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Abstract. It has been shown by J. Feldman, P. Hahn and C. C. Moore that every 
non-singular action of a second countable locally compact group has a countable 
(in fact so-called lacunary) complete measurable section. This is extended here to 
the purely Borel theoretic category, consisting of a Borel action of such a group on 
an analytic Borel space (without any measure). Characterizations of when an 
arbitrary Borel equivalence relation admits a countable complete Borel section are 
also established. 

1. Introduction 

(I) The purpose of this paper is to provide a purely Borel-theoretic extension of 
the main result of Feldman-Hahn-Moore [FHM] concerning countable and so­
called lacunary complete sections in non-singular actipns of second countable locally 
compact groups. Let us introduce first the relevant definitions. 

If E is an equivalence relation on a set X, a countable section for E is a set Y c:; X 
such that card(Yn[xh):s~0 , for each £-equivalence class [x]E. Such a section 
is complete if it meets every equivalence class. If G is a topological group acting 
on a space X and E0 is the equivalence relation induced by the orbits of this action, 
then a set Y c:; X is called a lacunary section if there is a neighborhood U of the 
identity of G such that for ally E Y, yU n Y = {y} (we write yU = {yg: g E U}, where 
(y, g)~yg is the action). A complete lacunary section is defined analogously. It is 
easy to see that if G is second countable, any lacunary section is countable. 

THEOREM 1.1. Let G be a second countable locally compact group and X a Polish 
space on which G acts continuously (i.e. the map (x, g) EX x o~xg EX is continuous). 
Let E0 be the induced equivalence relation (i.e. xE0 y ¢::> 3 g E G( x = yg)). Then E0 

has a complete lacunary Borel section. In particular, E0 has a complete countable Borel 

section. 

By a result of Varadarajan [Var], for each second countable locally compact 
group G there is a compact metric space 6 and a continuous action a of G on 6 
with the following universal property: If X is a standard (resp. analytic) Borel space 
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and {3 a Borel action of G on X (i.e. (x, g) EX x a~{3(x, g)= xg EX is Borel), 
there is an a-invariant Borel (resp. analytic) set X s; G so that the action {3 is Borel 
isomorphic to the restriction of a to X. We have therefore the following 

CoROLLARY 1.2. Let G be a second countable locally compact group and X an analytic 
Borel space on which G acts in a Borel way. Let E0 be the induced equivalence relation. 
Then E0 has a complete lacunary (therefore countable) Borel section. 

The result of Feldman-Hahn-Moore, referred to earlier, asserts that in the context 
of Corollary 1.2, if J.t is a probability measure on X which is G-quasi-invariant, i.e. 
J.t- J.tg for any g E G, then there is a Borel lacunary section B with [Bha = 

{x: 3yE B(xE0 y)} of J.t-measure 1. It appears that the proof in [FHM] of this 
measure theoretic version could be suitably modified to prove the existence of just 
countable complete Borel sections in the pure Borel context of Corollary 1.2. 
However, the proof in [FHM] uses the deep structure theory of locally compact 
groups (see [MZ]), which allows in [FHM] the reduction to the case of Lie groups, 
where special tools are available. On the other hand, our proof of Theorem 1.1 is 
purely descriptive set theoretic and uses only the definition of locally compact 
groups. (The result of Varadarajan [Var] used to derive Corollary 1.2 needs further 
only the existence of Haar measure. Added in proof. We have recently found a proof 
of Varadarajan's theorem which also avoids Haar measure.) Another proof of the 
Feldman-Hahn-Moore theorem has been given in Ramsay [Rl], which actually 
applies to more general situations, but still in the measure theoretic category. We 
do not know if Ramsay's method can be used to produce pure Borel theoretic 
results. We will discuss (the relevant to us form of) Ramsay's theorem and a related 
open problem concerning an extension of Theorem 1.1 in IV) below. In Wagh [W], 
the author proves the special case of Theorem 1.1 for G = IR, using density arguments 
on IR (see also [R2, § 4]). This is the Borel version of the result in Ambrose [A]. As 
in [FHM], we also make use of an idea of Forrest [F]. Finally we draw some 
inspiration from the result of Burgess [B] and thus ultimately from Vaught [Vau]. 

(II) We have recently been interested in the study of the structure of Borel 
equivalence relations (see for example [HKL, Ke2]) on Polish (equivalently standard 
Borel) spaces. A partial (pre)Qrder is introduced which measures the relative com­
plexity of Borel equivalence relations. For E, F Borel equivalence relations on X, 
Y resp. we say that E is reducible to F, in symbols E ::s F, if there is a Borel map 
f: X~ Y with xEx'~f(x)Ff(x'). If an injective such f can be found we say that 
E is embeddable in F, in symbols E ~F. Finally let 

E"=*F~E::sF11.F::sE 

E"=F~E~F11.F~E. 

Among the class of Borel equivalence relations the subclass of so-called countable 
ones has received special attention. An equivalence relation is called countable if 
every equivalence class is countable. By a result of Feldman-Moore [FM], the 
countable Borel equivalence relations are exactly those induced by Borel actions 
of countable groups. The following immediate corollary of 1.2 shows that up to 
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""*-equivalence the class of countable Borel equivalence relations includes the ones 
induced by Borel actions of second countable locally compact groups. 

CoROLLARY 1.3. Let G be a second countable locally compact group and X a standard 
Borel space on which G acts in a Borel way. Let E0 be the induced equivalence relation. 

Then there is a countable Borel equivalence relation F such that E0 ""*F. 

More information can be obtained for G = IR. Recall that a Borel equivalence 
relation E on X is called hyperfinite if E is induced by a Borel action of 7L (i.e. E 
is induced by the orbits of a single Borel automorphism). 

CoROLLARY 1.4. (Wagh [W].) In the notation of 1.3, if G = IR, F can be taken to be 
hyperfinite. 

It would be interesting to characterize the class of E which are reducible to 
countable Borel F. It is not true that all such E are induced by Borel actions of 
second countable locally compact groups (we will see a simple example in § 2). 

There is however a somewhat interesting characterization of those Borel 
equivalence relations that admit complete countable Borel sections, that comes out 
of the proof of Theorem 1.1. We need some definitions first. 

Let E be a Borel equivalence relation on X. Denote by X IE the quotient space 
and by C a typical equivalence class of E. Let C EX/ E~Ic be a map assigning 
to each C a £T-ideal of subsets of C, Ic, with C e Ic. We say that c~Ic is Borel 
if for each Borel set A~ X 2 the set A 1 defined by 

x E A 1 ~{y E [x]£: A(x, y)} E I[xJ" 

is Borel. Finally, we say that c~ Ic has the ccc (countable chain condition) if every 
Ic has the ccc. (A £T-ideal I of subsets of a set A has the ccc if any collection of 
pairwise disjoint subsets of A which are not in I is countable.) 

Here are some examples of Borel ccc assignments: 
(i) Let E be a Borel equivalence relation on X induced by a Borel action of a 

Polish group G, i.e. E = E0 • Given C EX IE, put for A~ C 

A E Ic ~{g: xg E A} is meager (in G) 

where x E C. It is easy to see that this is well defined independently of x E C. To 
verify that c~Ic is Borel, note that for A~ X 2 

x EAr ~{y E [x]E: A(x, y)} E I[xJE ~{g: A(x, xg)} is meager 

so this follows from standard facts about Borel definability of category notions (see 
§ 2). Moreover, Ic has the ccc as the £T-ideal of meager sets in G has the ccc. 

(ii) Let now E, G be as in (i) but additionally with G locally compact. Let JL be 
Haar measure on G. For each C E X IE and x E C let fx : G ~ [ x] E be defined by 
j~(g) = xg and let J.Lx = fx~-'' the image of JL under fx· Let, for A~ C, 

AE Ic~J.Lx{A)=O~JL({g: xgEA})=O. 

Again this is independent of x, Borel (by similar results on Borel definability of 
measure theoretic notions) and has the ccc. 



286 A S. Kechris 

(ii) Generalizing (ii), let now E be a Borel equivalence relation on X and let 
x E x~IL~ E P(X), be a Borel map from X into the (standard) Borel space of 
probability measures on X, such that JL~([x3£)=1 and xEy=>J-L~-1-L~· Put for 
CEX/E, XE C 

A E Ic ~ JL~(A) = 0. 

Again this works. To see that this indeed generalizes (ii), note that if JL( G)= 1 we 
can take JL~ = 1-Lx· If JL( G)= oo, let Fn be Borel pairwise disjoint with G = Un Fn 
and JL(Fn) = 1. Put then 

and JL~ =I 1/2n+I · JL~. 
Recall that a Borel equivalence relation E on X is smooth if there is Borel 

f:X-+ Y, Y Polish with xEx'~f(x)=f(x'). 

THEOREM 1.5. Let E be a Borel equivalence relation on X. Then the following are 
equivalent: 

(i) E has a complete countable Borel section. 

(ii) (a) E = Un En, where each En is a smooth Borel equivalence relation, and 
(b) There is a Borel ccc assignment C EX/ E~ I c. 

(iii) As in ( ii) but with (b) replaced by 

(b') There is a Borel assignment X~J-Lx with J-Lx([x3£) = 1, xEy=> J-Lx- J-Ly· 

Both conditions in (ii) are necessary, but we do not know if in (iii) condition (a) 
is needed. We will discuss some relevant examples and open problems in (III), (IV) 
below. 

(III) Suppose now G is a standard Borel group, i.e. G has a standard Borel 
structure and the group operations are Borel. Then it is well known that there is at 
most one Polish topology with the same Borel structure under which G becomes a 
topological group. If such a topology exists we call (by abuse of language) G itself 
Polish. If moreover this topology is locally compact we call G Polish locally compact 
(i.e. second countable locally compact). For certain standard Borel groups we can 
provide a characterization of when they are Polish locally compact, which can be 
viewed as a kind of converse of Theorem 1.1. We do not know if the full converse 
is true for arbitrary standard Borel groups. We would like to thank the referee for 
suggesting the formulation of the hypothesis of the next result (our original one 
was more restrictive) and for pointing out that (iv)=>(i), in a somewhat stronger 
form, is contained in Theorem A of [FR]. The referee also pointed out that the 
example of the equivalence relation E 1 below is also discussed in this paper. 

THEOREM 1.6. Let G be a standard Borel group and assume that G admits a Borel 
action (g, x)~xg on a standard Borel space X0 , which is free (i.e., g ¥- 1, x E X 0 =>xg ¥­

x) and has a quasi-invariant probability measure 1-L (i.e., JL -J-Lg, for all g E G.) Then 
the following are equivalent: 

(i) G is Polish locally compact. 
(ii) For every Borel action of G on a standard Borel space X there is a complete 

countable Borel section for E0 . 
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(iii) For every Borel action of G on a standard Borel space X, E0 is reducible to a 
countable Borel equivalence relation. 

(iv) For the action of G on X0 given in the hypothesis and denoting by E~ the 
corresponding equivalence relation, there is a complete countable Borel section 

forE~. 
(v) ForE~ as in (iv ), E~ is reducible to a countable Borel equivalence relation. 

The hypothesis of 1.6 is true if G is a Borel subgroup of a Polish locally compact 
group H. In this case X0 = H, G acts on H by right multiplication and IL is a 
probability measure equivalent to Haar measure on H. The referee raised the question 
of whether any group satisfying the hypothesis of 1.6 is a Borel subgroup of a Polish 
locally compact group. 

For example, it follows immediately from this result that if X= TN, where T is 
the unit circle, and E 1 is defined by 

(xn)El(Yn)<:::>3m Vn 2: m(xn = Yn) 

then E 1 is not reducible to a countable Borel equivalence relation. Since E 1 is clearly 
(an increasing in fact) union of a sequence of smooth Borel equivalence relations, 
this shows that some condition beyond (a) is needed in (ii), (iii) of Theorem 1.5. 
(That E 1 is not reducible to a countable Borel equivalence relation has been known 
in some form or other for some time in ergodic theory-see [FHM]-and has been 
also proved using category methods by Jackson and Louveau independently). 

We also use Theorem 1.6 in § 5 to show that there is an example of a Ku equivalence 
relation on TN induced by a free continuous action of a Polish group which is not 
again reducible to a countable Borel equivalence relation. This shows for instance 
that condition (b) is not enough in Theorem 1.5. 

Remark. The remark after Theorem 1.6 should be compared with the following 
result of Mackey [Ma] and Miller [Mi]: let H be a Polish group and G c::; H a Borel 
subgroup. If E0 is the equivalence relation induced by the action of G on H by 
right multiplication, then the following are equivalent: 

(i) G is closed, 
(ii) E0 has a Borel transversal, 

(iii) E0 is smooth. 

(IV) We discuss now some further open problems. 
The result of Ramsay [Rl] alluded in (I) asserts the following: let E be a Borel 

equivalence relation on X and assume there is a Borel assignment of probability 
measures X~iJ-n so that ~.txC[xJE)=l and xEy=>~.tx-1-LY' If IL is a probability 
measure on X, then there is a Borel set B c::; X such that for ~.t-almost all x, 
B n [xh 'i' 0 and card (8 n [x]E) ~ t{o· 

It would be interesting to find a Borel theoretic version of this type of result. One 
possible formulation is the following: Let E be a K,, equivalence relation on a 
Polish compact space X and assume that there is a Borel assignment of probability 
measures X~iJ-., so that !-Lx([xJE)=l and xEy=>~.tx-iJ-,,. Then E has a complete 
countable Borel section. 



288 A. S. Kechris 

We have restricted ourselves to Krr relations as these are more manageable (and 
by measure-theoretic approximations a positive answer even in this case would 
imply Ramsay's Theorem). However, we do not know any obstruction to a more 
general result for arbitrary Borel E. We do want to point out though that one could 
not hope for further generalizations, where the assignment x~l-"x is replaced by a 
Borel ccc assignment c~Ic, in view of the example mentioned at the end of (III). 

(V) The rest of this paper is organized as follows: in § 2 we prove Theorem 1.1, 
in § 3 Theorem 1.5, in § 4 Theorem 1.6 and in § 5 we discuss the examples mentioned 
in (III). 

2. Proof of Theorem 1.1 

Fix a metric d on X. Fix also a compact nbhd A of 1 E G and a compact symmetric 
(a=a-1

) nbhd of 1 such that a 2 c;A. 
Consider the following relation on X: 

R(x, y )¢:> 3g E a(y = xg ). 

Following Forrest [F] and Feldman-Hahn-Moore [FHM], we will find a sequence 
Xn s; X such that X= Un Xn and R I Xn ( = R n X~) is an equivalence relation (on 
Xn). To do this, for each e > 0 put 

A,= {x EX: Vg E G[(d(x, xg) :=::: e 11 g E A)~g E Gxa0
]} 

where Gx = {g: xg = x} is the stabilizer of x and a 0 = int (a). 

Claim 1. X= Un,l Al/n· 

Proof Fix x EX. If x e Un"" 1 A 11 n, towards a contradiction, find for each n;:::: 1, 
gn E G with d (x, xgn) :=::: 1/ n and gn E A- Gxa 0. Since A- G~a 0 is compact, by going 
to a subsequence, we can assume that gn ~ g E A- Gxa 0• As the action is continuous 
and d(x,xgn):=:=:1/n, it follows that d(x,xg)=O, i.e. gEGx so that gEGxa0

, a 
contradiction. 

Claim 2. Let B s; A., diam (B):=::: e. Then RIB is an equivalence relation. 

Proof As a= a -I and 1 E a, R is reflexive and symmetric. Fix now x, y, z E B with 
R ( x, y), R ( y, z). Let g, h E a be such that y = xg, z = yh. Then z = xgh, gh E a 2 s; A 
and d(x,xgh):=:=:e, so, as xEA., ghEGxa0

, i.e. gh=pq with pEGx, qEa0
• Then 

z = xpq = xq, i.e. R(x, z). 
By the two preceding claims, we can easily write X= Un Xn, where each Xn is 

of the form A,. n B for some ball B of diameter :=::: e and R I Xn is an equivalence 
relation. 

We will verify now that each Xn is Borel. For that we will use the following 
classical result of descriptive set theory. (For this and other standard facts of 
descriptive set theory that we use later we refer the reader to Moschovakis [Mo].) 

THEOREM 2.1. If :Je, 6!J are Polish spaces, Ps; :Jex 6!J is Borel and each section Px = 

{y: P(x, y)} is K", then proj [P] = {x: 3yP(x, y)}s; :Je is Borel. 

To show that each Xn is Borel it is enough to prove that each A, is Borel. 

Claim 3. A, is Borel. 
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Proof We have 

x ~ A_~3gP(x, g) 

where 

P(x, g)~d(x, xg)::::; e 1\ g E A 1\ g ~ Gxfl.0
• 

So P s;; X x G, X- Ae = proj [P]. It is enough therefore to check that P is Borel 
and each section Px s;; G is Ka- or, as G is itself is Kn that Px is closed. The last 
statement is straightforward, so let us verify that Pis Borel. The conditions d (x, xg)::::; 
e, g E A are clearly closed, so it is enough to check that 

P'(x, g)~ gE Gxl1°~3h 3p[xh =X 1\P E .:1°1\ g = hp] 

is Borel. But P' is the projection of a Borel set P" in (X x G) x G 2 whose sections 
P~.8 s;; G

2 are Fa- and thus, as G 2 is Ka-, actually Ka-. 
Our next step is to show that R I Xn is smooth. This will be based on the following 

standard fact. 

PROPOSITION 2.2. If E is a closed equivalence relation on a Polish space P£, then E is 
smooth. 

Proof If (x, y) ~ E, let A, B be basic open sets in ~with (x, y) E Ax B, (Ax B) n E = 
0. Then [A]£ n [BJE = 0 and [A]E, [B]E are analytic (here [A]e is the £-saturation 
of A.) Inductively define: A 0 = [A]e, A 1 =a Borel set separating [A0 ]e, [B]E (i.e. 
A1 2 [A]E, A1 n [B]E = 0), A2 = [A1]E, A 3 =a Borel set separating [A2 ]E, [B]e, etc. 
Let Aoo = Un An. Then Aoo is Borel, £-invariant and x E Axo, y ~ Aao. Since there are 
only countably many such Aoo (choosing our A, B from a fixed countable basis) it 
follows that there is a countable family of Borel sets Cn with xEy~ 
\fn[xE Cn~YE Cn]. But this is exactly smoothness of E. 

Remark. In [HKL] it is shown that the preceding proposition is valid even for G8 E. 

To show now that R I Xn is smooth, note first that R is closed (in X 2
). Since Xn 

is Borel, we can find a Polish topology T on X which extends its underlying topology 
but has no more Borel sets, such that Xn becomes clopen in T (see e.g. [Ku]). Look 
at the Polish space (Xn, T). Since R is closed in X 2

, it is also closed in (X2
, TXT), 

so R I Xn is a closed equivalence relation in the Polish space Xn with the relativized 
from T topology. By the preceding proposition R I Xn is smooth. 

To summarize: we have written X= Un Xn, with Xn Borel such that R I Xn is 
smooth. Since E := E0 is induced by the Borel action of a Polish group, we can 
assign, as in example (i) of§ l(II), au-ideal lc to each C EX/ E by 

BE lc ~{g E G: xg E B} is meager 

(for any B s;; C, x E C). Using this define for each x EX, 

n(x) =least n such that Xn n [x]e ~ l[xk 

Clearly n(x) exists, as [x]e ~ l[x], and [x]e = Un (Xn n [x]E) and depends only on 
[x]E. Put 

XE Y~xEXn(x) 
We will verify that Y is Borel. This is based on the following result from descriptive 
set theory. 
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THEOREM 2.3. Let ze, qy be Polish spaces, p c;; ze X qy Borel and put 

x E Q ~ Px is not meager. 

Then Q is Borel as well. 

Using this we compute that the function n: X--+ N is Borel and therefore Y is Borel: 

n(x) = n~Xn !\ [x] e frxJ. II 'v'm < n[Xm !\ [x] E f[xlE]. 

Since Xn n [x] = {y E [xJE: y EX"}, it is clearly enough, by the definition in§ 1(11), 
to show that the assignment C.- lc is Borel. So fix A c;; X 2 Borel. Then 

XE A1 ~{y E [xh: A(x, y)}E lrxl£ ~{g: A(x, xg)} is meager 

so A1 is Borel by the preceding theorem. 
Let us notice now some further facts about Y. 
( 1) R I Y is an equivalence relation: This is because if x, y, z E Y are such that 

R(x, y), R(y, z) then z, y, zEXn(xJ (and n(x)=n(y)=n(z)), so R(x, z) holds. 
(2) R I Y is smooth: Because if fn: X"--+ Zn witness the smoothness of R I Xn, with 

Zn pairwise disjoint, then f(x) = fn(x)(x ), f: y--+ Un zn witnesses the smoothness of 

Rlf. 
(3) If Z c;; Y is a transversal for R I Y, i.e. it meets every R I Y-equivalence class 

in exactly one point, then Z is a complete lacunary section for E: This is because 
y meets every £-equivalence class and if (x, y) e R then y eX~. 

(4) Y meets every £-equivalence class and there are only countably many R I Y­
equivalence classes in each £-equivalence class. (This follows from (3).) 

Define then the following subset Y of Y: 

X E Y~X E Y II [xJRiye f[x]E 

Clearly Y is Borel and has properties (1)-(3) (with Y replaced there by Y). But 
moreover it has the following further property 

(5) DE Y/(RI Y)~Delrol£' 

We can define then a Borel assignment D~---+10 for DE Y/(RI Y) by 

BEl0 ~BElroJE 

(To see that it is Borel notice that for A c;; Y 2 

X E A 1 ~{y E [xJRIY: A(x, y)} E IrxlRIY 

~{yE[X]E:yE Y11yRx11A(x,y)}Elrxh·) 

So the proof will be complete once we establish the following key fact which 
comes essentially from Theorem 4.1.1 of [Kel]. 

THEOREM 2.4. Let F be a smooth Borel equivalence relation on a standard Borel space 

Y. Assume there is a Borel assignment D.-10 of u-ideals to each equivalence class 

D E Y /F. Then there is a Borel transversal Z for F 

Proof. Without loss of generality we can assume that Y is a Borel subset of a Polish 
space W. Recall now the following standard result of descriptive set theory. 

THEOREM 2.5. If ze is Polish, H c;; ze a Borel set, then there is closed G c;; .N ( = NN, 

the Baire space) and continuous injective 1r: G--+ 2e with 1r[ G] = H. 
This has the following immediate corollary. 
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CoROLLARY 2.6. Let H be a Borel set in a Polish space~- Then there is a family {Hs}, 
where S varies over ~<w (the set of finite sequences of natural numbers), such that 

(i) Hs is Borel; 

(ii) Ho = H; H,·n n H,·m = 0, if n"' m; Hs = Un Hs·n; 
(iii) If a E .N" and Haln >" 0 for all n, then H" := n" H" 1" is a singleton {x} and for 

any Xn E Haln' Xn ~X. 

Proof (of corollary). Let G, 7T be as in the preceding theorem. For x E ~<w, y E .N" 
let s c y iff s is a initial segment of y. Put 

X E H5 ~S c 7T- 1(x). 

Then (i), (ii) are obvious. For (iii), fix a with Haln >" 0 for all n. Let x" E Haln· Then 
a Inc 7T- 1(x") =a" E G. So a"~ a E G and therefore 1r(a") = x" ~ 1r(a) = x. Since 
alnca=7T- 1(x), XEH". 

We complete now the proof of Theorem 2.4. Let f: Y ~ "W, "W Polish, be a Borel 
function with yFz~f(y) = f(z). Put 

H(y, w)~f(y) = w 

so that His Borel (in~= Yx "W). Let {H.} be the family of the preceding corollary. 
For each wE range (f), put H7 = {y: Hs(y, w)}. Then {H7} satisfies (i)-(iii) of the 
preceding corollary for Hw := H~ = r 1

( w) (which is a F-equivalence class). Since 
Htn) is a partition of H~ and IH" is au-deal (with Hw e JH"), find the least n with 
H(;.!eiH" and call it aw(O). Since now H(a"(o!,n!elw is a partition of H(a"<O!!• 
find the least n, call it a w(l), with H(a"(O),n) e IH"' etc. Clearly H:"ln e IH" for all 
n, soH:· is a singleton, say y(w). So we have chosen for each wE range (f) an 
element y( w) EF 1

( w). Clearly if 

Z = { y ( w): w E F[ Y]} 

Z is a transversal for F. It remains to show that Z is Borel. We have 

y E Z ~ y = y(f(y))~Vn(yE H~}i\J. 
So it is enough to check that for each n the set 

Z { . HI<.v> } n= y.yE af(y)ln 

is Borel. First notice that if for each y we define n0 ( y ), n1 ( y ), ... to be the unique 
integers such that 

y E H {~{<)v), ... ,n;(y))o for all k 

then n;: Y ~ ~ are Borel functions. We proceed now to show that Z" is Borel by 
induction on n: 

For n =0: Z 0 = {y: yE H-~rJ} = Y. 

For n = 1: y E Z 1 ~ H{~{<Jv!J e l[yJ, A Vn < n0 (y )[H{~jl E J[.vlF]. 
Since 

H{~j'JE fr.vJ,~{x: (x,f(y))E H(n)}E l[y]F 

and the assignment D~ 10 is Borel, it is clear that Z 1 is Borel. 
For n = 2: y E z2~ y E zl A H{~.~~J.n,(y)) e l[y], A Vn < nt(Y )[H{~;)v).n) E l[y],], so 

again Z2 is Borel. 
Proceed this way ad infinitum ... 
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Remarks. (i) Theorem 2.4 is a generalization of the result in Burgess [B], with a 
different proof. In [B], the author proves that if F is a smooth Borel equivalence 
relation in a Polish space X and F is induced by the continuous action of a Polish 
group on X, then F has a Borel transversal. This follows from 2.4 by §l(II), 
example (i). 

(ii) It was mentioned in § 1(11) that there is a Borel equivalence relation E 
reducible to a countable Borel F but which is not induced by a Borel action of a 
second countable locally compact group G. In fact, we can see that there is smooth 
Borel E which is not induced by a Borel action of a Polish group: Let A~ .N be 
analytic but non-Borel and let H ~ .N x .N be closed with A= proj [H]. Define on 
H the equivalence relationE by (x,y)E(x',y')~x=x'. This is clearly Borel (in 
fact closed) smooth but cannot have a Borel transversal. Otherwise if Z was such 
a transversal, A= proj [Z] and for all x E A there is unique y with (x, y) E Z, so A 
would be Borel, a contradiction. 

3. Proof of Theorem 1.5 
We show first that (i)~(ii). Say E has a complete countable Borel section Y. Put 
F = E I Y. Thus F is countable and E::;:; F because the relation S(x, y) ~ xEy AyE Y 

is Borel and for each x, Sx = {y: S(x, y)} is countable and non-0, so by a standard 
uniformization theorem there is a Borel function f: X~ Y with xEf(x). Thus f 

reduces E to F. Now any countable Borel equivalence relation F can be written as 
Un Fn with Fn smooth Borel equivalence relations. To see this notice that in 
Feldman-Moore [FM], it is shown that ifF is a countable Borel equivalence relation 
on Y then there is a sequence {gn} of idempotent Borel automorphisms of Y with 
xFy~3n(gn(x) = y). So put xFny~x = y v gn(x) = y. Then each equivalence class 
of Fn has cardinality ::;::2, thus Fn is smooth. Let now En= f- 1[Fn], i.e. xEnY~ 
f(x)FJ(y). Then E = Un En and En is smooth. So we proved (a) of (ii). To prove 
(b) we actually prove ( b') of (iii), which is clearly stronger (given x >--+ J.Lx define Ic 
by A E Ic ~ J.tx{A) = 0, for any x E C.) 

Consider again the relation S(x, y) ~ xEy AyE Y introduced above. As its sections 
are countable we have by a standard result in descriptive set theory a countable 
sequence fn of Borel functions, fn: X~ Y, with Un(x): x EX}= S, = Y n [x]E· Let 
8, denote the Dirac measure at the point z and finally put J.tx = L ll2n+i · Bf.,<x>. This 
clearly works. 

We have just seen that also (i)~(iii) and (iii)~(ii). So it only remains to prove 
that (ii)~(i). 

First notice that Vx3n([xJE .. e !rxJ.>· This is because [xJE = Un [xh ... Let 

Xn = {x: [xh .. e I[x]E}. 

Thus X= Un Xn. Also Xn is En-invariant and Borel. Moreover for each C EX IE, 

C n Xn contains only countably many En-equivalence classes by the ccc of Ic. We 
will show that if Fn =En I Xn, then there is a Borel transversal Yn ~ Xn for Fn. Thus 
C n Yn is countable for each C EX I E. Let Y = Un Yn. Then Y is a countable Borel 
section for E. Since for any C = [x h, x E Xn for some n it follows that C n Yn -,1:- 0, 
so Y is a complete section. 
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To prove the existence of Y" consider (Xn, F"). It is clearly a smooth Borel 
equivalence relation. Define a Borel assignment D~lv of u-ideals to each 
equivalence class DE Xn/ F" by 

Ael0~AE I[v]E· 

Then by Theorem 2.4 we are done. 

4. Proof of Theorem 1.6 
The implications (i)=>(ii)=>(iii)=>(v) and (ii)=>(iv)=>(v) are clear. So it is enough 
to prove (v)=>(i). The proof will be based on the following 

THEOREM 4.1. Let G be a standard Borel group acting in a Borel way on a standard 
Borel space X with Ea the corresponding equivalence relation. Assume 

(i) The action is free (i.e. xg o;.f x, if x EX, g o;.f 1), 
(ii) There is a probability measure von X which is G-quasi-invariant, 

(iii) there is an assignment x~ 1-'x with f.'x([x ]E
0

) = 1 and xEay=> 1-'x- /-'y, which is 
v-measurable, i.e. for each bounded Borel B : X 2 ~ IR the function b : X ~ IR given by 
b(x) = J[xJE B(x, y) df.'A y ), where E = Ea, is v-measurable. 

Then G is Polish locally compact. 

Proof Define the following probability measure on G: For A~ G Borel, let 

f.'(A) = f 1-'AxA) dv(x). 

The function x ~ 1-'A xA) is v- measurable, so that this integral makes since. This is 
because 

1-'x(xA) = f B(x, y) dl-'x(y) 
J[x]E 

where B(x, y) = 1, if y E xA; =0 if y e xA. As the action is free, the relation 

P(x, y)~y E xA~3g[gE A" y = xg]~3!g[ge A v y = xg] 

is Borel, so F is Borel. (That 1-' is countably additive follows also from the freeness 
of the action.) 

We check now that 1-' is (left) quasi-invariant. i.e. 1-'- gl-' for all g E G. Let !-'(A)= 0. 
we will show that f.'(gA) = 0. Since 

f.'( A)= f f.'x(xA) dv(x) 

clearly 1-'AxA) = 0 v-a.e. Now 

f.'(gA) = f f.'Ax(gA)) dv(x) = f 1-'x((xg)A)) dv(x) = f l-',.- 1(xA) d~:) (x) dv(x) 

by the G-quasi-invariance of v. But 1-'AxA) = 0=>f.',,- 1(xA), as 1-'x -1-',.- 1 • So 
f.'(gA) = 0. 

Now a theorem of Mackey [Ma] asserts that if G is a standard Borel group which 
admits a quasi invariant probability measure, then G is Polish locally compact and 
our proof is complete. 
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Assume now ( v) in Theorem 1.6. By the preceding theorem it is enough to find 
the assignment x ~ 1-tx for E 0 = E'b. Say F is a countable Borel equivalence relation 
on Y andf:X0 ~ Y reduces E 0 to F. The relation R(x,y)~y=f(x) is Borel, so 
there is C-measurable g :f1X0 ] ~ X0 with f(g(y)) = y, where C is the smallest 
u-algebra containing the Borel sets and closed under the Souslin operation d. As 
F is countable we can find, by Feldman-Moore [FM], a countable group {gn} of 
Borel automorphisms of ¥inducing F. Putfn(x) = g(gn(f(x)). Then Un(x): n EN}= 
g[[f(x)]F]~[x]q, depends only on [x]q,. Put J.tx=I 1/2"+1

• 5r .. (xl· Clearly 
J.tx([x]Eo) = 1 and xE0y::::f;>J.tx- /Ly· Finally x~ J.tx is v-measurable, since each fn is 
C-measurable, so if B:X~~IR is bounded Borel, then b(x)=J B(x,y) d~-tx(y)= 
L 1/2"+1

• B(x.fn(x)) is also C-measurable, thus v-measurable. 

5. Some examples 

We consider first the equivalence realtion E 1 on T~'~~ given by 

(xn)E!(Yn)~3m\fn 2:: m(xn = Yn). 

We will give a proof that E1 is not reducible to a countable Borel equivalence 
relation based on Theorem 1.6 (and the remark following it.) 

Let H = T~'~~, G = Un r = {(xn) E H: 3m\fn 2:: m(xn = 1)}. Thus His a Polish com­
pact group and G is a Borel (actually Fa) subgroup of H. If E0 = E 1 is reducible 
to a countable Borel equivalence relation, then G would be Polish (locally compact). 
Then by the Baire category theorem T" would be non-meager (in the Polish topology 
of G) for all large enough n, so (T")- 1T" = T" would have to contain an open nbhd 
of the identity by a standard fact on Polish groups (see for example [C]). So T" 
would be open, therefore Polish (with the relative topology). But then by the 
continuity of Borel homomorphisms on Polish groups this must be the standard 
topology on T". Thus T" is open in T"+ 1 with the standard topology, which is absurd. 

Our final example will be that of a Ka equivalence relation on T"" which is induced 
by a free continuous action of a Polish group but is not reducible to a countable 
Borel equivalence relation. 

Put again H = T~'~~ and 

G = {(xn) E H: L 11- xnl 2 < oo} = {(eiY.,) E H: L sin2 (yn/2) < oo}. 

We verify the following facts. 

Fact 1. JL sin2 (an+ bn):::; J,-I-s-in""72_(_a"-) + JL sin2 ( bn ). 

Proof Assume without loss of generality that the sums are finite and square both sides. 

Fact 2. G is a subgroup of H. 

Proof Immediate from Fact 1. 

Fact 3. G is Fa in H. 
Define now the metric d on G by 

d((eiY., ), (eiu., )) =Jr-I-si-n-::-2 (-(-Yn ___ U_n_)/-2+ L r"leiy.,- eiu"l. 

(That it is a metric follows from Fact 1.) Clearly the identity map on G is continuous 
from ( G, d) into H. 
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Fact 4. ( G, d) is a Polish group. 

Proof Since d is translation invariant ( G, d) is a metric group. It is separable since 
eventually 1 sequences with rational coordinates are dense in ( G, d). Completeness 
is checked easily, the argument being similar to that showing completeness of f. 

Consider now Ea induced by the action of G on H. It is clearly Kr and induced 
by a free continuous action of ( G, d). By Theorem 1.6, if Ea was reducible to a 
countable Borel equivalence relation, then ( G, d) would be locally compact. 

Fact 5. ( G, d) is not locally compact. 

Proof Let U = {(xn): d(l, (x")) < e} be a nbhd of l.lt suffices to find (x~), a sequence 
in U, which has no converging subsequence. For that it is enough to have d((x~). 
(x{,)) > 8 fori¥- j and some 8 > 0. Put (x~) = 8i,n ew, where 8 is the Kronecker delta 
and 8 > 0. For 8 small enough 

d(l, (x~)) =Jsin2 (8/2)+Til1- ei
0

l < e 

and for some 8 > 0 
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d ((x~). (xi"))= J2 sin2
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