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COUNTABLE ULTRAHOMOGENEOUS UNDIRECTED GRAPHS1'2
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A. H. LACHLAN3 AND ROBERT E. WOODROW

Abstract. Let G = (V0, £c> be an undirected graph. The complementary graph
G is <KC, £ö> where (K„ V¿ e Eô iff Vx + V2 and (K„ V¿ C EG. Let K(n) be
the complete undirected graph on n vertices and let £ be the graph

i.e. <{a, b, c), {(b, c), (c, b)}}. G is ultrahomogeneous just in case every isomor-
phism of subgraph of smaller cardinality can be lifted to an automorphism of G.
Let <3) = [K(n): n e u} u {E, É} u (K(n): n e <o}. Theorem: Le7 G„ G2 ¿>e fwo
countable (infinite) ultrahomogeneous graphs such that for each H S <9 H can be
embedded in G, just in case it can be embedded in G2. Then Gx a¡ G2. Corollary:
There are a countable number of countable ultrahomogeneous (undirected) graphs.

0. Introduction and preliminaries. A graph G is a pair <|G|, Ec) where \G\is the
underlying or vertex set and EG is a binary relation on | G | called the edge set. A
graph G is undirected just in case EG is symmetric and irreflexive. Where no
confusion is likely to arise we make no distinction between G and | G |. If X is a set
by | X | we denote the cardinality of X. Countable means countable and infinite.
Thus the cardinality of a graph G is \\G\\, which we write simply \G\. We say H isa.
subgraph of G, written H C G if \H\ c |G| and EH = (\H\ X \H\) n EG. G is
ultrahomogeneous just in case each isomorphism /: H -+ K of subgraphs H, K oi G
with |i/| < |C7| extends to an automorphism g: G ^> G (f <z g). This is the notion
discussed by Gardiner in [G] where he characterizes the finite undirected ultraho-
mogeneous graphs.

Ultrahomogeneous relational structures were introduced by Fraissé [F] where
they are called simply homogeneous structures. Henson showed in [HI] that there
are 2K° countable asymmetric homogeneous graphs and introduced the class of
countable homogeneous undirected graphs; in [H2] he explores further the proper-
ties of these structures. Schmerl [S] has shown that there are a countable number of
countable homogeneous partial orderings. Peretyiatkin [P] has also considered
homogeneous structures and shows (independently) the existence of 2"° homoge-
neous directed graphs.
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512 A. H. LACHLAN AND R. E. WOODROW

We came upon this problem via the work of Gardiner. He uses "homogeneous
graph" in a different sense than Fraissé and others. In [G] a graph is homogeneous
provided that whenever Hx, H2 are isomorphic subgraphs of smaller cardinality
there is some automorphism which carries Hx onto H2. Because "ultrahomoge-
neous" has been used in only the one sense we adopt its use.

Throughout the rest of the paper we shall be solely concerned with undirected
graphs. Let K(n) be the complete graph with n vertices for n > 1. In [Wl]
Woodrow described those countable ultrahomogeneous graphs in which the trian-
gle K(3) cannot be embedded, and conjectured that there are only finitely many
countable ultrahomogeneous graphs in which K(4) cannot be embedded. In [W2]
he conjectured that for each n there are a finite number of countable ultrahomoge-
neous graphs in which K(n) cannot be embedded. In this paper a new approach by
the first author allows the methods of [Wl] to be extended to characterize all the
countable ultrahomogeneous graphs, thus verifying the conjectures just mentioned.
We shall use certain of the results of [Wl] which we now list.

Let 2 be a class of graphs. We say that 2 has the amalgamation property (AP)
just in case whenever A, B0, Bx G'S., and /0: A -» 50, /,: A —* Bx are embeddings
then there is C e 2 and there are embeddings g0: B0^> C, gx: Bx^> C such that
g0 o /0 = g, » /,. If G is a graph then 2(G) is the class of finite graphs which can be
embedded in G.

Lemma A. Let G be ultrahomogeneous and infinite. Then 2(G) has AP.

Lemma B. Let 2 be a class of finite graphs closed under isomorphism and
substructure. Assume that 2 has AP and that 2 contains arbitrarily large finite
graphs. Then there is a countable ultrahomogeneous graph G with 2(G) = 2.

Lemma C. Let G, H be countable ultrahomogeneous graphs, then 2(G) = 2(//) iff
G=sH.

The class 2(n) of finite graphs in which K(n + 1) cannot be embedded has AP
and thus there is for each n > 1 a countable ultrahomogeneous graph G(n) with
2(G(«)) = 2(„).

1. Reduction of the main theorem. Let K(n) be the complete graph with n vertices.
If G and H are graphs let G + H denote the graph obtained by taking the disjoint
union of G, H, i.e., G + H m <|G'| U \H'\, EG. u EH,} where G s G', H =t H'
and |G'| n \H'\ = 0. If G is a graph then the complementary graph G is the graph
<|G|, EGy where EG = (\G\ X |G|)\(£G U {(a, a): a G \G\}). nG denotes the
disjoint union of n copies of G. Now let E be the graph K(2) + K(l). Let

<$ = {K(n): 1 < n G u} u {E, Ê} u {K(n): 1 < n G u}.

Our main theorem can then be stated.

Theorem 1. Let Gx, G2 be two countable ultrahomogeneous graphs such that for
each H G ty, H can be embedded in G, just in case it can be embedded in G2. Then
G, « G2. Noticing that K(m) can be embedded in K(n), and K(m) in K(n) when
m < n we immediately have the following:
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COUNTABLE ULTRAHOMOGENEOUS UNDIRECTED GRAPHS 53

Corollary. There are a countable number of countable ultrahomogeneous graphs.

If Gx, G2 are such that 2(G,) n <% = ¿.(GJ n <$ and E <2 2(G,) or É £ 2(G,)
it is not difficult to see that Gx ss G2. Let m < u be the supremum of {«:
^(h) G 2(G,)} and let m be the supremum of {n: K(n) G 2(G,)}. If E g 2(G,) we
have that G,, G2 are isomorphic to mK(m), and if £ £ 2(G,) we see that G„ G2 are
isomorphic to ñiK(m). Thus we may assume that E, E can both be embedded in Gx
and G2. By an easy application of Ramsey's theorem we see that with m, m defined
as above at least one of m and m is u. Because Gx, G2 are ultrahomogeneous
whenever G„ G2 are, and 2(G,) n <$> = 2(G2) n <$ iff 2(G,) n <% = ^(GJ n <$
there is no loss of generality in assuming that m = u. By Lemma A 2(G,) and
2(G2) have the amalgamation property. By Lemma C it suffices to prove that
2(G[) = 2(G2). This will follow easily from the next theorem, the proof of which
occupies the remainder of the paper.

Theorem 2'. Let 2 be a class of finite graphs having the amalgamation property,
and closed under isomorphism and subgraph. Assume that E, E, K(m) and K(ri) G 2
for each 1 < n < u. Then every graph in which K(m + 1) cannot be embedded
belongs to 2.

Thus if m = w, 2(G,) and 2(G2) are the class of all finite graphs and if m < u
we have that G,, G2 are isomorphic to G(m).

2. Derivations and Theorem 2. To prove Theorem 2' we use the notion of a
derivation.

Definition 1. Fix m > 2. We shall define what it means for an «-tuple of finite
graphs <G[, . . . , G„> to have a derivation from {E, E, K(m)} u {K(n): 1 < n <
u}. Let §o(m) = {<£>,<£>, (K(m)}} u {<K(n)}: 1 < n < co) and if §r(m) has
been defined let §r+x(m) be the class of finite sequences of finite graphs
<Gj, . . . , G„> such that there are <//,, . . . , H,}, </„ . . . ,Jk} G §r(m) with the
property that for each i, 1 < i < I, and j, 1 < J < k, there is A, and there are
embeddings e0: A —» H¡ and ex: A -+ Jj such that whenever /0: Hi -» C and /,:
Jj -* C are embeddings with /0 » e0 = fx ° ex there is an s, 1 < s < n, and an
embedding g: Gs -* C.

A tuple of graphs <G(, . . . , G„> is derivable from the given generating set if it
belongs to §r(m) for some r < u, and in this case we write \~mGx V • ■ ■ VG„. A
graph H is derivable if it belongs to the set §(m) = {G: <G> G U r<Möf(/n)},
and we write Vm G.

By induction on derivation we mean an induction on the hierarchy @r(m).

Proposition. If 2 has AP, is closed under isomorphism and subgraph and
E, Ê, K(m), K(n) G 2 for 1 < n < u then § (m) c 2.

The proof of the Proposition is a trivial induction on derivation: we prove by
induction on r that if <G,, . . . , G„> G §r(m) then for some j, 1 < j < n, Gj: G 2.
D

Clearly @(m) c 2(w), since 2(w) has AP. To prove Theorem 2' we shall
establish:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



54 A. H. LACHLAN AND R. E. WOODROW

Theorem 2. For m > 2, 2(/n) c § (m).

This proof is by induction on m, and is the subject of the remaining sections.
We complete this section with a digression showing that from quite general

considerations it follows that §(m) is the class of all finite graphs which can be
embedded in any ultrahomogeneous graph in which E, E, K(m), K(n) can be
embedded for 1 < n < u. Let L be a first order language and let G be a class of
structures for L closed under isomorphism and substructures. G is said to have the

joint embedding property JEP if for each A0, Ax G G there is B G Q and there are
embeddings e0: A0^> B and ex : Ax^> B. The definition of AP is just as it was for
graphs. Below we find it convenient to regard joint embedding as merely amalga-
mation over an empty structure. Let G have AP and JEP and be such that
whenever A, B0, Bx G G and e0, ex are embeddings with e0: A —> B0, ex: A -> Bx
there are Cx, . . . , Ck G G and embeddings f¿, /{, /¿: 50-» C¡, /{: Bx -» C, with
So ° e0 = Si ° ex for 1 < í < k such that whenever C G G and/,,,/, are embeddings
/„: B0 -> C and /, : Bx^> C and f0 ° e0 = fx ° ex there is an i, 1 < i < k, and an
embedding /: C, -> C with / ° /¿ = /„ and / ° /{ = /,. We call <C„ . . ., Ck) an
amalgamation sequence for B0, Bx over A, e0, ex.

When ^ is a subclass of G we may define what it means for a truple of members
of G to be derivable from ^ in a manner analogous to that used for graphs. If
<C,.C„> is derivable from <$ we write <$> h C, V • • • VC„ and we let 6Í'
denote {C G G: ty r- C}. We then have the following extension of the Proposition.

Lemma D. tf) ' is the intersection of all subclasses of G which contain ty, have AP,
JEP and are closed under isomorphism and substructure.

Proof. That <>¡) ' is a subclass of any subclass of G with AP, JEP  and closed
under isomorphism and substructures is clear by induction on derivation as before.
For the rest we show that if F G G \ ty ' then there exists S c G having AP,
JEP, closed under isomorphism and substructures such that F £ S.

Let Go be a set containing at least one member of each isomorphism type of G,
and without loss take ^ c Gq.

Let / be the smallest set containing {{D}: D G 6\)} and such that ii y, 8 G I,
A G Gg, and e0, ex are embeddings of A into members of Gq then <v, 8, A, eç,
exy G 1.1 is an index set for the construction of S. Fix a well ordering < of / such
that y, 8 are less than <y, 8, A, e0, ex}. Next choose by recursion a mapping c:
I ^ Gg such that

(i)c({D})= DîotD G <*D,
(ii) F is not derivable from ty u {c(y): y < i} for t G /, and
(iii) if t. = <y, 8, A, e0, ex/, c(y) = B0, c(8) = Bx and e0: A —* B0 and ex: A -> Bx

are embeddings then i is the index of a member of Gq which amalgamates 2?0, Bx
over A, e0, ex.

The recursion is possible provided that if D0, Dx G ty, A G G and e0: A -» D0,
ex: A -» Dx are embeddings then there are C G G and embeddings/,: D0-+ C,/,:
£>, -> C such that/0 » e0 =/, ° e, and F cannot be derived from <$ u { C}.
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Let <C,, . . ., Cky be an amalgamation sequence for D0, Dx over A, Cq, e,. Now
3D \- C, V • • • VQ.

The following claim gives the result.
Claim. If 3D h 5, V • • • V^n and 3D u {5,} h G, V • • • VG*. Then 3D h G,

V... VGtVÄ2V...VB,.
This claim is easily proved by induction on the derivation of <G,, . . ., Gk/ from

3D U {*,}.
Now if 3D u {C,} h F for 1 < i < k then since 3D h C, V • ■ • VQ we have by A:

apphcations of the claim that 3D r- F, a contradiction. Taking S to be the class of
all C G 6 embeddable in some C(i), t G /, the proof of Lemma D is complete.

In the case of graphs with 3D = {E, E, K(m)} u {^(«): I < n < u} any class
including 3D and having AP automatically has JEP. From Lemmas A, B, a class of
finite graphs including 3D, closed under isomorphism, substructures, and having
AP is necessarily the class of all finite graphs embeddable in some countable
ultrahomogeneous graph. Thus as claimed at the beginning of the digression from
Lemma D, § (m) is the class of all finite graphs embeddable in every ultrahomoge-
neous graph in which all members of 3D are embeddable.

3. Outline of the proof. In this section we list six lemmas from which Theorem 2
will follow. To state these we first require two definitions.

Definition 2. Let G, H be graphs, a G \G\, b G \H\. Then [(G, a), (H, b)] is the
graph obtained from G + H by identifying the copies of a, b. Thus if G, H are
copies of K2, a G \G\ and b G \H\ then [(G, a), (H, b)] is isomorphic to E.

Definition 3. Let G, H be graphs. For each a G \G\ let Ha be the graph with
universe {(a, b): b G \H\} and with an edge between (a, bx) and (a, b^ iff
(bx, b2) G EH. The graph G ® H is then the graph with universe |G| u
Uaeicil^l and with

eg®h = egU   U    e„ U {(a,(a,b)):bG\H\,aG\G\}
ae\G\

U {((a,b),a):bG\H\, a G \G\}.

That is, a copy of H is suspended from each vertex of G, and there is an edge
between a G \G\, and each vertex of the copy Ha suspended from a.

Definition 4. Let n > 2. Let § *(m) be the class of all graphs H such that for
every G G §(m), a G \G\, b G \H\ the graph [(G, a), (H, b)] G §(m).

Taking G = K(l) we see at once that §*(m) c @(m). As will be made clear
below the whole trick is to show that in fact 2(w) c S *(m).

Let L(n) denote a line with (n — 1) edges and n vertices. Thus E = L(3).
Theorem 2 is proved by induction, and thus we assume that if 2 < m! < m then

2(w') c S (m'). The plan of the proof is as follows:

Lemma 1. K(m) + L(3), K(m) + K(m) and L(3) + L(3) all belong to @(m).

Lemma 2. §(m) is closed under +, indeed r-mG, V • • ■ VG„ and VmH imply
hm(G, + H)V ... V(G„ + H).
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Lemma 3. VmK(m) ® K(m - 1) and if m > 3, VmK(m) ® L(3). vÍ/ío r-„L(3) ®
K(m - 1) a/io1 ifm>3 then r-mL(3) ® L(3).

Lemma 4. Lei hmG. FAen \-mG ® AT(w - 1) and if m > 3 then \-mG ® L(3).

Remark 1. From Lemma 4 it follows immediately that K(m) G G*(m). In fact it
is not hard to see that this statement is equivalent to G ® K(m — 1) G §(m). If
K(m) G G*(m) then K(2) G G*(m) and it is easy to see that K(2) G G*(m) => L(n)
G G*(m) for all n.

Lemma 5. Let VmG, a G \G\, and H G 2(w - 1). Then hJ(G, a), ({h} ® H, h)],
where {h} denotes the graph with sole vertex h.

Lemma 6. // K(m + 1) is not embeddable in H then H G G*(m), i.e. 2(w) c
G*(m).

Although the lemmas are presented in their logical order we shall prove them in
the order: 6, 2, 4, 5, 1, 3. This departure from the order above is made for two
reasons. First, Lemma 6 contains the key idea, and the other lemmas are merely
used to set it up. Next Lemmas 2, 4, and 5 are relatively easy to prove and the
proofs of Lemmas 2 and 4 appear in modified form in the proofs of Lemmas 1 and
3 respectively. Lemmas 1 and 3 are quite long and complicated. Thus we hope the
order chosen is optimal from the point of view of a reader who wishes to see first
the heart of the argument and then the necessary underpinnings in order of
complexity.

In §4 we shall prove Lemmas 6, 2, 4 and 5. Lemma 1 will be proved in §5 and
Lemma 3 in §6. Many of the arguments turn on the possibilities for amalgamation
of two graphs B0, Bx over their intersection A. These are best represented pictori-
ally. A typical picture is shown in Figure 0.

Figure 0

The amalgamation is such that no points in B0 \ A and Bx\ A can be identified
in any amalgamation. The dotted line from a to c indicates that it is not known (a
priori) whether there can be an edge joining a and c, in a given amalgamation C,
and the cone from a to D indicates that D is a subgraph of Bx lying in Bx \ A, and
some, possibly none, possibly all, edges from a to vertices in D may occur in a
given amalgamation. This may happen in two ways. In one the edges may depend
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on the given amalgamation. In the second we may know what edges occur but have
no convenient way to represent them pictorially. The cone from a to F indicates
that there is an edge between each vertex of F and a, i.e., {a} u \F\ determines a
subgraph isomorphic to {a} ® F. A circled number m indicates a copy of K(m).
The cone from K(m — 1) to K(l) indicates that every edge is present, i.e. we have
K(m — 1 + /). The reader should continue to bear in mind the following: E is
K(2) + K(l), Ë is L(3) and K(n) is nK(\).

4. The key idea and the easy supporting lemmas. The reader will find the crux of
the whole paper in the following:

Lemma 6. 2(w) c S *(m).

Proof. Let H be a graph in which K(m + 1) cannot be embedded. Let G G
<è(m), a G \G\ and b G \H\. We want to show that

Vm[(G,a),(H,b)]. ( + )

We proceed by induction on \H\, i.e. the cardinality of H. Let H~ denote the
graph obtained from H by deleting b. There are three cases.

Case 1. The vertex b is not joined to any other vertex of H. Clearly

[(G,a),(H,b)] «G + H-.

Since \H~\ < \H\,H~ G G*(m) whence \~mH~. From Lemma2, VmG + H~.
Case 2. The vertex b is joined to every vertex of H. Then K(m) cannot be

embedded in H ~ since K(m + 1) is not embeddable in H. Taking H in Lemma 5
to be H " we immediately have ( + ) as required.

Case 3. There are vertices b0, bx of H distinct from b such that b is joined to b0
but not to bx. Let H, be isomorphic to the restriction of H to \H\ \ {b, b¡} and let
|G|, \H0\, \HX\, {b} be pairwise disjoint. Let b' G \G\ U |.r70| U \HX\ u {b}. Now
we form the graph H + as follows:

(ï)\H + \ = \H0\u\Hx\u{b,b'};
(ii) the restriction of H + to \H0\, \HX\ are H0, Hx respectively;
(iii) there are no edges between \HQ\, \HX\; b,b' are not joined;
(iv) there is an isomorphism from H onto the restriction of H* to \H0\ u {b, b'}

which extends the isomorphism of H \ {b, b0} onto H0, fixes b and takes bx to b';
and

(v) there is an isomorphism from H with the edge between b and b0 deleted onto
the restriction of H+ to \HX\ u {b, b'} which extends the isomorphism of
H\{b, bx}, fixes b and takes b0 onto b'.

We repeat that H + has the property that restricting to \HX\ u {b, b'} and adding
an edge between {b, b'} gives a copy of H, and restriction to \HQ\ U {b, b'} gives a
copy of H. In each case the isomorphism fixes b. H+ is depicted in Figure 1. The
question marks emphasize that some edges may be present and some not between
b, b' and the rest of the graph.
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Figure 1

Let Hq, H'x be the restrictions of H + to \H0\ U {*}, l^il U {*} respectively; and
let H o, H[ be the restrictions of H+ Xo\H0\ U {b'}, \HX\ u {b'}, respectively.

By the induction hypothesis H¿, H'x, H¿, H'x all belong to §*(m). Now let
G+ =[(G,a), (H+,b)]. Deleting the vertex b from G+ we obtain the graph
G ~ + [(H¿, b'), (H{, b')] where G " is obtained from G by deleting a. Now \-mG ~
since \-mG and \-m[(H¿, b'), (H'x,b')\ since H¿, H{ G §*(m) whence \-mG~ +
[(H¿, b'), (//,', b')] by Lemma 2. Deleting the vertex b' from G+ we obtain the
graph

[([(G,a),(H¿,b)],a),(H-x,b)].

Since H¿ G § *(m) we have \-m[(G, a), (H¿, b)]. Next since H\ G § *(m) we have

^m[([(G,a),(Ho\b)],a),(H[,b)].

Thus deleting either b or b' from G+ gives us a graph in @(m). We can
amalgamate over a common subset because then the edges on the subset are fixed.

Consider now the amalgamation of G+ { (|G + | \ {b'}) and G+ [
(|G + |\{f>}) over |G+|\{6, b'} by embeddings g0, g, respectively into a finite graph
K. Now g0(¿>) t* gx(b') since Z> is connected to the image of b0 in Hx but not to that
of bx in //0. However b' is either connected to both or neither of these vertices
according as there is an edge from b0 to bx. Thus K f (Im g0 u Im g,) is either
isomorphic to G + or the graph G + + where G + + is obtained from G + by adding
an edge between b and b'. Now we are done because the graph [(G, a), (H, b)] is
embeddable in both G + and G + + ; in both cases the embedding is the identity on
G; in the first case bx is mapped into b' and the embedding extends the isomor-
phism of H \ {b, bx} and Hx and in the second case b0 is mapped into b' and the
embedding extends the isomorphism of H \ {b, b0} and H0.

This completes the proof of Lemma 6.
We now turn to Lemma 2. §(m) is closed under +. Indeed \-mGx V • • • VG„

and VmH imply hm(G, + H) V ... V(G„ + //).
Proof. From Lemma 1 it is immediate that K(m) + K(l), L(3) + K(l), K(2) +

K(l) + K(l) and nK(l) + K(\) are all in §(m). Note that K(2) + K(l) + K(\) is
a subgraph of L(3) + L(3). By induction on derivation we show that % (m) is closed
under the addition of K(l). Specifically we prove that r-m<G,, . . ., G„> implies
hn<G, + Ä"(l), . . . , G„ + K(l)}. This is true by the above for the members of
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§o(m). So assume that (-„<#, + K(l), .. ., H, + K(l)) and (-„,</, + K(l), . . ., Jk
+ K(l)} and for 1 < / < / and 1 < j < k there are A and embeddings e0: A -» H¡
and e, : A -+Jj such that whenever K and embeddings f0: H¡ —> K, /, : 7, -> K have
So ° eo — Si ° ex there are a, 1 < a < n, and an embedding/: Gç -» Ä". Let 1 < i < /,
1 < j < k and fix A, e0, ex as above. Now e0, ex can be extended uniquely to
embeddings ê0, êx of A + K(l) into H¡ + K(l) and J¡ + K(l) respectively. Now let
S0, fi be embeddings of Hi + K(\) and Jy + K(l) respectively into K with/0 ° ê0 =
/, ° êx, where \K\ = Im/0 u Im/,. Then /0 = /„ f #, and /, = /, \ J} are embed-
dings into K, the subgraph of K resulting from deletion of the image of K(l). But
then the embedding g: Gq^> K may be extended to g: Gq + K(l) -> K in the
obvious way.

It follows in particular that nK(\) + K(m), nK(l) + L(3), nK(l) + K(2) + K(l)
are all in § (m).

An induction like the above establishes the following sublemma which is also
used in the proof of Lemma 1.

Sublemma 2. // {K(m) + H, L(3) + H, K(2) + K(l) + H, nK(\) + H} Ç @(m)
andYmGx\J . . . \jGn,then

Ym(Gx + tf)V...V(G„+ //")•
Applying Lemma 1 and the above K(m) + K(m), L(3) + K(m), K(2) + K(l) +

K(m) and nK(l) + K(m) are all in Q(m). Thus by a similar induction 3(m) is
closed under addition of K(m). Similarly §(m) is closed under addition of L(3).
Now let VmH. We see that H + K(m), H + L(3), H + (2) + K(l) and H + nK(l)
all belong to Q (m), whence § (m) is closed under addition of H by the same type of
induction, that is hmG, V • • • VG„ implies hm(G, + H) V • • • V(G„ + H), and
the lemma follows.

Lemma 4. Let VmG. \-mG ® K(m - 1) and if m > 3 then hmG ® L(3).

Proof. Again we use induction on the derivation of G. First we check the starting
cases. By Lemma 3

K(m) ® K(m - 1),   L(3) ® K(m - 1) G %(m).
Also \-m(K(2) + K(l)) ® K(m - 1) since this graph is (K(2) ® K(m - 1)) + K(m)
and % (m) is closed under +. Finally Ym(nK(\)) ® K(m — 1) since this is just
\-mnK(m). Similarly with L(3) in place of K(m — 1) when m > 3.

For the induction step assume that \-m(Hx ® K(m — 1), . .., Hk ® K(m — 1)>
and hm</, ® K(m - 1), . . . , J, ® K(m - 1)> and that <G„ .. ., G„> is such that
for 1 < / < k and 1 < j < / there are A, and embeddings e0: A -» H¡ and ex:
A -> Jj such that for any K and embeddings /0: Ht-* K and /,: J,-* K with
So ° eo = /i "«i there exists 1 < q < n and an embedding g: Gq-+ K.

Let n, be the maximum of {|//,| + \Jj\: 1 < / < k, 1 </ < /}. By Lemma
2, (-mG and (-„,./, V • • • VA imply ^m(Ji + G) V • • ■ V(A + G). Since
\-mnxK(m - 1) it follows that

hm<i/, ® ^(w - 1) + («, - |//,[)/s:(m - 1), ...,

Hk ® /C(m - 1) + («, - \Hk\)K(m - 1)>.
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The same result with H replaced by J and k by / also follows.
Now let 1 < í < k, 1 < j < / and fix A, e0: A —* H¡ and ex: A ^>J, as above.

Let Â be A ® K(m - 1) + («, - |^|)ÄT(/n - 1). Let ê0, ê, be embeddings of A
into Hi = //, ® #(m - 1) + («, - |//,|)A:(w - 1) and /* = Jj ® K(m - 1) +
(«, — I^D^/n — 1) extending e0, ex respectively such that:

(i) no vertex of A \ A is mapped into //, or Jj where A, H¡, Jj are viewed in the
natural way as subsets of A, H¡, Jj respectively. Thus the additional copies of
K(m — 1) are carried onto additional copies of K(m — 1); and

(ii) if an edge occurs between a vertex of H¡ \ eQ(A) and a vertex of the image
under êQ of some one of the (n, - |v4|) copies of K(m — 1) then no edge occurs
between a vertex of Jy and the image of that copy of K(m — 1) under êx; and
similarly with H¡, Jj and <?0, ê, interchanged.

Now if f0,fx are embeddings of H¡ and Jj respectively into L with/0 ° ê0 = /, ° êx
and |L| = Im/0 u Im/„ then/0 = f0 [ H¡ and/, = /, \ Jj are embeddings such that
So ° e0 = Si ° ex. Let L = L \ (Im/0 u Im/,), 1 < a < n, and g: Gq-> L be an
embedding. Then g can be extended to an embedding g: Gg ® íí(m — 1) —» L. A
similar proof works with L(3) in place of K(m — 1) when m > 3. This completes
the proof of Lemma 4.

Lemma 5. Let \-mG, a G \G\ and H G 2(w - 1). Then Vm[(G, a), ({h} ® H, h)]
where {h} denotes the graph with sole vertex h.

Proof. For any graph F let {h} ® F be denoted F'.
K(m) is not embeddable in H whence by the induction hypothesis when m > 3,

\-m_xH, and, by inspection, when m = 2, H is isomorphic to nK(\) for some n.
Notice that Lemma 5 holds for H = K(l) because in this case [(G, a), (H', h)] is

embeddable in G ® K(m — 1) which belongs to @(m) by Lemma 4. By iteration
Lemma 5 holds for H = nK(l) because

[(G,a),((nK(l))',h)]

«[(... ([([(G, a), ((K(l))', h)], a), ((K(l))', h)], a),..., a), ((K(\))', A)].

When m = 2 this is enough. Now suppose m > 2. From Lemma 4, G ® ÄT(m - 1),
G ® L(3) are both members of @(m), whence Lemma 5 holds for H = K(m - 1)
and H = L(3). Since K(2) is embeddable in K(m - 1) Lemma 5 holds for H =
K(2). Since Lemma 5 holds for tf(2) and K(l) it also holds for H = K(2) + K(l)
because

[(G,a),((K(2) + K(l))',h)] ^[([(G,a),((K(2))',h)],a),((K(l))',h)].
Now we complete the proof of Lemma 5 by induction on the derivation of H in
§(m - 1). We show that if <//„ ...,//„> G §r(m - 1) then <[(G, a),
(7/,', A)], . . ., [(G, a), (-//„', /i)]> G §s(m) for some j. From above this is true for
r = 0. Now assume that

([(G,a),(I{,h)],...,[(G,a),(Ii,h)]},

<[(G, a), (J'y h)], ..., [(G, a), (J¡, h)]} G @s(m)
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and that for 1 < i < k, 1 < / < / there are A and embeddings e0: A -» /,, e, :
A —> Jj such that whenever f0: I¡ —> K, /,: 7; -» /T are embeddings with /0 » e0 =
/, o e, there are 1 < q < « and an embedding g: Hq^> K.

Fix 1 < i < k, I < j < I, A, e0, ex as above. Let ê0, ê, be the embeddings of
[(G, a), (v4', A)] into [(G, a), (//, A)] and [(G, a), (7/, A)] respectively which extend e0,
ex respectively and are the identity on G. Now let/0,/, be embeddings of [(G, a),
(/,', A)] and [(G, a), (Jf,h)\ respectively into K with \K\ = Im/0 u Im/, and
So ° êQ = Si ° êy Then /0 = /0 t |/,-| and Si = Si I \Jj\ are embeddings satisfying
So° e0 = Si ° ex. Let A = £ I1 (Im/0 u Im/0) and 1 < a < n and g: Hq-+ K be an
embedding. There is a unique extension of g to g, embedding [(G, a), (i/^, A)] in K
with g the identity on G.

This completes the proof of Lemma 5.

5. Proof of Lemma 1. In this section we prove

Lemma 1. K(m) + L(3), K(m) + K(m) and L(3) + L(3) all belong to §(m).

The proof of the lemma is broken into two main parts. First we prove the lemma
for m = 2 and then consider the proof when m > 2.

5.1. Let m = 2. We prove
(i) \-2K(2) + K(l) + K(l);
(ii) h2L(3) + K(l);

whence by Sublemma 2, §(2) is closed under addition of K(l).
(iii) \-2K(2) + K(2);
(iv) h2K(2) + L(3).

Thus by Sublemma 2, § (2) is closed under addition of K(2).
(v) h2L(3) + L(3).

We thank Ron Morrow for proofs of (i) and (iv) and for the simpler argument for
(v) which we reproduce. Let S(n) denote {a} ® «^(1), a star with n rays, and let
C(n) denote the cycle of length n.

(i) From the amalgamation of K(2) + K(l) and 4#(1) over 2^(1) we obtain
h2<*(2) + 2K(l), S(3) + K(l)} (1)

see Figure 2(1). Thus \-2<_K(2) + 2K(l), L(3) + K(l)}. From this and the amalga-
mation of two copies of L(3) + K(l) over K(2) + K(l) we obtain

r-2<*(2) + 2tf(l), C(4) + K(l)}, (2)

see Figure 2(2). From the amalgamation of two copies of K(2) + K(l) over 2^(1)
shown in Figure 2(3) we see that

h2<*(2) + K(2), L(4)>. (3)

From (1), (3) and the amalgamation shown in Figure 2(4) of 2AT(2) and L(3) +
K(\) over K(2) + K(\) we have

r2(K(2) + 2K(l), L(4)>. (4)

We have shown the amalgamation for the only nontrivial pairing in the derivation.
Now from (1), (4) and the amalgamation shown in Figure 2(5) of L(4) and S(3)
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over L(3), we obtain

\-¿K(2) + 2K(l), [(C(4), a), (K(2), A)]> (5)
where a, b are vertices of C(4), K(2) respectively. Finally from (2), (5) and the
amalgamation of Figure 2(6) of [(C(4), a), (L(2), b)] and C(4) + K(l) over C(4) we
obtain \-2K(2) + 2K(l).

or I:

=> □• « V-

□ => \-

Figure 2

Remark 2. We have written the proof of (i) in strict accordance with the
definition of derivation. The reader will see that the following simplification in the
presentation leads to no difficulty. If we wish to prove VmG we may assume for
contradiction that Vm G, and for a given amalgamation & we may suppose that one
of Gx, . . . , Gk is derivable, where G„ . . ., Gk are the possible outcomes of (¡t in
which G is not embeddable. If we can then derive G this contradiction can be
turned into a proof that r-mG. A formal justification of this can be given using the
claim in the proof of Lemma D. From now on we will give only such simplified
derivations. The reader should bear in mind that we are really dealing with
derivable tuples of graphs.

(ii) See Figure 3. Assume that V2L(3) + K(l). Then from the amalgamation of
L(3) and K(2) + K(l) over K(2) we obtain L(4). Then from the amalgamation of
L(4) and K(2) + 2K(l) over K(2) + K(l) we have h2L(3) + K(l).
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n

Figure 3

Now from (i) and (ii) we see that h2L(3) + AT(1), h2A:(2) + K(l), h2K(2) + K(l)
+ K(l) and \~2nK(\) + K(l) when Sublemma 2, h2G, V • • ■ VG„ implies
l-2(G, + Ä"(l)) V • • • V(G„ + K(l)). Thus from now on in deriving members of
§ (2) we may add copies of K(l) whenever it is convenient.

(iii) See Figure 4. Assume that V2K(2) + K(2). From the amalgamation of
K(2) + 2K(l) and L(3) + K(i) over 3K(l) we get

■    ,\     .

From the amalgamation of this graph with itself we get the result.

A
=>

Figure 4

or ■=>K(2)+K(2)

(iv) Assume that V2K(2) + L(3) for contradiction. See Figure 5 (l)-(6).
From consideration of these figures it is clear that \-2K{2) + L(3). Now we see

that L(3) + K(2), K(2) + K(2), K(2) + K(l) + K(2) and nK(\) + K(2) G S (2) so
by Sublemma 2, S (2) is closed under addition of K(2), i.e. t-2G, V • • • VG„ implies
r-2(G, + K(2)) V ... V(G„ + K(2)).

(v) Assume for contradiction that V2L(3) + L(3). See Figure 6(1)—(5) and recall
that K(2) may be added to any derived graph.

From an examination of Figure 6 it is clear that l~2L(3) + L(3).
This completes the proof of Lemma 1 when m = 2.
5.2. For the remainder of this section we assume that m > 2. Since \-mK(m')

whenever m! < m it follows that S (m') c S (m) whenever m' < m, and by the
induction hypothesis we have 2(/w') c @(m) when m! < m. Thus r-mL(3) + L(3),
and if K(m) cannot be embedded in H then \-mH.
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=>

MA
contradiction

Figure 5

1 we have \-mK(m) + nK(k) for all n;

E 2(m - 1) then hm(G, + H) V . . . V(G„ +

The proof has five parts:
(i) VmK(m) + nK(l) for all n;
(ii) by induction on k for k < m -
(iii) rmK(m) + L(3);
(iv) if rmGx \y ... VG„ and H

H);
(v) VmK(m) + K(m).
We prove them in order.
(i) Assume for contradiction that \fmK(m) + K(l). See Figure 7. From the

amalgamation of {a} ® K(m — 1) and {b} + K(m — 1) over K(m - 1) we get
[(K(m), a), (K(2), a)] choosing K(2) with a as one vertex. Now in Figure 7(2) we see
that if we amalgamate this graph and [(K(m — 1), a), (K(2), a)] + K(m — 2), in
which K(m) cannot be embedded, over [(K(m — 1), a), (K(2), a)] we either have
K(m) + K(l) or the graph obtained from [(K(m), a), (K(2), a)] by joining each
vertex of a copy of K(m — 2) to a vertex c of K(m) different from a. Now by
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Figure 6

amalgamation  of   this   graph   and   K(m - 1) + [(K(m - 1), a),   (K(2), a)]  over
K(m — 2) + [(K(m — 1), a), (K(2), a)] we have a contradiction.

Therefore VmK(m) + K(l). We may now use this argument, amalgamating over
X + (n - \)K(\), to prove by induction that VmK(m) + nK(l) for all n.

This completes the proof of (i).
(ii) Using the same idea we now prove by induction on k that for 1 < k < m —

1, \-mK(m) + nK(k). We have the result for k = 1 from (i). Now assume that
k < m - 1 and that VmK(m) + lK(k + 1) + nK(k) for all n. We shall show that
\-mK(m) + (l+ \)K(k + 1) + nK(k) for all n. Let G be lK(k + 1) + nK(k), and
assume for contradiction that VmG + K(m) + K(k + 1). See Figure 8. From the
amalgamation of G + kK(k) + K(k) + K(m) and G + kK(k) + K(m - 1) +
K(k + 1), the latter being in 2(/m - 1), over G + kK(k) + K(m - 1) + K(k) we
have \-mHx. Now amalgamate Hx and the graph H2, formed by deleting one point
of K(m — 1) in Hx and adding K(m — 1), over the graph L. See Figure 8(3). Note
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Figure 7

that H2 G 2(/w - 1). If a is joined to fewer than m — (k + 1) vertices of the copy
of K(m — 1) then we are done for then we have K(k + 1) disjoint from K(m) + G.
Therefore we have \~mH3. We now amalgamate H3 and the graph shown in Figure
8(4) with a deleted, over the common part. Note that the second graph is in
2(/w — 1). If a is not joined to each vertex d of K(k) then {a} ® K(m — 1) and
{d} ® K(k) give the result. Otherwise {a}, K(m - k - 1) and K(k) give K(m)
disjoint from the central copy of K(k + 1). Thus for 1 < k < m — I, \-mK(m) +
nK(k) for all n.

(iii) \-mK(m) + L(3). For contradiction assume that \fmK(m) + L(3). Recall that
from (i) we already have hmK(m) + nK(\) for all n. By amalgamation of K(m) +
(n + 2)K(l) and L(3) + nK(\) + K(m - 1), the latter being in 2(w - 1), over
K(m - 1) + (n + 2)K(l) we have Vm[(K(m), a), (S(3), b)] + nK(\) for every n,
where A is a vertex at the tip of one of the rays of S(3). See Figure 9(1). Now we
follow the same line as in (i). The amalgamation shown in Figure 9(2) must have a
joined to each vertex of K(m — 2) since each vertex of K(m - 2) is connected to
both c0 and c,. Note that deleting a on the left of Figure 9(2) we obtain a graph in
2(m — 1). Now we finish as in (i) by the amalgamation shown in Figure 9(3).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COUNTABLE ULTRAHOMOGENEOUS UNDIRECTED GRAPHS 67

Figure 8

Notice that again deleting a we have a graph in 2(w - 1). This amalgamation
gives YmK(m) + L(3).

(iv) If \-mG and H G 2(w - 1) then YmG + H. Indeed if hmG, V • • • VG„ and
H G 2(m - 1) then rm(G, + H) V . . . V(G„ + #)•

The proof is like that of Lemma 2.
By (i), (ii), (iii) we have \~mK(m) + K(m - 1), K(m) + L(3), K(m) + nK(m - 1)

for all n, whence r-mAT(w) + K(2) + K(l) and \-mK(m) + nK(l).
We now prove as in Lemma 2 by induction on derivation that if Ym_xHx

y ... VH„ then Vm(K(m) + Hx) V . . . V(K(m) + H„). Thus for H G @(m - 1)
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Figure 9
we have VmK(m) + H. Also by the induction hypothesis for H G 2(w — 1) we
have

\-mL(3) + H, K(2) + K(l) + H, nK(\) + H
since each of these graphs is in 2(w — 1). Now fix H G 2(m — 1). Then \~m_xH.
We prove by induction on a that if <G,, . . . , G„) G §q(m) there exists/? such that
<G, + H, . . ., Gn + H} G 3p(m) as in Lemma 2. This completes the proof of (iv).

Finally we are able to complete the proof of Lemma 1 by:
(v) \-mK(m) + K(m). For contradiction assume that VmK(m) + K(m). From (ii)

we have \-mK(m) + nK(m — 1) for all n > 1. From the amalgamation of K(m) +
(m — \)K(m — 1) and a copy of itself over mK(m — 1) shown in Figure 10(1) we
get \-mK(2) ® K(m — 1) + (m — 2)K(m — 1). Now from the amalgamation in Fig-
ure 10(2) of K(2) ® K(m - 1) + (m - 2)K(m - 1) and K(m) + (m - \)K(m - 1)
over mK(m - 1) we obtain \-mK(3) ® K(m - 1) + (m - 3)K(m - 1) and by re-
peating this argument we see that \-mK(m) ® K(m — 1) unless VmK(m) + K(m).
Now by (iv) we see that

\-m[(K(m), a), (K(m - 1), a)] + K(2) ® K(M - 2)

and

Vm[(K(m-\),ax)(K(m-\),ax)]

+ [([(K(m), a2), (K(2), a2)], a3), (K(m - 1), a3)]
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=>    ( m  . •  m   )   + (m-2)K(m-l

+ (m-3)K(m-l)

=>   K(m)+K(m)

Figure 10
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where K(2) is {a2, a3}. See Figure 10(3). From the amalgamation shown in Figure
10(4) we obtain the graph H. Finally the amalgamation shown in Figure 10(5) gives
\-mK(m) + K(m). Notice that in Figure 10(5) the result of deleting either a or b
gives H. If a is not joined to b we are done immediately. Otherwise K(m — 2) u
{a} u {A} is K(m) disjoint from K(m) in the common part.

This completes the proof of Lemma 1.

6. Proof of Lemma 3. In this section we prove the following:

Lemma 3. \-mK(m) ® K(m - 1) and if m > 3, \-mK(m) ® L(3). Also \-mL(3) ®
K(m — 1) and if m > 3 then \-mL(3) ® L(3). In this section we consider two separate
cases: m = 2 and m > 2.

We thank Ron Morrow for his collaboration in the proofs that L(3) ® K(m — 1)
and L(3) ® L(3) are in § (3). His proof that h3A"(2) ® K(2) provided a key idea for
these proofs.

6.1. Let m = 2. We must show that L(4) = K(2) ® K(\) and L(3) ® K(l) are in
§(2). The amalgamation showing that r-2L(4) is shown in Figure 11(1). We
amalgamate two copies of L(3) + K(l) over 3K(l). By repeated use of this idea we
have \-2L(n) for all n > 3. The amalgamation of two copies of L(n) over 2L(n — 2)
+ K(\) shown in Figure 11(2) gives L(2n — 2).

or => L(4)

=>     L(2n-2)

Figure 11

Next we prove r-25(3).
Following the method of presentation of Lemma 1 we assume for contradiction

that V2S(3). From the amalgamation shown in Figure 12(1) of two copies of L(5)
over 2K(2) we obtain the graph G. Then the amalgamation of G and L(3) + 2K(l)
over K(2) + 2K(l) gives S(3). See Figure 12(2).
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Figure 12

Now assume for contradiction that \f2L(3) ® K(l). Amalgamating 5(3) + L(4)
and L(8) over L(3) + L(4) as in Figure 13(1) we obtain G. Finally in Figure 13(2)
we obtain L(3) ® K(\) by the amalgamation of G + K(l) and L(5) + L(3) over
2L(3) + K(l).

Thus \-2L(3) ® K(\).

Figure 13
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This completes the proof of Lemma 3 if m = 2.
6.2. Assume that m > 3. We must prove that K(m) ® K(m - 1), L(3) ®

K(m - 1), L(3) ® L(3) and ä:(w) ® L(3) are all in S(m). The proof is broken into
ten parts. In some of these we must distinguish between the cases m = 3 and
m > 3.

(i) VmK(m) ® K(\).
(ii)    If   Ym K(m) ®  K(k)   and    1 < k < w - 2   then   rmG, V • • • VG„ =*

hm(G, ®tf(A)) V • • • V(G„ ® *(£))•
(iii) For 1 < k < m - 2, AT(m) ® #(*:) G §(m). This will be proved by induc-

tion on k.
(iv) rmA(l) ® L(3).
(v) If m > 3 then hmÄT(w) ® ¿(3). Here the proof follows the same line as in (iii).
(vi) \rmK(m) ® K(m - 1). This part breaks down into a number of subparts.
(1) rm[(K(m), a), (K(m), a)].
(2) For any graph G and a0 G |G| such that \-m[(G, a0), (K(m), a0)] we have

M([(C a0), (K(m), a0)], a,), (K(m), a,)]

where a0, a, are distinct vertices of K(m).
(3) For any graph G, and a G |G| if hm[(G, a), (AT(w), a)] then

hm[([(G, a), (tf(m), a)], a), (tf(m), a)].

(4) r-m/s:(/) ® K(m - 1) for 1 < / < m by induction on /.
Refer to Figure 14(l)-(3) for illustrations of subparts (1), (2), (3).

Figure 14

(vii) \-mL(3) ® K(m — 1). This part has two subparts: (1) m = 3 and (2) m > 3.
(viii) If l-jG, V • • • VG„ then h3(G, ® K(2)) y ... V(G„ ® tf(2)).
(ix) r-3AT(3) ® L(3). Here we apply the same technique as in (vi). First we prove
(1) h3[({a} ® L(3), a), ({a} ® L(3), a)].
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(2) If h3[(G, a), ({a} ® L(3), a)] then
h3[([(G, a), ({a} ® L(3), a)], A), ({A} ® 1.(3), A)].

(3) If h3[(G, a), ({a} ® L(3), a)] then

h3[([(G, a), ({a} ® L(3), a)], a), ({a} ® L(3), a)].

Here {a} denotes the one element graph, and A is the unique vertex of {a} ® L(3)
which is the image of a under an automorphism moving a.

(4) For k - 1,2, 3, \~3K(k) ® L(3).
See Figure 15 for illustrations of subparts (l)-(3).

3 ( G      <V^>     —>     (g       J^

Figure 15

Finally we complete the proof of Lemma 3 with
(x) h3L(3) ® L(3).
(i) First we show that \-m[(K(m), a), (K(2), a)]. As shown in Figure 16(1) we

amalgamate K(m) + K(l) and [(K(m - 1), a), ([(K(m - 1), A), (K(2), A)], a)], the
latter belonging to 2(m — 1) over K(m — 1) + K(l). Here a, b are distinct vertices
of K(m). If c is not joined to a vertex d in the copy of K(m — 2) we are done with
the left-hand copy of K(m — 1) together with the edge a, d. Otherwise K(m — 2),
a, c and / give \~m[(K(m), a), (K(2), a)]. Now we repeat the argument as shown in
Figure 16(2) to attach a copy of K(l) to m — 1 vertices of K(m) giving the graph G.
Next we amalgamate G and K(m — 1) ® K(l) + K(\) as in Figure 16(3) to get
either the desired result or the graph H. Finally the amalgamation of Figure 16(4)
gives K(m) ® K(\).

(ii)   Now hmL(3) ® K(k) since L(3) ® K(k) G 2(m - 1) when k <m- \. If
\-mK(m) ® K(k) then we may apply the reasoning of Lemma 4 and obtain:

HmG, V ■ • • VG„ =* rm(G, ® K(k)) V • • . V (G„ ® A(/c)).
Once we have \-mK(m) ® A(A:) for k < m — 1 this allows us to attach a copy of
#(A) to any vertex of any graph we use in an argument.
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Figure 16

(iii) Now we prove by induction on k that iî I < k < m — 2 then \-mK(m) ®
K(k). Clearly from (i) we have the case k = I. Further from the induction
hypothesis on k and (ii), if hmG, V • • • VG„ then hm(G, ® K(k - 1)) V • • • V(G„
® K(k — 1)). An obvious consequence is that if G has been derived and a G \G\
then we may assume that [(G, a), ({a} ® K(k - 1), a)] is also derivable.

We have to show \-mK(m) ® K(k). We first argue that Ym[(K(m), a),
(K(k + 1), a)]. To see this choose the largest I < k — 1 such that the graph G,
shown in Figure 17(1) satisfies hm[(K(m), a), (K(k + 1), a)] V G,. When / = 0, G, is
K(m) so / is well defined. The amalgamation shown in Figure 17(2) gives I = k —
1. One of the two graphs being amalgamated is obtained by attaching K(k — 1) to
the vertex c of G, and adding K(k). The other is a member of 2(/w — 1) since
/ < k — 1 and (m — k — I) + (k — 1) + 1 = m — 1 and k < m — 2. If a is not
joined to every vertex of K(m — k — 1) then at once we get [(K(m), a),
(K(k + 1), a)] because if b is the vertex of K(m — k — 1) in question we have the
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Figure 17
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graph of Figure 17(3). The other possibility is that a is joined to every vertex of
K(m — k — 1). It is then clear that in fact I = k — \ since then we have the
subgraph Gl+m_k_x in Figure 17(4). Now the graph shown in Figure 17(5) is just
[(K(m), a), (K(k + 1), a)] and so the amalgamation of Figure 17(2) in fact gives
Vm[(K(m), a), (K(k + 1), a)].

Now we attach copies of K(k) to m — 1 vertices of K(m) one at a time. The
slight change in the iteration is that we start by joining a copy of K(k) to each
vertex of K(l) and K(m — k — 1), to a and to the appropriate number n < m — 2
of vertices of K(m — 2). That is we choose / to be the largest number such that the
graph G, of Figure 18(1) is such that \-mH V G, where H is the graph with K(k)
suspended from n + 2 vertices of K(m), as in Figure 18(1). Then the amalgamation
of Figure 18(2) gives us as above that I = k — \ and thus that \-mH. See Figure
18(3)-(5).
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,/+m-k-

FlGURE 18

Finally we perform the amalgamations of Figure 19 to obtain K(m) ® K(k). We
first amalgamate two copies of the graph with K(k) attached to m — 1 vertices of
K(m) as in Figure 19(1). This gives either K(m) ® K(k) or this graph with one edge
between two of the copies of K(k). Then we repeat the argument above letting
/ < k - 1 be largest such that Vm(K(m) ® K(k)) V G, where G, is the graph of
Figure 19(2). The amalgamation of Figure 19(3) then gives the result. If a is not
joined to some vertex A of K(m — k — 1) we have K(m) ® K(k) as in Figure 19(4).
Otherwise we see that / = k — 1 by Figure 19(5) and that K(m) ® K(k) then can
be embedded, Figure 19(6). This completes the proof that \~mK(m) ® K(k) and (iii)
follows.
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m-2

=>   K(m)®K(k)   or

m-2

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COUNTABLE ULTRAHOMOGENEOUS UNDIRECTED GRAPHS

O b

79

m-2

Figure 19

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



80 A. H. LACHLAN AND R. E. WOODROW

(iv) \-3K(l) ® L(3). This is immediate from the amalgamation of [(K(3), a),
(K(2), a)] + K(l) and [([(K(3), A), (K(2), b)\, b), (K(2), b)] over K(2) + 2^(1). The
graphs which we amalgamate belong to 6(3) since by (i) and (ii) if h3G and a G \G\
then r-3[(G, a), (K(2), a)]. The amalgamation is shown in Figure 20.

=>    K(I)®L(3)

Figure 20

(v) rmK(m) ® L(3) for all m > 3.
The proof follows very closely that given in detail for (iii). Note that from (iii),

\-mK(m) ® K(2), and from (ii), K(2) may be attached to any vertex of any graph.
The figure corresponding to Figure 17 is Figure 21. Here / is 0 or 1 and is defined
to be the largest number < 1 such that \-mG¡\/ H where H is obtained by
attaching a copy of L(3) to a vertex of K(m). The argument of (iii) is then easily
modified to handle this part, with L(3) playing the role of K(k). Corresponding
changes to Figure 18 and Figure 19 and the associated arguments yield that
\-mK(m) ® L(3). We leave the details to the reader.

(vi) We now set about proving \-mK(m) ® K(m — 1).
By (iii) we have \-mK(m) ® K(m — 2) and so by (i), in an argument we may

attach K(m — 2) to any vertex of any graph in a derivation.
(1) We first prove that the graph [(K(m), a), (K(m),a)] belongs to §(m). From

the amalgamation of two copies of [(K(m), a), (K(m — 1), a)] over [(K(m — 1), a),
(K(m — 1), a)] shown in Figure 22(1) we obtain the graph we want or the graph G.
Now the amalgamation of Figure 22(2) completes the argument. Notice that when
a is deleted we have a graph obtained by attaching successive copies of K(k) for
k = m — 2 or 1 to derived graphs. Similarly with A deleted we have G with copies
of K(m — 2) attached to two of its vertices.

(2) Now suppose that G is any graph and a G \G\ is such that
Vm[(G, a), (K(m), a)]. We want to show that rm[([(G, a), (K(m), a)], A), (K(m), A)]
where a, b are distinct. This fact is clear from (1) and the amalgamation shown in
Figure 23. When c is deleted we obtain the graph by attaching copies of K(m — 2)
to a and b. Let G ~ result from G by deleting a. When a is deleted from Figure 23
we have the union of G ~ and a graph obtained from [(K(m), a), (K(m), a)] by
attaching copies of K(m — 2) appropriately. If the edge a, c is not in the amalga-
mation then b, K(m — 2) and c give the attached K(m — 1). Otherwise a, c,
K(m — 2) give K(m — 1) attached at a, and K(m - 1) is attached to c.
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Figure 21
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=>

m-l

Figure 22

-A©

Figure 23

(3) Again suppose l~m[(G, a), (K(m), a)] where G is any graph, and a is any
vertex. We show that r-„,[([(G, a), (K(m), a)], a), (K(m),a)], that is we can attach
another copy of K(m — 1) to a.

From the amalgamation of Figure 24(1) we see that we have the graph we want
with a, b, K(m — 2) if the edge a, b is in the amalgamation and otherwise the graph
Gl of Figure 24(2). G ~ results by deleting a from G. In setting up this amalgama-
tion we notice that the graph which results by deletion of A is obtained from
[(G, a), (K(m), a)] by attaching successive copies of K(m — 2). With a deleted we
have a subgraph of the graph resulting from successive attachments of K(m — 2) to
G + K(m) + K(m — 1). We can also obtain the graph Gn of Figure 24(3) by first
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applying (2) twice to obtain the graph with K(m — 2) where K(m — 3) is written,
and attaching K(m — 2) to a'. Here G' is a copy of G which is disjoint from G. a! is
the image of a under the isomorphism. G'~ is the graph obtained from G' by
deleting a'. Now from the amalgamation of Gx and Gn shown in Figure 24(4) we
obtain a graph in which some vertices of G ~ and G'~ may be identified, and there
may or may not be edges from G " to (G') ~. In any case a and a' are distinct and
no edge exists between a and a'. The exact outcome of the amalgamation does not
affect the argument and we shall depict the outcome as in Figure 24(5). The
cross-hatching on G', (G')~ indicates that some edges or identifications between
them may be made. Now by the amalgamation shown in Figure 24(6) of this graph
with itself we obtain the result. A rigorous justification for this amalgamation is
provided by the claim to Lemma D. If H is [([(G, a), (K(m), a)], a), (K(m), a)] then
from Figure 24(1) we have \-mH V G,. The amalgamation of Figure 24(4) gives
VmH V G, V • • • \/Gk where G„ . . . ,Gk enumerate the possible outcomes of this
amalgamation. The amalgamation of Figure 24(6) shows that {G¡}\-H. This
completes the proof of (3).

(4) Now by induction on / we prove that YmK(l) ® K(m — 1) for 1 < / < m.
From (1) and (2) it is obvious that YmK(2) ® K(m — 1). Hence we assume that
3 < / < m and that \~mK(l - 1) ® K(m - 1). In proving that h K(l) ® K(m - 1)
we attach copies of K(m — 1) to the vertices of K(l) one by one. The argument is
much like that of part (3). Let us assume that we have attached K(m - 1) to k
vertices of K(l) where I < k < I by part (1). The final amalgamation, which
corresponds to Figure 24(6) is shown in Figure 25. The cross-hatching indicates
that there may be some edges not shown between vertices in the top copies of
K(m — 1) and those at the bottom. It is clear that this amalgamation will give us
k + 1 copies of K(m — 1) attached to the vertices of K(l).

By the induction hypothesis we have the graph of Figure 26(1). By applications
of (2) and (3) we may then derive the graph of Figure 26(2), in fact where K(l) is
replaced by K(m).

Further, from the assumption that we can attach K(m — 1) to A: vertices of K(l),
and using (2) we have the graph of Figure 27 in % (m).

By amalgamating the graphs of Figure 26(2) and Figure 27 over their common
part we then derive a disjunction of graphs of the general form shown in Figure 28.
The cross-hatching indicates that some edges from the top copies of K(m — 1) to
those at the bottom may be present. As in (3) this does not matter, and the
symmetry of Figure 28 allows us to set up the amalgamation of Figure 25. This
completes the proof of (4) and thus of (vi).

(vii) \-mL(3) ® K(m — 1). Recall that we may attach K(m — 2) to any vertex in a
derivation by (ii). Also from (vi) we have YmK(m) ® K(m — 1) and therefore
\-mK(2) ® K(m — 1). We consider two cases.

Case 1. m = 3. Assume for contradiction V3L(3) ® K(2). By attaching K(l) and
forming disjoint unions we have the amalgamation of Figure 29(1). We are then in
a position to do the amalgamation of Figure 29(2). When c is deleted we have the
graph of Figure 29(1). With a, A deleted we have a subgraph of 5K(3). If the edge
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a<f(V)
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G
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Figure 24
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Figure 25

Figure 26
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O

k-l

Figure 27

Figure 28

a, c is not present we are done with the top K(2) ® K(2) since c is then the third
vertex of K(3). Similarly the edge A, c must be present. But then a, d gives a copy of
K(2) suspended from c, and the edge A, c connects this to the copy of K(2) ® K(2).
This shows that l-3£(3) ® K(2).

Case 2. Let m > 3. Assume for contradiction that VmL(3) ® K(m — 1). Con-
sider now the amalgamation of Figure 30. Deleting c in Figure 30 we have a graph
obtained from K(2) ® K(m — 1) by attaching a copy of K(l) and two copies of
K(m — 2) and forming the disjoint union with 2K(m — 1). With a, A deleted we
have a subgraph of the graph just obtained. If the edge a, c is in the amalgamation
we have L(3) ® K(m — 1) immediately. Now if the edge from A to c is in we again
have L(3) ® K(m — 1) since c, K(m — 2) then form K(m — 1) suspended from A.
Thus no edges are added.
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Figure 29

Figure 30

Now we obtain the desired contradiction by the amalgamation of Figure 31.
With e deleted we just have the graph of Figure 30. When a, c are deleted we easily
obtain the graph by attaching K(m — 2) to a vertex of K(m) in K(m) +
4K(m — 1). Unless the edge a, e is in the amalgamation we are done for e,
K(m — 2) give K(m - 1) suspended from A. There can be no edge from c to e;
observe that otherwise c, e, K(m — 2) give K(m - 1) suspended from e and this is
joined to K(2) ® K(m — 1) by the edge a, e. Finally a, e, K(m - 3) give K(m — 1)
suspended from d and connected by c, d to the lower #(2) ® K(m — 1). Therefore
hmL(3) ® K(m - 1) as required.
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Figure 31

K(2) we have as in (ii) that if h3G,
S> K(2). Thus when m = 3 we may add

(viii) Since r3K(3) ® K(2) and h3L(3) <§
V • • • VG„ then h3G, ® K(2) V • • • VG„
copies of Äf(2) to vertices in any derivation.

(ix) F3AT(3) ® L(3). By (viii) we may freely add K(l) and #(2) to vertices. We
have found no simple way to complete the proof of this part. One way that works is
to repeat the technique of (vi). From (iv) we have \-3K(l) ® L(3). Now we obtain

(1) h3[({a} ® L(3), a), ({a} ® L(3), a)].
The amalgamations for this graph are shown in Figure 32. When there is no edge
from a to b we use a, d, b and when there is an edge from a to A we use c, a, A to
give the result.

Figure 32

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



90 A. H. LACHLAN AND R. E. WOODROW

(2) If h3[(G, a), ({a} ® L(3), a)] then h3[([(G, a), ({a} ® L(3), a)], A), ({A} ®
L(3), A)],

where A is the unique vertex of (a) ® L(3) which is different from a and such that
there is an automorphism interchanging a, A. Let G ~ result by deleting a from G.
The amalgamation which gives the result is shown in Figure 33. When A is deleted
the remaining graph may be obtained by attaching copies of Ä"(l) to the given
graph. With a deleted we have a graph which results from the disjoint union of G ~
and the graph of (1) by attaching copies of K(l). This amalgamation clearly gives
the result.

G

Figure 33

(3) If h3[(G, a), ({a} ® L(3), a)] then h3[([(G, a), ({a} ® L(3), a)], a), ({a} ®
L(3), a)].

Assume that r-3[(G, a), ({a} ® L(3), a)]. The amalgamation of Figure 34(1) uses
the fact that we may attach a copy of K(2) to a. G ~ is the result of deleting a from
G. From this amalgamation we obtain the desired graph or the graph G¡ of Figure
34(2). We may obtain the graph of Figure 34(3) by two applications of (2). Here G'
is an isomorphic copy of G in which a! plays the role of a. G'~ is the copy of G ~,
i.e. the result of deleting a'. We may now perform the amalgamation shown in
Figure 34(4). In this amalgamation some identification of vertices of G~ and G'~
may result, and some edges may be introduced. However a, a' are distinct and
there is no edge from a to a'. The result of this amalgamation is shown in Figure
34(5). The cross-hatching indicates the possibility of identification and extra edges.
We now exploit the symmetry of Figure 34(5) to set up the amalgamation shown in
Figure 34(6). From this amalgamation we obtain the result. This completes the
proof of (3).

G
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Figure 34
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(4) We now complete the proof of (ix) by showing \-3K(k) ® L(3) for k = 1,2, 3.
We already have r3K(l) ® L(3). In fact from (1) and (2) we have K(2) ® L(3).
Applying (2) to [({a} ® L(3), a), ({a} ® L(3), a)] we have the graph of Figure 35
and K(2) ® L(3) is a subgraph.

Figure 35

Now we are in a position to perform the amalgamation of Figure 36(1). From
\-3K(2) ® L(3), (2), (3) and attaching copies of K(l) we see that the graph of Figure
36(2) belongs to § (3). The symmetry of this situation permits the amalgamation of
Figure 36(1). It is immediate from this that r-3AT(3) ® L(3) and (ix) follows.

Figure 36

(x) We now complete the proof of Lemma 3 by showing \~3L(3) ® L(3). Because
we can attach copies of K(2) it is clear from (ix) that we have the graph of Figure
37(1). This allows us to perform the amalgamation shown in Figure 37(2). This
amalgamation gives us L(3) ® L(3) if the edge a, A is present and otherwise the
graph G. The amalgamation of Figure 37(3) gives the graph H. With G, H it is
possible to set up the amalgamation of Figure 37(4).
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In this note that a, c, e, f, g is the graph H. If there is not an edge from a" to g we
have c, e, g forming the desired copy of L(3) attached at /. Similarly if the edge
from A to g is not in the amalgamation we have e, f, g forming a copy of L(3)
attached to c thus giving L(3) ® L(3). But now with both edges d, g and A, g we
have a, A, c forming a copy of L(3) attached to g, and this forms with the upper
copy of K(2) ® L(3) the desired graph. Thus \-3L(3) ® L(3).

1    AA AA Ai ~

Figure 37

This completes the proof of Lemma 3. From Lemma 6, Theorem 2 is immediate
because S *(m) c S (m).
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