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Abstract. We prove that the existence of a selective ultrafilter on ω implies
the existence of a countably compact group without non-trivial convergent
sequences all of whose powers are countably compact. Hence, by using a selec-
tive ultrafilter on ω, it is possible to construct two countably compact groups
without non-trivial convergent sequences whose product is not countably com-
pact.

1. Introduction

The first example of a countably compact group without non-trivial convergent
sequences was constructed, assuming CH , by A. Hajnal and I. Juhász [7]. A sec-
ond example was discovered by E. K. van Douwen [3] under the assumption of
MA, and one of the most recent examples lies in [10]. All known examples of such
a topological group use some form of MA. A similar situation holds in the problem
of the existence, in ZFC, of two countably compact groups whose product is not
countably compact (see, for instance, [3], [8], [9] and [10]). In this paper, we will
construct two countably compact groups without non-trivial convergent sequences
whose product is not countably compact from a selective ultrafilter. We also con-
struct a countably compact group without non-trivial convergent sequences all of
whose powers are countably compact from a selective ultrafilter on ω.

We shall use standard notation. If {xξ : ξ < c} ⊆ {0, 1}c and F ∈ [c]<ω,
then xF =

∑
ξ∈F xξ. The type of a point p ∈ β(ω) \ ω = ω∗ is denoted by

T (p) = {q ∈ ω∗ : ∃ a bijection f : ω → ω(f (p) = q)}, where f : β(ω) → β(ω)
denotes the Stone-Čech extension of f . An ultrafilter p ∈ ω∗ is called selective if
for every f : ω → ω there is A ∈ p such that f |A is either constant or one-to-one
(the reader may find other combinatorial statements equivalent to selectivity in the
book [2]).

The following concept has been very useful in the construction of countably
compact spaces with certain properties.
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Definition 1.1 (A. R. Bernstein [1]). Let p ∈ ω∗, and let (xn)n<ω be a sequence in
a space X . We say that x is a p-limit point of (xn)n<ω , we write x = p- limn→ω xn,
if for every neighborhood V of x, {n < ω : xn ∈ V } ∈ p.

It is not difficult to prove that a space X is countably compact iff every sequence
of points in X has a p-limit point in X , for some p ∈ ω∗. The following class of
spaces was introduced by A. R. Bernstein [1].

Definition 1.2. Let p ∈ ω∗. A space X is said to be p-compact if for every
sequence (xn)n<ω of points of X there is x ∈ X such that x = p- limn→ω xn.

We know that p-compactness is preserved under arbitrary products, for each
p ∈ ω∗. Hence, we can find countably compact spaces that are not p-compact for
any p ∈ ω∗ (see [5]). J. Ginsburg and V. Saks [6] showed that all powers of a space
X are countably compact iff there is p ∈ ω∗ such that X is p-compact.

For p ∈ ω∗, we shall use the properties of the ultrapower ([c]<ω)ω/p consid-
ered as a vector space over the field {0, 1} with the symmetric difference A∆B =
(A \B)∪ (B \A) as addition. For p ∈ ω∗, an element of the ultrapower ([c]<ω)ω/p
will be denoted by [f ]p, where f : ω → [c]<ω is a function. For F ∈ [c]<ω , the
constant function whose domain is ω and takes only the value F will be denoted
by �F . If α < c is an ordinal, then �{α} will be denoted by �α.

2. The examples

Our group G will be generated by a linearly independent subset of {0, 1}c.
For every selective ultrafilter p ∈ ω∗, it is evident that

([c]<ω)ω/p = {[f ]p : f ∈ ([c]<ω)ω is one-to-one } ∪ {[�F ]p : F ∈ [c]<ω}.

Lemma 2.1. Let p ∈ ω∗ be selective. Then, there exists a family of one-to-one
functions {fξ : ξ < c} ⊆ ([c]<ω)ω such that:

1)
⋃

n<ω fξ(n) ⊆ max{ω, ξ}, for every ξ < c.
2) {[fξ]p : ξ < c} ∪ {[�β]p : β < c} is a base for ([c]<ω)ω/p.
3) For every one-to-one function g ∈ ([c]<ω)ω, there are distinct ζ0, ζ1 < c and

two increasing sequences of positive integers (n0
k)k<ω and (n1

k)k<ω such that
fζi(k) = g(ni

k), for every k < ω and i ∈ {0, 1}.

Proof. Let {gξ : ξ < c} be an enumeration of all one-to-one functions of ([c]<ω)ω

in such a way that each element is listed two times, and
⋃

n<ω gξ(n) ⊆ max{ω, ξ},
for every ξ < c. We proceed by transfinite induction. Let α < c and suppose that,
for each ξ < α, we have defined a one-to-one function fξ : ω → [c]<ω such that:

i) For every m < ω there is n < ω such that fξ(m) = gξ(n), for every ξ < α.
ii) {[fζ ]p : ζ < ξ} ∪ {[�β]p : β < c} is linearly independent, for every ξ < α.
iii) If {[fζ]p : ζ < ξ} ∪ {[gξ]p} ∪ {[�β]p : β < c} is linearly independent, then

fξ = gξ, for every ξ < α.

If {[fξ]p : ξ < α} ∪ {[gα]p} ∪ {[�β]p : β < c} is linearly independent, then we
define fα = gα. Let us assume that {[fξ]p : ξ < α} ∪ {[gα]p} ∪ {[�β]p : β < c} is
not linearly independent. Now, let {Aµ : µ < c} be an almost disjoint family of
infinite subsets of ω. For each µ < c, let hµ : ω → Aµ be a bijection. Then, we
define hα,µ : ω → [c]<ω by hα,µ(n) = gα(hµ(n)), for each n < ω. It is evident that
{n < ω : hα,µ(n) = hα,ν(n)} is finite for µ < ν < c. Hence, {[hα,µ]p : µ < c}
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are pairwise distinct. So, we can find µα < c such that [hα,µα ]p /∈ 〈{[fζ]p : ζ <

ξ} ∪ {[�β]p : β < max{ω, α}}〉. Put fα = hα,µα . Clearly, conditions i) and iii)
are satisfied. We know that {[fξ]p : ξ ≤ α} ∪ {[�β]p : β < max{ω, α}} is linearly
independent. Since

⋃
n<ω fξ(n) ⊆ max{ω, α}, for every ξ ≤ α, we also have that

{[fξ]p : ξ ≤ α} ∪ {[�β]p : β < c} is linearly independent. This shows that condition
ii) holds. We claim that the family {fξ : ξ < c} satisfies all the conditions. Indeed,
by the construction, {[fξ]p : ξ < c} ∪ {[�β]p : β < c} is a base for ([c]<ω)ω/p. Let
us prove that condition 3) is satisfied. For this, take ζ0, ζ1 < c so that ξ0 < ξ1

and g = gζ0 = gζ1 . From condition i) we can find two increasing sequences of
positive integers (n0

k)k<ω and (n1
k)k<ω such that fζi(k) = g(ni

k), for every k < ω
and i ∈ {0, 1}. �

In what follows, we fix a family {fξ : ξ < c} ⊆ ([c]<ω)ω satisfying the three
properties stated in Lemma 2.1, and enumerate [c]<ω \ {∅} as {Fα : α < c}.

Lemma 2.2. Let p ∈ ω∗ be selective. Suppose that for every α < c we have a
non-trivial homomorphism Φα : [c]<ω → {0, 1} such that

i) Φα({ξ}) = p- limn→ω Φα(fξ(n)), for every ξ < c; and
ii) Φα(Fα) = 1.

For ξ < c, we define xξ ∈ {0, 1}c by xξ(α) = Φα({ξ}), for every α < c. Then, the
set X = {xξ : ξ < c} is linearly independent in {0, 1}c and G = 〈X〉 is a p-compact
group without non-trivial convergent sequences.

Proof. Let {ξ0, ...., ξk} ∈ [c]<ω. Choose α < c such that Fα = {ξ0, ...., ξk}. Then,
by ii),

(xξ0 + .... + xξk
)(α) = Φα({ξ0}) + .... + Φα({ξk}) = Φα(Fα) = 1.

This shows that {xξ : ξ < c} is linearly independent in {0, 1}c. Now we will show
that G is p-compact. Before proving this, notice from clause i) that

xξ = p- lim
n→ω

∑

µ∈fξ(n)

xµ = p- lim
n→ω

xfξ(n),

for every ξ < c. Let (an)n<ω be a sequence in G. Choose g ∈ ([c]<ω)ω such that
an = xg(n), for every n < ω. Since p is selective, there is A ∈ p such that g|A
is either constant or one-to-one. If g|A is constant, then there is F ∈ [c]<ω such
that {n < ω : xg(n) = xF } ∈ p and so xF = p- limn→ω xg(n). Let us assume that
there is a one-to-one function h ∈ ([c]<ω)ω such that h|A = g|A. Since {[fξ]p :
ξ < c} ∪ {[�β]p : β < c} is a base for ([c]<ω)ω/p, there are ξ0, ...., ξk < c and
E ∈ [c]<ω such that [h]p = (∆i≤k[fξi ]p)∆(∆µ∈E [�µ]p). Hence, we can find B ∈ p
such that B ⊆ A and h(n) = (∆i≤kfξi(n))∆E, for every n ∈ B. It then follows
that xh(n) =

∑
i≤k xfξi

(n) + xE , for all n ∈ B. So,
∑

i≤k

xξi + xE = p- lim
n→ω

xh(n).

This shows that G is p-compact. Let (yn)n<ω be a non-trivial sequence in G, and
assume that there is a one-to-one function g ∈ ([c]<ω)ω such that yn = xg(n). By
clause 3) of Lemma 2.1, there are distinct ζ0, ζ1 < c and two increasing sequences
of positive integers (n0

k)k<ω and (n1
k)k<ω such that fζi(k) = g(ni

k), for every k < ω
and i ∈ {0, 1}. Since xζi = p- limk→ω xfζi

(k) = p- limk→ω xg(ni
k) = p- limk→ω yni

k
,
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for each i ∈ {0, 1}, we must have that xζ0 and xζ1 are both cluster points of
{yn : n < ω}. �

Lemma 2.3. Let p ∈ ω∗ be selective. For every E0 ∈ [c]<ω \ {∅}, there are
{bi : i < ω} ∈ p and {Ei : 0 < i < ω} ⊆ [c]<ω such that

1) ω ⊆
⋃

i<ω Ei;
2) Ei ∪ [

⋃
ξ∈Ei

fξ(bi)] ⊆ Ei+1, for every i < ω; and
3) {fξ(bi) : ξ ∈ Ei} ∪ {{µ} : µ ∈ Ei} is linearly independent, for every i < ω.

Proof. Put F0 = E0, and let Fn+1 = n ∪ Fn ∪ [
⋃

ξ∈Fn

⋃
m≤n fξ(m)], for every

1 ≤ n < ω. Since {[fξ]p : ξ ∈ S} ∪ {[�β]p : β < c} is linearly independent, we have
that

An = {k < ω : {fξ(k) : ξ ∈ Fn} ∪ {{µ} : µ ∈ Fn}
is linearly independent} ∈ p,

for every n < ω. By the selectivity of p, we can find A = {an : n < ω} ∈ p such
that m < am < an and an ∈ An, for every m < n < ω. Let us define a coloring
P0 and P1 on [ω]2 as {a, b} ∈ P0 iff a < b, a, b ∈ A, a = am, b = an and am < n,
and {a, b} ∈ P1 otherwise. Since p is selective, there is B ∈ p such that B ⊆ A and
either [B]2 ⊆ P0 or [B]2 ⊆ P1. Choose I ∈ [ω]ω such that B = {an : n ∈ I}. Let
{ik : k < ω} be the enumeration of I in increasing order. Suppose that [B]2 ⊆ P1.
Since {ai0 , aik

} ∈ P1, then ai0 ≥ ik, for every 1 ≤ k < ω, but this is a contradiction.
Therefore, [B]2 ⊆ P0. Hence, we have that ik < aik

< ik+1, for every k < ω. By
using this, we obtain that

Fik
∪ [

⋃

ξ∈Fik

fξ(aik
)] ⊆ Fik+1 ∪ [

⋃

ξ∈Fik

⋃

m<ik+1

fξ(m)] ⊆ Fik+1 ,

for all k < ω. Notice that, for every k < ω,

{fξ(aik
) : ξ ∈ Fik

} ∪ {{µ} : µ ∈ Fik
}

is linearly independent, since aik
∈ Aik

. Then, for every 1 ≤ k < ω, we define
Ek = Fik

and, for every k < ω, we put bk = aik
. It is evident that 2) and 3) are

satisfied. We remark that E0 ⊆ Fi0 and

ω ⊆
⋃

n<ω

Fn =
⋃

k<ω

Fik
=

⋃

k<ω

Ek,

and B = {bk : k < ω} ∈ p. �

Example 2.4. If p ∈ ω∗ is selective, then there is a p-compact subgroup of size c

without non-trivial convergent sequences.

Proof. According to Lemma 2.2, it suffices to construct, for each α < c, a non-trivial
homomorphism Φα : [c]<ω → {0, 1} such that

i) Φα({ξ}) = p- limn→ω Φα(fξ(n)), for every ξ < c; and
ii) Φα(Fα) = 1.

Fix α < c. By applying Lemma 2.3 to E0 = Fα, we get {bi : i < ω} ∈ p and
{Ei : 0 < i < ω} ⊆ [c]<ω such that

1) ω ⊆
⋃

i<ω Ei =: E;
2) Ei ∪ [

⋃
ξ∈Ei

fξ(bi)] ⊆ Ei+1, for every i < ω; and
3) {fξ(bi) : ξ ∈ Ei} ∪ {{µ} : µ ∈ Ei} is linearly independent, for every i < ω.
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Now, suppose that for i < ω, we have defined Φα on [Ei]<ω so that Φα(Fα) = 1
and Φα(fξ(bi)) = Φα({µ}), for every ξ, µ ∈ Ei. Since {fξ(bi+1) : ξ ∈ Ei+1}∪{{µ} :
µ ∈ Ei+1} is linearly independent, and Ei ∪

⋃
ξ∈Ei

fξ(bi) ⊆ Ei+1, we may extend
Φα : [Ei]<ω → {0, 1} to a homomorphism from [Ei+1]<ω to {0, 1} in such a way
that Φα(fξ(bi+1)) = Φα({ξ}), for every ξ ∈ Ei+1. Thus, we have defined Φα on
[E]<ω. Observe that Φα(fξ(bi)) = Φα({ξ}), for every ξ ∈ Ei and i < ω. Hence,
{n < ω : Φα(fξ(n)) = Φα({ξ})} ∈ p, for every ξ ∈ E. Our next task is to extend
Φα to [c]<ω. We will do this by transfinite induction on c \ E. Let γ ∈ c \ E and
suppose that Φα has been defined on [E ∪ γ]<ω. Since fγ(n) ⊆ γ, for every n < ω,
Φα({µ}) has been defined for each µ < γ and {{γ}} ∪ {{µ} : µ < γ} is linearly
independent, Φα can be extended to [E ∪ (γ + 1)]<ω in such a way that

Φα({γ}) = p- lim
n→ω

Φα(fγ(n)).

It is evident that Φα satisfies the required properties. �

The following example follows from E. K. van Douwen’s construction [3, 6.1]
applied to Example 2.4.

Example 2.5. If there is a selective ultrafilter on ω, then there are two countably
compact groups without non-trivial convergent sequences whose product is not
countably compact.

3. One more example

In this section, we will improve a little bit Example 2.5.
For p ∈ ω∗, we say that a space is almost p-compact if for every sequence (xn)n<ω

in X there is a function σ : ω → ω such that σ(p) ∈ ω∗ and σ(p)- limn→ω xn ∈ X
(this concept was introduced in [4]). It is evident that every p-compact space is
almost p-compact, and every almost p-compact space is countably compact. All
these notions are different from each other.

The following lemma is a generalization of Lemma 2.1.

Lemma 3.1. Let p ∈ ω∗ be a selective ultrafilter. Then, there exists a family
of one-to-one functions {fξ : ω ≤ ξ < c} ⊆ ([c]<ω)ω and pairwise disjoint sets
I0, I1, I2, I3 ∈ [c \ ω]c such that:

a)
⋃

n<ω fξ(n) ⊆ ξ for every ω ≤ ξ < c.
b) b.0)

⋃
n<ω fξ(n) ⊆ ω, for every ξ ∈ I0.

b.1)
⋃

n<ω fξ(n) ⊆ ω, for every ξ ∈ I1.
b.2)

⋃
n<ω fξ(n) ⊆ I0 ∪ I2, for every ξ ∈ I2.

b.3)
⋃

n<ω fξ(n) ⊆ I1 ∪ I3, for every ξ ∈ I3.
c) {[fξ]p : ω ≤ ξ < c} ∪ {[�β]p : β < c} is linearly independent.
d) For every j ∈ {0, 1} and for every one-to-one function g ∈ ([ω]<ω)ω, there

exists a bijection σ : ω → ω and ξ ∈ Ij such that [g ◦ σ]p = [fξ]p.
e) For every j ∈ {0, 1}, {[fξ]p : ξ ∈ Ij+2} ∪ {[�β]p : β ∈ Ij ∪ Ij+2} is a base for

([Ij ∪ Ij+2]<ω)ω/p.

Proof. Let I0, I1, I2 and I3 be a partition of c \ ω in subsets of size c, and let
{gξ : ω ≤ ξ < c} be such that:

i) For each j ∈ {0, 1}, we have that {gξ : ξ ∈ Ij} is an enumeration of all
one-to-one functions in ([ω]<ω)ω.
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ii) For each j ∈ {0, 1}, we have that {gξ : ξ ∈ Ij+2} is an enumeration of all
one-to-one functions in ([Ij ∪Ij+2]<ω)ω in such a way that

⋃
n<ω gξ(n) ⊆ ξ,

for every ξ ∈ Ij+2.
By applying the proof of Lemma 2.1 to {gξ : ξ ∈ Ij}, for j ∈ 2, 3, we get a set
of one-to-one functions {fξ : ξ ∈ Ij} satisfying a), b.2), b.3), and e). On the
other hand, we apply the proof of Lemma 2.1 to {gξ : ξ ∈ I0 ∪ I1} to obtain a
family of one-to-one functions {fξ : ξ ∈ Ij} satisfying b.0) and b.1). Furthermore,
{[fξ]p : ξ ∈ I0 ∪ I1}∪{[�n]p : n < ω} is linearly independent. Thus, condition c) also
holds. Let us see how we get condition d). Following the notation of the proof of
Lemma 2.1, at stage α < c, we choose µα < c such that {[hα,µα ]p : α < c} ∪ {[fξ]p :
ξ < α} ∪ {[�β]p : β < c} is linearly independent. We know that hµα : ω → Aµα is
a bijection. Now, pick B ⊆ Aµα such that |B| = |Aµα \ B| = ω and h−1

µα
(B) ∈ p.

Choose a bijection σ : ω → ω for which σ(n) = hµα(n) for every n ∈ h−1
µα

(B) and
σ[ω \ h−1

µα
(B)] = ω \ B. So, we define fα(n) = gα(σ(n)), for every n < ω. Then,

we have that fα = gα(σ(n)) = gα(hµα(n)) = hα,µα(n), for every n ∈ h−1
µα

(B).
Therefore, [fα]p = [gα ◦ σ]p = [hα,µα ]p. This shows condition d). �

In the next example, we fix a family {fξ : ω ≤ ξ < c} ⊆ ([c]<ω)ω and sets
I0, I1, I2, I3 ∈ [c \ ω]c satisfying all the properties of Lemma 3.1.

Example 3.2. If there is a selective ultrafilter on ω, then there are two almost
p-compact groups whose product is not countably compact.

Proof. By using clause c), Lemma 2.3 and the proof of Example 2.4, we can define,
for every α < c, a non-trivial homomorphism Φα : [c]<ω → {0, 1} so that

i) Φα({ξ}) = p- limn→ω Φα(fξ(n)), for every ω ≤ ξ < c; and
ii) Φα(Fα) = 1.

Hence, for each ξ < c we define xξ(α) = Φα({ξ}), for every α < c. Then, we
have that {xξ : ξ < c} is a linearly independent subset of {0, 1}c and xξ =
p- limn→ω xfξ(n), for every ω ≤ ξ < c. We put

E = 〈{xn : n < ω}〉,
H0 = 〈{xξ : ξ ∈ I0 ∪ I2}〉,
H1 = 〈{xξ : ξ ∈ I1 ∪ I3}〉,
G0 = E + H0 = 〈{xξ : ξ ∈ ω ∪ I0 ∪ I2}〉 and
G1 = E + H1 = 〈{xξ : ξ ∈ ω ∪ I1 ∪ I3}〉.

It is evident that G0 ∩ G1 = E. Hence, we deduce that G0 × G1 is not countably
compact. As in Lemma 2.2, both H0 and H1 are p-compact groups. We shall show
that Gj is almost p-compact, for j ∈ {0, 1}. For this, fix a sequence (an)n<ω in
Gj . Choose two sequences (en)n<ω in E and (hn)n<ω in Hj so that an = en + hn,
for every n < ω. By the selectivity of p, there is A ∈ p such that either en = e,
for all n ∈ A, for some e ∈ E, or the function n → en, for n ∈ A, is one-to-
one. In the former case, e + h = p- limn→ω(en + hn) ∈ E + Hj = Gj , where
h = p- limn→ω hn. In the latter case, we can find a one-to-one function g ∈ ([ω]<ω)ω

such that en = xg(n), for every n ∈ A. According to clause e) of Lemma 3.1, there
are a bijection σ : ω → ω and ξ ∈ Ij such that [g ◦ σ]p = [fξ]p. Pick B ∈ p so that
B ⊆ A and g(σ(n)) = fξ(n), for every n ∈ B. Hence, eσ(n) = xg(σ(n)) = xfξ(n), for
every n ∈ B. This implies that

p- lim
n→ω

eσ(n) = p- lim
n→ω

xfξ(n) = xξ ∈ Hj .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COUNTABLY COMPACT GROUPS FROM A SELECTIVE ULTRAFILTER 943

So, xξ = σ(p)- limn→ω en and q = σ(p) ∈ T (p) . Since Hj is p-compact, it is
also q-compact. Thus, q- limn→ω hn = h ∈ Hj . Hence, q- limn→ω an = xξ + h ∈
Hj + Hj ⊆ Gj . Therefore, Gj is almost p-compact. �

Finally, we list some open problems that the authors were unable to solve.

Question 3.3. For an arbitrary p ∈ ω∗, is there a p-compact group without non-
trivial convergent sequences?

Question 3.4. Does the existence of a P -point in ω∗ imply the existence of two
countably compact groups whose product is not countably compact?

Question 3.5. Does the existence of a selective ultrafilter on ω imply the existence
of a countably compact group whose square is not countably compact?
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