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COUNTABLE-STATE STOCHASTIC PROCESSES

WITH CÀDLÀG SAMPLE PATHS

ALEXANDER ERREYGERS AND JASPER DE BOCK

Abstract. The Daniell–Kolmogorov Extension Theorem is a fundamental
result in the theory of stochastic processes, as it allows one to construct a
stochastic process with prescribed finite-dimensional distributions. However,
it is well-known that the domain of the constructed probability measure –
the product sigma-algebra in the set of all paths – is not sufficiently rich.
This problem is usually dealt with through a modification of the stochastic

process, essentially changing the sample paths so that they become càdlàg.
Assuming a countable state space, we provide an alternative version of the
Daniell–Kolmogorov Extension Theorem that does not suffer from this prob-
lem, in that the domain is sufficiently rich and we do not need a subsequent
modification step: we assume a rather weak regularity condition on the finite-
dimensional distributions, and directly obtain a probability measure on the
product sigma-algebra in the set of all càdlàg paths.

1. Introduction

A stochastic process is a model for a system whose state changes over time in an
uncertain manner. More formally, a stochastic process is a joint uncertainty model
for a sequence (Xt)t∈T of X -valued maps on some sample space S indexed by T,
where X is the state space of the system and T is an infinite subset of the real
numbers that is interpreted as the time axis. Stochastic processes have been and
still are an active field of research, as is clear from the large number of monographs
that have appeared on the subject [18, 10, 3, 6, 9, 15, 24]. One usually derives
the joint uncertainty model for (Xt)t∈T from the finite-dimensional distributions:
the joint uncertainty models for (Xt)t∈T , where T ranges over all finite subsets
of T. For example, Kolmogorov [18, 19] already considered a stochastic processes
with X = R in his seminal ‘Grundbegriffe’, formulating what is now known as the
Daniell–Kolmogorov Extension Theorem [19, Chapter III, § 4]. However, it is well-
known [26, Section 5.1.2] that if T is not countable, then the domain of the resulting
stochastic process – the product σ-algebra generated by the cylinder events – is not
rich enough.

The first one to get around this problem was Doob [10], who in his influential
work discusses stochastic processes in a very general setting. He explains why the
product σ-algebra of events is not sufficiently rich [10, Chapter II, Section 2], but
also comes up with a solution: the notion of ‘separability of a stochastic process’ [10,
pp. 51 and 52], which ensures that the product σ-algebra of events is sufficiently
rich. In the particular case of ‘Markov processes with infinitely many states and
continuous parameter’, his Theorem 2.4 [10, p. 266] implies that the sample paths
of any ‘separable Markov process’ are almost surely ‘step functions’ [10, p. 245
and 246]. Billingsley [3, Sections 36 and 37] does something similar, but only
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for stochastic processes with the real numbers as state space: he also argues that
the Daniell–Kolmogorov Extension Theorem does not suffice [3, pp. 492–494], and
solves this through his notion of ‘separability’ [3, pp. 526–527].

Like Doob [10] and Billingsley [3], Breiman [6] treats stochastic processes in the
particular setting where the state space is the set of real numbers, and explains that
the standard construction is insufficient. He solves this problem a bit differently,
though: he imposes a form of ‘continuity in probability’ [6, Definition 12.15] on
the stochastic process, and shows that in combination with ‘almost-sure absolute
continuity’ this allows the construction of a modification with continuous – often
also called regular – sample paths [6, Theorem 12.6]. More recently, Borovkov [5,
Section 18.2] – following Cramér & Leadbetter [9] – does not rely on ‘almost-sure
absolute continuity’, but argues that in order to get a modification with regular
sample paths, one needs a quantitative bound on the continuity. See also [8, 17].

Fewer authors consider stochastic processes with state spaces other than the
real numbers. For example, Gikhman and Skorokhod [15] consider the very general
setting of metric spaces for time domain and state space, but for most of their
results they need compactness [15, Chapter 4, Section 4]. Rogers and Williams [24,
Chapter II] also give a very broad account, but they only solve the issue of the
product σ-algebra in some particular cases, for example that of Markov (or Feller-
Dynkyn) processes [24, Chapter III]. Fristedt and Gray [14, Chapter 31] define what
they call a ‘(pure-jump) Markov process’ on the set of càdlàg paths (for a general
Polish state space), but they never really move past the (finitary) cylinder events.
Finally, König [21] gives a solution to this problem that does not involve separability
or modifications: his Theorem 3.2 extends the probability measure on the product
σ-algebra to a ‘maximal non-sequential inner extension’ on a larger domain, but
never really shows that this domain contains ‘all’ the interesting events.

This brings us to our main contribution: we give a version of the Daniell–
Kolmogorov Extension Theorem with a σ-algebra that is sufficiently rich. We
will do so for a non-empty and countable state space X , and an arbitrary time
domain T ⊆ R. As is customary, we interpret the elements of T as time points;
two important cases are T = N and T = R≥0 = [0,+∞[. We intend to con-
struct a joint uncertainty model for the state of the system in a (not necessarily
proper) subset of the index set T; henceforth, we will denote this subset by T .
The usual choice is T = T, but other choices are sometimes useful as well. For
example, in the setting of ‘Markovian imprecise jump processes’ (also known as
imprecise continuous-time Markov chains) [20, 13], we encounter the case T = R≥0

and T = {t1, . . . tn−1} ∪ [tn,+∞[, with t1, . . . , tn ∈ R≥0 such that t1 < · · · < tn.
Our main result is Theorem 11, which is similar to the Daniell–Kolmogorov

Extension Theorem in that it starts from a consistent family of finite-dimensional
distributions, but also different in the following ways. A first difference is that we
specify the finite-dimensional distributions for finite subsets of T ⊆ T instead of T.
A second and more important difference is that we not only require consistency of
these finite-dimensional distributions, but also regularity (Definition 4), and it is
this that allows us to obtain a probability measure on the product σ-algebra for
the regular (in this case càdlàg) paths instead of, as is customary, on the product
σ-algebra for all paths. This way, we get rid of the additional step of constructing
a regular modification.

1.1. Some notation regarding tuples. For any non-empty subset S of T, we let
US be the set of all (non-empty) tuples (t1, . . . , tn) ∈

⋃

k∈N
Sk that are increasing,

so with t1 < · · · < tn; if S = T , we simply write U . We will usually denote a generic
tuple in the set UT by u, but sometimes also by v or w. For any two tuples of time
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points u = (r1, . . . , rn) and v = (s1, . . . , sm) in UT, we write u ⊑ v if all time points
in u are included in v, in the sense that {r1, . . . , rn} ⊆ {s1, . . . , sm}.

For any u = (t1, . . . , tn) ∈ UT, we let Xu denote the set of all n-tuples of
states (xt1 , . . . , xtn) indexed by the time points in u, and we usually denote a generic
n-tuple of states in Xu by xu, yu or zu. Furthermore, given u = (t1, . . . , tn) ∈ UT

and xu = (xt1 , . . . , xtn) ∈ Xu and for all v = (s1, . . . , sm) ∈ UT such that v ⊑ u,
we let xv := (xs1 , . . . , xsm) be the m-tuple in Xv that consists of those components
of xu with index in v. Rogers & Williams [24, Chapter II, Section 25 onwards] use
slightly different notation: they consider finite subsets U of T instead of increasing
finite tuples u in U ⊆

⋃

k∈N
T k, and focus on the set XU of X -valued maps from U

to X instead of on Xu. It should be clear that these two approaches are essentially
equivalent; nevertheless, we choose to use increasing tuples because these will come
in handy in several places, for example in Sections 4.2 and 4.3 and Appendix C.1.

2. Constructing a stochastic process

We want to model a system whose state, which takes values in X , changes along
the time axis T in an uncertain manner. For this, we turn to (measure-theoretical)
probability theory, as for example outlined in [24, 3, 14, 6, 17]. This means that we
set out to determine a suitable probability space (S,A, P ), where the non-empty
set S is called the sample space, A is a σ-algebra of events – subsets of S – that
are of interest to us, and P is a probability measure on A. As we will presently
see, we will only consider couples (S,A) of a specific form; for example, the sample
space will be a set of paths.

2.1. Paths and cylinder events. Since our system changes state over T, it makes
sense to think of an element s of the sample space S as a map from T to X ; we call
such an X -valued map on T a path, and we denote the set of all paths by X T. Hence,
the obvious choice for the sample spaceS is some (non-empty) set of paths Ω ⊆ X T.
However, in many cases – for example when using coherent conditional probabilities
to deal with conditioning, see [20, Eqn. (12)] – it makes sense to require that

(1) (∀u ∈ U)(∀xu ∈ Xu)(∃ω ∈ Ω) ω(u) = xu,

where here and in the remainder, ω(u) :=
(

ω(t1), . . . , ω(tn)
)

for all ω ∈ X T and
u = (t1, . . . , tn) ∈ U . We think this is a reasonable (and harmless) requirement
on Ω, so we henceforth assume it.

Now that we have established that Ω ⊆ X T is a sensible sample space, the
question remains which events we are interested in. At the very least, we are
interested in events regarding the state of the system in a finite number of time
points in T . Let us formalise these events.

For all t ∈ T, we define the projector variable or evaluation map [24, Chapter II,
Eqn. (25.1)]

Xt : Ω → X : ω 7→ ω(t);

we extend this notation in the obvious way to tuples of time points u ∈ U :

Xu : Ω → Xu : ω 7→ ω(u).

Then an event regarding the state of the system in a finite number of time points
in T is a cylinder event [24, Chapter II, Definition 25.4]: an event of the form

{Xu ∈ A} := {ω ∈ Ω: Xu(ω) ∈ A} = {ω ∈ Ω: ω(u) ∈ A}

with u ∈ U and A ∈ ℘(Xu).
1 The condition in Eqn. (1) ensures that for all u ∈ U

and A ∈ ℘(Xu), the corresponding cylinder event {Xu ∈ A} is the empty set if and

1℘(Xu) denotes the powerset of Xu.
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only if A = ∅. Furthermore, it is not difficult to verify that the collection

C :=
{

{Xu ∈ A} : u ∈ U , A ∈ ℘(Xu)
}

of cylinder events with time points in T is an algebra of events.
In order to obtain the probability triple that we are after, it remains for us to

determine (i) the subset Ω of X T that we want to use as possibility space, and (ii) a
probability measure P on a σ-algebra A in Ω that includes C . Such a probability
triple is what we will call a stochastic process.

Definition 1. A stochastic process is a probability triple (Ω,A , P ) such that Ω ⊆
X T and C ⊆ A .

Our definition of a stochastic process differs somewhat from the ‘usual’ one,
which considers a generic probability space (S,A, P ) and a family (Yt)t∈T of A/℘(X )-
measurable maps from S to X – see for example [10, Chapter II], [15, Chapter IV],
[6, Definition 12.1], [24, Chapter II, Definition 27.1], [3, Section 36], [14, Section 1.2]
or [5, Definition 18.1.2]. The first difference is that we choose to restrict the sample
space S to a set of paths a priori. The second difference is that we are only inter-
ested in modelling our uncertainty about the state in the time points in T ⊆ T; in
that sense, our definition corresponds to the usual one withS = Ω and A = A ⊇ C ,
at least if we only consider the family (Xt)t∈T instead of the one indexed by T.

To construct a stochastic process, one usually turns to the Daniell–Kolmogorov
Extension Theorem – see [24, Chapter II, Theorem 31.1] or, if X is finite, [16,
Section 1.5.2]. The idea behind this theorem is simple: given a model for our
uncertainty about Xu for all u ∈ U , it constructs a (joint) uncertainty model
for (Xt)t∈T . Since we are dealing with a countable state space, the uncertainty
models for Xu are finite-dimensional charges or distributions.

2.2. Finite-dimensional charges and distributions. A collection of finite-dimensional
charges is a collection µ• := (µu)u∈U such that for all u ∈ U , µu is a probability
charge2 on ℘(Xu). Usually, we will assume that for all u ∈ U , the corresponding
charge µu is countably additive, making it a distribution3; whenever this is the case,
we speak of a collection of finite-dimensional distributions instead of a collection of
finite-dimensional charges.

A collection of finite-dimensional charges – or distributions – µ• is said to be
consistent – or alternatively, ‘satisfies the compatibility condition’ or ‘has the pro-
jective property’, see [24, Chapter II, Eqn. (29.6)] or [16, Eqn. (1.9)] – if for all
u, v ∈ U such that u ⊑ v,

µu(A) = µv

(

{xv ∈ Xv : xu ∈ A}
)

for all A ∈ ℘(Xu).

For the Poisson process, with X = Z≥0 and T = R≥0 = T , the finite-dimensional
distributions are derived from the Poisson distribution. As explained in, for exam-
ple, [24, Chapter II, Section 33], [3, Section 23] or [17, Chapter 12], one fixes a

2 We use the terminology introduced in [2, Definition 2.1.1]: given an algebra A of events
in S, a probability charge P is a real-valued map on A that is non-negative and finitely additive,
with P (S) = 1. See also [6, Definition A.5], [24, Chapter II, Section 4], [14, Section 7.2], [27,
Definition 1.15] or [8, Definition A.1.2].

3We call a probability measure on the powerset of a countable possibility space a distribution.
Of course, a distribution µu on ℘(Xu) is completely determined by the values it assumes on the
atoms, so by the unique corresponding probability mass function

Xu → R : x 7→ µu({x}).
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rate λ ∈ R≥0, and for all u = (t1, . . . , tn) ∈ U and xu ∈ Xu, lets

µu(xu) :=















n
∏

k=2

e−λ(tk−tk−1)

(

λ(tk − tk−1)
)(xtk

−xtk−1
)

(xtk − xtk−1
)!

if xt1 ≤ · · · ≤ xtn ,

0 otherwise.

In finite-state and countable-state Markov processes, where one usually also takes T =
R≥0 = T , the collection of finite-dimensional distributions is constructed with the
help of an initial distribution and a semi-group of transition matrices – correspond-
ing to the matrix exponential of a (transition) rate matrix – as explained in [7,
Part II], [16, Chapter 8], [24, Chapter III] or [23, Chapters 2 and 3].

2.3. From finite-dimensional charges to charges on the cylinder events.

The consistency condition allows us to construct a probability charge on the cylinder
events C from a collection of finite-dimensional charges, which is the first step in
establishing the Daniell-Kolomogorov Extension Theorem.

Proposition 1. Consider a collection of finite-dimensional charges µ•. Then there
is a unique probability charge P on the algebra of cylinder events C such that

P ({Xu ∈ A}) = µu(A) for all u ∈ U , A ∈ ℘(Xu)

if and only if µ• is consistent.

Proof. To see that the consistency of µ• is necessary, assume ex absurdo that there
is a unique probability charge P on C with the property in the statement and that
µ• is not consistent. Then there are u, v ∈ U such that u ⊑ v and A ∈ ℘(Xu) such
that

µu(A) 6= µv(A
′) with A′ := {xv ∈ Xv : xu ∈ A}.

Now {Xu ∈ A} = {Xv ∈ A′}, and therefore

µu(A) = P ({Xu ∈ A}) = P ({Xv ∈ A′}) = µv(A
′),

which is a clear contradiction.
Next, we assume that µ• is consistent, and show that there is a unique probability

charge P with the required property. We repeat the argument in the ‘Start of Proof’
of Theorem 30.1 in [24, Chapter II] in our slightly different setting.

First, fix some u, v ∈ U , A ∈ ℘(Xu) and B ∈ ℘(Xv). Let w ∈ U be the unique
tuple of time points that consists of all time points in u and v. Then by construction,
u ⊑ w and v ⊑ w. Hence, we can let

A⋆ := {xw ∈ Xw : xu ∈ A} and B⋆ := {xw ∈ Xw : xu ∈ B}.

If A⋆ = B⋆, then it follows from the consistency of µ• that

µu(A) = µw(A
⋆) = µw(B

⋆) = µv(B).

Alternatively, if A⋆ ∩B⋆ = ∅, then it follows from the consistency condition that

(2) µw(A
⋆ ∪B⋆) = µw(A

⋆) + µw(B
⋆) = µu(A) + µv(B).

Now consider two events Ã, B̃ in C . Then there are some u, v ∈ U , A ∈ ℘(Xu)

and B ∈ ℘(Xv) such that Ã = {Xu ∈ A} and B̃ = {Xv ∈ B}. Let w, A⋆ and
B⋆ be as before. Then {Xu ∈ A} = {Xw ∈ A⋆} and {Xv ∈ B} = {Xw ∈ B⋆} by

construction. If Ã = B̃, then {Xw ∈ A⋆} = {Xw ∈ B⋆}, and it then follows from

this and Eqn. (1) that A⋆ = B⋆. If Ã∩ B̃ = ∅, then Ã∪ B̃ = {Xw ∈ A⋆ ∪B⋆} and

Ã ∩ B̃ = {Xw ∈ A⋆ ∩ B⋆} = ∅, and it follows from the latter and Eqn. (1) that
A⋆ ∩B⋆ = ∅.
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Due to the preceding two observations and because µ• is a consistent collection
of finite-dimensional charges, we can define the real-valued map P on C for all
Ã = {Xu ∈ A} ∈ C by

P (Ã) = P ({Xu ∈ A}) := µu(A).

Indeed, this map is well-defined because it does not depend on the particular choice
of u and A. To see this, it suffices to consider the case Ã = B̃ above, for which
we had found that A⋆ = B⋆ and therefore, that µu(A) = µv(B). Furthermore, we
trivially have that P is non-negative and that P (Ω) = P ({Xu ∈ Xu}) = µu(Xu) =

1. To see that P is finitely additive, we consider the case above with Ã ∩ B̃ = ∅,
for which we found that Ã ∪ B̃ = {Xw ∈ A⋆ ∪ B⋆} and A⋆ ∩ B⋆ = ∅. It therefore
follows from Eqn. (2) that

P (Ã∪ B̃) = P ({Xw ∈ A⋆ ∪B⋆}) = µw(A
⋆ ∪B⋆) = µu(A)+µv(B) = P (Ã)+P (B̃).

Hence, P is a probability charge. The uniqueness of P is obvious. �

Proposition 1 allows us to go from a consistent collection of finite-dimensional
charges to a probability charge, but we can also go the other way around: any
(consistent) triple (Ω,A , P ) induces a collection of finite-dimensional charges that
is consistent.

Definition 2. Consider a subset Ω of X T, an algebra A ⊇ C of events in Ω and a
probability charge P on A . Then for all u ∈ U , the map

µu : ℘(Xu) → [0, 1] : A 7→ µu(A) := P ({Xu ∈ A})

is a probability charge. Moreover, the collection (µu)u∈U is consistent, which is
why we call it the (collection of) finite-dimensional charges of P . If P is countably
additive, then µu is a distribution for all u ∈ U ; in this case, we call (µu)u∈U the
(collection of) finite-dimensional distributions of P .

Proof. Follows immediately from the properties of (countably additive) probability
charges. �

2.4. From the finite-dimensional distributions to a stochastic process.

Proposition 1 and Definition 2 show that for a fixed set of paths Ω that satisfies
Eqn. (1), there is a one to one correspondence between consistent collections of
finite-dimensional charges and probability charges on C . It also follows from Def-
inition 2 that any stochastic process (Ω,A , P ) induces a consistent collection of
finite-dimensional distributions.

This raises the following question. Given a set of paths Ω ⊆ X T and a consistent
collection of finite-dimensional distributions µ•, is there a probability measure P
on some σ-algebra A ⊇ C in Ω such that the finite-dimensional distributions
of P are µ•? The key to answering this question lies in Caratheodory’s Extension
Theorem – see for example [6, Theorem A.9], [24, Chapter II, Theorem 5.1], [14,
Chapter 7, Theorem 14] or [8, Theorem A.1.17] – which says that any probability
charge P on some algebra A can be extended to a probability measure Pσ on
the generated σ-algebra σ(A ) if and only if P is countably additive, and that this
extension is then unique. Indeed, since the consistent collection of finite-dimensional
distributions µ• corresponds to a unique probability charge P on C , it then follows
that there is a probability measure on some σ-algebra A ⊇ C if and only if P is
countably additive.

In the remainder, we investigate the countable additivity of the induced prob-
ability charge P for two important sets of paths: the set of all paths in Section 3
and the set of all ‘càdlàg’ paths in Section 4.
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3. The set of all paths

We denote the set of all paths X T by Ω̇; clearly, Ω̇ satisfies Eqn. (1). For all t ∈ T

and u ∈ U , we denote the corresponding projector variables for Ω̇ by Ẋt and Ẋu.
We do something similar for the cylinder events: for any tuple of time points u ∈ U
and any subset A of Xu, we denote the corresponding cylinder event by

{Ẋu ∈ A} :=
{

ω̇ ∈ Ω̇ : ω̇(u) ∈ A
}

.

Hence, the algebra of cylinder events for the set of all paths Ω̇ is

Ċ :=
{

{Ẋu ∈ A} : u ∈ U , A ∈ ℘(Xu)
}

.

3.1. Establishing countable additivity. Crucially, the set of all paths Ω̇ allows
us to establish the countable additivity of any probability charge P induced by a
consistent collection of finite-dimensional distributions. Since this result is essen-
tially well-known, at least in case T = T, we have relegated our proof to Appendix A
further on.

Theorem 2. For any consistent collection µ• of finite-dimensional distributions,
the corresponding probability charge P on Ċ of Proposition 1 is countably additive.

As we explained at the end of Section 2, Theorem 2 admits us to invoke Caratheodory’s
Extension Theorem to obtain a stochastic process (Ω̇, σ( ˙C ), P ) such that the finite-
dimensional distributions of P are the prescribed ones µ•. This result is known
as the Daniell–Kolmogorov Extension Theorem, and is similar to – and essentially
implied by – Theorem 31.1 in [24, Chapter II], or in case X is finite, the result
outlined in [16, Section 1.5.2].

Theorem 3. For any consistent collection of finite-dimensional distributions µ•,
there is a unique probability measure P on σ(Ċ ) such that

P ({Ẋu ∈ A}) = µu(A) for all u ∈ U , A ∈ ℘(Xu).

Proof. Follows immediately from Proposition 1, Theorem 2 and Caratheodory’s
Extension Theorem. �

3.2. The insufficiency of the product sigma-algebra. There is one major issue
with Theorem 3: the generated σ-algebra σ(Ċ ) is not sufficiently rich, in the sense
that many practically-relevant events do not belong to it. Simply put it comes
down to this: the events in σ( ˙C ) only depend on the state of the paths in the
time points in a countable subset of T . We are by no means the first to signal
this issue: Breiman [6, Proposition 12.8], Billingsley [3, Theorem 36.3] and Cohen
& Elliot [8, Lemma A.2.2] all mention it, to give but three examples. We give a
(slightly modified version of) Lemma 25.9 in [24, Chapter II], applicable to the
general case in Section 2. In it, we use the following hitherto undefined notation:
for all subsets S,R of T such that S ⊆ R, we denote the restriction of ̟ : R → X
to S by ̟|S , and we let

ÃS := σ
({

{̟ ∈ XS : ̟(s) ∈ A} : s ∈ S, A ∈ ℘(X )
})

.

Lemma 4. Consider a non-empty subset Ω of X T and let C be the set of all non-
empty countable subsets of T . Then

σ(C ) =
⋃

C∈C

{

{ω ∈ Ω: ω|C ∈ ÃC} : ÃC ∈ ÃC

}

.

In our proof, we make use of the following claim (without formal proof) of Rogers
& Williams [24, Chapter II, Eqn. (25.3)].
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Lemma 5. For any two subsets S,R of T such that S ⊆ R, the restriction opera-
tor •|S : X

R → XS is ÃR/ÃS-measurable.

Proof. By a standard result in measure theory – see for example Proposition 2.3
in [24, Chapter II] – we need to look only at the sets {ψ ∈ XS : ψ(s) ∈ A} that

generate ÃS ; more formally, this is the case if (and only if) for all s ∈ S and
A ∈ ℘(X ),

{

̟ ∈ XR : ̟|S ∈ {ψ ∈ XS : ψ(s) ∈ A}
}

∈ ÃR,

and this condition is trivially satisfied because
{

̟ ∈ XR : ̟|S ∈ {ψ ∈ XS : ψ(s) ∈ A}
}

=
{

̟ ∈ XR : ̟(s) ∈ A
}

∈ ÃR.

�

Proof of Lemma 4. We adapt the argument in [24, Proof of Lemma 25.9] to our

slightly different setting. Since C = {Ȧ ∩ Ω: Ȧ ∈ Ċ } by definition of C and Ċ , it
follows from a standard result in measure theory – see for example Theorem 10.1
in [3] – that

σ(C ) = {Ȧ ∩ Ω: Ȧ ∈ σ(Ċ )}.

On the other hand, it is clear that for all C ∈ C,
{

{ω ∈ Ω: ω|C ∈ ÃC} : ÃC ∈ ÃC

}

=
{

{ω̇ ∈ Ω̇ : ω̇|C ∈ ÃC} ∩Ω: ÃC ∈ ÃC

}

.

Hence, it suffices to prove that

σ(Ċ ) =
⋃

C∈C

{

{ω̇ ∈ Ω̇ : ω̇|C ∈ ÃC} : ÃC ∈ ÃC

}

,

which is precisely the equality in the statement in case Ω = Ω̇. To simplify our
notation, we let

Ã
↑Ω̇
C :=

{

{ω̇ ∈ Ω̇ : ω̇|C ∈ ÃC} : ÃC ∈ ÃC

}

for all C ∈ C.

First, we verify that A :=
⋃

C∈C
Ã

↑Ω̇
C is a σ-algebra. It is clear that A in-

cludes the empty set and is closed under taking complements, so we really only
need to show that A is closed under countable unions. To this end, we fix any
sequence (Ȧn)n∈N in A . Then by definition, for all n ∈ N there are some Cn ∈ C

and ÃCn
∈ ÃCn

such that

Ȧn = {ω̇ ∈ Ω̇ : ω̇|Cn
∈ ÃCn

}.

Then clearly, the set C :=
⋃

n∈N
Cn is a countable subset of T , and therefore C ∈ C.

Furthermore, for all n ∈ N,

Ãn
C := {̟ ∈ X C : ̟|Cn

∈ ÃCn
} ∈ ÃC

because the restriction operator •|Cn
: X C → X Cn is ÃC/ÃCn

-measurable due to
Lemma 5, and then

Ȧn = {ω̇ ∈ Ω̇ : ω̇|Cn
∈ ÃCn

} = {ω̇ ∈ Ω̇ : ω̇|C ∈ Ãn
C}.

Since
⋃

n∈N
Ãn

C ∈ ÃC because ÃC is a σ-algebra, it follows from this that

⋃

n∈N

Ȧn =
⋃

n∈N

{ω̇ ∈ Ω̇ : ω̇|C ∈ Ãn
C} =

{

ω̇ ∈ Ω̇ : ω̇|C ∈
⋃

n∈N

Ãn
C

}

∈ A ,

as required.
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Next, we show that σ(Ċ ) ⊆ A . Since A is a σ-algebra, it suffices to show that

Ċ ⊆ A . To this end, we fix any Ȧ = {Ẋu ∈ A} ∈ Ċ . If we enumerate the time
points in u as (t1, . . . , tn) and let C := {t1, . . . , tn}, then clearly

ÃC := {̟ ∈ X C : (̟(t1), . . . , ̟(tn)) ∈ A} =
⋃

xu∈A

n
⋂

k=1

{̟ ∈ X C : ̟(tk) = xtk} ∈ ÃC

because A ⊆ Xu is countable. Hence,

Ȧ = {Ẋu ∈ A} = {ω̇ ∈ Ω̇ : ω̇|C ∈ ÃC} ∈ A ,

as required.
To obtain the equality that we are after, it remains for us to verify that A ⊆

σ(Ċ ), or equivalently, that {ω̇ ∈ Ω̇ : ω̇|C ∈ ÃC} ∈ σ(Ċ ) for all C ∈ C and ÃC ∈ ÃC .

So let us fix any C ∈ C and ÃC ∈ ÃC . Then

{ω̇ ∈ Ω̇ : ω̇|C ∈ ÃC} = {ω̇ ∈ X T : ω̇|C ∈ ÃC} ∈ ÃT

because the restriction operator •|C : X
T → X C is ÃT/ÃC-measurable due to Lemma 5.

Since

ÃT = σ
({

{ω̇ ∈ X T : ω̇(s) ∈ A} : s ∈ T, A ∈ ℘(X )
})

and, for all s ∈ T and A ∈ ℘(X ),

{ω̇ ∈ X T : ω̇(s) ∈ A} = {ω̇ ∈ Ω̇ : ω̇(s) ∈ A} = {Ẋ(s) ∈ A},

we furthermore have that

ÃT ⊆ σ
({

{Ẋu ∈ A} : u ∈ U , A ∈ ℘(Xu)
})

= σ(Ċ ).

It therefore follows that {ω̇ ∈ Ω̇ : ω̇|C ∈ ÃC} ∈ ÃT ⊆ σ( ˙C ), as required. �

In the particular case where Ω is the set Ω̇ of all paths, and hence C = ˙C , the
main take-away from Lemma 4 is that if T is not countable, then σ(Ċ ) may not
contain ‘all’ events that are of interested to us. The following example illustrates
this.

Example 1. Let T := R≥0 =: T . Suppose we are interested in the event that our
system is in some given state x ∈ X before some time T ∈ R>0:

Ȧ := {ω̇ ∈ Ω̇ : (∃t ∈ [0, T ]) ω̇(t) = x}.

Events like this are common in applications, for example in model checking [1].

Obviously, we can write this event as an uncountable union of events in Ċ :

Ȧ =
⋃

t∈[0,T ]

{Ẋt = x}.

However, the generated σ-algebra σ(Ċ ) is only guaranteed to be closed under count-

able unions. In fact, we can use Lemma 4 to prove that Ȧ does not belong to σ(Ċ ).

Assume ex absurdo that Ȧ ∈ σ(Ċ ). Then by Lemma 4, there are some non-empty

countable subset C of T and subset Ã of X C such that

Ȧ = {ω̇ ∈ Ω̇ : ω̇|C ∈ Ã}.

Take any path ω̇ ∈ Ȧc. Then clearly, ω̇(t) 6= x for all t ∈ [0, T ]. Now take any

t⋆ ∈ [0, T ] \ C, and let ω̃ ∈ Ω̇ be the path defined for all t ∈ T by ω̃(t) := x if t = t⋆

and ω̃(t) = ω̇(t) otherwise. Then on the one hand, ω̃ ∈ Ȧ by construction. On the

other hand, ω̃|C = ω̇|C by construction, and since ω̇ /∈ Ȧ this implies that ω̃ /∈ Ȧ, a
clear contradiction.
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The reason why this problem occurs is because, whenever T is uncountable, (the

restriction to T of) a path ω in Ω̇ is not fully defined by the states it assumes on a
countable subset of T . The obvious solution to this problem is therefore to focus
on a subset Ω of the set of all paths Ω̇ that does not contain such paths, and it is
standard to choose the set of càdlàg paths for this; see Section 4 further on.

The usual manner to proceed is then to construct a ‘modification’ X̃• of Ẋ•

that has ‘càdlàg sample paths’, which can only be done under some conditions
on the finite-dimensional distributions; we are only aware of work where this is
done for Markov processes – that is, only for finite-dimensional distributions of a
specific form. Most authors then proceed with this modified process X̃• as if it
was the original process Ẋ•, but this modification is a drastically changed version
of Ẋ•. Why one would be allowed to even change the outcomes (or sample paths)
of a stochastic process is often not really given much thought or motivation, expect
perhaps for the (implicit) pragmatic justification that it ‘just works’. That said, one

could use the modified process X̃• to obtain a probability measure on a (sufficiently
rich) σ-algebra of events in the set of càdlàg paths, but most – if not almost all
– works that we are aware of skip this crucial step. We have found two notable
exceptions: Cramér & Leadbetter [9, Sections 3.2, 3.3 and 3.6] more or less explain
how this can be done, as does Borovkov [5, Section 18.1] in less detail.

In contrast, we now set out to provide a necessary and sufficient regularity condi-
tion on any (so not necessarily Markov) collection of finite-dimensional distributions
for there to be a corresponding probability measure on the σ-algebra of events gen-
erated by the cylinder events in the set of càdlàg paths – instead of the usual
product σ-algebra σ(Ċ ) of events in the set of all paths Ω̇. The crucial benefit
of our approach is that we do not need to modify our stochastic process to avoid
the issue illustrated in Example 1 – that is, the lack of richness of the generated
σ-algebra

4. The set of càdlàg paths

Before we can introduce the càdlàg paths, we need to deal with some topological
considerations. Consider a subset S of R. A real number s ∈ R is an isolated point
of S if there is some δ ∈ R>0 such that ]s − δ, s+ δ[ ∩ S = {s}, a right-sided limit
point of S if ]s, s + δ[ ∩ S 6= ∅ for all δ ∈ R>0 and a left-sided limit point of S if
]s − δ, s[ ∩ S 6= ∅ for all δ ∈ R>0. We collect all isolated points, right-sided limit
points and left-sided limit points of S in is(S), rlims(S) and llims(S), respectively,
and let lims(S) := rlims(S)∪ llims(S); obviously, is(S)∩ lims(S) = ∅. The union of
the isolated points and the right-sided limits points of S is its closure with respect
to the lower limit topology – also known as the ‘right half-open topology’ – on R

[25, Section 16.33.e], the union of the isolated points and the left-sided limits points
of S is its closure with respect to the upper limit topology – also know as the ‘left
half-open interval topology’ – on R [11, Chapter III, Section 3, Ex. 4], while the
union of the isolated points and the limit points of S is the closure with respect to
the usual topology on R.

Next, we take directional limits along S. The following is a specialization of
the general (topological) definition of a limit [14, Appendix C, Definition 8 and
Promblem 18] to the lower and upper limit topologies, see also [25, Section 15.21].
Consider a map φ from S to a metric space (M, ρ); we will need two particular
cases: (i) the set of real numbers R with the usual metric induced by the absolute
value (in Definition 4 further on), and (ii) the set of states X with the Kronecker
metric (in Definition 3 further on). Then for any right-sided limit point t of S, we
say that the right-sided limit of φ in t along S exists if there is some – necessarily
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unique – ℓ ∈ M such that

(∀ǫ ∈ R>0)
(

∃δ ∈ R>0

)(

∀r ∈ ]t, t+ δ[ ∩ S
)

ρ(φ(r), ℓ) < ǫ;

whenever this is the case, we denote this limit ℓ by limS∋rցt φ(r). Similarly, for
any left-sided limit point t of S, we say that the left-sided limit of φ in t along S
exists if there is some – necessarily unique – ℓ ∈ M such that

(

∀ǫ ∈ R>0

)(

∃δ ∈ R>0

)(

∀s ∈ ]t− δ, t[ ∩ S
)

ρ(φ(s), ℓ) < ǫ,

and then we denote this limit ℓ by limS∋sրt φ(s).
With this terminology and notation, we can define càdlàg paths as those paths

that have left-sided and right-sided limits and are continuous from the right in all
time points t in the closure of T where these concepts make sense.

Definition 3. Consider a non-empty subset S of R. A map ̟ : S → X is càdlàg
if it has a left-sided limit (along S) in all t ∈ llims(S), meaning that

(

∃δ ∈ R>0

)(

∃x ∈ X
)(

∀s ∈ S ∩ ]t− δ, t[
)

̟(s) = x,

has a right-sided limit (along S) in all t ∈ rlims(S), meaning that
(

∃δ ∈ R>0

)(

∃x ∈ X
)(

∀r ∈ S ∩ ]t, t+ δ[
)

̟(r) = x,

and is right-continuous (along S) in all t ∈ S∩rlims(S), meaning that limS∋rցt̟(r) =
̟(t). Càdlàg paths correspond to the case S = T; that is, càdlàg paths are càdlàg

maps on T. We collect all such càdlàg paths in Ω̊.

It is straightforward to verify that Ω̊ satisfies Eqn. (1). Another important
property of càdlàg paths is that they can always be extended to a càdlàg map
on R. Because this is an intermediary technical result, we have relegated its proof
to Appendix B.

Lemma 6. Any càdlàg map ̟ : S → X , and therefore also any càdlàg path ω̊ ∈ Ω̊,
can be extended to a map ψ : R → X that is right-continuous and has left-sided
limits everywhere.

For all t ∈ T and u ∈ U , we denote the corresponding projector variable for the
set of all càdlàg paths Ω̊ by X̊t and X̊u, and we use similar notation for the cylinder
events: for any tuple of time points u ∈ U and any subset A of Xu, we denote the
corresponding cylinder event by

{X̊u ∈ A} :=
{

ω̊ ∈ Ω̊ : ω̊(u) ∈ A
}

= {Ẋu ∈ A} ∩ Ω̊.

Hence, the algebra of cylinder events for the set of all càdlàg paths Ω̊ is

C̊ :=
{

{X̊u ∈ A} : u ∈ U , A ∈ ℘(Xu)
}

=
{

Ȧ ∩ Ω̊ : Ȧ ∈ Ċ
}

.

4.1. The sufficiency of the generated sigma-algebra. So are càdlàg paths
fully defined by the states they assume on a countable subset of T? The following
result makes clear that this is the case, at least if T has a countable subset D that is
dense in T for the lower limit topology, or equivalently, such that T ⊆ D∪rlims(D);
its simple proof can be found in Appendix B.

Lemma 7. Consider a subset D of T such that T ⊆ D ∪ rlims(D). Then for

all ω̊1, ω̊2 ∈ Ω̊,

ω̊1 = ω̊2 ⇔ (∀d ∈ D) ω̊1(d) = ω̊2(d).

Fortunately, the requirement that T has such a countable dense subset is always
met.
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Lemma 8. Any subset S of R has a countable subset D that is dense with respect
to the lower limit topology, meaning that

S =
{

s ∈ S : (∀δ ∈ R>0) [s, s+ δ[ ∩D 6= ∅
}

⊆ D ∪ rlims(D).

Proof. According to [11, Chapter VIII, Section 7, Ex. 5], any subspace S ′ of the set
of real numbers R equipped with the upper limit topology is separable, in the sense
that it has a countable dense subset D′ [11, Chapter VIII, Section 7, Definition 7.1].
Since the intervals ]a, b] form a basis for the upper limit topology [11, Chapter III,
Section 3, Ex. 4], it follows from Theorem 4.13 in [11, Chapter III] that

(]a, b] ∩ S ′) ∩ D′ 6= ∅ for all a, b ∈ R such that a < b,

and therefore

]s− δ, s] ∩D′ 6= ∅ for all s ∈ S ′, δ ∈ R>0.

Due to symmetry, this implies that any subspace S of the set of real numbers
equipped with the lower limit topology has a countable dense subset D as well,
with

[s, s+ δ[ ∩ D 6= ∅ for all s ∈ S, δ ∈ R>0.

This also implies that for any s ∈ S \ D, ]s, s + δ[ ∩ D 6= ∅ for all δ ∈ R>0, and
therefore s ∈ rlims(D). �

This is already promising, but we have left one big question unanswered: is the

σ-algebra σ(C̊ ) generated by the cylinder events sufficiently rich, meaning that it
contains ‘all’ events that we are interested in? Due to Lemmas 4, 7 and 8, we would
expect that the answer to this question is yes, but since it is hard to formalise what
precisely ‘all events of interest’ are, we cannot answer this question definitively. We
can, however, easily show that the issue we observed in Example 1 is now resolved.

Example 2. Let us return to the setting of Example 1. Note that the set of positive
rationals Q≥0 is a countable subset of T = R≥0 = T that is dense with respect to
the lower limit topology. For the set of càdlàg paths, the event of interest is

Å :=
⋃

t∈[0,T ]

{X̊t = x}.

Fix any càdlàg path ω̊ ∈ Ω̊. Then ω̊ ∈ Å if and only if there is some t ∈ [0, T ] such
that ω̊(t) = x; since ω̊ is right-continuous in T ∩ rlims(T) = R≥0, either this is the
case for t = T or for some rational time point t ∈ [0, T [ ∩Q≥0. Hence,

Å =
⋃

t∈C

{X̊t = x} with C := {T } ∪ ([0, T [ ∩Q≥0).

Since C is clearly countable and the σ-algebra generated by C̊ is closed under

countable unions, we infer from this equality that Å ∈ σ(C̊ ).

So it seems like σ(C̊ ) would be a suitable domain, but can we also obtain a

probability measure on σ(C̊ )? To that end, we need to show that the probability

charge on C̊ induced by a consistent collection of finite-dimensional distributions is
countably additive. We will see that this is the case if and only if an extra regularity
condition is satisfied. Before we can introduce this condition in Section 4.3 further
on, we need to introduce the notion of (the expected number of) jumps.
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4.2. The number of jumps. A crucial property of càdlàg paths is that for all
s, r ∈ T such that s ≤ r, the number of ‘discontinuities’ or ‘jumps’ in [s, r] ∩ T is
finite. For specific choices of T – such as R or R≥0 – this property is well known –
see for example Lemma 5.20 in [12] or Lemma 1 in [4, Section 12] for related results
– and a rather straightforward consequence of the definition of càdlàg paths and
the Heine-Borel Theorem. We will establish this result for general T though. But
let us begin by explaining what we mean with ‘jumps’.

Fix s, r ∈ R such that s ≤ r and a càdlàg path ω̊ ∈ Ω̊. First, we assume that
[s, r] ⊆ T. Then the number of jumps in [s, r] ∩ T of ω̊ is

∣

∣

∣

{

t ∈ ]s, r] : lim
∆ց0

ω̊(t−∆) 6= ω̊(t)
}∣

∣

∣,

and it follows fairly easily from the properties of càdlàg paths and the Heine-Borel
Theorem – or Billingsley’s [4, Section 12, Lemma 1] argument – that this number
is finite. Therefore, it is not difficult to verify that

(3)
∣

∣

∣

{

t ∈ ]s, r] : lim
∆ց0

ω̊(t−∆) 6= ω̊(t)
}∣

∣

∣ = sup
{

η̂u(ω̊(u)) : u ∈ U[s,r]∩T

}

,

where for any tuple of time points u = (t1, . . . , tn) ∈ UT, we let

η̂u : Xu → {0, . . . , n− 1} : xu 7→ |k ∈ {2, . . . , n} : xtk−1
6= xtk |.

If [s, r] is not included in T, we cannot define the number of jumps in [s, r] in the
same way. Instead, we generalise the right-hand side of Eqn. (3), but with the
sufficient generality we need in the remainder: for all subsets S of T,

ηS(ω̇) := sup
{

η̂u(ω̇(u)) : u ∈ US

}

for all ω̇ ∈ Ω̇.

In any case, the number of jumps of a càdlàg path in [s, r] is always finite; because
the proof of this (essentially well-known) result is not very instructive, we have
relegated it to Appendix B.

Proposition 9. For all ω̊ ∈ Ω̊ and s, r ∈ R such that s < r and [s, r] ∩ T 6= ∅,
η[s,r]∩T(ω̊) < +∞.

Finally, we will also consider the expected number of jumps. To this end, we
observe that for all u = (t1, . . . , tm) ∈ U , η̂u is a ℘(Xu)-simple variable4 because

η̂u =

m−1
∑

k=1

kI{xu∈Xu : η̂u(Xu)=k} =

m
∑

k=2

I{xu∈Xu : xtk
6=xtk−1

};

hence, for any probability charge µ on ℘(Xu), its expectation with respect to µ is
well-defined through the Dunford integral:5

(4)

Eµ(η̂u) =

m−1
∑

k=1

kµ({xu ∈ Xu : η̂u(xu) = k}) =

m
∑

k=2

µu

(

{xu ∈ Xu : xtk 6= xtk−1
}
)

.

If µ• is a consistent collection of finite-dimensional charges, then for all u =
(t1, . . . , tm) ∈ U , the final expression in Eqn. (4) simplifies as follows:

(5) Eµu
(η̂u) =

m
∑

k=2

µu

(

{xu ∈ Xu : xtk 6= xtk−1
}
)

=

m
∑

k=2

µ(tk−1,tk)

(

X 2
6=

)

,

where here and in the remainder, we let X 2
6= :=

{

(x, y) ∈ X 2 : x 6= y
}

and X 2
= :=

{

(x, y) ∈ X 2 : x = y
}

, and for all s, r ∈ T such that s < r, with some slight

4We adhere to the definition given by Troffaes & De Cooman [27, Definition 1.16], but see also
Definition 4.2.12 in [2].

5We adhere to the definition in [27, Definition 8.13], see also Definition 4.4.1 in [2].
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abuse of notation, we also write X 2
6= and X 2

= when we actually mean {(xs, xr) ∈

X(xs,xr) : xs 6= xr} and {(xs, xr) ∈ X(xs,xr) : xs = xr}, respectively.

4.3. Regularity. Finally, we can get down to proving that the following two reg-
ularity conditions on a consistent collection of finite-dimensional distributions are

necessary and sufficient for the corresponding probability charge on C̊ to be count-
ably additive.

Definition 4. A collection of finite-dimensional charges µ• is regular if

R1. for all t ∈ rlims(T ) ∩ T ,

lim
T ∋rցt

µ(t,r)

(

X 2
=

)

= 1;

R2. for all n ∈ N such that [−n, n] ∩ T 6= ∅,

lim
k→+∞

sup
{

µu

(

{xu ∈ Xu : η̂u(xu) ≥ k}
)

: u ∈ U[−n,n]∩T

}

= 0.

The two conditions for regularity basically ensure that the collection of finite-
dimensional charges is compatible with the properties of càdlàg paths. The first
condition (R1) mirrors the continuity from the right: it demands that the finite-
dimensional charges are (stochastically) continuous from the right – similar to the
notions in, for example, [6, Definition 12.15] or [5, Definition 18.2.2]. It may be
less obvious on first inspection, but the second condition (R2) mirrors the fact that
càdlàg paths have a finite number of jumps in any closed and bounded interval.
While Proposition 9 says that this should be the case for all intervals [s, r], it
clearly suffices to limit ourselves to intervals of the form [s, r] = [−n, n] with n ∈ N

because the number of jumps is monotone.
That regularity is indeed necessary and sufficient for a consistent collection of

finite-dimensional distributions to have a corresponding probability charge P on C̊

that is countably additive, is established by our next result. Our proof is a bit long
and needs quite a bit more technical machinery; for this reason, we have relegated
it to Appendix C.

Theorem 10. Consider a consistent collection µ• of finite-dimensional distribu-

tions, and let P be the corresponding probability charge on C̊ of Proposition 1. Then
P is countably additive if an only if µ• is regular.

We now use Theorem 10 to prove our main result: a version of the Daniell–
Kolmogorov Extension Theorem where the set of all paths is replaced by the set of
all càdlàg paths.

Theorem 11. Consider a consistent collection of finitary distributions µ•. Then

there is a probability measure P on σ(C̊ ) such that

P ({X̊u ∈ A}) = µu(A) for all u ∈ U , A ∈ ℘(Xu)

if and only if µ• is regular; if this is the case, then this probability measure is unique.

Proof. Follows immediately from Proposition 1, Theorem 10 and Caratheodory’s
Extension Theorem. �

That we need the two conditions (R1) and (R2) for Theorem 11 is in line with
Borovkov’s [5] findings for R-valued processes: right after his Definition 18.2.3, he
explains that stochastic continuity (so his version of (R1)) alone does not suffice, and
that ‘in order to characterise the properties of trajectories, one needs quantitative
bounds for [the magnitude of the jumps]’. Note that in our setting of countable
state spaces, we do not need a quantitative bound on the ‘magnitude’ of the jumps
but on the number of jumps.
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The two conditions (R1) and (R2) for regularity are perhaps not the most easy
ones to check. Fortunately, there are plenty of sufficient conditions for regularity
that can be more easily verified. For example, the one in the following result
comes in handy in the setting of Poisson processes and Markovian (imprecise) jump
processes.

Proposition 12. Consider a consistent collection µ• of finite-dimensional distri-
butions. If for all n ∈ N with [−n, n] ∩ T 6= ∅ there is some λn ∈ N such that

Eµu
(η̂u) ≤ λn(tm − t1) for all u = (t1, . . . , tm) ∈ U[−n,n]∩T ,

then µ• is regular.

Proof. To verify (R1), we fix any t ∈ T ∩ rlims(T ). Let n be any natural number
such that |t| < n. Then [−n, n]∩T 6= ∅ by construction and ]t, n]∩T 6= ∅ because
t is a right-sided limit point of T . For all r ∈ ]t, n] ∩ T and with u := (t, r),
{xu ∈ Xu : η̂u(xu) = 1} = X 2

6=, and it follows from this and the condition in the
statement that

µu

(

X 2
6=

)

= µu({xu ∈ Xu : η̂u(xu) = 1}) = Eµu
(η̂u) ≤ λn(r − t).

From this inequality, we infer that

lim
T ∋rցt

µ(t,r)

(

X 2
=

)

= lim
T ∋rցt

1− µ(t,r)

(

X 2
6=

)

= 1,

as required for (R1).
Checking (R2) is straightforward. Fix some n ∈ N with [−n, n] ∩ T 6= ∅. For

all k ∈ N and u = (t1, . . . , tm) ∈ U[−n,n]∩T , it follows from Markov’s inequality and
the condition in the statement that

µu({xu ∈ Xu : η̂u(xu) ≥ k}) ≤
Eµu

(η̂u)

k
≤
λn(tm − t1)

k
≤

2nλn
k

.

From this, we infer that

lim
k→+∞

sup
{

µu({xu ∈ Xu : η̂u(xu) ≥ k}) : u ∈ U[−n,n]∩T

}

= 0,

as required. �

The consistent collection of finite-dimensional distributions µ• for the Poisson
process with rate λ ∈ R≥0, as introduced at the end of Section 2.2, satisfies the
sufficient condition in Proposition 12: it is not difficult to verify that for all u =
(t1, . . . , tm) ∈ U ,

Eµu
(η̂u) =

m
∑

k=2

λ(tk − tk−1) = λ(tm − t1).

The same is true for the collections of finite-dimensional distributions for finite-
state Markov processes whose semi-group of transition matrices is generated by a
(transition) rate matrix. Even more, this sufficient condition also suffices in the
more general setting of Markovian imprecise jump processes with a finite state
space [20, 13]. In that setting, one considers sets of consistent collections of finite-
dimensional distributions that are ‘consistent’ – in the sense of [20, Definition 6.1]
or [12, Definition 3.50] – with a non-empty and bounded set Q of (transition) rate
matrices, and Erreygers [12, Corollary 5.18 and Theorem 5.27] proves that for each
of these collections of finite-dimensional distributions,

Eµu
(η̂u) ≤

1

2
‖Q‖(tm − t1) < +∞ for all u = (t1, . . . , tm) ∈ U ,

where ‖Q‖ is the supremum over the norms of the rate matrices in the bounded
set Q.
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Our work on Markovian imprecise jump processes has also inspired us to estab-
lish two additional sufficient conditions for regularity. The main difference with
the condition in Proposition 12 is that these conditions only concern the finite-
dimensional distributions for two time points; they can be thought of as placing
bounds on the dynamics of the process. Because these results are of a more techni-
cal nature, we have relegated them to Appendix D. Here, we only give a simplified
version of Proposition 24.

Corollary 13. Suppose that T = R≥0, and consider a consistent collection µ• of
finite-dimensional distributions. If for all n ∈ N there is some λn ∈ R≥0 such that

lim sup
rցt

µ(t,r)

(

X 2
6=

)

r − t
≤ λn for all t ∈ [0, n[

and

lim sup
sրt

µ(s,t)

(

X 2
6=

)

t− s
≤ λn for all t ∈ ]0, n],

then µ• is regular.

Note that Corollary 13 is also relevant when dealing with the Poisson process:
with µ• the consistent collection of finite-dimensional distributions for the Poisson
process with rate λ,

lim
rցt

µ(t,r)(X
2
6=)

r − t
= lim

rցt

1− e−λ(r−t)

r − t
= λ for all t ∈ R≥0

and

lim
sրt

µ(s,t)(X
2
6=)

t− s
= lim

sրt

1− e−λ(t−s)

t− s
= λ for all t ∈ R>0

5. Conclusion

Our version of the Daniell–Kolmogorov Extension Theorem (Theorem 11) does
not suffer from the issue with the original result (Theorem 3): by using the càdlàg
paths as sample space, we obtain a probability measure whose domain is indeed
sufficiently rich, in that it contains most – if not all – of the events that one can be
interested in. Moreover, our results considers stochastic processes indexed by any
subset T of the real numbers and looked at events that depend only on the time
points in some subset T of T, while it is standard to assume T = T; this distinction
between T and T may seem somewhat strange at first, but it was motivated by our
work on Markovian imprecise jump processes, where this proved to be useful.

In contrast to the original version of the theorem, our new version is limited to
the specific setting of countable-state stochastic processes due to the form of our
regularity condition. For this reason, a first line of follow-up research we envision
is to generalise our work to uncountable state spaces. Crucial is that one should
find a meaningful alternative to the number of jumps; for example, with the set of
real numbers, it is customary – in the setting of modifications, at least – to look
at upcrossing numbers instead of the number of jumps. A second line of follow-up
research could be to apply our results. We have already briefly touched on the
relevance to the Poisson process, and we are convinced that our theorem can be
useful for more general counting processes as well. Furthermore, we know from
our work in the setting of Markovian imprecise jump processes that our version of
the Daniell–Kolmogorov Extension Theorem can be of use in the setting of jump
processes that need not be time-homogeneous nor even Markovian.
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Appendix A. Proof for Theorem 2

In case T = T, Theorem 2 is implied by Theorem 31.1 in [24, Chapter II] – we
leave it to the reader to check that (X , ℘(X )) is a Lusin space. We could also show
that this in turn implies Theorem 2 in case T ⊂ T, but we choose to take a more
direct route towards proving this result; our reasons for this are twofold: (i) it does
not take a lot more work, and (ii) it would be a shame not to elucidate how the
argument simplifies in our particular case where X is countable.

Our proof for Theorem 2 is essentially the argument used by Rogers &Williams [24,
Chapter II] (who assume that X is a complete metric space) to prove their Lemma
30.7, but translated to the setting of a countable state space X – note that if X
is countably infinite, then (X , ℘(X )) is not a complete metric space. The crucial

https://users.ugent.be/~aerreyge/
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result that allows us to avoid the assumption that X is a commplete metric space,
is the following intermediate lemma.

Lemma 14. For all n ∈ N, consider a finite subset Bn of Xun
, with un ∈ U , and

let Ḃn := {Ẋun
∈ Bn}. If

⋂m
n=1 Ḃn 6= ∅ for all m ∈ N, then also

⋂

n∈N
Ḃn 6= ∅.

Proof. We endow X with the cofinite topology [25, Section 5.15.c], the open sets

of which are {∅} ∪ {Ac : A ⊆ X , |A| < +∞}, and we endow Ω̇ = X T with the
corresponding product topology. Since any product of topological spaces, each
equiped with the cofinite topology, is compact [25, Section 17.20 (AC25)], this

turns Ω̇ into a compact space.
For all x ∈ X and t ∈ T, since {x}c belongs to the cofinite topology on X , we

know that {Ẋt = x}c = {Ẋt ∈ {x}c} = {ω̇ ∈ Ω̇ : ω̇(t) ∈ {x}c} belongs to the

product topology on Ω̇. For all u = (t1, . . . , tk) ∈ U and finite B ⊆ Xu, since

{Ẋu ∈ B} =
⋃

xu∈B

{Ẋu = xu} =
⋃

xu∈B

k
⋂

ℓ=1

{Ẋtℓ = xtℓ},

this implies that

{Ẋu ∈ B}c =
⋂

xu∈B

k
⋃

ℓ=1

{Ẋtℓ = xtℓ}
c

belongs to the product topology as well. Hence, for all n ∈ N, Ḃn = {Ẋun
∈ Bn}

is a closed subset of Ω̇.
Let us now assume that

⋂m
n=1 Ḃn 6= ∅ for all m ∈ N. Then clearly, for any finite

N ⊆ N, we have that
⋂

n∈N Ḃn 6= ∅. The compactness of Ω̇ therefore implies that
⋂

n∈N
Ḃn 6= ∅ – see [25, Definition 17.2.(B)]. �

Our proof for Theorem 2 now follows more or less the same argument as the one
for Lemma 30.7 in [24, Chapter II], but without the use of their Lemma 29.7.

Proof of Theorem 2. According to a classic result from measure theory – see for
example [14, Chapter 7, Proposition 9] or [24, Lemma 4.3] – P is countably additive

if and only if, for any decreasing sequence (Ȧn)n∈N in Ċ such that
⋂

n∈N
Ȧn = ∅,

also limn→+∞ P (Ȧn) = 0. We will prove this alternative condition instead.

By definition of Ċ , there are, for all n ∈ N, some un ∈ U and An ∈ Xun

such that Ȧn = {Ẋun
∈ An}. Fix any ǫ ∈ R>0. For all n ∈ N, since µun

is
countably additive and Xun

– and hence also An – is a countable set, we have
that µun

(An) =
∑

xun∈An
µun

({xun
}). Since every µun

({xun
}) is positive, the

convergence of this countable sum to µun
(An) implies that there is a finite subset

Bn of An such that µun
(Bn) =

∑

xun∈Bn
µun

({xun
}) > µun

(An)− 2−nǫ and hence

also µun
(An \Bn) < 2−nǫ. Consider any such Bn and let Ḃn := {Ẋun

∈ Bn} ⊆ Ȧn.

Since
⋂

n∈N
Ȧn = ∅, we clearly also have that

⋂

n∈N
Ḃn = ∅. It therefore follows

from Lemma 14 that there is some m ∈ N such that
⋂m

n=1 Ḃn = ∅. Then for any

ω̇ ∈ Ȧm, since ω̇ /∈
⋂m

n=1 Ḃn, there is some 1 ≤ nω̇ ≤ m such that ω̇ /∈ Ḃnω̇

and therefore ω̇ ∈ Ȧm \ Ḃnω̇
⊆ Ȧnω̇

\ Ḃnω̇
⊆
⋃m

n=1 Ȧn \ Ḃn. This implies that

Ȧm ⊆
⋃m

n=1 Ȧn \ Ḃn and therefore, that

P (Ȧm) ≤ P

(

m
⋃

n=1

Ȧn \ Ḃn

)

≤

m
∑

n=1

P (Ȧn \ Ḃn) =

m
∑

n=1

P ({Ẋun
∈ An \Bn})

=

m
∑

n=1

µun
(An \Bn) <

m
∑

n=1

2−nǫ < ǫ.
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Since (Ȧn)n∈N is a decreasing sequence, it follows that limn→+∞ P (Ȧn) < ǫ. As

the choice of ǫ > 0 was arbitrary, we conclude that limn→+∞ P (Ȧn) = 0. �

Appendix B. Properties of càdlàg pahts

In this appendix, we give the proof for the three important properties of càdlàg
paths. The first property is that a càdlàg path always has a càdlàg extension to R.

Proof of Lemma 6. Fix some state x ∈ X , and for all t ∈ R, let S≤t := ]−∞, t] ∩ S
and s⋆t := supS≤t. Then

ψ : R → X : t 7→































̟(t) if t ∈ S

limS∋rցt̟(r) if t /∈ S, t ∈ rlims(S)

̟(s⋆t ) if t /∈ S, t /∈ rlims(S),S≤t 6= ∅, s⋆t ∈ S

limS∋sրs⋆t
̟(s) if t /∈ S, t /∈ rlims(S),S≤t 6= ∅, s⋆t /∈ S

x if t /∈ S, t /∈ rlims(S),S≤t = ∅

clearly coincides with ̟ on S. Less obvious is that ψ (i) has a left-sided limit
everywhere and (ii) is continuous from the right.

For the first condition, we fix any t ∈ R, and distinguish two cases. The first
case is that t is not a left-sided limit point of S. Then there is some δ ∈ R>0 such
that ]t − δ, t[ ∩ S = ∅. Then for all s ∈ ]t − δ, t[, s /∈ S ∪ rlims(S) – because with
δ′ := t − s > 0, [s, s + δ′[ ∩ S ⊆ ]t − δ, t[ ∩ S = ∅ – and S≤s = S≤t−δ – because
]t − δ, s] ∩ S ⊆ ]t − δ, t[ ∩ S = ∅. It follows from this and the definition of ψ that
for all s ∈ ]t− δ, t[,

ψ(s) =











̟(s⋆t−δ) if S≤t−δ 6= ∅, s⋆t−δ ∈ S

limS∋rրs⋆
t−δ

̟(r) if S≤t−δ 6= ∅, s⋆t−δ /∈ S,

x otherwise.

From this, we conclude that ψ is constant on ]t− δ, t[.
The second case is that t is a left-sided limit point of S. Because ̟ is càdlàg,

there are some δ′ ∈ R>0 and xt ∈ X such that̟(s) = xt for all s ∈ ]t−δ′, t[∩S 6= ∅.
Take any s′ ∈ ]t − δ′, t[ ∩ S. Then for all s ∈ ]s′, t[ ∩ S, ̟(s) = ̟(s′) = xt and
s′ ≤ s⋆s < t. From this, it follows that for all s ∈ ]s′, t[, (i) ̟(s) = xt if s ∈ S; (ii)
limS∋rցs̟(r) = xt if s ∈ rlims(S) \ S; (iii) ̟(s⋆s) = xt if s /∈ S ∪ rlims(S) and
s⋆s ∈ S; and (iv) limS∋rրs⋆s

̟(r) = xt if s /∈ S ∪ rlims(S) and s⋆s /∈ S – the case
S≤s = ∅ is clearly impossible because s′ ∈ S≤s. We conclude from this and the
definition of ψ that ψ(s) = xt for all s ∈ ]s′, t[. In both cases, this shows that ψ
has a left-sided limit in t.

For the second condition, we fix any t ∈ R. Here too, we distinguish two cases.
The first case is that t is not a right-sided limit point of S, meaning that there is
some δ ∈ R>0 such that ]t, t+δ[∩S = ∅. Then for all r ∈ ]t, t+δ[, r /∈ S ∪rlims(S)
– because with δ′ := t+ δ− r > 0, [r, r+ δ′[∩S ⊆ ]t, t+ δ[∩S = ∅ – and S≤r = S≤t

– because ]t, r] ∩ S ⊆ ]t, t+ δ[ ∩ S = ∅. We distinguish two subcases. On the one
hand, if t ∈ S then it follows from this and our definition of ψ that (i) ψ(t) = ̟(t)
and (ii) for all r ∈ ]t, t + δ[, s⋆r = supS≤r = supS≤t = t ∈ S and therefore
ψ(r) = ̟(s⋆r) = ̟(t). If on the other hand t /∈ S and therefore t /∈ S ∪ rlims(S),
then it follows from this and the definition of ψ that for all r ∈ ]t, t+δ[, ψ(r) = ψ(t).

This leaves the case that t is a right-sided limit point of S. Because ̟ is càdlàg,
there are some δ ∈ R>0 and xt such that ̟(r) = xt for all r ∈ [t, t + δ[ ∩ S 6= ∅.
Here too, we distinguish two subcases. If t ∈ S, then we infer from this that (i)
ψ(t) = ̟(t) = xt; (ii) for all r ∈ ]t, t + δ[ ∩ (S ∪ rlims(S)), ψ(r) = xt; and (iii)
for all r ∈ ]t, t + δ[ \ (S ∪ rlims(S)), S≤r 6= ∅ and s⋆r ∈ ]t, t + δ[, and therefore
ψ(r) = xt. If on the other hand t /∈ S, then we infer from this that (i) ψ(t) =
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limS∋sցt̟(s) = xt; (ii) for all r ∈ ]t, t + δ[ ∩ (S ∪ rlims(S)), ψ(r) = xt; and (iii)
for all r ∈ ]t, t+ δ[ \ (S ∪ rlims(S)), ]t, r[ ∩ S 6= ∅ – as t is a right-sided limit point
of S – and therefore S≤r 6= ∅ and s⋆r ∈ ]t, t+ δ[, whence

ψ(r) =

{

̟(s⋆r) = xt if s⋆r ∈ S,

limS∋sրs⋆r
̟(s) = xt if s⋆r /∈ S.

It is clear in both cases that ψ is continuous from the right in t, as required. �

The second property we need to prove is Lemma 7.

Proof of Lemma 7. The direct implication is trivial because D ⊆ T, so it remains
for us to show the converse implication. To this end, we assume that ω̊1(d) = ω̊2(d)
for all d ∈ D, and set out to show that then ω̊1(t) = ω̊2(t) for all t ∈ T. Fix any
time point t in T. If t ∈ D, then ω̊1(t) = ω̊2(t) by assumption, as required. If t /∈ D,
then t ∈ rlims(D) because T ⊆ D ∪ rlims(D) by assumption. Because ω̊1 and ω̊2

are both càdlàg, there are some δ1, δ2 ∈ R>0 such that

(

∀r ∈ T ∩ ]t, t+ δ1[
)

ω̊1(r) = ω̊1(t) and
(

∀r ∈ T ∩ ]t, t+ δ2[
)

ω̊2(r) = ω̊2(t).

Let δ := min{δ1, δ2}. Fix any d ∈ ]t, t + δ[ ∩ D – this is always possible because t
is a right-sided limit point of D, so ]t, t+ δ[ ∩ D 6= ∅. On the one hand, it follows
from the preceding that ω̊1(t) = ω̊1(d) and ω̊2(t) = ω̊2(d). On the other hand, we
know that ω̊1(d) = ω̊2(d) because d ∈ D. From this, we infer that ω̊1(t) = ω̊2(t).
Since this is the case for all t ∈ T, we have shown that ω̊1 = ω̊2, as required. �

Finally, we prove that a càdlàg path can only jump a finite number of times in
any closed and bounded interval.

Proof of Proposition 9. By Lemma 6, there is some càdlàg map ψ : R → X that
coincides with ω̊ on T. As we have explained in Section 4.2, it is not difficult to
show that

sup
{

η̂u(ψ(u)) : u ∈ U[s,r]

}

=
∣

∣

∣

{

t ∈ ]s, r] : lim
∆ց0

ψ(t−∆) 6= ψ(t)
}∣

∣

∣ < +∞,

where for all u = (t1, . . . , tn) ∈ U[s,r], we let ψ(u) := (ψ(t1), . . . , ψ(tn)). Since
clearly

η[s,r]∩T(ω̊) = sup
{

η̂u(ψ(u)) : u ∈ U[s,r]∩T

}

≤ sup
{

η̂u(ψ(u)) : u ∈ U[s,r]

}

,

this proves the statement. �

Appendix C. Proof for Theorem 10

In this appendix, we prove Theorem 10. We will get to this in Appendix C.4, but
first we need to introduce some additional technical machinery. In Appendix C.1,
we take a second look at the expected number of jumps, but this time in the
setting of probability measures and stochastic processes. This theme continues in
Appendix C.2, where we prove that whenever a (not necessarily càdlàg) path ω has
a finite number of jumps (for some countable subset of T ), we can always ‘modify’
this path in such a way that it becomes càdlàg. Appendix C.3 introduces the two
remaining intermediary results that we will need to prove Theorem 10.



COUNTABLE-STATE STOCHASTIC PROCESSES WITH CÀDLÀG SAMPLE PATHS 21

C.1. The expected number of jumps, again. Consider again a subset Ω of Ω̇
that satisfies Eqn. (1). Then for any tuple of time points u = (t1, . . . , tn) ∈ U ,
the ‘number of jumps of X• along u’ is the functional composition of η̂u after the
projection Xu:

η̂u(Xu) : Ω → {0, . . . , n− 1} : ω 7→ η̂u(ω(u)).

It is easy to see that

(6) η̂u(Xu) =

n
∑

k=2

I{Xtk−1
6=Xtk

},

where for all s, r ∈ T such that s < r, we let

{Xs 6= Xr} := {X(s,r) ∈ X 2
6=} ∈ C and {Xs = Xr} := {X(s,r) ∈ X 2

=} ∈ C .

This means that η̂u(Xu) is a C -simple and therefore trivially σ(C )/B(R)-measurable
variable. Consequently, we also have that

{η̂u(Xu) ≤ α} := {ω ∈ Ω: η̂u(ω(u)) ≤ α} ∈ C for all α ∈ R.

Crucial to our proof of Theorem 10 is the number of jumps of X• in [s, r] ∩ C,
with C a countable subset of T . For any countable subset C of T and s, r ∈ R such
that s < r and [s, r]∩D 6= ∅, the number of jumps of X• in [s, r]∩D is the variable

η[s,r]∩D(X•) : Ω → Z≥0 ∪ {+∞} : ω 7→ η[s,r]∩D(ω);

in other words, η[s,r]∩D(X•) is the functional composition of η[s,r]∩D and the ‘projec-

tion’ X• which maps any ω ∈ Ω to itself. This variable is σ(C )/B(R)-measurable.

Lemma 15. Consider a countable subset C of T and some s, r ∈ R such that
s < r and [s, r] ∩ C 6= ∅. Then there is a sequence (un)n∈N ∈ U[s,r]∩C such
that (η̂un

(Xun
))n∈N is an increasing sequence of positive C -simple – and there-

fore σ(C )/B(R)-measurable – variables that converges point-wise to η[s,r]∩C(X•).

Hence, η[s,r]∩C(X•) is σ(C )/B(R)-measurable.

In our proof of Lemma 15, we make use of the straightforward observation that
if u ⊑ v, then the number of jumps of X• along v is greater than or equal to the
number of jumps of X• along u; clearly, it suffices to state this property for paths.

Lemma 16. For all ω̇ ∈ Ω̇ and u, v ∈ U such that u ⊑ v, η̂u(ω̇(u)) ≤ η̂v(ω̇(v)).

Proof. Let us write u = (r1, . . . , rn) and v = (s1, . . . , sm). If n = 1, then the
inequality in the statement holds trivially because η̂u = 0 and η̂v ≥ 0. Hence, we
assume that n > 1. Because u ⊑ v by the conditions of the statement, for all
k ∈ {1, . . . , n} there is a unique natural number ℓk ∈ {1, . . . ,m} such that rk = sℓk .
Then

η̂u(ω̇(u)) =
∣

∣

{

k ∈ {2, . . . , n} : ω̇(sℓk−1
) 6= ω̇(sℓk)

}∣

∣.

Because the tuples of time points u and v are increasing, ℓk−1 < ℓk for all k ∈
{2, . . . , n}. Furthermore, it is easy to verify that for all k ∈ {2, . . . , n}, ω̇(sℓk−1

) 6=
ω̇(sℓk) implies that ω̇(sℓ−1) 6= ω̇(sℓ) for at least one ℓ ∈ {ℓk−1 + 1, . . . , ℓk} – if this
is not the case, then ω̇(sℓk−1

) = ω̇(sℓk−1+1) = · · · = ω̇(sℓk−1) = ω̇(sℓk), which is a
clear contradiction. Hence,
∣

∣

{

k ∈ {2, . . . , n} : ω̇(sℓk−1
) 6= ω̇(sℓk)

}∣

∣ ≤
∣

∣

{

ℓ ∈ {2, . . . ,m} : ω̇(sℓ−1) 6= ω̇(sℓ)
}∣

∣,

and therefore

η̂u(ω̇(u)) ≤ η̂v(ω̇(v)).

�
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Proof of Lemma 15. Because C is countable by assumption, so is [s, r] ∩ C. Con-
sequently, there is a sequence (un)n∈N ∈ U[s,r]∩C such that (i) un ⊑ un+1 for all
n ∈ N and (ii) for all d ∈ [s, r] ∩ C, there is some n ∈ N such that d belongs to un;
for example, simply add all the time points in [s, r] ∩ C one by one.

For all n in N, we know from before that η̂un
(Xun

) is a positive C -simple and
therefore trivially σ(C )/B(R)-measurable variable, and because un ⊑ un+1 by
construction, η̂un

(Xun
) ≤ η̂un+1(Xun+1) due to Lemma 16. Hence, we have veri-

fied that (η̂un
(Xun

))n∈N is a sequence of positive σ(C )/B(R)-measurable variables
that is monotonously increasing. Any monotonously increasing sequence converges
point-wise, so it remains for us to show that this point-wise limit is η[s,r]∩C(X•).
On the one hand, for all n ∈ N, un belongs to U[s,r]∩C so η̂un

(Xun
) ≤ η[s,r]∩C(X•);

hence,

lim
n→+∞

η̂un
(Xun

) ≤ η[s,r]∩C(X•).

On the other hand, for any tuple of time points u ∈ U
[s,r]
C there is some n ∈ N such

that u ⊑ un, and therefore

η[s,r]∩C(X•) ≤ lim
n→+∞

η̂un
(Xun

).

From these two inequalities, we infer that (η̂un
(Xun

))n∈N converges point-wise
to η[s,r]∩C(X•). Since (η̂un

(Xun
))n∈N is an increasing sequence of positive σ(C )/B(R)-

measurable variables, this implies that η[s,r]∩C(X•) is σ(C )/B(R)-measurable [14,
Chapter 2, Proposition 11 or Lemma 13]. �

We end this intermezzo with an alternative expression for the probability that
the number of jumps in [s, r] ∩ C, with C a countable subset of T , is infinite.

Lemma 17. Consider a stochastic process (Ω, σ(C ), P ). Fix a countable subset C
of T . Then for all s, r ∈ R such that s < r and [s, r] ∩ C 6= ∅,

P ({η[s,r]∩C(X•) = +∞}) = lim
k→+∞

sup
{

P ({η̂u(Xu) ≥ k}) : u ∈ U[s,r]∩C

}

.

Proof. Clearly, the sequence of level sets ({η[s,r]∩C(X•) ≥ k})k∈N decreases to the
level set {η[s,r]∩C(X•) = +∞}. All these sets furthermore belong to σ(C ) because

η[s,r]∩C(X•) is σ(C )/B(R)-measurable due to Lemma 15. Since the probability
measure P is continuous with respect to monotone sequences, it follows that

P ({η[s,r]∩C(X•) = +∞}) = lim
k→+∞

P ({η[s,r]∩C(X•) ≥ k}).

The equality in the statement follows if we can prove that for all k ∈ N,

(7) P ({η[s,r]∩C(X•) ≥ k}) = sup
{

P ({η̂u(Xu) ≥ k}) : u ∈ U[s,r]∩C

}

.

To this end, we fix any k ∈ N. By definition of η[s,r]∩C(X•), η̂u(Xu) ≤ η[s,r]∩C(X•)
for all u ∈ U[s,r]∩C. Hence, it follows from the monotonicity of the probability
measure P that

P ({η[s,r]∩C(X•) ≥ k}) ≥ P ({η̂u(Xu) ≥ k}) for all u ∈ U[s,r]∩C,

and therefore

P ({η[s,r]∩C(X•) ≥ k}) ≥ sup
{

P ({η̂u(Xu) ≥ k}) : u ∈ U[s,r]∩C

}

.

Recall from Lemma 15 that there is a sequence (un)n∈N in U[s,r]∩C such that

(η̂un
(Xun

))n∈N is an increasing sequence sequence of positive σ(C )/B(R)-measurable
variables that converges point-wise to η[s,r]∩C(X•). Since all of the involved vari-
ables take values in Z≥0 ∪ {+∞}, this implies that the corresponding sequence of
level sets ({η̂un

(Xun
) ≥ k})n∈N increases to the level set {η[s,r]∩C(X•) ≥ k}. Again,
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it therefore follows from the continuity of the probability measure P with respect
to monotone sequences that

P ({η[s,r]∩C(X•) ≥ k}) = lim
n→+∞

P ({η̂un
(Xun

) ≥ k})

≤ sup
{

P ({η̂u(Xu) ≥ k} : u ∈ U[s,r]∩C)
}

.

Eqn. (7) now follows immediately from the preceding two inequalities. �

C.2. Modifying a path with a finite number of jumps along a countable

dense subset. We are interested in the number of jumps of Ẋ• in [s, r]∩D because

if this is finite for some ω̇ ∈ Ω̇, then the right-sided limit of ω̇ along D exists in
any right-sided limit point t of D∩ [s, r[, and similarly for the left-sided limit in the
left-sided limit points. The following intermediary result – which can be seen as a
version of Theorem 62.7 in [24, Chapter II] in our setting – essentially shows this,
and also establishes a sufficient condition under which we can ‘modify’ the path ω̇
in such a way that it becomes càdlàg.

Lemma 18. Consider some ω̇ ∈ Ω̇, and fix a subset D of T such that T ⊆ D ∪
rlims(D). Suppose that for all n ∈ N such that [−n, n] ∩D 6= ∅,

η[−n,n]∩D(ω̇) < +∞.

Then for all t ∈ rlims(D), limD∋rցt ω̇(r) exists and for all t ∈ llims(D), limD∋sրt ω̇(s)

exists. Furthermore, there is a càdlàg path ω̊ ∈ Ω̊ such that

ω̊(t) =

{

limD∋rցt ω̇(r) if t ∈ rlims(D)

ω̇(t) if t ∈ D \ rlims(D)
for all t ∈ T .

Proof. In the first part of this proof, we prove a convenient intermediary result.
Fix any time point t ∈ R, and let n be a natural number such that −n < t < n
and [−n, n]∩D 6= ∅ – this is always possible because D is dense in the non-empty
subset T of T. By the condition in the statement, there is some tuple of time
points u = (t1, . . . , tm) ∈ U[−n,n]∩D such that

η̂u(ω̇(u)) = η[−n,n]∩D(ω̇) = sup
{

η̂v(ω̇(v)) : v ∈ U[−n,n]∩D

}

< +∞

and, for any tuple of time points v ∈ U[−n,n]∩D such that u ⊑ v,

η̂u(ω̇(u)) ≤ η̂v(ω̇(v)) ≤ η[−n,n]∩D(ω̇) = sup
{

η̂w(ω̇(w)) : w ∈ U[−n,n]∩D

}

= η̂u(ω̇(u)),

where for the first inequality we used Lemma 16. In other words, no matter how
many time points from [−n, n] ∩ D we add to u, the number of jumps of ω̇ along
the sequence will remain the same. From this, we infer that ω̇(s) = ω̇(t1) for all s ∈
[−n, t1]∩D, ω̇(r) = ω̇(tm) for all r ∈ [tm, n]∩D and that for all k ∈ {1, . . . ,m− 1},
there is some t⋆k ∈ [tk, tk+1] such that ω̇(s) = ω̇(tk) for all s ∈ [tk, t

⋆
k[ ∩ D and

ω̇(r) = ω̇(tk+1) for all r ∈ ]t⋆k, tk+1] ∩ D. Because −n < t < n, we infer from this
that there are strictly positive real numbers δt,+, δt,− and states xt,+, xt,− ∈ X such
that

(8)
(

∀r ∈ ]t, t+ δt,+[∩D
)

ω̇(r) = xt,+ and
(

∀s ∈ ]t− δt,−, t[∩D
)

ω̇(s) = xt,−.

In the second part of this proof, we use Eqn. (8) to prove the first part of the
statement. Fix a right-sided limit point t of D. From the first part of this proof
– that is, from right before Eqn. (8) – we know that there are some positive real
number δt,+ and state xt,+ such that for all r ∈ ]t, t + δt,+[ ∩ D, ω̇(r) = xt,+.
Then limD∋rցt ω̇(r) exists, and is equal to xt,+. Similarly, for any left-sided limit
point t of D, there are some positive real number δt,− and state xt,− such that for
all s ∈ ]t− δt,−, t[ ∩ D, ω̇(r) = xt,−; so limD∋sրt ω̇(s) exists and is equal to xt,−.
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In the third part of this proof, we show the existence of the càdlàg path ω̊ ∈ Ω̊.
We start by constructing a map ̟ : T → X , defined by

̟(t) :=

{

limD∋rցt ω̇(r) if t ∈ rlims(D)

ω̇(t) if t ∈ D \ rlims(D)
for all t ∈ T .

In the remainder of this proof, we will show that ̟ is càdlàg. It then follows
from Lemma 6 that ̟ can be extended to a map ψ : R → X that is càdlàg. Since
restrictions of càdlàg maps are càdlàg too, this implies that ω̊ := ψ|T is a càdlàg

path in Ω̊ that, since it extends ̟, clearly satisfies the condition in the statement.
To show that ̟ is càdlàg, we consider any t ∈ R. We’ve shown earlier in this

proof that there are strictly positive real numbers δt,+, δt,− and states xt,+, xt,− ∈ X
that satisfy Eqn. (8). Taking into account the definition of ̟, this implies that
(

∀r ∈ ]t, t+ δt,+[ ∩ T
)

̟(r) = xt,+ and
(

∀s ∈ ]t− δt,−, t[ ∩ T
)

̟(s) = xt,−.

Since this is true for any t ∈ R, and therefore definitely for any t ∈ llims(T ) or
t ∈ rlims(T ) this already establishes the first two conditions in Definition 3. To
establish the third condition, we need to show that if t ∈ T ∩ rlims(T ), then also
̟(t) = xt,+. So consider the case t ∈ T ∩ rlims(T ). Since t ∈ rlims(T ), we also
have that t ∈ rlims(D). To see why that is the case, consider any δ ∈ R>0. Since
t ∈ rlims(T ), we know that ]t, t+ δ[ ∩ T 6= ∅. Choose any tδ ∈ ]t, t+ δ[ ∩ T . Since
tδ ∈ T ⊆ D∪rlims(D), we then have that [tδ, t+δ[∩D 6= ∅, which implies that also
]t, t+ δ[ ∩ D 6= ∅. Since δ ∈ R>0 was arbitrary, we indeed have that t ∈ rlims(D).
It therefore follows from Eqn. (8) that ̟(t) = xt,+. �

C.3. Two additional intermediary results. In our proof for Theorem 10, we
need the following continuity property of probability measures – for a proof, see for
example Theorem 2 in [14, Section 6.1].

Lemma 19. Consider a probability space (S,A, P ) and a sequence (An)n∈N in A.
If limn→+∞ IAn

(s) exists for all s ∈ S, then

lim
n→+∞

An :=
{

s ∈ S : lim
n→+∞

IAn
(s) = 1

}

∈ A

and

P
(

lim
n→+∞

An

)

= lim
n→+∞

P (An).

Another example where Lemma 19 comes in handy is the following intermediary
result, which is the final lemma we need to prove Theorem 10. To state it, we
observe that for all n ∈ N and v, w ∈ U such that v = (v1, . . . , vm) and w =
(w1, . . . , wm),

{Xv = Xw} :=

m
⋂

j=1

{Xvj = Xwj
} ∈ C .

Lemma 20. Consider a probability charge P on a domain A that includes C .
Fix some v = (t1, . . . , tm) ∈ U and some countable subset D of T such that
{t1, . . . , tm} ⊆ D∪rlims(D). Suppose the collection µ• of finite-dimensional charges
of P satisfies (R1). Then for all ǫ ∈ R>0, there is some w = (t′1, . . . , t

′
m) ∈ UD

such that

|P (A)− P (A ∩ {Xv = Xw})| < ǫ for all A ∈ A .

Furthermore, for any δ ∈ R>0, we can guarantee that t′j ∈ ]tj , tj + δ[ if tj ∈

rlims(D) and t′j = tj otherwise. Hence, there is some sequence (wℓ)ℓ∈N in UD such

that (i) for all ℓ ∈ N, wℓ = (tℓ1, . . . , t
ℓ
m), (ii) for all j ∈ {1, . . . ,m}, (tℓj)ℓ∈N is a
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strictly decreasing sequence in D that converges to tj if tj ∈ rlims(D) and a constant
sequence that is equal to tj otherwise, and (iii)

P (A) = lim
ℓ→+∞

P (A ∩ {Xv = Xwℓ
})

Proof. Fix some j ∈ {1, . . . ,m}. If tj ∈ D \ rlims(D), then we let t′j := tj , and then
trivially

P ({Xtj = Xt′j
}) = 1 > 1−

ǫ

m
.

If on the other hand tj ∈ rlims(D), then it follows from the assumptions on P and
D in the statement that there is some t′j in ]tj , tj+1[∩ ]tj , tj + δ[∩D – where we let
tm+1 := +∞ – such that

P ({Xtj = Xt′j
}) = µ(tj ,t′j)

(X 2
=) > 1−

ǫ

m
.

Let w := (t′1, . . . , t
′
m) ∈ UD, and note that

{Xv = Xw} =

m
⋂

j=1

{Xtj = Xt′
j
} and {Xv = Xw}

c =

m
⋃

j=1

{Xtj = Xt′
j
}c.

It follows from this, the properties of the probability charge P and our construction
of w that

P ({Xv = Xw}
c) = P





m
⋃

j=1

{Xtj = Xt′j
}c



 ≤

m
∑

j=1

P ({Xtj = Xt′j
}c)

=

m
∑

j=1

(

1− P ({Xtj = Xt′j
})
)

<
m
∑

j=1

ǫ

m
= ǫ.

Now for all A ∈ A ,

P (A) = P (A ∩ {Xv = Xw}) + P (A ∩ {Xv = Xw}
c),

and therefore

|P (A)− P (A ∩ {Xv = Xw})| = P (A ∩ {Xv = Xw}
c) ≤ P ({Xv = Xw}

c) < ǫ,

as required.
The second part of the statement follows immediately from the first part, since

it is easy to ensure that the sequences (tℓj)ℓ∈N are decreasing if tj ∈ rlims(D):

when constructing wℓ+1, simply choose δ small enough such that tj + δ < tℓj for all
j ∈ {1, . . . ,m} such that tj ∈ rlims(D). �

C.4. Proof for Theorem 10. Finally, we can get around to proving the precursor
to our main result.

Proof of Theorem 10. First, we prove the necessity; that is, we assume that the
probability charge P is countably additive, and show that this implies that µ• is
regular. Since P is countably additive, we know from Caratheodory’s Extension

Theorem that there is a unique probability measure Pσ on σ(C̊ ) that extends P .
Note that the finite-dimensional distributions of Pσ are µ•. We will use this to
show that µ• is regular.

For (R1), we fix some t ∈ rlims(T ) ∩ T . For any decreasing sequence (rn)n∈N

in ]t,+∞[ ∩ T with limn→+∞ rn = t, limn→+∞ ω(rn) = ω(t) for all ω ∈ Ω̊ due
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to the right-continuity of càdlàg paths, and therefore limn→+∞{X̊t = X̊rn} = Ω̊;
hence, it follows from Lemma 19 that

lim
n→+∞

Pσ({X̊t = X̊rn}) = Pσ(Ω̊) = 1.

Since this is true for any such sequence, it follows that

lim
T ∋rցt

Pσ({X̊t = X̊r}) = 1.

Furthermore, for all r ∈ T such that r > t, we have that

Pσ({X̊t = X̊r}) = P ({X̊t = X̊r}) = P ({X̊(t,r) ∈ X 2
=}) = µ(t,r)(X

2
=).

From these two observations, we infer that limT ∋rցt µ(t,r)(X
2
=) = 1, as required for

(R1).
For (R2), we fix some n ∈ N such that [−n, n] ∩ T 6= ∅, and some countable

subset C of [−n, n]∩ T such that [−n, n]∩ T ⊆ C ∪ rlims(C); this is always possible
due to Lemma 8. Since C ⊆ [−n, n] ∩ T, we know from Proposition 9 that

ηC(ω̊) ≤ η[−n,n]∩T(ω̊) < +∞ for all ω̊ ∈ Ω̊.

Hence, {ηC(X̊•) = +∞} = ∅, and therefore it must be that

Pσ({ηC(X̊•) = +∞}) = Pσ(∅) = 0.

From this and Lemma 17, it follows that

(9) lim
k→+∞

sup
{

Pσ({η̂u(X̊u) ≥ k}) : u ∈ UC

}

= 0.

Now fix any k ∈ N and ǫ ∈ R>0. Then for all v ∈ U[−n,n]∩T , we know from

Lemma 20 – with C and {η̂v(X̊v) ≥ k} here in the role of D and A there – that
there is some w ∈ UC such that

Pσ({η̂v(X̊v) ≥ k}) < Pσ({η̂v(X̊v) ≥ k}∩{X̊v = X̊w})+ǫ ≤ Pσ({η̂w(X̊w) ≥ k})+ǫ,

where for the non-strict inequality we used the monotonicity of Pσ and that

{η̂v(X̊v) ≥ k} ∩ {X̊v = X̊w} ⊆ {η̂w(X̊w) ≥ k}.

From this inequality, we infer that

sup
{

Pσ({η̂u(X̊u) ≥ k}) : u ∈ U[−n,n]∩T

}

≤ sup
{

Pσ({η̂u(X̊u) ≥ k}) : u ∈ UC

}

+ ǫ.

Since ǫ ∈ R>0 is arbitrary, and C ⊆ [−n, n] ∩ T , it follows that

sup
{

Pσ({η̂u(X̊u) ≥ k}) : u ∈ U[−n,n]∩T

}

= sup
{

Pσ({η̂u(X̊u) ≥ k}) : u ∈ UC

}

.

This is true for all k ∈ N, so we infer from Equation (9) that

lim
k→+∞

sup
{

Pσ({η̂u(X̊u) ≥ k}) : u ∈ U[−n,n]∩T

}

= 0.

Because the finite-dimensional distributions of Pσ are µ•, we conclude from this
that

lim
k→+∞

sup
{

µu({xu ∈ Xu : η̂u(xu) ≥ k}) : u ∈ U[−n,n]∩T

}

= 0,

which is exactly what (R2) demands.
Second, we prove the sufficiency: we assume that µ• is regular, and show that

the corresponding probability charge P is countably additive, or equivalently, that

for any sequence (Åi)i∈N in C̊ such that Åi ⊇ Åi+1 for all i ∈ N and
⋂

i∈N
Åi = ∅,

limi→+∞ P (Åi) = 0.

To prove this, we fix any such sequence (Åi)i∈N. By definition of C̊ , for all i ∈ N

there are some ui ∈ U and Ai ∈ ℘(Xui
) such that Åi = {X̊ui

∈ Ai}. Without
loss of generality, we may assume that ui ⊑ ui+1 – if this is not the case, add
the missing points to ui+1 to obtain u′i+1, and replace Ai+1 by A′

i+1 := {xu′

i+1
∈
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Xu′

i+1
: xui+1 ∈ Ai+1}. Then for all i ∈ N, {xui+1 ∈ Xui+1 : xui

∈ Ai} ⊇ Ai+1 since

(Åi)i∈N is decreasing.
To prove that the probability of these events converges to 0, we will rely on The-

orem 3. Since µ• is consistent, this result says that there is a (unique) probability

measure Ṗ on σ(Ċ ) such that

(10) Ṗ ({Ẋu ∈ A}) = µu(A) = P ({X̊u ∈ A}) for all u ∈ U , A ∈ ℘(Xu).

It follows from these equalities that

(11) lim
i→+∞

P (Åi) = lim
i→+∞

P ({X̊ui
∈ Ai}) = lim

i→+∞
Ṗ ({Ẋui

∈ Ai}).

Note that since ({X̊ui
∈ Ai})i∈N is decreasing, the same must hold for ({Ẋui

∈
Ai})i∈N.

Fix some countable subset D of T such that T ⊆ D ∪ rlims(D); this is always
possible due to Lemma 8. Then it follows from Eqn. (10) and (R1) that for all
t ∈ T ∩ rlims(T )

lim
T ∋rցt

Ṗ ({Ẋt = Ẋr}) = lim
T ∋rցt

µ(t,r)(X
2
=) = 1.

For the implication of Eqn. (10) and (R2), we fix some n ∈ N such that [−n, n]∩D 6=
∅. Recall from Lemma 17 that

Ṗ ({η[−n,n]∩D(Ẋ•) = +∞}) = lim
k→+∞

sup
{

Ṗ ({η̂u(Ẋu) ≥ k}) : u ∈ U[−n,n]∩D

}

.

It therefore follows from Eqns. (R2) and (10) that

0 = lim
k→+∞

sup
{

µu({xu ∈ Xu : η̂u(xu) ≥ k}) : u ∈ U[−n,n]∩T

}

≥ lim
k→+∞

sup
{

µu({xu ∈ Xu : η̂u(xu) ≥ k}) : u ∈ U[−n,n]∩D

}

= lim
k→+∞

sup
{

Ṗ ({η̂u(Ẋu) ≥ k}) : u ∈ U[−n,n]∩D

}

= Ṗ ({η[−n,n]∩D(Ẋ•) = +∞}) ≥ 0,

which implies that Ṗ ({η[−n,n]∩D(Ẋ•) = +∞}) = 0 and therefore, that

Ṗ ({η[−n,n]∩D(Ẋ•) < +∞}) = 1− Ṗ ({η[−n,n]∩D(Ẋ•) = +∞}) = 1.

Let Ȧ :=
⋂+∞

n=n⋆{η[−n,n]∩D(Ẋ•) < +∞}, where n⋆ is the smallest natural number

such that [−n, n] ∩ D 6= ∅. Since each of the events {η[−n,n]∩D(Ẋ•) < +∞} has

probability 1, so does their countable intersection Ȧ. Hence,

(12) lim
i→+∞

Ṗ ({Ẋui
∈ Ai}) = lim

i→+∞
Ṗ (Ȧ ∩ {Ẋui

∈ Ai}).

From Lemma 20, we know that for all i ∈ N there is a sequence (ui,ℓ)ℓ∈N in UD such
that (i) each of the ui,ℓ’s has the same number of time points as ui, (ii) if the j-th
component of ui is a right-sided limit point of D, then the j-th component of ui,ℓ
strictly decreases to it as ℓ recedes to +∞, and if the j-th component of ui is not
a right-sided limit point of D, the j-th component of ui,ℓ is equal to it, and (iii)

Ṗ (Ȧ ∩ {Ẋui
∈ Ai}) = lim

ℓ→+∞
Ṗ (Ȧ ∩ {Ẋui

∈ Ai} ∩ {Ẋui
= Ẋui,ℓ

}).

Since for all i, ℓ ∈ N,

Ȧ ∩ {Ẋui
∈ Ai} ∩ {Ẋui

= Ẋui,ℓ
} = Ȧ ∩ {Ẋui,ℓ

∈ Ai} ∩ {Ẋui
= Ẋui,ℓ

}

⊆ Ȧ ∩ {Ẋui,ℓ
∈ Ai},
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we infer from this that for all i ∈ N,

Ṗ (Ȧ ∩ {Ẋui
∈ Ai}) ≤ lim sup

ℓ→+∞
Ṗ (Ȧ ∩ {Ẋui,ℓ

∈ Ai}).(13)

For all i ∈ N and ω̇ ∈ Ȧ, it follows from the construction of (ui,ℓ)ℓ∈N and
– for the components of ui that are a right-sided limit point of D – Lemma 18
that limℓ→+∞ ω̇(ui,ℓ) exists (with the limit taken component-wise); from this and
Lemma 19, it follows that for all i ∈ N

Ȧi := {ω̇ ∈ Ȧ : lim
ℓ→+∞

ω̇(ui,ℓ) ∈ Ai} = lim
ℓ→+∞

Ȧ ∩ {Ẋui,ℓ
∈ Ai} ∈ σ(Ċ )

and

(14) Ṗ (Ȧi) = lim
ℓ→+∞

Ṗ (Ȧ ∩ {Ẋui,ℓ
∈ Ai}) = lim sup

ℓ→+∞
Ṗ (Ȧ ∩ {Ẋui,ℓ

∈ Ai}).

We now establish two properties of these sets Ai.
The first property is that (Ȧi)i∈N is a decreasing sequence. To prove this, we

consider any i ∈ N and set out to show that Ȧi+1 ⊆ Ȧi, or equivalently, that any

ω̇ in Ȧi+1 belongs to Ȧi as well. So consider any ω̇ ∈ Ȧi+1. Then ω̇ ∈ Ȧ and
limℓ→+∞ ω̇(ui+1,ℓ) ∈ Ai+1 ⊆ {xui+1 ∈ Xui+1 : xui

∈ Ai}. So there is some xui
∈ Ai

such that, for each t ∈ ui, the corresponding component of limℓ→+∞ ω̇(ui+1,ℓ) is
equal to xt. Furthermore, if t is a right-sided limit point of D, then the corre-
sponding components of limℓ→+∞ ω̇(ui+1,ℓ) and limℓ→+∞ ω̇(ui,ℓ) are equal because
limD∋rցt ω̇(r) exists due to Lemma 18, and if t is not a right-sided limit point of
D, then the corresponding components of limℓ→+∞ ω̇(ui+1,ℓ) and limℓ→+∞ ω̇(ui,ℓ)
are equal because they are both equal to ω̇(t). In all cases, we conclude that for
each t ∈ ui, the corresponding component of limℓ→+∞ ω̇(ui,ℓ) is equal to xt. So

limℓ→+∞ ω̇(ui,ℓ) = xui
∈ Ai and therefore, since ω̇ ∈ Ȧ, we see that ω̇ ∈ Ȧi, as

required.
The second property is that

⋂

i∈N
Ȧi = ∅. To see why this is true, assume ex

absurdo that
⋂

i∈N
Ȧi 6= ∅. Then there is some ω̇ ∈ Ȧ such that for all i ∈ N,

limℓ→+∞ ω̇(ui,ℓ) ∈ Ai. By Lemma 18, there is some ω̊ ∈ Ω̊ such that for all i ∈ N,
ω̊(ui) = limℓ→+∞ ω̇(ui,ℓ) ∈ Ai; for the components t of ui that are right-sided limit
points of D, the equality in this statement follows because ω̊(t) = limD∋rցt ω̇(r),
and for the components t of ui that are not right-sided limit points of D, this follows
because ω̊(t) = ω̇(t) and because the corresponding components of ui,ℓ are all equal

to t. But then ω̊ ∈
⋂

i∈N
{X̊ui

∈ Ai} =
⋂

i∈N
Åi, which is a contradiction because

⋂

i∈N
Åi = ∅.

Since Ṗ is a probability measure – and therefore definitely continuous for de-
creasing sequences – it follows from these two properties that

(15) lim
i→+∞

Ṗ (Ȧi) = Ṗ (∅) = 0.

Finally, it follows from Eqns. (11) to (15) – and the non-negativity of P – that

0 ≤ lim
i→+∞

P (Åi) = lim
i→+∞

Ṗ ({Ẋui
∈ Ai})

= lim
i→+∞

Ṗ (Ȧ ∩ {Ẋui
∈ Ai})

≤ lim sup
ℓ→+∞

Ṗ (Ȧ ∩ {Ẋui,ℓ
∈ Ai}) = lim

i→+∞
Ṗ (Ȧi) = 0.

So we find that limi→+∞ P (Åi), which finalises our proof of the sufficiency. �



COUNTABLE-STATE STOCHASTIC PROCESSES WITH CÀDLÀG SAMPLE PATHS 29

Appendix D. Conditions for regularity

The two regularity conditions (R1) and (R2) are perhaps not the most easy to
check. We have already given a simpler sufficient condition in Proposition 12 in
the main text. In this appendix, we give two alternative sufficient conditions in the
special case that T ∩ [−n, n] is closed for all n ∈ N. These only involve the finite-
dimensional distributions for two time points, and can be interpreted as bounding
the dynamics of the stochastic process.

Proposition 21. Suppose that T ∩ [−n, n] is closed for all n ∈ N. Consider a
consistent collection µ• of finite-dimensional distributions. If for all n ∈ N there is
some λn ∈ R≥0 such that

(∀t ∈ T ∩ [−n, n])(∀ǫ ∈ R>0)(∃δ ∈ R>0)(∀s, r ∈ T ∩ ]t− δ, t+ δ[ : s < r)

µ(s,r)(X
2
6=)

r − s
< λn + ǫ,

then µ• is regular.

In our proof, we will lean on the following two intermediary results, which will
come in handy in our proof for Proposition 24 further on as well. The first one is
an immediate consequence of the Heine-Borel Theorem.

Lemma 22. Consider a closed and bounded subset S of T . For all s ∈ S, fix some
positive real number δs. Then there is a tuple of time points (s1, . . . , sm) ∈ US such
that, with ∆ℓ := δsℓ for all ℓ ∈ {1, . . . ,m},

(i) S ⊆
⋃m

ℓ=1]sℓ −∆ℓ, sℓ +∆ℓ[; and
(ii) si −∆i < sj −∆j and si +∆i < sj +∆j for all i, j ∈ {1, . . . ,m} such that

i < j.

Hence, for any sequence u = (t1, . . . , tn) ∈ US with n ≥ 2,

(16)
∣

∣

{

k ∈ {2, . . . , n} : (6 ∃ℓ ∈ {1, . . . ,m}) {tk−1, tk} ⊆ ]sℓ −∆ℓ, sℓ +∆ℓ[
}∣

∣ < m.

If furthermore S is convex, then

(17) sℓ−1 +∆ℓ−1 > sℓ −∆ℓ for all ℓ ∈ {2, . . . ,m}.

Proof. Statements (i) and (ii) and Eqn. (17) essentially follow from an argument
in [20, Proof of Lemma F.1], which we modify to our slightly different context. For
all s ∈ S, we let Cs := ]s − δs, s + δs[. Note that (Cs)s∈S is an open cover of
the bounded and closed set S. By the Heine-Borel Theorem, this open cover has
a finite subcover: Cs1 , . . . , Csm . Without loss of generality, we may assume that
s1 < · · · < sm and that this subcover is minimal, in the sense that removing one
of its elements has as a consequence that we no longer have a subcover of S any
more. This proves (i).

Our proof for (ii) is one by contradiction. Assume ex absurdo that there are
indices i, j ∈ {1, . . . ,m} such that i < j and either si −∆i ≥ sj −∆j or si +∆i ≥
sj + ∆j . Let us start with the first case. Since i < j by assumption, it follows
that si < sj , and therefore, since si − ∆i ≥ sj − ∆j by assumption, that ∆j ≥
sj − si+∆i > ∆i. From this, it follows that si+∆i < si+∆j < sj +∆j , where for
the second inequality we again used that si < sj . Hence, Csi = ]si −∆i, si+∆i[ ⊆
]sj−∆j , sj+∆j [ = Csj , but this is a contradiction because Cs1 , . . .Csm is minimal.
For the second case that i < j and si +∆i ≥ sj +∆j , a similar argument leads to
a contradiction as well.

Next, we fix any u = (t1, . . . , tn) ∈ US with n ≥ 2, and set out to prove Eqn. (16).
For all k ∈ {1, . . . , n}, the time point tk belongs to S, so it follows from (i) that the
index set

Lk :=
{

ℓ ∈ {1, . . . ,m} : tk ∈ Csℓ

}
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is non-empty and finite. Furthermore, for all k ∈ {1, . . . , n},

(18) Lk = {ℓ ∈ N : minLk ≤ ℓ ≤ maxLk}.

Indeed, if this were not the case, there would be indices i, ℓ, j ∈ {1, . . . ,m} such that
i < ℓ < j, tk ∈ Csi ∩ Csj and tk /∈ Csℓ . Then either tk ≤ sℓ −∆ℓ or tk ≥ sℓ +∆ℓ,
but by (ii) this implies that tk < sj − ∆j – so tk /∈ Csj – or tk > si + ∆i – so
tk /∈ Csi – which is a contradiction because tk ∈ Csi ∩ Csj by assumption. Finally,
for all indices k1, k2 ∈ {1, . . . , n} such that k1 < k2,

(19) minLk1 ≤ minLk2 and maxLk1 ≤ maxLk2 ;

again, this follows more or less immediately from (ii). Indeed, assume ex absurdo
that j := minLk1 > minLk2 =: i. Then tk1 ∈ ]sj − ∆j , sj + ∆j [ and tk1 /∈
]si−∆i, si+∆i[ ∋ tk2 , and by (ii), si−∆i < sj−∆j. Hence, either (i) tk1 ≤ si−∆i

and therefore tk1 < sj −∆j < tk1 , or (ii) tk1 ≥ si +∆i and therefore tk1 > tk2 ; in
both cases, we end up with a clear contradiction. A similar argument shows that
maxLk1 ≤ maxLk2 .

To prove Eqn. (16), we observe that, by Eqns. (18) and (19),
{

k ∈ {2, . . . , n} : (6 ∃ℓ ∈ {1, . . . ,m}) {tk−1, tk} ⊆ ]sℓ −∆ℓ, sℓ +∆ℓ[
}

=
{

k ∈ {2, . . . , n} : maxLk−1 < minLk

}

⊆
{

k ∈ {2, . . . , n} : maxLk−1 < maxLk

}

.

Since 1 ≤ maxL1 ≤ · · · ≤ maxLn ≤ m by Eqn. (19), we infer from this that
∣

∣

{

k ∈ {2, . . . , n} : (6 ∃ℓ ∈ {1, . . . ,m}) {tk−1, tk} ⊆ ]sℓ −∆ℓ, sℓ +∆ℓ[
}∣

∣ ≤ m− 1,

as required.
Finally, we prove the final part of the statement, so we assume that S is convex.

Assume ex absurdo that there is an index ℓ⋆ ∈ {2, . . . ,m} such that

sℓ⋆−1 +∆ℓ⋆−1 < sℓ⋆ −∆ℓ⋆ .

Fix any t ∈ ]sℓ⋆−1 +∆ℓ⋆−1, sℓ⋆ −∆ℓ⋆ [. Note that S includes [sℓ⋆−1, sℓ⋆ ] since S is
closed and convex, so t belongs to S. However, it follows from (ii) that si + ∆i ≤
sℓ⋆−1−∆ℓ⋆−1 for all i ∈ {1, . . . , ℓ⋆−1} and sℓ⋆−∆ℓ⋆ ≤ sj−∆j for all j ∈ {ℓ⋆, . . . ,m}.
From this, we infer that t does not belong to

⋃m
ℓ=1 Csℓ , which is a contradiction

because Cs1 , . . . , Csm is a cover of S. �

The second one is an obvious observation about the expected number of jumps.

Lemma 23. Consider a consistent collection µ• of finite-dimensional charges.
Then for all u, v ∈ U such that u ⊑ v,

Eµu
(η̂u) ≤ Eµv

(η̂v).

Proof. Let us enumerate the time points in u as (r1, . . . , rn) and in v as (s1, . . . , sm).
It follows from Eqn. (4) and the consistency of µ• that

Eµu
(η̂u) =

n
∑

k=2

µu({xu ∈ Xu : xrk−1
6= xrk}) =

n
∑

k=2

µv({yv ∈ Xv : yrk−1
6= yrk}).

Let ℓ1, . . . , ℓn be as defined in the proof of Lemma 16. Then as explained there, for
all k ∈ {2, . . . , n},

{yv ∈ Xv : yrk−1
6= yrk} ⊆

ℓk
⋃

ℓ=ℓk−1+1

{yv ∈ Xv : ysℓ−1
6= ysℓ}.
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Together with the (sub-)additivity of µv, this implies that

Eµu
(η̂u) ≤

n
∑

k=2

ℓk
∑

ℓ=ℓk−1+1

µv({yv ∈ Xv : ysℓ−1
6= ysℓ})

≤

m
∑

ℓ=2

µv({yv ∈ Xv : ysℓ−1
6= ysℓ}).

The inequality in the statement follows immediately due to Eqn. (4). �

Proof of Proposition 21. To verify (R1), we fix any t ∈ T ∩ rlims(T ) and ǫ ∈ R>0.
Fix any n ∈ N such that |t| < n. Then by the condition in the statement, there is
some δ′ ∈ R>0 such that for all r ∈ T ∩ ]t, t+ δ′[

µ(t,r)

(

X 2
6=

)

< (r − t)(λn + ǫ).

Let δ := min{δ′, ǫ/(λn + ǫ)}. Then for all r ∈ T ∩ ]t, t+ δ[

µ(t,r)

(

X 2
=

)

= 1− µ(t,r)

(

X 2
6=

)

> 1− (r − t)(λn + ǫ)

≥ 1− δ(λn + ǫ) ≥ 1− ǫ.

Since ǫ was an arbitrary strictly positive real number, we conclude that limT ∋rցt µ(t,r)

(

X 2
=

)

=
1, as required.

To verify (R2), we fix any n ∈ N such that [−n, n]∩T 6= ∅. Furthermore, we fix
any ǫ ∈ R>0. Then by the condition in the statement, for all t ∈ T ∩ [−n, n] there
is some δt ∈ R>0 such that

(20)
(

∀s, r ∈ T ∩ ]t− δt, t+ δt[ : s < r
)

µ(s,r)(X
2
6=) < (r − s)(λn + ǫ).

Because T ∩ [−n, n] is closed by assumption and clearly bounded, it follows from
Lemma 22 that there is some tuple of time points (s1, . . . , sm) ∈ U[−n,n]∩T such
that

(21) T ∩ [−n, n] ⊆

m
⋃

ℓ=1

]sℓ − δsℓ , sℓ + δsℓ [

and, for all u = (t1, . . . , tk) ∈ U[−n,n]∩T with k ≥ 2,

(22)
∣

∣

{

i ∈ {2, . . . , k} : (6 ∃ℓ ∈ {1, . . . ,m}) {ti−1, ti} ⊆ ]sℓ − δsℓ , sℓ + δsℓ [
}∣

∣ < m.

Fix any grid u = (t1, . . . , tk) ∈ U[−n,n]∩T , and recall from Eqn. (5) that

Eµu
(η̂u) =

k
∑

i=2

µ(ti−1,ti)

(

X 2
6=

)

.

Let us split the index set {2, . . . , k} into two parts:

I1 :=
{

i ∈ {2, . . . , k} : (∃ℓ ∈ {1, . . . ,m}) {ti−1, ti} ⊆ ]sℓ − δsℓ , sℓ + δsℓ [
}

and I2 := {2, . . . , k} \ I2.
On the one hand, it follows from Eqn. (20) that for all i ∈ I1,

µ(ti−1,ti)

(

X 2
6=

)

< (ti − ti−1)(λn + ǫ).

On the other hand, we know from Eqn. (22) that there are at most m − 1 indices
in I2, and for these indices i clearly

µ(ti−1,ti)

(

X 2
6=

)

≤ 1 < (ti − ti−1)(λn + ǫ) + 1.
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Thus, we find that

Eµu
(η̂u) =

k
∑

i=2

µ(ti−1,ti)

(

X 2
6=

)

=
∑

i∈I1

µ(ti−1,ti)

(

X 2
6=

)

+
∑

i∈I2

µ(ti−1,ti)

(

X 2
6=

)

≤ m− 1 +

k
∑

i=2

(ti − ti−1)(λn + ǫ)

≤ m− 1 + (tk − t1)(λn + ǫ).

This inequality holds for all u = (t1, . . . , tk) ∈ U[−n,n]∩T – so with −n ≤ t1 ≤ tk ≤ n
– and therefore

sup
{

Eµu
(η̂u) : u ∈ U[−n,n]∩T

}

≤ m− 1 + 2n(λn + ǫ) < +∞.

A similar argument as the one in the second part of the proof of Proposition 12
shows that this implies (R2). �

For the third sufficient condition, we assume that for all n ∈ N, T ∩ [−n, n] is
some finite union of intervals – bounded, closed and convex subsets of T – and we
impose a condition on the limit superior of the rate of change of the probability
of changing states. The argument in the second part of our proof generalises the
proof of Lemma 5.49 in [12].

Proposition 24. Suppose that for all n ∈ N such that T ∩ [−n, n] 6= ∅, there
are time points sn,1 ≤ rn,1 < · · · < sn,mn

≤ rn,mn
such that T ∩ [−n, n] =

⋃mn

k=1[sn,k, rn,k]. Consider a consistent collection µ• of finite-dimensional distri-
butions. If for all n ∈ N such that T ∩ [−n, n] 6= ∅ there is some λn ∈ R≥0 such
that for all k ∈ {1, . . . ,mn},

lim sup
rցt

µ(t,r)

(

X 2
6=

)

r − t
≤ λn for all t ∈ [sn,k, rn,k[

and

lim sup
sրt

µ(s,t)

(

X 2
6=

)

t− s
≤ λn for all t ∈ ]sn,k, rn,k],

then µ• is regular.

Proof. The proof for (R1) is almost exactly the same as the one in our proof for
Proposition 21, although it does become a bit simpler. Fix any t ∈ T ∩rlims(T ) and
some n ∈ N such that |t| < n. Then it follows from the condition in the statement
that there are time points s⋆, r⋆ ∈ T and a non-negative real number λn ∈ R≥0

such that t ∈ [s⋆, r⋆[ ⊆ T and

lim sup
rցt

µ(t,r)

(

X 2
6=

)

r − t
≤ λn.

Clearly, this can only be the case if limrցt µ(t,r)

(

X 2
6=

)

= 0. Since µ(t,r)

(

X 2
=

)

=

1− µ(t,r)

(

X 2
6=

)

for all r ∈ ]t, r⋆], we infer from this that

lim
rցt

µ(t,r)

(

X 2
=

)

= lim
rցt

1− µ(t,r)

(

X 2
6=

)

= 1,

as required.
To verify (R2), we fix any n ∈ N such that [−n, n] ∩ T 6= ∅. Then by the

conditions in the statement there are time points sn,1 ≤ rn,1 < · · · < sn,mn
≤
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rn,mn
∈ T such that [−n, n] ∩ T =

⋃mn

k=1[sn,k, rn,k]. Let u = (t1, . . . , tm) be an
arbitrary tuple of time points in U[−n,n]∩T , and recall from Eqn. (5) that

µu(η̂u) =

m
∑

ℓ=2

µ(tℓ−1,tℓ)(X
2
6=).

For all ℓ ∈ {1, . . . ,m}, there is a unique index kℓ ∈ {1, . . . ,mn} such that tℓ ∈
[sn,kℓ

, rn,kℓ
]. It is obvious that k1 ≤ · · · ≤ km because t1 < · · · < tm, so the index

set

L1 :=
{

ℓ ∈ {2, . . . ,m} : kℓ−1 < kℓ
}

contains at most mn − 1 indices. For these mn − 1 indices ℓ ∈ L1, the most we can
say is that

µ(tℓ−1,tℓ)(X
2
6=) ≤ 1.

However, we can say more for those indices ℓ for which tℓ−1 and tℓ belong to the
same interval [sn,k, rn,k]; that is, for those indices in the index set

L2 := {2, . . . ,m} \ L1 =
{

ℓ ∈ {2, . . . ,m} : kℓ−1 = kℓ
}

.

To ease our notation, we fix two time points s, r ∈ T such that s < r and
[s, r] ⊆ [sn,k, rn,k] for some k ∈ {1, . . . ,mn}. We set out to show that

(23) µ(s,r)(X
2
6=) ≤ (r − s)λn.

To this end, we recall from Eqn. (5) that

(24) µ(s,r)(X
2
6=) = Eµ(s,r)

(η̂(s,r)).

By the assumptions in the statement, there is some λn ∈ R≥0 such that for all
t ∈ [s, r] and ǫ ∈ R>0, there are positive real numbers δ+t , δ

−
t ∈ R>0 such that

(

∀r′ ∈ [s, r] ∩ ]t, t+ δ+t [
) µ(t,r′)(X

2
6=)

r′ − t
< λn + ǫ(25)

and

(

∀s′ ∈ [s, r] ∩ ]t− δ−t , t[
) µ(s′,t)(X

2
6=)

t− s′
< λn + ǫ.(26)

Fix any ǫ ∈ R>0, and for all t ∈ [s, r], let δt := min{δ+t , δ
−
t }. Since [s, r] is clearly

a closed, bounded and convex subset of T , it follows from Lemma 22 that there
is a tuple of time points (s1, . . . , sp) ∈ U[s,r] such that, with ∆i := δsi for all
i ∈ {1, . . . , p},

(1) [s, r] ⊆
⋃p

i=1]si −∆i, si +∆i[,
(2) si −∆i < sj −∆j and si +∆i < sj +∆j for all i, j ∈ {1, . . . , p} such that

i < j, and
(3) si−1 +∆i−1 > si −∆i for all i ∈ {2, . . . , p}.

Let v = (r1, . . . , rq) ∈ U[s,r] be a tuple of time points that (i) starts in r1 = s,
(ii) ends in rq = r, (iii) contains all the time points s1, . . . , sp, and (iv) for all
i ∈ {2, . . . , p}, contains one time point in ]si−1, si[ ∩ ]si −∆i, si−1 +∆i−1[ – to see
that this intersection is non-empty, recall the three properties above. Note that
q = 2p+ 1 if s < s1 and sp < r, q = 2p if either s = s1 or sp = r, and q = 2p− 1
if s = s1 and sp = r. Then by construction (s, r) ⊑ v and, due to Eqns. (25) and
(26),

µ(ri−1,ri)(X
2
6=) < (ri − ri−1)(λn + ǫ) for all i ∈ {2, . . . , q}.

From this and Eqn. (5), we infer that

Eµv
(η̂v) =

q
∑

i=2

µ(ri−1,ri)(X
2
6=) <

q
∑

i=2

(ri − ri−1)(λn + ǫ) = (r − s)(λn + ǫ).
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From this, Eqn. (24) and Lemma 23, it now follows that

µ(s,r)(X
2
6=) = Eµ(s,r)

(η̂(s,r)) ≤ Eµv
(η̂v) < (r − s)(λn + ǫ).

Since this inequality holds for arbitrary ǫ ∈ R>0, we have proven Eqn. (23).
Let us return to where we were before. Due to Eqn. (23), we know that for all

ℓ ∈ L2,
µ(tℓ−1,tℓ)(X

2
6=) ≤ (tℓ − tℓ−1)λn.

For this reason, and because µ(tℓ−1,tℓ)(X
2
6=) ≤ 1 for all ℓ ∈ L1 = {2, . . . ,m} \ L2,

µu(η̂u) =

m
∑

ℓ=2

µ(tℓ−1,tℓ)(X
2
6=)

=
∑

ℓ∈L1

µ(tℓ−1,tℓ)(X
2
6=) +

∑

ℓ∈L2

µ(tℓ−1,tℓ)(X
2
6=)

≤
∑

ℓ∈L1

1 +
∑

ℓ∈L2

(tℓ − tℓ−1)λn

≤ mn − 1 + (tm − t1)λn

≤ mn − 1 + 2nλn,

where for the second inequality we used that |L1| ≤ mn−1 and for the final inequal-
ity we used that u ∈ U[−n,n]∩T . This inequality holds for any u = (t1, . . . , tm) ∈
U[−n,n]∩T , so we conclude that

sup
{

Eµu
(η̂u) : u ∈ U[−n,n]∩T

}

≤ mn − 1 + 2nλn < +∞.

Here too, (R2) follows from the same argument as that in the second part of the
proof of Proposition 12. �
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