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COUNTABLE LINEAR TRANSFORMATIONS ARE CLEAN
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Abstract. It is shown that every linear transformation on a vector space of
countable dimension is the sum of a unit and an idempotent.

An element in a ring R is called clean in R if it is the sum of a unit and an
idempotent, and the ring itself is called clean if every element is clean. Every
clean ring is an exchange ring and, if R has central idempotents, R is an exchange
ring if and only if it is clean [2, Proposition 1.8]. Camillo and Yu [1, Theorem 9]
have shown that a ring is semiperfect if and only if it is clean and has no infinite
orthogonal family of idempotents.

Our main result is the following theorem which answers a question of P. Ara.

Theorem. If VD is a vector space of countably infinite dimension over a division
ring D, then end(VD) is clean.

A ring R is called unit regular if, for each a ∈ R, there exists a unit u ∈ R such
that aua = a. Camillo and Yu [1, Theorem 5] show that every unit regular ring is
clean. The Theorem shows that the converse is not true.

Corollary. There exists a (von Neumann) regular, right self-injective, clean ring
which is not unit regular.

Proof. The ring end(VD) in the Theorem suffices because it is not unit regular. In
fact, it is not even Dedekind finite (ab = 1 implies ba = 1).

The proof of the Theorem employs several preliminary lemmas. Throughout this
paper D always denotes a division ring and VD is always a vector space of countably
infinite dimension over D. If {x1, x2, . . . } is a basis of VD, the linear transformation
σ : V → V given by σ(xi) = xi+1 for each i is called a shift operator on V .

Lemma 1. Every shift operator on VD is clean in end(VD).
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Proof. Let σ : V → V be the shift operator relative to the basis {x1, x2, . . . } of VD.
Define π : V → V as follows:

π(x1) = x1 + x2,

π(x2) = 0,

π(x2k+1) = x2k + x2k+2 for k ≥ 1,

π(x4k) = x4k + x2 for k ≥ 1,

π(x4k+2) = x4k+2 − x2 for k ≥ 1.

Then it is a routine matter to check that π2(xi) = π(xi) for each i, so that π is an
idempotent in end(VD). The action of σ − π on the basis {x1, x2, . . . } is:

(σ − π)(x1) =− x1,

(σ − π)(x2) = x3,

(σ − π)(x2k+1) =− x2k for k ≥ 1,

(σ − π)(x4k) = x4k+1 − x4k − x2 for k ≥ 1,

(σ − π)(x4k+2) = x4k+3 − x4k+2 + x2 for k ≥ 1.

It follows that x2k is in im(σ − π) for each k ≥ 1, and hence that x4k+1 and x4k+3

are in im(σ − π). Hence σ − π is onto. Finally, if (σ − π)(x1a1 + x2a2 + · · · ) = 0,
ai in D, we find

coefficient of x1 : − a1,

coefficient of x2 : − a3 − a4 + a6 − a8 + a10 − · · · ,
coefficient of x2k+1 : a2k for k ≥ 1,

coefficient of x2k+2 : − a2k+2 − a2k+3 for k ≥ 1.

Since all these coefficients vanish, we have ak = 0 for each k. Thus σ − π is
one-to-one.

We denote the ring of n× n matrices over a ring R by Mn(R).

Lemma 2. If R is a clean ring, then any n× n companion matrix over R is clean
in Mn(R).

Proof. Such a matrix has the form
0 0 0 . . . 0 a1

1 0 0 . . . 0 a2

0 1 0 . . . 0 a3

...
...

...
...

...
0 0 0 . . . 1 an

 =


0 0 0 . . . 0 e
0 0 0 . . . 0 e
0 0 0 . . . 0 e
...

...
...

...
...

0 0 0 . . . 0 e

+


0 0 0 . . . 0 u
1 0 0 . . . 0 b2
0 1 0 . . . 0 b3
...

...
...

...
...

0 0 0 . . . 1 bn


where a1 = e+u with e2 = e and u is invertible in R. The first of these matrices is
an idempotent in the matrix ring Mn(R), and the second matrix is invertible.

Lemma 3. If α ∈ end(VD) is such that V is spanned by {y, α(y), α2(y), . . . } for
some y ∈ V , then α is clean in end(VD).

Proof. We may assume that V 6= 0. If αn(y) 6∈ yD + α(y)D + · · ·+ αn−1(y)D for
all n ≥ 1, then {y, α(y), α2(y), . . . } is a basis of V . Since α is the shift operator
with respect to this basis, it is clean by Lemma 1.
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So assume that αn(y) ∈ yD + α(y)D + · · · + αn−1(y)D for some n ≥ 1. If n
is minimal with this property, then {y, α(y), α2(y), . . . , αn−1(y)} is a basis of VD.
Thus α is clean by Lemma 2 because its matrix with respect to this basis is a
companion matrix.

Lemma 4. Let α ∈ end(V ) and let U be an α-invariant subspace of V . Assume
that a vector y ∈ V −U exists such that V = U +K where K = yD+α(y)D+ · · · .
If the restriction α|U is clean in end(U), then α is clean in end(V ). More precisely,

if α|U = π + σ in endU , π2 = π, σ invertible, then α = ϕ+ τ in endV , ϕ2 = ϕ, τ
invertible, where ϕ|U = π and τ|U = σ.

Proof. Write V = M ⊕ U where M is a subspace containing y. For convenience
write v = v + U for each v ∈ V . Since U is α-invariant, we get α̃ : V/U → V/U

defined by α̃(v) = α(v). It follows by induction that

αn(v) = α̃n(v) for all v ∈ V and all n ≥ 1.(0.1)

Now let θ2 = θ ∈ end(V ) satisfy θ(V ) = M and ker(θ) = U . Then θ induces a
D-isomorphism θ0 : V/U →M given by θ0(v) = θ(v) for all v ∈ V . Hence we have

M
θ−1
0−→ V/U

α̃−→ V/U
θ0−→M

and we write β = θ0α̃θ
−1
0 ∈ end(M). Thus βθ0 = θ0α̃ and one verifies that

β[θ(v)] = θ[α(v)] for all v ∈ V.(0.2)

If m ∈ M , this gives θ[α(m)] = β[θ(m)] = β(m) because m ∈ M = im(θ). Thus
θ[β(m)] = θ2[α(m)] = θ[α(m)]. Since ker(θ) = U , this proves

α(m)− β(m) ∈ U for all m ∈M.(0.3)

Our hypothesis guarantees that {y, α(y), α2(y), . . . } spans V/U , so (0.1) shows
that {y, α̃(y), α̃2(y), . . . } spans V/U . If we apply θ0 we find that {θ0[y], θ0[α̃(y)],
θ0[α̃

2(y)], . . . } spans M so, by Lemma 3, we have

β = σ0 + π0 where π2
0 = π0 ∈ end(M) and σ0 ∈ end(M) is a unit.

Since α|U is clean in end(U) by hypothesis, write

α|U = σ + π where π2 = π ∈ end(U) and σ ∈ end(U) is a unit.

Finally, since V = M ⊕ U , define ϕ and τ in end(V ) by

ϕ(m + u) = π0(m) + π(u),

τ(m + u) = σ0(m) + [α(m)− β(m) + σ(u)]

where we note (0.3) in the definition of τ . Clearly ϕ|U = π and τ|U = σ. Since
σ0 + π0 = β and σ + π = α|U , we have α = ϕ+ τ because

(ϕ + τ)(m + u) = [π0(m) + σ0(m)] + [π(u) + σ(u)] + [α(m)− β(m)]

= β(m) + α(u) + [α(m)− β(m)]

= α(u+m).

We have ϕ2 = ϕ because π2
0 = π0 and π2 = π, so it remains to show that τ is

an automorphism of V . It is monic because τ(m + u) = 0 implies σ0(m) = 0 and
α(m)− β(m) + σ(u) = 0, whence m = 0 = u. To show that τ is epic, observe first
that U ⊆ im(τ) because, if u ∈ U , u = σ(u0) = τ(0 + u0) for some u0 ∈ U . So it
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remains to show that M ⊆ im(τ). If m ∈M write m = σ0(m1), m1 ∈M , and then
write α(m1)− β(m1) = −σ(u1), u1 ∈ U . Then

τ(m1 + u1) = σ0(m1) + [α(m1)− β(m1) + σ(u1)] = m.

Thus M ⊆ im(τ) and the proof is complete.

Proof of the Theorem. Fix α in end(V ) and define

S = {(U, σ, π)|UD ⊆ V is α-invariant,

α|U = σ + π, σ ∈ end(U) is a unit and π2 = π ∈ end(U)}.
Then (0, 0, 0) ∈ S. Partially order S by writing (U, σ, π) ≤ (U ′, σ′, π′) if U ⊆ U ′,
σ = σ′

|U and τ = τ ′|U . This is inductive so, by Zorn’s lemma, let (U, σ, π) be

maximal in S. It suffices to show that U = V . If not, choose y ∈ V − U , let K =
yD+α(y)D+α2(y)D+ · · · and write V0 = U +K. Then V0 and K are α-invariant
and, regarding α ∈ end(V0), α|U is clean in end(U) because (U, σ, π) ∈ S. Hence
α is clean in end(V0) by Lemma 4, contradicting the maximality of (U, σ, π) ∈ S.
This proves the Theorem.

The ring end(VD) in the Theorem can be regarded as the ring of column finite,
countably infinite square matrices over the division ring D. An interesting related
question (also due to P. Ara) is the following:

Question 1. Is the ring of countably infinite, row and column finite matrices over
a division ring clean?

This would be true, for example, if the idempotents constructed in the proof of
the theorem were row and column finite. (This would show that any subring of
end(V ) containing the row and column finite matrices would be clean.) However,
the idempotent π constructed in Lemma 1 for the shift operator is not row finite.

Question 2. Does the Theorem remain true for vector spaces of arbitrary infinite
dimension over a division ring?
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