, 5.5]. Let
5* be the projection of the set M* onto the F-coordinate, let w: P -* S* be a
continuous map onto S*, cf. [Ku, §37,1], and let

Ma= {('>*) g F X 700: (w(t),x) g M*}.

The set Ma is a Gs-set in P X Ix (being the preimage of the set M * under the map
(t, x) -» (w(r), x)) and for each Gs-set G in Ix with ind G < a, there exists an
irrational re F with Ma(t) = G (as G = A/T(í) for some jeS and s = w(í) for
some t G F). Finally, ind Ma < a, since the map (t, x) -* (t,w(t),x) embeds ho-
meomorphically the set Ma into the product F X M* (cf. the proof of Lemma
4.1.3(h)).

This completes the inductive proof of Proposition 4.1.1.
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4.2. Diagonal constructions related to the universal functions Ma. For each counta-
ble ordinal a, let Ma c F X Ix be the universal function constructed in §4.1 and let

(11) Ea= {(xf,x2,...)^Ix:(xf,(xf,x2,...))<=Ma}.

Given a point t g /, we put

Q,= {(xf,x2,...)<Elx:Xf = t}.

Let G be an arbitrary G5-set in Ix with ind G sg a. By Proposition 4.1.1, there exists
an irrational t g P such that Ma(t) = G and hence

Ean Qt = {(Xf,x2,...): Xf = tand(xf,(xf,x2,...)) g Ma}

= {(Xf,x2,...): Xf = tand(xf,x2,...)(z-Ma(t)}

= {(xf,x2,...): Xf = t and (xx,x2,...) g G}

= Gn(2f.
Moreover, Proposition 4.1.1 shows also that Ea is a Gs-set in Ix with ind Fa = a.

Therefore the sets £a satisfy the assertions of Theorem 2.2.
Let us construct now the set Ex described in Corollary 2.5.
Let u = (Uf, u2,...): P -* P X P X ■ ■ ■ be a continuous map of the irrationals

onto its countable product and let

(12) N* = {(xf,x2,...)e Ix: Xf^P and (ut(Xl),(xltx2,...)) g M0},

where M0 c P X Ix is the universal function for zero dimensional sets in Ix. Let us
verify that the sets AT* have the following two properties (cf. §3.1(1) and (II)):

(I) Each N* is a zero dimensional Gs-set in Ix.
(II) Given an arbitrary sequence G,, G2,... of zero dimensional Gs-sets in Ix there

exists an irrational t e F such that G, n Qt = N* n Q, for each i = 1,2,....
Property (I) follows from the fact that the map (xl,x2,...)-*(x1,ui(xl),

(xv x2,...)) homeomorphically embeds the set AT* into the product P X M0.
Let Gx, G2,... be a sequence of zero dimensional Gs-sets in I°°, let tx, t2,... be

irrationals such that Ma(t¡) = G¡, for i = 1,2,... and let t be an irrational such that
u(t) = (Uf(t),u2(t),...) = (tf,t2,...). Then, for each /' G w, we obtain (see 12)

G,n Q,= {(Xf,x2,...): Xf = tand(ti,(xf,x2,...)) gM0)

= {(xf,x2,...): Xf = t and(u,(t),(Xf,x2,...)) g M0}

= N* n Qr
Let us put now (cf. §3.1(4))

(13) Ex = Û N?i=i
and let us verify that the countable dimensional GSa-set Ex satisfies the assertions
of Corollary 2.5. Let G be an arbitrary countable dimensional GSa-set in I00; one
can find zero dimensional Gs sets Glt G2,... in Ix such that G = G, U G2 U • • •.
By property (II) there exists an irrational t G F such that G, n Qt = AT* n Q, for
each / g u, and therefore G n Qt = Ex C\ Qr

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COUNTABLE DIMENSIONAL UNIVERSAL SETS 263

4.2.1. Remark. The sequence V,*, AT2*,... has properties slighty stronger than
those of the sequence NVN2,... described in §3.1 and therefore one can obtain the
results in §3 using the sets AT* instead of N¿. Let us notice that in the case of the
universal set M0, used to define the sets A,*, the construction given in §4.1 simplifies
essentially: the sets 2^ in (I) do not appear and "ind < a" means just "empty".
Still, however, the proof of Theorem 2.1 given in §3 seems more direct than an
alternative one based on the construction of the space M0. Let us observe finally that
if Af is a zero dimensional Gs-set in Ix containing the set Nx defined in §3.1,
G c P x Ix is a Gs-set universal for Gs-sets in Ix [Ku, §30, XIII], and w = (wu w2)
maps continuously F onto P X P, then the set

M= {(t,Xf,x2,...)(EPxIx:(wf(t),w2(t),Xf,x2,...)<=(PxN)nG}

is a Gs-set in S X Ix, S being the projection of M onto F-coordinate, and each zero
dimensional Gs-set in Ix is of the form M(t) for some t g S, cf. Jayne and Rogers
[J-R, proof of Theorem 9.1], and therefore the space MQ can be easily obtained from
M by the method described in §4.1(111).

5. A universal sequence of partitions between the opposite faces in Ix. In this
section we show that the method of parametrizing function spaces applied in §3.1
(cf. also the proof of Proposition 4.1.1(h)) can be used to define a sequence of
partitions between the opposite faces in Ix with some " universal" properties. This,
combined with ideas of Walsh [Wa] and Rubin [Ru 1] provides a quite simple
construction of hereditarily strongly infinite dimensional compacta.

Recall that p¡: Ix -* I is the projection onto the /th coordinate and let

Ci = p;x(-1),    Dt=PTx(l),    H^pr^O),

i.e. C, and D, is the pair of the /th opposite faces in I00 and H¡ is a partition
between them.

Let 0 < a¡ < 1 and let

C*=Pil [-1,-a,],    D* = P7x[a¡,l].

Finally, let F be any subset of I homeomorphic to the irrationals and, for each
t g I, let

Q,= {(Xf,x2,...)^lx:xf = t}.

A space X is strongly infinite dimensional if there exists an infinite sequence
(Af, Bf), (A2,B2),... of pairs of disjoint closed sets in X such that if S¡ is a
partition between A¡ and R, in X (i G u), then fl" 1.S,- = 0; strongly infinite
dimensional spaces are uncountable dimensional, cf. [Na 2, Chapter VI].

5.1. Proposition. There exist partitions L¡ between the ith opposite faces C, and D{
in Ix (/' G <o), such that for every sequence of partitions S¡ between the enlarged
opposite faces C,* and D? in Ix (i G u), there exists ate T such that L¡ C\ Q, = S¡
n Q, for each i = 1, 2,....
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Proof. Let A be the space of all continuous maps /: Ix -* Ix such that

(1) f(C,*)cCt   and   /(Df)cl),
A being endowed with the topology of uniform convergence, and let u: T -* A be a
continuous map onto the completely metrizable separable space A, cf. [Ku, §36, II].
Let QT = {(Xf,x2,...) e Ix: x, g F} and let F: QT -» 7°° be a continuous map
defined by (cf. §3.1(1))

(2) F(xf,x2,...) = u(xf)(xf,x2,...).

By (1), the set F~x(Hf) is a partition in or between C* n gr and D* n gr and
since C, and 7), are in the interior of C* and D* respectively, there exists a
partition L; in 700 between C, and Z>, extending F~X(H¡), cf. Engelking [En 2,
Lemma 1.2.9], i.e.
(3) L,nQT=Fx(H¡),       i = 1,2,....

We shall verify that the sequence Lx, L2,... has the required property. Given
partitions 5, in Ix between C* and D* (/' g «), let f¡: Ix -* I be continuous
functions such that C* = ff\-l), D* = fy\l) and S¡ = fyx(0). The diagonal map
/= (A./2»•••): ^°° -» ^°° belongs to A and therefore /= u(t) for some t g F.
Since S, = f~x(H¡), for /' g w, we obtain (see (3) and (2))

L, n g, = F-^/i,) n ß, = u(r)_1(lï,) n Q, = f~l(Hi) nQ, = Stn Q,.

5.2. Corollary. Let L,, L2, ...be the sequence of partitions between the opposite
faces in Ix described in Proposition 5.1. For each o c w\{l} and for each set
Mcfl{ L{. i G o} whose projection onto the first coordinate contains T, we have

(i) // a is a k-element set, then M is at least k-dimensional;
(ii) // a is infinite, then M is strongly infinite dimensional.

Proof. The reasoning in both cases is the same. Assume that the assertion is not
true. Then (using again a simple lemma on extension of partitions [En 2, Lemma
1.2.9]) one can find partitions S, between C, and D¡ in I00, where /' g a, such that
M n C\{Sy. i e a} = 0, cf. [Ku, §27, II; R-S-W, §3]. But, on the other hand, there
exists a / g F such that 5, ng( = L, n ß( for each /', and this would yield a
contradiction, 0 # M n g, c M n D{ S,-: /' g a} = 0.

5.3. Hereditarily strongly infinite dimensional compacta. We shall repeat in this
section some arguments due to Walsh [Wa, §§3, 7] and Rubin [Ru 1, §6] to derive
from Corollary 5.2 a construction of hereditarily strongly infinite dimensional
spaces.

Choose in / a collection Tx, T2,... of homeomorphic copies of the irrationals
such that each nondegenerate interval in / contains some T¡ and let oik c to \ (1, /'},
where /', k = 1,2,..., be pairwise disjoint infinite sets.

Let us fix a pair of natural numbers /', k. Changing the /'th coordinate with the
first one and letting F = Tk, we obtain from Corollary 5.2 partitions Lj between the
y th opposite faces in 7°°, where j g aik, such that each subset of the intersection
Lik = C\{Ly   i g aik} whose projection onto the /'th coordinate contains Tk is
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strongly infinite dimensional. Since 1 £ U,*.«^, each partition in Ix between the
opposite faces C, and Z), hits the intersection L = C\{Ly j g \Ji<koik) = C\ikLik,
cf. [Ku, §28, IV], and therefore L is a compactum of positive dimension. If M is a
nonempty set in L, then either for some /' and k, Tk c p¡(M) and then M is
strongly infinite dimensional, or else no projection p¡(M) contains a nondegenerate
interval, and then M is zero dimensional, being a subset of the product YlfLfP¡(M)
of zero dimensional sets.

5.4. Remark. For other constructions of hereditarily infinite dimensional com-
pacta we refer the reader to the papers by Walsh [Wa], Rubin [Ru 1, Ru 3] and
Krasinkiewicz [Kr]; an illuminating account of the topic is given by Garity and
Schori [G-S, §2], cf. also Nagata [Na 2, p. 125].

Separators of certain special type between the opposite faces in Ix with proper-
ties similar to (i) and (ii) in Corollary 5.2 were constructed by Walsh [Wa, §4], cf.
also [R-S-W and S-W]. A sequence of partitions between the opposite faces in Ix
satisfying condition (ii) in Corollary 5.2 was constructed by Rubin [Ru 1] (a
simplified, but still rather involved, exposition of this construction was given in [Ru
3]). Rubin [Ru 2] has shown that the existence of such partitions yields a result that
each strongly infinite dimensional space contains a closed hereditrarily strongly infinite
dimensional subspace.

An important element in the constructions in [R-S-W, Wa, Ru 1 and Kr] is a
continuous parametrization of some collections of compacta and forming a "diago-
nal compactum" for that collection, and this element is also hidden in the proof of
Proposition 5.1. This idea can be traced back to Mazurkiewicz [Ma] and Knaster
[Kn], cf. Lelek [Le, Example, p. 80].

6. Comments.
6.1. Tumarkin's property. The following property of separable metrizable spaces X

was considered by Tumarkin [Tu, Na, p. 125]:
(T) each infinite dimensional subspace of X contains subsets of arbitrarily large finite

dimension.
Corollary 2.5. and the fact that the spaces X with ind X # oo have property (T)
yield the following fact.

6.1.1. Proposition. Property (T) implies countable dimensionality, and in the class
of completely metrizable separable spaces countable dimensionality is equivalent to
property (T).

It is an open problem whether there exists a countable dimensional space which
fails property (T), cf. [Tu, Wa, §7, En 2, 4.14]. In connection with this problem, let us
make the following remark. One can repeat the construction in §3, starting with a
continuous mapping u = (u,, u2): T -* T X T onto the square of T instead of its
countable product. This yields zero dimensional sets AT,, N2 (see 3.1(1)), a one
dimensional set F = AT, u AT2 (cf. 3.1(4)), and finally, it provides a one dimensional
set D' in Ix defined analogously to the set C described in §3.2. The set D' has the
property that each one dimensional set S c IX\D' has zero dimensional projection
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onto the first coordinate (cf. §3.2 (IV)). Therefore, if we let D = 77,(7)') U ir2(D')
U • • •, where m{. Ix -* Ix is the permutation of the coordinates changing the /'th
one with the first one, we obtain a countable dimensional set D intersecting each
one dimensional set in Ix (see the reasoning at the end of §3.2) and hence, the
complement IX\D does not contain any subset of positive finite dimension (as any
such set contains a one-dimensional subset). It is still conceivable that there exists an
infinite dimensional countable dimensional set S in IX\D (any such S would
provide a solution to the problem we have formulated), however, the nature of the
construction of D makes it difficult to clarify what are exactly the properties of this
set.

Let us also mention that there exist uncountable dimensional compacta all of whose
closed infinite dimensional subspaces contain closed subsets of arbitrarily large finite
dimension—such a compactum is defined in [Po 1].

6.2. Totally disconnected complete spaces Da with ind Da = a. We shall use the
spaces Ea defined in Theorem 2.2 to obtain spaces Da described in the title of this
section. Various constructions of totally disconnected complete spaces of arbitrarily
large finite dimension can be found in [Ma, Le, p. 80; R-S-W, Kr].

Let a = ß + 1 be a non-hmit-countable ordinal and let Eß be the universal set
described in Theorem 2.2. Let P X Ix be the product of the irrationals in 7 and the
Hilbert cube and let

Gß= {(t,(xf,x2,...))&Pxlx:(t,Xf,x2,...)(zEß}.

Let p: P X Ix -* P be the projection. The universal properties of Eß yield
immediately that Gß intersects each set S in P X Ix with ind S < ß and p(S) = P.
Let Ka c 7°° be a compactum with ind Ka = a, cf. [En 2, 2.2; Na 2, p. 148]. The set
P X Ka \ Gß = Fa is an F„-set in F X Ka and, since ind Gß = ß < ind Ka = a, each
vertical section FaC\p~x(t) is nonempty. Therefore, there exists a function /:
F -* Ka of the first Baire class whose graph Da is contained in Fa, see [Ku, §43, IX].
The set Da is a totally disconnected Gs-set in F X Ka. Moreover, Da is disjoint from
Gß and p(Da) = P, so ß < ind Da < ind(F X Ka)= ß + 1 = a.

If a is a limit ordinal it is enough to let Da be the free union of the sets Dß+1 with
ß < a.

6.3. Compactifications of spaces with ind = a. Let Ma be the universal space
described in Proposition 4.1. By the theorem of Hurewicz quoted at the end of §1.3,
there exists a countable dimensional compact extension M* of Ma and let <j>(a) be
the minimal transfinite dimension of such extensions. The function <f> augmented by
<t>(oo) = oo has the following property:

For each separable metrizable space X there exists a compactification X* of X such
that ind X < ind X* < <i>(ind X).

Luxemburg [Lu 1] constructed examples which show that for any limit ordinal a,
<b(a) > a. The exact nature of the function <#> is, however, unknown, see [Lu 1,
Conjecture on p. 443, En 2, 5.10].

6.4. A proof of Nagata's Lemma 3.1.1. We shall give a simple proof of Lemma
3.1.1. By a standard diagonal embedding argument it is enough to show that given a
zero dimensional set G in X and a pair of disjoint closed sets A and R in X, there is
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a continuous map /: X -» J into the interval / = [-1/ \Í2 ,1/ v/2 ] such that
A cf-\-l/ \/2), B c f-\l/ v/2 ) and f(G) c F, F being the irrationals.

Nagata [Na 1, Na 2, VI.2.A] constructed such a map / by a modification of a
standard proof of Urysohn's Lemma. We shall construct this map by a simple
approximation procedure.

Arrange all rational numbers from F into a sequence r,, r2,... (without repeti-
tions) and let 5, = min{|r, - rk\, \r} ± l/v/2|: fc </ < ¿}, e, = 2"(,+3) • 5„ a,. = r,
-e,., ¿>, = r, + e,., /!,. = [-1/ v/2", a,], R,. = [b„ 1/ \¡2], J¡ = (a¡, bf). Let us define
continuous maps fy. X -* J, i = 0,1,2,..., inductively as follows: let /0 be such
that A c /0_1(-1/ v/2 ), R c /0-1(l/ v^), assume that the map f¡ has been already
defined and put C = ffl(Ai+x), D = fi~x(Bi+x). Choose an open set U in X such
that C c [/, t7 n 7) = 0 and (Ü\ U) n G = 0 and let /, + 1: AT -» J be a continu-
ous map such that /,+\(^,+i U R,+1) = C U D, fi+l coincides with f on C U D
and f-+\(rl + f) = t/\ «7. Since \fi+l(x) - f(x)\ < 2 ■ ei+1 = 2"<' + 3> • */+1, the se-
quence {fj}?=0 converges uniformly to a continuous map /: X^*J. Since all f¡
coincide with f0on A U B, A c f~l(-l/ v/2 ) and R c /_1(1/ v/2 ) and it is routine
to check that for every rational number r, from /, f~x(rf) C\G = 0, i.e. f(G) c P.
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