PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 133, Number 3, Pages 937-943 S 0002-9939(04)07684-1 Article electronically published on September 29, 2004

COUNTABLY COMPACT GROUPS FROM A SELECTIVE ULTRAFILTER

S. GARCIA-FERREIRA, A. H. TOMITA, AND S. WATSON

(Communicated by Alan Dow)

ABSTRACT. We prove that the existence of a selective ultrafilter on ω implies the existence of a countably compact group without non-trivial convergent sequences all of whose powers are countably compact. Hence, by using a selective ultrafilter on ω , it is possible to construct two countably compact groups without non-trivial convergent sequences whose product is not countably compact.

1. INTRODUCTION

The first example of a countably compact group without non-trivial convergent sequences was constructed, assuming CH, by A. Hajnal and I. Juhász [7]. A second example was discovered by E. K. van Douwen [3] under the assumption of MA, and one of the most recent examples lies in [10]. All known examples of such a topological group use some form of MA. A similar situation holds in the problem of the existence, in ZFC, of two countably compact groups whose product is not countably compact (see, for instance, [3], [8], [9] and [10]). In this paper, we will construct two countably compact groups without non-trivial convergent sequences whose product is not countably compact group without non-trivial convergent sequences all of whose powers are countably compact from a selective ultrafilter on ω .

We shall use standard notation. If $\{x_{\xi} : \xi < \mathfrak{c}\} \subseteq \{0,1\}^{\mathfrak{c}}$ and $F \in [\mathfrak{c}]^{<\omega}$, then $x_F = \sum_{\xi \in F} x_{\xi}$. The type of a point $p \in \beta(\omega) \setminus \omega = \omega^*$ is denoted by $T(p) = \{q \in \omega^* : \exists \text{ a bijection } f : \omega \to \omega(\overline{f}(p) = q)\}$, where $\overline{f} : \beta(\omega) \to \beta(\omega)$ denotes the Stone-Čech extension of f. An ultrafilter $p \in \omega^*$ is called *selective* if for every $f : \omega \to \omega$ there is $A \in p$ such that $f|_A$ is either constant or one-to-one (the reader may find other combinatorial statements equivalent to selectivity in the book [2]).

The following concept has been very useful in the construction of countably compact spaces with certain properties.

©2004 American Mathematical Society

Received by the editors March 3, 2003 and, in revised form, November 20, 2003.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54G20, 54D80, 22A99; Secondary 54H11. Key words and phrases. p-limit, p-compact, selective ultrafilter, countably compact group, topological group.

This research was supported by CONACYT grant no. 40057-F and DGAPA grant no. IN104601.

Definition 1.1 (A. R. Bernstein [1]). Let $p \in \omega^*$, and let $(x_n)_{n < \omega}$ be a sequence in a space X. We say that x is a p-limit point of $(x_n)_{n < \omega}$, we write $x = p - \lim_{n \to \omega} x_n$, if for every neighborhood V of x, $\{n < \omega : x_n \in V\} \in p$.

It is not difficult to prove that a space X is countably compact iff every sequence of points in X has a p-limit point in X, for some $p \in \omega^*$. The following class of spaces was introduced by A. R. Bernstein [1].

Definition 1.2. Let $p \in \omega^*$. A space X is said to be p-compact if for every sequence $(x_n)_{n < \omega}$ of points of X there is $x \in X$ such that $x = p - \lim_{n \to \omega} x_n$.

We know that p-compactness is preserved under arbitrary products, for each $p \in \omega^*$. Hence, we can find countably compact spaces that are not p-compact for any $p \in \omega^*$ (see [5]). J. Ginsburg and V. Saks [6] showed that all powers of a space X are countably compact iff there is $p \in \omega^*$ such that X is p-compact.

For $p \in \omega^*$, we shall use the properties of the ultrapower $([\mathfrak{c}]^{<\omega})^{\omega}/p$ considered as a vector space over the field $\{0,1\}$ with the symmetric difference $A\Delta B =$ $(A \setminus B) \cup (B \setminus A)$ as addition. For $p \in \omega^*$, an element of the ultrapower $([\mathfrak{c}]^{<\omega})^{\omega}/p$ will be denoted by $[f]_p$, where $f: \omega \to [\mathfrak{c}]^{<\omega}$ is a function. For $F \in [\mathfrak{c}]^{<\omega}$, the constant function whose domain is ω and takes only the value F will be denoted by \vec{F} . If $\alpha < \mathfrak{c}$ is an ordinal, then $\{\vec{\alpha}\}$ will be denoted by $\vec{\alpha}$.

2. The examples

Our group G will be generated by a linearly independent subset of $\{0,1\}^{\mathfrak{c}}$. For every selective ultrafilter $p \in \omega^*$, it is evident that

$$([\mathfrak{c}]^{<\omega})^{\omega}/p = \{[f]_p : f \in ([\mathfrak{c}]^{<\omega})^{\omega} \text{ is one-to-one } \} \cup \{[\vec{F}]_p : \mathbf{F} \in [\mathfrak{c}]^{<\omega}\}.$$

Lemma 2.1. Let $p \in \omega^*$ be selective. Then, there exists a family of one-to-one functions $\{f_{\xi}: \xi < \mathfrak{c}\} \subseteq ([\mathfrak{c}]^{<\omega})^{\omega}$ such that:

- 1) $\bigcup_{n < \omega} f_{\xi}(n) \subseteq \max\{\omega, \xi\}$, for every $\xi < \mathfrak{c}$.
- {[f_ξ]_p: ξ < c} ∪ {[β]_p: β < c} is a base for ([c]^{<ω})^ω/p.
 For every one-to-one function g ∈ ([c]^{<ω})^ω, there are distinct ζ₀, ζ₁ < c and two increasing sequences of positive integers $(n_k^0)_{k < \omega}$ and $(n_k^1)_{k < \omega}$ such that $f_{\zeta_i}(k) = g(n_k^i)$, for every $k < \omega$ and $i \in \{0, 1\}$.

Proof. Let $\{g_{\xi} : \xi < \mathfrak{c}\}$ be an enumeration of all one-to-one functions of $([\mathfrak{c}]^{<\omega})^{\omega}$ in such a way that each element is listed two times, and $\bigcup_{n \leq \omega} g_{\xi}(n) \subseteq max\{\omega, \xi\}$, for every $\xi < \mathfrak{c}$. We proceed by transfinite induction. Let $\alpha < \mathfrak{c}$ and suppose that, for each $\xi < \alpha$, we have defined a one-to-one function $f_{\xi} : \omega \to [\mathfrak{c}]^{<\omega}$ such that:

- i) For every $m < \omega$ there is $n < \omega$ such that $f_{\xi}(m) = g_{\xi}(n)$, for every $\xi < \alpha$.
- ii) $\{[f_{\zeta}]_p : \zeta < \xi\} \cup \{[\beta]_p : \beta < \mathfrak{c}\}$ is linearly independent, for every $\xi < \alpha$.
- iii) If $\{[f_{\zeta}]_p : \zeta < \xi\} \cup \{[g_{\xi}]_p\} \cup \{[\vec{\beta}]_p : \beta < \mathfrak{c}\}$ is linearly independent, then $f_{\xi} = g_{\xi}$, for every $\xi < \alpha$.

If $\{[f_{\xi}]_p : \xi < \alpha\} \cup \{[g_{\alpha}]_p\} \cup \{[\vec{\beta}]_p : \beta < \mathfrak{c}\}$ is linearly independent, then we define $f_{\alpha} = g_{\alpha}$. Let us assume that $\{[f_{\xi}]_p : \xi < \alpha\} \cup \{[g_{\alpha}]_p\} \cup \{[\beta]_p : \beta < \mathfrak{c}\}$ is not linearly independent. Now, let $\{A_{\mu} : \mu < \mathfrak{c}\}$ be an almost disjoint family of infinite subsets of ω . For each $\mu < \mathfrak{c}$, let $h_{\mu} : \omega \to A_{\mu}$ be a bijection. Then, we define $h_{\alpha,\mu}: \omega \to [\mathfrak{c}]^{<\omega}$ by $h_{\alpha,\mu}(n) = g_{\alpha}(h_{\mu}(n))$, for each $n < \omega$. It is evident that $\{n < \omega : h_{\alpha,\mu}(n) = h_{\alpha,\nu}(n)\}$ is finite for $\mu < \nu < \mathfrak{c}$. Hence, $\{[h_{\alpha,\mu}]_p : \mu < \mathfrak{c}\}$

are pairwise distinct. So, we can find $\mu_{\alpha} < \mathfrak{c}$ such that $[h_{\alpha,\mu_{\alpha}}]_p \notin \langle \{[f_{\zeta}]_p : \zeta < \xi\} \cup \{[\vec{\beta}]_p : \beta < max\{\omega,\alpha\}\}\rangle$. Put $f_{\alpha} = h_{\alpha,\mu_{\alpha}}$. Clearly, conditions *i*) and *iii*) are satisfied. We know that $\{[f_{\xi}]_p : \xi \leq \alpha\} \cup \{[\vec{\beta}]_p : \beta < max\{\omega,\alpha\}\}$ is linearly independent. Since $\bigcup_{n < \omega} f_{\xi}(n) \subseteq max\{\omega,\alpha\}$, for every $\xi \leq \alpha$, we also have that $\{[f_{\xi}]_p : \xi \leq \alpha\} \cup \{[\vec{\beta}]_p : \beta < \mathfrak{c}\}$ is linearly independent. This shows that condition *ii*) holds. We claim that the family $\{f_{\xi} : \xi < \mathfrak{c}\}$ satisfies all the conditions. Indeed, by the construction, $\{[f_{\xi}]_p : \xi < \mathfrak{c}\} \cup \{[\vec{\beta}]_p : \beta < \mathfrak{c}\} \cup \{[\vec{\beta}]_p : \beta < \mathfrak{c}\}$ is a base for $([\mathfrak{c}]^{<\omega})^{\omega}/p$. Let us prove that condition 3) is satisfied. For this, take $\zeta_0, \zeta_1 < \mathfrak{c}$ so that $\xi_0 < \xi_1$ and $g = g_{\zeta_0} = g_{\zeta_1}$. From condition *i*) we can find two increasing sequences of positive integers $(n_k^0)_{k < \omega}$ and $(n_k^1)_{k < \omega}$ such that $f_{\zeta_i}(k) = g(n_k^i)$, for every $k < \omega$ and $i \in \{0, 1\}$.

In what follows, we fix a family $\{f_{\xi} : \xi < \mathfrak{c}\} \subseteq ([\mathfrak{c}]^{<\omega})^{\omega}$ satisfying the three properties stated in Lemma 2.1, and enumerate $[\mathfrak{c}]^{<\omega} \setminus \{\emptyset\}$ as $\{F_{\alpha} : \alpha < \mathfrak{c}\}$.

Lemma 2.2. Let $p \in \omega^*$ be selective. Suppose that for every $\alpha < \mathfrak{c}$ we have a non-trivial homomorphism $\Phi_{\alpha} : [\mathfrak{c}]^{<\omega} \to \{0,1\}$ such that

i) $\Phi_{\alpha}(\{\xi\}) = p - \lim_{n \to \omega} \Phi_{\alpha}(f_{\xi}(n))$, for every $\xi < \mathfrak{c}$; and ii) $\Phi_{\alpha}(F_{\alpha}) = 1$.

group without non-trivial convergent sequences.

For $\xi < \mathfrak{c}$, we define $x_{\xi} \in \{0,1\}^{\mathfrak{c}}$ by $x_{\xi}(\alpha) = \Phi_{\alpha}(\{\xi\})$, for every $\alpha < \mathfrak{c}$. Then, the set $X = \{x_{\xi} : \xi < \mathfrak{c}\}$ is linearly independent in $\{0,1\}^{\mathfrak{c}}$ and $G = \langle X \rangle$ is a p-compact

Proof. Let $\{\xi_0, ..., \xi_k\} \in [\mathfrak{c}]^{<\omega}$. Choose $\alpha < \mathfrak{c}$ such that $F_\alpha = \{\xi_0, ..., \xi_k\}$. Then, by ii,

$$(x_{\xi_0} + \dots + x_{\xi_k})(\alpha) = \Phi_{\alpha}(\{\xi_0\}) + \dots + \Phi_{\alpha}(\{\xi_k\}) = \Phi_{\alpha}(F_{\alpha}) = 1.$$

This shows that $\{x_{\xi} : \xi < \mathfrak{c}\}$ is linearly independent in $\{0, 1\}^{\mathfrak{c}}$. Now we will show that G is p-compact. Before proving this, notice from clause i) that

$$x_{\xi} = p - \lim_{n \to \omega} \sum_{\mu \in f_{\xi}(n)} x_{\mu} = p - \lim_{n \to \omega} x_{f_{\xi}(n)},$$

for every $\xi < \mathfrak{c}$. Let $(a_n)_{n < \omega}$ be a sequence in G. Choose $g \in ([\mathfrak{c}]^{<\omega})^{\omega}$ such that $a_n = x_{g(n)}$, for every $n < \omega$. Since p is selective, there is $A \in p$ such that $g|_A$ is either constant or one-to-one. If $g|_A$ is constant, then there is $F \in [\mathfrak{c}]^{<\omega}$ such that $\{n < \omega : x_{g(n)} = x_F\} \in p$ and so $x_F = p - \lim_{n \to \omega} x_{g(n)}$. Let us assume that there is a one-to-one function $h \in ([\mathfrak{c}]^{<\omega})^{\omega}$ such that $h|_A = g|_A$. Since $\{[f_{\xi}]_p : \xi < \mathfrak{c}\} \cup \{[\vec{\beta}]_p : \beta < \mathfrak{c}\}$ is a base for $([\mathfrak{c}]^{<\omega})^{\omega}/p$, there are $\xi_0, \dots, \xi_k < \mathfrak{c}$ and $E \in [\mathfrak{c}]^{<\omega}$ such that $[h]_p = (\Delta_{i \le k} [f_{\xi_i}]_p) \Delta(\Delta_{\mu \in E} [\vec{\mu}]_p)$. Hence, we can find $B \in p$ such that $B \subseteq A$ and $h(n) = (\Delta_{i \le k} f_{\xi_i}(n)) \Delta E$, for every $n \in B$. It then follows that $x_{h(n)} = \sum_{i < k} x_{f_{\xi_i}(n)} + x_E$, for all $n \in B$. So,

$$\sum_{i \le k} x_{\xi_i} + x_E = p - \lim_{n \to \omega} x_{h(n)}.$$

This shows that G is p-compact. Let $(y_n)_{n < \omega}$ be a non-trivial sequence in G, and assume that there is a one-to-one function $g \in ([\mathfrak{c}]^{<\omega})^{\omega}$ such that $y_n = x_{g(n)}$. By clause 3) of Lemma 2.1, there are distinct $\zeta_0, \zeta_1 < \mathfrak{c}$ and two increasing sequences of positive integers $(n_k^0)_{k < \omega}$ and $(n_k^1)_{k < \omega}$ such that $f_{\zeta_i}(k) = g(n_k^i)$, for every $k < \omega$ and $i \in \{0, 1\}$. Since $x_{\zeta_i} = p - \lim_{k \to \omega} x_{f_{\zeta_i}(k)} = p - \lim_{k \to \omega} x_{g(n_k^i)} = p - \lim_{k \to \omega} y_{n_k^i}$, for each $i \in \{0,1\}$, we must have that x_{ζ_0} and x_{ζ_1} are both cluster points of $\{y_n : n < \omega\}$.

Lemma 2.3. Let $p \in \omega^*$ be selective. For every $E_0 \in [\mathfrak{c}]^{<\omega} \setminus \{\emptyset\}$, there are $\{b_i : i < \omega\} \in p$ and $\{E_i : 0 < i < \omega\} \subseteq [\mathfrak{c}]^{<\omega}$ such that

1) $\omega \subseteq \bigcup_{i < \omega} E_i$; 2) $E_i \cup [\bigcup_{\xi \in E_i} f_{\xi}(b_i)] \subseteq E_{i+1}$, for every $i < \omega$; and 3) $\{f_{\xi}(b_i) : \xi \in E_i\} \cup \{\{\mu\} : \mu \in E_i\}$ is linearly independent, for every $i < \omega$.

Proof. Put $F_0 = E_0$, and let $F_{n+1} = n \cup F_n \cup [\bigcup_{\xi \in F_n} \bigcup_{m \le n} f_{\xi}(m)]$, for every $1 \le n < \omega$. Since $\{[f_{\xi}]_p : \xi \in S\} \cup \{[\vec{\beta}]_p : \beta < \mathfrak{c}\}$ is linearly independent, we have that

$$A_n = \{k < \omega : \{f_{\xi}(k) : \xi \in F_n\} \cup \{\{\mu\} : \mu \in F_n\}$$

is linearly independent $\in p$,

for every $n < \omega$. By the selectivity of p, we can find $A = \{a_n : n < \omega\} \in p$ such that $m < a_m < a_n$ and $a_n \in A_n$, for every $m < n < \omega$. Let us define a coloring P_0 and P_1 on $[\omega]^2$ as $\{a, b\} \in P_0$ iff a < b, $a, b \in A$, $a = a_m$, $b = a_n$ and $a_m < n$, and $\{a, b\} \in P_1$ otherwise. Since p is selective, there is $B \in p$ such that $B \subseteq A$ and either $[B]^2 \subseteq P_0$ or $[B]^2 \subseteq P_1$. Choose $I \in [\omega]^{\omega}$ such that $B = \{a_n : n \in I\}$. Let $\{i_k : k < \omega\}$ be the enumeration of I in increasing order. Suppose that $[B]^2 \subseteq P_1$. Since $\{a_{i_0}, a_{i_k}\} \in P_1$, then $a_{i_0} \ge i_k$, for every $1 \le k < \omega$, but this is a contradiction. Therefore, $[B]^2 \subseteq P_0$. Hence, we have that $i_k < a_{i_k} < i_{k+1}$, for every $k < \omega$. By using this, we obtain that

$$F_{i_k} \cup \left[\bigcup_{\xi \in F_{i_k}} f_{\xi}(a_{i_k})\right] \subseteq F_{i_{k+1}} \cup \left[\bigcup_{\xi \in F_{i_k}} \bigcup_{m < i_{k+1}} f_{\xi}(m)\right] \subseteq F_{i_{k+1}},$$

for all $k < \omega$. Notice that, for every $k < \omega$,

$$\{f_{\xi}(a_{i_k}): \xi \in F_{i_k}\} \cup \{\{\mu\}: \mu \in F_{i_k}\}$$

is linearly independent, since $a_{i_k} \in A_{i_k}$. Then, for every $1 \leq k < \omega$, we define $E_k = F_{i_k}$ and, for every $k < \omega$, we put $b_k = a_{i_k}$. It is evident that 2) and 3) are satisfied. We remark that $E_0 \subseteq F_{i_0}$ and

$$\omega \subseteq \bigcup_{n < \omega} F_n = \bigcup_{k < \omega} F_{i_k} = \bigcup_{k < \omega} E_k,$$

 $\in p.$

and $B = \{b_k : k < \omega\} \in p$.

Example 2.4. If $p \in \omega^*$ is selective, then there is a *p*-compact subgroup of size \mathfrak{c} without non-trivial convergent sequences.

Proof. According to Lemma 2.2, it suffices to construct, for each $\alpha < \mathfrak{c}$, a non-trivial homomorphism $\Phi_{\alpha} : [\mathfrak{c}]^{<\omega} \to \{0,1\}$ such that

i) $\Phi_{\alpha}(\{\xi\}) = p - \lim_{n \to \omega} \Phi_{\alpha}(f_{\xi}(n))$, for every $\xi < \mathfrak{c}$; and ii) $\Phi_{\alpha}(F_{\alpha}) = 1$.

Fix $\alpha < \mathfrak{c}$. By applying Lemma 2.3 to $E_0 = F_{\alpha}$, we get $\{b_i : i < \omega\} \in p$ and $\{E_i : 0 < i < \omega\} \subseteq [\mathfrak{c}]^{<\omega}$ such that

- 1) $\omega \subseteq \bigcup_{i < \omega} E_i =: E;$
- 2) $E_i \cup [\bigcup_{\xi \in E_i} f_{\xi}(b_i)] \subseteq E_{i+1}$, for every $i < \omega$; and
- 3) $\{f_{\xi}(b_i): \xi \in E_i\} \cup \{\{\mu\}: \mu \in E_i\}$ is linearly independent, for every $i < \omega$.

940

Now, suppose that for $i < \omega$, we have defined Φ_{α} on $[E_i]^{<\omega}$ so that $\Phi_{\alpha}(F_{\alpha}) = 1$ and $\Phi_{\alpha}(f_{\xi}(b_i)) = \Phi_{\alpha}(\{\mu\})$, for every $\xi, \mu \in E_i$. Since $\{f_{\xi}(b_{i+1}) : \xi \in E_{i+1}\} \cup \{\{\mu\} :$ $\mu \in E_{i+1}$ is linearly independent, and $E_i \cup \bigcup_{\xi \in E_i} f_{\xi}(b_i) \subseteq E_{i+1}$, we may extend $\Phi_{\alpha} : [E_i]^{<\omega} \to \{0,1\}$ to a homomorphism from $[E_{i+1}]^{<\omega}$ to $\{0,1\}$ in such a way that $\Phi_{\alpha}(f_{\xi}(b_{i+1})) = \Phi_{\alpha}(\{\xi\})$, for every $\xi \in E_{i+1}$. Thus, we have defined Φ_{α} on $[E]^{<\omega}$. Observe that $\Phi_{\alpha}(f_{\xi}(b_i)) = \Phi_{\alpha}(\{\xi\})$, for every $\xi \in E_i$ and $i < \omega$. Hence, $\{n < \omega : \Phi_{\alpha}(f_{\xi}(n)) = \Phi_{\alpha}(\{\xi\})\} \in p$, for every $\xi \in E$. Our next task is to extend Φ_{α} to $[\mathfrak{c}]^{<\omega}$. We will do this by transfinite induction on $\mathfrak{c} \setminus E$. Let $\gamma \in \mathfrak{c} \setminus E$ and suppose that Φ_{α} has been defined on $[E \cup \gamma]^{<\omega}$. Since $f_{\gamma}(n) \subseteq \gamma$, for every $n < \omega$, $\Phi_{\alpha}(\{\mu\})$ has been defined for each $\mu < \gamma$ and $\{\{\gamma\}\} \cup \{\{\mu\} : \mu < \gamma\}$ is linearly independent, Φ_{α} can be extended to $[E \cup (\gamma + 1)]^{<\omega}$ in such a way that

$$\Phi_{\alpha}(\{\gamma\}) = p - \lim_{n \to \infty} \Phi_{\alpha}(f_{\gamma}(n)).$$

It is evident that Φ_{α} satisfies the required properties.

941

The following example follows from E. K. van Douwen's construction [3, 6.1] applied to Example 2.4.

Example 2.5. If there is a selective ultrafilter on ω , then there are two countably compact groups without non-trivial convergent sequences whose product is not countably compact.

3. One more example

In this section, we will improve a little bit Example 2.5.

For $p \in \omega^*$, we say that a space is *almost p-compact* if for every sequence $(x_n)_{n < \omega}$ in X there is a function $\sigma: \omega \to \omega$ such that $\overline{\sigma}(p) \in \omega^*$ and $\overline{\sigma}(p) - \lim_{n \to \omega} x_n \in X$ (this concept was introduced in [4]). It is evident that every *p*-compact space is almost *p*-compact, and every almost *p*-compact space is countably compact. All these notions are different from each other.

The following lemma is a generalization of Lemma 2.1.

Lemma 3.1. Let $p \in \omega^*$ be a selective ultrafilter. Then, there exists a family of one-to-one functions $\{f_{\xi} : \omega \leq \xi < \mathfrak{c}\} \subseteq ([\mathfrak{c}]^{<\omega})^{\omega}$ and pairwise disjoint sets $I_0, I_1, I_2, I_3 \in [\mathfrak{c} \setminus \omega]^{\mathfrak{c}}$ such that:

- $\begin{array}{l} \mathrm{a)} \ \bigcup_{n < \omega} f_{\xi}(n) \subseteq \xi \ \textit{for every} \ \omega \leq \xi < \mathfrak{c}. \\ \mathrm{b)} \ \mathrm{b.0)} \ \bigcup_{n < \omega} f_{\xi}(n) \subseteq \omega, \ \textit{for every} \ \xi \in I_0. \end{array}$

 - b.1) $\bigcup_{n < \omega}^{n < \omega} f_{\xi}(n) \subseteq \omega$, for every $\xi \in I_1$.
 - b.2) $\bigcup_{n<\omega} f_{\xi}(n) \subseteq I_0 \cup I_2$, for every $\xi \in I_2$.
 - b.3) $\bigcup_{n < \omega}^{\infty} f_{\xi}(n) \subseteq I_1 \cup I_3$, for every $\xi \in I_3$.
- c) $\{[f_{\xi}]_p : \omega \leq \xi < \mathfrak{c}\} \cup \{[\vec{\beta}]_p : \beta < \mathfrak{c}\}$ is linearly independent.
- d) For every $j \in \{0,1\}$ and for every one-to-one function $g \in ([\omega]^{<\omega})^{\omega}$, there exists a bijection $\sigma: \omega \to \omega$ and $\xi \in I_j$ such that $[g \circ \sigma]_p = [f_{\xi}]_p$.
- e) For every $j \in \{0,1\}$, $\{[f_{\xi}]_p : \xi \in I_{j+2}\} \cup \{[\vec{\beta}]_p : \beta \in I_j \cup I_{j+2}\}$ is a base for $([I_j \cup I_{j+2}]^{<\omega})^{\omega}/p$.

Proof. Let I_0 , I_1 , I_2 and I_3 be a partition of $\mathfrak{c} \setminus \omega$ in subsets of size \mathfrak{c} , and let $\{g_{\xi}: \omega \leq \xi < \mathfrak{c}\}$ be such that:

i) For each $j \in \{0,1\}$, we have that $\{g_{\xi} : \xi \in I_j\}$ is an enumeration of all one-to-one functions in $([\omega]^{<\omega})^{\omega}$.

ii) For each $j \in \{0, 1\}$, we have that $\{g_{\xi} : \xi \in I_{j+2}\}$ is an enumeration of all one-to-one functions in $([I_j \cup I_{j+2}]^{<\omega})^{\omega}$ in such a way that $\bigcup_{n < \omega} g_{\xi}(n) \subseteq \xi$, for every $\xi \in I_{j+2}$.

By applying the proof of Lemma 2.1 to $\{g_{\xi} : \xi \in I_j\}$, for $j \in 2, 3$, we get a set of one-to-one functions $\{f_{\xi} : \xi \in I_j\}$ satisfying a), b.2), b.3), and e). On the other hand, we apply the proof of Lemma 2.1 to $\{g_{\xi} : \xi \in I_0 \cup I_1\}$ to obtain a family of one-to-one functions $\{f_{\xi} : \xi \in I_j\}$ satisfying b.0) and b.1). Furthermore, $\{[f_{\xi}]_p : \xi \in I_0 \cup I_1\} \cup \{[\vec{n}]_p : n < \omega\}$ is linearly independent. Thus, condition c) also holds. Let us see how we get condition d). Following the notation of the proof of Lemma 2.1, at stage $\alpha < \mathfrak{c}$, we choose $\mu_{\alpha} < \mathfrak{c}$ such that $\{[h_{\alpha,\mu_{\alpha}}]_p : \alpha < \mathfrak{c}\} \cup \{[f_{\xi}]_p :$ $\xi < \alpha\} \cup \{[\vec{\beta}]_p : \beta < \mathfrak{c}\}$ is linearly independent. We know that $h_{\mu_{\alpha}} : \omega \to A_{\mu_{\alpha}}$ is a bijection. Now, pick $B \subseteq A_{\mu_{\alpha}}$ such that $|B| = |A_{\mu_{\alpha}} \setminus B| = \omega$ and $h_{\mu_{\alpha}}^{-1}(B) \in p$. Choose a bijection $\sigma : \omega \to \omega$ for which $\sigma(n) = h_{\mu_{\alpha}}(n)$ for every $n \in h_{\mu_{\alpha}}^{-1}(B)$ and $\sigma[\omega \setminus h_{\mu_{\alpha}}^{-1}(B)] = \omega \setminus B$. So, we define $f_{\alpha}(n) = g_{\alpha}(\sigma(n))$, for every $n \in h_{\mu_{\alpha}}^{-1}(B)$. Therefore, $[f_{\alpha}]_p = [g_{\alpha} \circ \sigma]_p = [h_{\alpha,\mu_{\alpha}}]_p$. This shows condition d).

In the next example, we fix a family $\{f_{\xi} : \omega \leq \xi < \mathfrak{c}\} \subseteq ([\mathfrak{c}]^{<\omega})^{\omega}$ and sets $I_0, I_1, I_2, I_3 \in [\mathfrak{c} \setminus \omega]^{\mathfrak{c}}$ satisfying all the properties of Lemma 3.1.

Example 3.2. If there is a selective ultrafilter on ω , then there are two almost *p*-compact groups whose product is not countably compact.

Proof. By using clause c), Lemma 2.3 and the proof of Example 2.4, we can define, for every $\alpha < \mathfrak{c}$, a non-trivial homomorphism $\Phi_{\alpha} : [\mathfrak{c}]^{<\omega} \to \{0,1\}$ so that

i) $\Phi_{\alpha}(\{\xi\}) = p - \lim_{n \to \omega} \Phi_{\alpha}(f_{\xi}(n))$, for every $\omega \leq \xi < \mathfrak{c}$; and ii) $\Phi_{\alpha}(F_{\alpha}) = 1$.

Hence, for each $\xi < \mathfrak{c}$ we define $x_{\xi}(\alpha) = \Phi_{\alpha}(\{\xi\})$, for every $\alpha < \mathfrak{c}$. Then, we have that $\{x_{\xi} : \xi < \mathfrak{c}\}$ is a linearly independent subset of $\{0,1\}^{\mathfrak{c}}$ and $x_{\xi} = p - \lim_{n \to \omega} x_{f_{\xi}(n)}$, for every $\omega \leq \xi < \mathfrak{c}$. We put

- $E = \langle \{x_n : n < \omega\} \rangle,$ $H_0 = \langle \{x_{\xi} : \xi \in I_0 \cup I_2\} \rangle,$ $H_1 = \langle \{x_{\xi} : \xi \in I_1 \cup I_3\} \rangle,$
- $G_0 = E + H_0 = \langle \{x_{\xi} : \xi \in \omega \cup I_0 \cup I_2\} \rangle$ and
- $G_1 = E + H_1 = \langle \{ x_{\xi} : \xi \in \omega \cup I_1 \cup I_3 \} \rangle.$

It is evident that $G_0 \cap G_1 = E$. Hence, we deduce that $G_0 \times G_1$ is not countably compact. As in Lemma 2.2, both H_0 and H_1 are *p*-compact groups. We shall show that G_j is almost *p*-compact, for $j \in \{0, 1\}$. For this, fix a sequence $(a_n)_{n < \omega}$ in G_j . Choose two sequences $(e_n)_{n < \omega}$ in E and $(h_n)_{n < \omega}$ in H_j so that $a_n = e_n + h_n$, for every $n < \omega$. By the selectivity of p, there is $A \in p$ such that either $e_n = e$, for all $n \in A$, for some $e \in E$, or the function $n \to e_n$, for $n \in A$, is one-toone. In the former case, $e + h = p - \lim_{n \to \omega} (e_n + h_n) \in E + H_j = G_j$, where $h = p - \lim_{n \to \omega} h_n$. In the latter case, we can find a one-to-one function $g \in ([\omega]^{<\omega})^{\omega}$ such that $e_n = x_{g(n)}$, for every $n \in A$. According to clause e) of Lemma 3.1, there are a bijection $\sigma : \omega \to \omega$ and $\xi \in I_j$ such that $[g \circ \sigma]_p = [f_{\xi}]_p$. Pick $B \in p$ so that $B \subseteq A$ and $g(\sigma(n)) = f_{\xi}(n)$, for every $n \in B$. Hence, $e_{\sigma(n)} = x_{g(\sigma(n))} = x_{f_{\xi}(n)}$, for every $n \in B$. This implies that

$$p\text{-}\lim_{n\to\omega}e_{\sigma(n)}=p\text{-}\lim_{n\to\omega}x_{f_{\xi}(n)}=x_{\xi}\in H_j.$$

942

So, $x_{\xi} = \overline{\sigma}(p) - \lim_{n \to \omega} e_n$ and $q = \overline{\sigma}(p) \in T(p)$. Since H_j is *p*-compact, it is also *q*-compact. Thus, $q - \lim_{n \to \omega} h_n = h \in H_j$. Hence, $q - \lim_{n \to \omega} a_n = x_{\xi} + h \in H_j + H_j \subseteq G_j$. Therefore, G_j is almost *p*-compact. \Box

Finally, we list some open problems that the authors were unable to solve.

Question 3.3. For an arbitrary $p \in \omega^*$, is there a *p*-compact group without non-trivial convergent sequences?

Question 3.4. Does the existence of a *P*-point in ω^* imply the existence of two countably compact groups whose product is not countably compact?

Question 3.5. Does the existence of a selective ultrafilter on ω imply the existence of a countably compact group whose square is not countably compact?

Acknowledgment

We are grateful to the referee for his helpful remarks and suggestions.

References

- A. R. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185-193. MR0251697 (40:4924)
- W. Comfort and S. Negrepontis, *The Theory of Ultrafilters*, Springer-Verlag, Berlin, 1974. MR0396267 (53:135)
- E. K. van Douwen, The product of two countably compact topological groups, Trans. Amer. Math. Soc. 262 (1980), 417 - 427. MR0586725 (82b:22002)
- 4. S. Garcia-Ferreira, Quasi M-compact spaces, Czechoslovak Math. J. 46 (1996), 161 177. MR1371698 (97b:54033)
- L. Gillman and M. Jerison, *Rings of continuous functions*, Lectures Notes in Mathematics No. 27, Springer-Verlag, 1976. MR0407579 (53:11352)
- J. Ginsburg and V. Saks, Some applications of ultrafilters in topology, Pacific J. Math. 57 (1975), 403-418. MR0380736 (52:1633)
- A. Hajnal and I. Juhász, A separable normal topological group need not be Lindelöf, Gen. Topology Appl. 6 (1976), 199-205. MR0431086 (55:4088)
- K. P. Hart and J. van Mill, A countably compact topological group H such that H × H is not countably compact, Trans. Amer. Math. Soc. 323 (1991), 811- 821. MR0982236 (91e:54025)
- A. H. Tomita, A group under MA_{countable} whose square is countably compact but whose cube is not, Topology Appl. **91** (1999), 91-104. MR1664516 (2000d:54039)
- 10. A. H. Tomita, Countable compactness and finite powers of topological groups without convergent sequences, submitted.

INSTITUTO DE MATEMÁTICAS (UNAM), APARTADO POSTAL 61-3, XANGARI, 58089, MORELIA, MICHOACÁN, MÉXICO

E-mail address: sgarcia@matmor.unam.mx

DEPARTAMENTO DE MATEMÁTICA, INSTITUTO DE MATEMÁTICA E ESTATÍSTICA, UNIVERSIDADE DE SÃO PAULO, CAIXA POSTAL 66281, CEP 05315-970, São Paulo, Brasil

E-mail address: tomita@ime.usp.br

Department of Mathematics, York University, 474700 Keele Street, M3P 1P3, Toronto, Ontario, Canada

E-mail address: watson@@mathstat.yorku.ca