
Counter-Example Complete Verification
for Higher-Order Functions

Nicolas Voirol Etienne Kneuss Viktor Kuncak ∗

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
{firstname.lastname}@epfl.ch

Abstract
We present a verification procedure for pure higher-order
functional Scala programs with parametric types. We show
that our procedure is sound for proofs, as well as sound and
complete for counter-examples. The procedure reduces the
analysis of higher-order programs to checking satisfiability
of a sequence of quantifier-free formulas over theories such
as algebraic data types, integer linear arithmetic, and unin-
terpreted function symbols, thus enabling the use of efficient
satisfiability modulo theory (SMT) solvers.

Our solution supports arbitrary function types and arbi-
trarily nested anonymous functions (which can be stored in
data structures, passed as arguments, returned, and applied).
Among the contributions of this work is supporting even
those cases when anonymous functions cannot be statically
traced back to their definition, ensuring completeness of the
approach for finding counter-examples. We provide a proof of
soundness and counter-example completeness for our system
as well as initial evaluation in the Leon verifier.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification; F.3.1 [Logics and
Meaning of Programs]: Specifying and Verifying and Rea-
soning about Programs

Keywords software verification; higher-order functions; sat-
isfiability modulo theories

∗ This work is supported in part by the European Research Council (ERC)
Project Implicit Programming and Swiss National Science Foundation Grant
“Constraint Solving Infrastructure for Program Analysis”.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SCALA’15, June 13-14, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-3626-0/15/06.
http://dx.doi.org/10.1145/2774975.2774978

1. Introduction
Functional languages are well suited for verification due to
their clear semantics [6]. Recent work [3, 19] has shown that
recursive programs over unbounded data types can be pre-
cisely handled using unfolding-based approaches. However,
one of the main features of functional languages, namely
higher-order functions, is still difficult to support in modern
automated program verifiers. A common approach is to fo-
cus on sound approaches while sacrificing completeness for
counter-examples [4, 14, 20] or focus on finite domains [7, 9].
While universal quantification offers a natural encoding of
first-order functions, encoding closures typically requires uni-
versally quantifying over SMT arrays, a feature for which
modern SMT solvers offer limited support and few guaran-
tees.

Our approach extends existing work on solving constraints
from first-order recursive programs that relies on unfolding
function definitions [19]. Supporting closures blurs the bound-
ary between programs and data, complicating the reduction
of functional programs to tractable verification conditions.
For instance, representing the application of a closure may
need to take into account closures that have potentially not
been discovered yet.

Our solution adds support for higher-order constructs by
encoding them in a sequence of first order quantifier-free
formulas that are efficiently supported by the underlying SMT
solvers. We introduce a form of controlled dynamic dispatch
for closure applications. However, since not all viable targets
may have yet been discovered at the time of encoding a
particular closure application, this dynamic dispatch needs
to expand as unfoldings discover new compatible definitions.
This encoding supports even those cases when anonymous
functions cannot be statically traced back to their definition:
function values can be passed arbitrarily through parameters,
used to construct new function values, and stored inside
unbounded data structures.

In the presence of terminating programs, our technique
is sound both when it reports that the program is correct,
and when it reports a counter-example. Moreover, it is com-
plete (guaranteed to terminate) when there exists a counter-
example, which is a non-obvious feature for a system that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

SCALA’15, June 13, 2015, Portland, OR, USA
ACM. 978-1-4503-3626-0/15/06
http://dx.doi.org/10.1145/2774975.2774978

18

verifies higher-order functions. We find this aspect of our
system very important because most of the time when devel-
oping a verified program is spent correcting errors in code or
specification.

Contributions. We make the following contributions:

• We present a procedure for verifying higher-order func-
tional programs with decidable theories including alge-
braic data types and integer linear arithmetic. Our proce-
dure uses a new encoding of first-class functions, with
expressive and precise representation of functions stored
inside data structures.
• Our procedure is sound for proofs and counter-examples,

and complete for the later. We provide a detailed proof of
counter-example completeness.
• We present the implementation of the procedure within

the Leon verifier (http://leon.epfl.ch) as well as its
evaluation on a number of Scala programs that make use
of higher-order functions. Our results show that, in most
cases, the verification remains tractable in the presence of
higher-order functions.

2. Examples of Verification with
Higher-Order Functions

We illustrate the capabilities of the Leon verification sys-
tem for finding errors and proving correctness of programs
with higher-order functions. Our input language is a purely
functional subset of the Scala programming language with
recursive algebraic data types. We rely on the first phases
of the Scala compiler to consistently resolve symbols, types,
and implicits.

Expression transformations. Our first example in Figure 1
defines simple arithmetic expressions and manipulates them
using three higher-order functions: a generic transforma-
tion function, a function checking the existence of a sub-
expression, and a simplification function. The post-condition
of a function is given using the infix ensuring operator by
constraining the result value as described in [11]. Here, we
ensure that the result of simplifyEquals no longer contains
equality checks with additions of literals.

Leon checks for correctness by building a constraint
corresponding to the presence of a counter-example, that
is, a constraint checking for the existence of a valid input to
simplifyEquals such that its result violates the post-condition.
Since these constraints generally contain both function calls
and higher-order constructs, we encode them in a sequence
of quantifier-free formulas in which we progressively unfold
the bodies of functions and closures. Based on the result
of the solver checks, the procedure determines validity of
the specified property or outputs a counter-example. In our
example, Leon finds the following counter-example:

expr 7→ Equals(Add(Literal(0), Literal(0)),
Add(Literal(0), Literal(0)))

sealed abstract class Expr
case class Add(e1: Expr, e2: Expr) extends Expr
case class Equals(e1: Expr, e2: Expr) extends Expr
case class Literal(i: Int) extends Expr

def transform(f: Expr ⇒ Option[Expr])(e: Expr): Expr = {
val rec = (x: Expr) ⇒ transform(f)(x)
val newExpr = e match {

case Add(e1, e2) ⇒ Add(rec(e1), rec(e2))
case Equals(e1, e2) ⇒ Equals(rec(e1), rec(e2))
case Literal(i) ⇒ Literal(i)

}
f(newExpr).getOrElse(newExpr) }

def exists(f: Expr ⇒ Boolean)(expr: Expr): Boolean = {
val rec = (x: Expr) ⇒ exists(f)(x)
f(expr) || (expr match {

case Add(e1, e2) ⇒ rec(e1) || rec(e2)
case Equals(e1, e2) ⇒ rec(e1) || rec(e2)
case Literal(i) ⇒ false }) }

def simplifyEquals(expr: Expr) = (transform {
case Equals(Add(Literal(i), Literal(j)), e2) ⇒

Some(Equals(Literal(i + j), e2))
case Equals(e1, Add(Literal(i), Literal(j))) ⇒

Some(Equals(e1, Literal(i + j)))
case _ ⇒ None[Expr]()

} (expr)) ensuring (res ⇒ !exists {
case Equals(_, Add(Literal(i), Literal(j))) ⇒ true
case Equals(Add(Literal(i), Literal(j)), _) ⇒ true
case _ ⇒ false

} (res))

Figure 1. Expression tree transformation

This concrete counter-example allows the developer to un-
derstand the error: simplifyEquals does not handle the case
where both operands of Equals are additions of literals. We
can correct this error by folding additions of literals, adding

case Add(Literal(i), Literal(j)) ⇒ Some(Literal(i + j))

to the cases of simplifyEquals. This new version is proved
correct by Leon (for all of the infinitely many expression
trees) in less than a second.

Generic sorting. We consider in Figure 2 the problem of
sorting a generic list with a parametric ordering. We define an
ordering on elements by a closure that maps each element to
Z, ensuring a well-founded ordering. This definition enables
us to verify the sorting algorithm modularly, independently
of the concrete list type or the ordering.

We check that our version of merge sort keeps the same
content, expressed as a set of elements, and that the resulting
list is indeed sorted. Leon successfully verifies our implemen-
tation in under a second.

3. Verifying Higher-Order Programs
To set up the context of our contribution, we start by present-
ing the existing technique for verifying first-order recursive
functions in Leon, then build on it to present techniques for
higher-order functions.

19

case class Ordering[T](f: T ⇒ BigInt)

def isSorted[T](list: List[T])(implicit o: Ordering[T]): Boolean =
list match {

case Cons(h1, t1 @ Cons(h2, xs)) ⇒
o.f(h1) ≤ o.f(h2) && isSorted(t1)

case _ ⇒ true }

def split[T](list: List[T]): (List[T], List[T]) = (list match {
case Cons(h1, Cons(h2, xs)) ⇒

val (t1,t2) = split(xs)
(Cons(h1, t1), Cons(h2, t2))

case _ ⇒ (list, Nil())
}) ensuring { res ⇒

contents(res._1) ++ contents(res._2) == contents(list) }

def merge[T](l1: List[T], l2: List[T])
(implicit o: Ordering[T]): List[T] = {

require(isSorted(l1) && isSorted(l2))
(l1, l2) match {

case (Cons(h1, t1), Cons(h2, t2)) ⇒
if (o.f(h1) < o.f(h2)) Cons(h1, merge(t1, l2))
else Cons(h2, merge(l1, t2))

case _ ⇒ l1 ++ l2
}} ensuring { res ⇒ isSorted(res) &&

(contents(res) == contents(l1) ++ contents(l2)) }

def sort[T](list: List[T])(implicit o: Ordering[T]): List[T] =
(list match {

case Cons(h1, t1 @ Cons(h2, t2)) ⇒
val (l1, l2) = split(list)
merge(sort(l1), sort(l2))

case _ ⇒ list
}) ensuring (res ⇒ isSorted(res) &&

contents(list) == contents(res))

Figure 2. Generic sorting function

3.1 Verifying Recursive First-Order Programs
Our procedure for first-order programs alternates be-
tween model construction (i.e. counter-example discovery)
and proofs, by building a sequence of under- and over-
approximations of our verification constraints. These approx-
imations are represented by a decision tree where branching
expressions are instrumented to allow control over which
branches to avoid.

We illustrate this process using the function dup defined
in Figure 3 and its verification condition, negated:

l = Cons(h, t) ∧ r = Cons(h, l) ∧ size(r) ≤ 1

Figure 4 shows the decision tree corresponding to this initial
constraint as well as two unfoldings of the recursive size
function. The boolean variables b0, b1, . . . serve as controls
to explicitly exclude program branches from the search.

When under-approximating the constraint, we avoid all
branches leading to function calls that have not been defined
yet. This ensures that potential models only rely on well-
defined portions. When over-approximating, the complete
tree is used. Since function symbols are uninterpreted, calls
that have not been explicitly constrained are treated as return-

def size[T](l: List[T]): BigInt = (l match {
case Nil ⇒ 0
case Cons(h, t) ⇒ 1 + size(t)

}) ensuring (_ ≥ 0)

def dup[T](l: Cons[T]): List[T] = ({
Cons(l.head, l)

}) ensuring (r ⇒ size(r) > 1)

Figure 3. Duplication of the head of a list

ing arbitrary values, which is a sound over-approximation in
our purely functional language.

If results are inconclusive with a given deduction tree
(that is, the under-approximation is Unsat and the over-
approximation is Sat), we increase the precision of the
over-approximations as well as the coverage of the under-
approximation by unfolding function calls left undefined. The
unfolding replaces function application with function body,
and also assumes that the postcondition of the function holds
(enabling reasoning by k-induction on function execution).
Any fair unfolding strategy gives same high-level guarantees;
we currently use a breadth unfolding first-search strategy,
which unfolds each function call occurrence. Our encoding
enables us to perform unfolding by “pushing” new constraints,
making use of the incremental solving capabilities of modern
SMT solvers.

In our example, the first under-approximation F0 ∧ ¬b0
is trivially Unsat and the over-approximation F0 is Sat.
We thus unfold the call size(r) by pushing new constraints
corresponding to the instrumented definition of size(r), and
obtain F1 equal to:

F0 ∧ (b1 ∨ b2)
∧ ((b1 ∧ r = Cons(h1, t1))⇒ S1)
∧ ((b2 ∧ r = Nil)⇒ S2)

Given that S1 contains an unconstrained function call, the
under-approximation avoids it by enforcing ¬b1. Since F1 ∧
¬b1 is Unsat and F1 is Sat, we unfold size(t1) and obtain F2.
Here again, F2 ∧ ¬b3 is Unsat and F2 is Sat. After a third
unfolding, the over-approximation F3 is Unsat, attesting of
the absence of counter-examples and thus of the validity of
the verification condition. This approach has three interesting
properties: it guarantees that 1) counter-examples found using
the under-approximation are valid, that 2) proofs obtained
with the over-approximation hold for the original program
(assuming functions are terminating) and that 3) by unfolding,
we cover longer executions and thus a larger subset of the
space of all inputs. This ensures that any counter-example
with a finite execution trace will eventually be discovered.
These properties hold for arbitrary recursive functions. In
addition, [17, 18] proves termination of verification for a
class of functions.

20

b0 ∧ l = Cons(h, t) ∧ r = Cons(h, l) ∧ size(r) ≤ 1

b1 ∧ r = Cons(h1, t1)

size(r) ≥ 0 ∧ size(r) = 1 + size(t1)

b3 ∧ t1 = Cons(h2, t2)

size(t1) ≥ 0 ∧ size(t1) = 1 + size(t2)

... ...

b4 ∧ t1 = Nil

size(t1) = 0

b2 ∧ r = Nil

size(r) = 0

F0

Unfolding 1

Unfolding 2

S1

S3

S4

S2

Figure 4. Decision tree for the verification condition of dup
with two unfoldings and instrumented branching conditions.

3.2 Encoding Closure Applications
In contrast to named functions, the code executed by closure
calls cannot in general be statically located. Additionally,
although anonymous function are not directly recursive, a
program may define an arbitrary number of closures during
its execution. It is thus not possible to lift closures as a
finite set of named functions. The dynamic nature of closure
applications requires a dedicated encoding, for which we
need to progressively consider closure definitions discovered
as the analysis unfolding tree grows.

We define a closure as a function body together with an
environment. Due to the tree-like nature our unfolding proce-
dure, the environment can be grounded modulo some global
free variables in the initial formula, so closed context need
not be handled explicitly, much like in substitution-based se-
mantics for lambda calculus. We call Λ the set of all closures
and associate to λ ∈ Λ its arguments λarg,1, ..., λarg,n and
body λbody. Closures are not supported by SMT solvers, so
we use an encoding domain U with infinite cardinality (|Λ|
is infinite) that supports equality.

Given a bijective mapping L : Λ −→ U from closures
to their identifying values and Λt = {λ1, ..., λm} ⊆ Λ the
set of all closures encountered so far in the decision tree t,
we can perform guarded unfolding for the application of a
closure f by inlining all possible bodies guarded by equality
between f and the current closure. Namely:

f(xn) =


λ1body

[
λ1
n
arg −→ xn

]
if f = L(λ1)

...
...

λmbody
[
λm

n
arg −→ xn

]
if f = L(λm)

uninterpreted otherwise

f(xn) is left unconstrained if the closure associated to f has
not yet been defined in t, yet our fair unfolding ensures that
any closure definition that the program produces is eventually
considered. The use of unique closure identifiers makes our

approach flexible and allows arbitrary use of closures in data
structures. Much like a precise k-CFA [15, 16] for unbounded
k, this representation encodes exact propagation of closure
identifiers up to a currently considered execution depth.
Unlike some alternatives, the encoding can be represented
in the simply typed language without subtyping, which is
used by SMT solvers. It also works well with our handling of
generics that instantiates them at function unfolding time.

3.3 Blocking Decision Tree Branches
The guarded unfolding as described above preserves sound-
ness of proofs, but not of counter-examples. The uninter-
preted else case needs to be explicitly excluded when looking
for models of the under-approximation. To ensure validity,
we must prune the decision tree like in the first-order case to
disallow branches for which the necessary unfoldings have
not yet taken place. We define

bf =
∨
λ∈Λt

f = L(λ)

and enforce bf in the under-approximation. Furthermore, the
previously stated property that each closure defined by the
program is eventually covered in the decision tree provides
us with a high-level argument to the completeness of counter-
examples of our procedure. We provide a formalized proof
of this argument in Section 4.

3.4 Optimizations
The unfolding and guarding procedures we described can be
quite expensive when Λt becomes large. In practice, there
are recurrent patterns that can be handled in an optimized
manner while maintaining the above procedure as a fallback
to guarantee completeness. An immediate optimization is to
only consider closures whose types are compatible with the
call.

Definition tracking along simple paths. Thanks to the lack
of operators on function-typed expressions, concrete function-
typed arguments are quite often statically known closures. If
we consider the function

def apply1(f: Int ⇒ Int): Int = f(1)

and the invocation apply1(x ⇒ x + 2), during unfolding
f can be bound to x ⇒ x + 2 which immediately gives us
f(1) = 1 + 3, thus avoiding an expensive guarded unfolding
over all possible λ ∈ Λt. This technique can be extended
to track arbitrary (finitely complex) paths from closure ap-
plication back to its definition and we implemented it for
function-typed arguments as well as immediately returned
closures.

To simplify this tracking, we perform some equivalence-
preserving transformations to the input programs. For exam-
ple, let us consider the definition

def applyPair(p: (Int ⇒ Int, Int)): Int = p._1(p._2)

21

As p._1 is no function-typed argument of applyPair, the
path tracking rules described above do not apply. However,
through a simple program transform of definition and all
invocation points (which are statically known), we get

def applyPair(f: Int ⇒ Int, p: Int): Int = f(x)

and our simple path tracking rules can be instantiated. These
techniques give our approach many opportunities to avoid the
combinatorial explosion we get in the fallback case, while
maintaining the same soundness and completeness properties
of the procedure.

One-time function encoding. SMT solvers such as Z3 pro-
vide library APIs to inject clauses directly into the solver
without passing through the SMT-LIB interface. One perfor-
mance gain of these APIs is that substitution can be performed
directly in the solver’s formula domain. In other words, it is
possible to pre-translate program elements into the formula
domain and substitute variables with other values later on. We
make use of this feature by statically determining all invoca-
tion and application points in function definitions and storing
these in a pre-translated function template. During unfolding,
formal arguments are simply substituted with concrete ones
in the formula domain and the next required unfoldings are
collected based on the previously accumulated call points.

Closure equality. In addition to performance concerns,
our system also improves the detection of cases when no
counter-examples exist. When building inductive proofs,
the procedure heavily relies on the hypothesis holding in
the inductive case. The potential for inductive hypothesis
identification is greatly improved by introducing a notion of
closure equality. This is encoded by syntactic checks along
with closed environment equality constraints. Despite its
incompleteness, we have found our check to be quite useful
in proofs of inductive properties.

4. Completeness and Soundness
We now describe our procedure in a more formal sense
and provide a proof of its counter-example soundness and
completeness. The completeness for counter-examples then
also implies soundness for proofs. We will concentrate here
on finding a valid model to arbitrary expressions: if we have
a procedure that is guaranteed to find such models when they
exist, then we are complete for counter-examples.

4.1 Defining the Domains
We start by defining H in Figure 5, a purely functional subset
of Scala. We call Hf the set of named functions in H and for
f ∈ Hf , let farg,1, ..., farg,n denote the arguments of f and
fbody its body. Likewise, we call Hλ the set of closures in H
and for λ ∈ Hλ, we define λarg,i, and λbody by analogy
to f ∈ Hf . To avoid confusion, we will refer hereafter
to function invocations when discussing named function
calls (i.e. f(x) for f ∈ Hf) and function applications
when discussing other calls (i.e. g(x) where g evaluates to

λ ∈ Hλ). Note that callers in function applications can never
be recursive as they are anonymous.

We define Hvar the set of variables and Hval =
{true, false} ∪Hλ the set of values in H . We also define
Hground as the set of ground terms in H , namely η ∈ H
such that FV (η) = ∅ where FV (η ∈ H) is the set of free
variables in the program η. Finally, we defineHtype the set of
types in H , and for a function f ∈ Hf , let fT,1, ..., fT,n de-
note the types associated to the arguments of f and fT the re-
turn type. We also define λT,i and λT in a similar manner for
λ ∈ Hλ. We then define the usual typing relation H : Htype

on H and can therefore define Hv:T the set of variables in H
that type to T along with Hf :T and Hλ:T named functions
and lambdas typing to T (note that T is a function type here).
We further associate a set of evaluation rules to Hground : T
with call-by-value for functions which give us the evaluation
relation Hground −→ Hval as defined in Figure 6. Note that
for any η ∈ H , such that H : T ∈ Htype, given a mapping
mH such that each ∀v : Tv ∈ FV (η).v ∈ mH ∧mH [v] : Tv ,
η[mH] ∈ Hground : T is obtained by substitution and
η[mH] −→ g ∈ Hval is well defined.

Our procedure transforms programs into corresponding
formulas, so we also give a definition of the logic we work
with. Our procedure is orthogonal to built-in theory oper-
ations (such as +), so we use uninterpreted function sym-
bols. Let H be the theories of boolean terms along with a
theory of uninterpreted values. Note that the only operator
available for uninterpreted values is equality comparison.
We call Hvar the set of variables in H and Hv:T the set
associated to theory T (B for boolean and U for uninter-
preted). We also define Hf :T the set of uninterpreted func-
tions with signature T where T is a tuple of types in {B,U}.
We can give a more formal definition of L introduced in
3.2 as L : Hλ ←→ Hv:U a bijection between closures
and uninterpreted variables inH. We also define a bijection
V : Hvar ←→ Hvar between variables of H and H. Given
both these two functions, one can trivially build a correspon-
dence between free variable mapping mH : Hvar −→ Hval

and model mH : Hval −→ {True, False} ∪ Hv:U (note
that Hv:U can be considered as values since uninterpreted
values do not have fixed interpretation).

Finally, we still require the means to encode functional
properties of function calls. Uninterpreted function symbols
offer exactly this property, so let us define the class of type-
parametric mappings FT : Hf :T −→ Hf :T and a mapping
γ : Htype −→ Hf :U,T . We useFT to encode named function
calls and γ to perform dynamic dispatch on closures.

4.2 Defining the Transformation
Given the above domain definitions, we define a transfor-
mation C from a program η ∈ H to a formula c ∈ H such
that c is instrumented in a way that lets us render arbitrary
branches of the underlying decision tree inconsequential to
overall satisfiability. This instrumentation is performed using
control variables that imply all propositions introduced in

22

¬false −→ true ¬true −→ false if(true) et else ee −→ et if(false) et else ee −→ ee

if(ec) et else ee ec −→ e′c
if(e′c) et else ee

e1 −→ e′1
¬e1 −→ ¬e′1

ej ∈ Pval, 1 ≤ j ≤ i− 1 ei −→ e′i
f(e1, ..., ei, ..., en) −→ f(e1, ..., e

′
i, ..., en)

ej ∈ Pval, 1 ≤ j ≤ n
f(e1, ..., en) −→ fbody[farg,1 −→ e1, ..., farg,n −→ en]

e −→ e′

e(e1, ..., en) −→ e′(e1, ..., en)

λ ∈ Hλ ej ∈ Hval, 1 ≤ j ≤ i− 1 ei −→ e′i
λ(e1, ..., ei, ..., en) −→ λ(e1, ..., e

′
i, ..., en)

λ ∈ Hλ ej ∈ Hval, 1 ≤ j ≤ n
λ(e1, ..., en) −→ λbody [λarg,1 −→ e1, ..., λarg,n −→ en]

〈def f(farg,1 : Boolean, ..., farg,n : Boolean) = fbody〉∗ e −→ e

Figure 6. Evaluation rules for Hground −→ Hval

H ::= 〈Definition〉∗Expr
Definition ::= def f(Hvar : Type 〈, Hvar : Type〉∗) : Type = Expr

Type ::= Boolean |
(
Type 〈,Type〉∗

)
⇒ Type

Expr ::= Hvar |Hval | ¬Expr

| if(Expr) Expr elseExpr

|
(
Hvar : Type 〈, Hvar : Type〉∗

)
⇒ Expr

|Expr(Expr 〈,Expr〉∗)

| f(Expr 〈,Expr〉∗)

Figure 5. Abstract syntax of H

a branch and our recursive transformation therefore takes
both a program and the current control variable as inputs, so
C : H ×Hv:B −→ R for R described in the following.

In order to later progressively unfold the actual result
of function calls, we accumulate invocation and application
information during the transformation. Specifically, we need
t ∈ T = Hv:B ×H × Pf ×H∗ for invocations (see case 6
in C) and both p ∈ Π = Hv:B ×H×H×H∗ (case 7) and
λ ∈ Σ = Hλ (case 3). The tuples t ∈ T and p ∈ Π therefore
both consist in four parts, namely

• the instrumentation variable associated to the call,
• an uninterpreted function call that provides a place holder

for the concrete call result,
• an identifier for the caller which consists in a static

function reference for function invocations and a value in
the formula domain for applications,
• a list of arguments (in the formula domain).

The details of the unfolding procedure will be presented in
section 4.3. These considerations imply that R must depend
on 2T × 2Π × 2Σ.

Finally, our transformation must naturally return a formula
encoding of the input program. In order to perform instru-

mentation, we separate this output into two parts, the current
formula-domain result and a conjunct of implications that
represents the decision tree (see conditional encoding case
5 in C). Note that the former can have any type in the con-
sidered theories and the later is boolean. We can now define
C : H ×Hv:B −→ H×H× 2T × 2Π × 2Σ such that

0. C(〈f ∈ Hf 〉∗ E, b) = C(E, b)

1. C(v ∈ Hvar, b) = (V(v), ∅, ∅, ∅, ∅)
2. C(true/false, b) = (True/False, ∅, ∅, ∅, ∅)
3. C (λ ∈ Hλ, b) = (L(λ), e, ∅, ∅, {λ}) where

(a) e =
∧
λi∈{previous λ’s} L(λ) 6= L(λi)

∧
∧
v∈FV (η) L(λ) 6= V(v) for η original program

4. C(¬E, b) = (¬c, e, τ, π, σ) where (c, e, τ, π, σ) = C(E, b)

5. C(if (COND) THEN else ELSE, b) = (r, e, τ, π, σ) where
given bt, be ∈ Hv:B fresh variables and
(c, e, τ, π, σ)[c,t,e] = C ([COND, THEN, ELSE] , [b, bt, be]), let

(a) r = V(rH ∈ Hv:T) where rH is a fresh variable and
THEN : T and ELSE : T

(b) e = ec ∧ et ∧ ee
∧ b =⇒ (cc =⇒ bt ∧ ¬cc =⇒ be)

∧ b =⇒ (bt ∨ be) ∧ (¬bt ∨ ¬be)
∧ bt =⇒ (r = ct)

∧ be =⇒ (r = ce)

(c) τ = τc ∪ τt ∪ τe, π = πc ∪ πt ∪ πe and σ = σc ∪ σt ∪ σe
6. C(f(ARG1, ..., ARGn), b) = (v, e, τ, π, σ) where

given (ci, ei, τi, πi, σi) = C(ARGi, b) for 1 ≤ i ≤ n, let

(a) v = Ffn
T
⇒fT (f)(c1, ..., cn)

(b) τ = {(b, v, f, [c1, ..., cn])} ∪
⋃n
i=1 τi

(c) e =
∧n
i=1 ei, π =

⋃n
i=1 πi and σ =

⋃n
i=1 σi

7. C (C (ARG1, ..., ARGn) , b) = (v, e, τ, π, σ) where
given (ci, ei, τi, πi, σi) = C(ARGi, b) for 1 ≤ i ≤ n
and (c0, e0, τ0, π0, σ0) = C(C, b), let

(a) v = γ(T)(c0, c1, ..., cn) where C : T

23

(b) π = {(b, v, c0, [c1, ..., cn])} ∪
⋃n
i=0 πi

(c) e =
∧n
i=0 ei, τ =

⋃n
i=0 τi and σ =

⋃n
i=0 σi

We further define the functions CH : H −→ H × 2T ×
2Π × 2Σ and CH : H −→ H : given η ∈ H , let bstart be a
fresh variable and compute (c, e, τ, π, σ) = C(η, bstart). Let
r = c ∧ e ∧ bstart in CH(η) = (r, τ, π, σ) and CH(η) = r.

4.3 Unfolding Function Calls
The transformation we just described handles function calls
by replacing their results with an uninterpreted function
result that can take on arbitrary values. In order to bind
these uninterpreted function calls to concrete bodies, we
consider the definition of function call evaluation to establish
the equivalence of evaluation before and after unfolding the
body of a function.

Given η ∈ H and free variable mapping mH , for
e1 = f(ARG1, ..., ARGn) ⊆ η, let us define ef =
fbody

[
fnarg −→ ARGn

]
and ηf = η [e1 −→ ef]. Also, for

e2 = C(ARG1, ..., ARGn) ⊆ η with C[mH] −→ λ, we de-
fine eλ = λbody

[
λnarg −→ ARGn

]
and ηλ = η [e2 −→ eλ].

These unfoldings preserve evaluation and give us for g ∈
Hval that

η[mH] −→ g ⇐⇒ η[f,λ][mH] −→ g.

We now want to define unfolding for formulas in
H. Given (c, τ, π, σ) = CH(η), we define function in-
vocation unfolding for t = (b, v, f, cn) ∈ τ . Let
(cf , rf , τt, πt, σt) = C(fbody, b)

[
V(fnarg) −→ cn

]
and

If (t) = rf ∧ (b =⇒ v = cf) in ct = c ∧ If (t), the un-
folding of t in c. We know from the definition of C that
b =⇒ P (v) in c for some proposition P , so ct is equivalent
to c [v −→ cf] ∧ rf . Therefore, for any model mH, we have

mH |= ct =⇒ mH |= c.

For function applications, p = (b, v, c0, c
n) ∈ π, the

situation is slightly more complex. Indeed, the concrete
function we would wish to unfold for v cannot be eas-
ily deduced from c0. This issue is dealt with by select-
ing an arbitrary λ ∈ σ and guarding the unfolding with
equality between c0 and L(λ). Let bp = b ∧ (c0 = L(λ)),
(cλ, rλ, τp, πp, σp) = C(λbody, bp)

[
V(λnarg) −→ cn

]
and

Iλ(p, λ) = rλ ∧ (bp =⇒ v = cλ) in cp = c ∧ Iλ(p, λ),
the unfolding of p in c conditional on c0 = L(λ). Note
that when we require equality between c0 and L(λ), this is
modulo a given model mH, so the full statement would be
mH |= c0 = L(λ). Our definition of C guarantees a top-level
conjunct in cp that states L(λ) 6= L(λi) for any λi 6= λ and
L(λ) 6= v for v in FV (η), so any model mH |= cp will
provide a valid equality check between c0 and L(λ). Again,
for any model mH, we have

mH |= cp =⇒ mH |= c.

It is interesting to note that this definition of unfolding
function applications extends to any caller variable including

ν such that ν ∈ FV (η) for η the original program and models
for these free functions can be trivially reconstructed given
models for the relevant γ(T) and V(ν).

Given the above formula unfolding procedures, we define
If (c, t) = (ct, τt, πt, σt) and Iλ(c, p, λ) = (cp, τp, πp, σp).

4.4 Interpretation Independence
It is now useful to note a property about the transformation C
that will be used in the following proofs. For η ∈ H withmH

such that η[mH] ∈ Hground, for each node ηi ⊆ η such that
ηi[mH] −→ η′i is inferred during evaluation of η[mH], then
ηi fully determines its associated bi from the transformation
C. Indeed, this follows trivially from the recursive definitions
of evaluation and C that both visit all nodes in η. We say bi is
the corresponding blocker of ηi.

In our definition of C, function invocations and applica-
tions are handled by replacing them by a fresh variable in
the resulting formula. We call these calls uninterpreted and
it is clear that for a formula c = CH(η ∈ H) with model
mH |= c and associated mH , if mH depends on such calls
then (c,mH) may not accurately reflect (η,mH). Indeed,
pure function calls are deterministic and can’t take on arbi-
trary values (given fixed arguments). However, once a call
has been unfolded following the previous definitions in 4.3,
the model may depend on the associated result value as it is
no longer uninterpreted. These considerations lead us to the
definition of interpretation-independent models that do not
rely on unknown function call results.

Definition 1. [interpretation-independence] Given η ∈
H with (c, τ, π, σ) = CH(η) and model mH |=
c, we define vτ = {v | (b, v, f, cn) ∈ τ} and vπ =
{v | (b, v, c0, cn) ∈ π} as the sets of potentially uninterpreted
call results. Let TLC(c) be the set of top-level conjuncts in c
in

vt = {v | If ((b, v, f, cn) ∈ τ) ∈ TLC(c)}

vp,λ =

{
v |

Iλ((b, v, c0, c
n) ∈ π, λ ∈ σ) ∈ TLC(c)

∧ mH |= c0 = L(λ)

}
We call mH interpretation-independent if ∀m 6= mH such
that m[vi] = mH[vi] for all vi ∈ UF (c) − (vτ − vt) −
(vπ − vp,λ) where UF (c) is the set of uninterpreted function
calls in c, then m |= c. Note that all elements in UF (c)
correspond to a function call in η as C only introduces
uninterpreted function calls in cases 6 and 7.

The above definition allows us to prove our first theorem,
namely that formulas with interpretation-independent models
prove to be accurate reflections of programs (i.e. sufficient
under-approximations).

Theorem 2. For η ∈ H with η : T for some T ∈ Htype

and mH |= CH(η), if mH is interpretation-independent, then
corresponding mH is such that η[mH] −→ true.

Proof. We will start by defining a helper function C∧ for
ηi ⊆ η and associated bi where C∧(ηi, bi) = c ∧ e given

24

(c, e, τ, π, σ) = C(ηi, bi). Note that C∧(ηi, bi) depends on all
conjuncts generated in C for the pair (ηi, bi).

We prove by induction that for ηi ⊆ η with associated bi,
if mH |= bi then

mH |= C∧(ηi, bi) =⇒ ηi[mH] −→ true (1)
mH |= ¬C∧(ηi, bi) =⇒ ηi[mH] −→ false (2)

mH |= C∧(ηi, bi) = L(λ) =⇒ ηi[mH] −→ λ ∈ Hλ (3)

The full inductive proof can be found in the Appendix.
To complete the proof, it suffices to note thatmH |= bstart

and mH |= C∧(η, bstart) by construction and we therefore
have η[mH] −→ true.

4.5 Blocking Calls
Now that we have a transformation from programs η ∈ H to
formulas (c, τ, π, σ) = CH(η) and the definition of a class of
formulas and models which accurately reflect programs and
inputs, we need a bridge from one to the other.

The transformation C guarantees that all branches in the
decision tree are associated a fresh variable bt or be and
for each function call in η, we have either (b, v, f, cn) ∈ τ
or (b, v, c0, c

n) ∈ π where b ∈ {bt, be generated by C} ∪
{bstart}. We therefore have that each function call appears
on the right-hand side of an implication of the shape b =⇒
P (v) in c where b is fresh and encodes branch selection
during evaluation. Based on these observations, any model
mH |= c such that mH |= ¬b must be interpretation-
independent with respect to v.

Function invocations. Given vτ and vt from Definition 1,
we can define Bτ (τ, vτ , vt) =

∧
(b,v,f,cn)∈τ∧v∈(vτ−vt) ¬b

which gives us that any mH |= c ∧ Bτ (τ, vτ , vt) is
interpretation-independent with respect to all v generated
during function invocation transformation by definition of
interpretation-independence. Unfortunately, the definition of
vt is not well suited to building an iterative process for (c, τ)
as it is rather abstract. However, given ci, τi and ti ∈ τi,
we can build ci+1 and τi+1 such that (ci+1, τt, πt, σt) =
If (t)(c, ti) and τi+1 = (τi − {ti}) ∪ τt. Based on these, we
can define Bf (τi) =

∧
(b,v,f,cn)∈τi ¬b and prove the follow-

ing lemma:

Lemma 3. If (ci, τi) are built from (c0, τ0, π0, σ0) =
CH(η ∈ H), then Bf (τi) =⇒ Bτ (τall, vτ , vt) where
(vτ , vt) depend on ci and τall =

⋃i
j=0 τi is the union of

all τ generated during unfolding.

Function applications. Dealing with vπ and vp,λ is slightly
more complex as we have the added constraint of mH |=
L(λ) = c0, so set transformations are not sufficient to build
a valid process. We introduce here the cartesian product type
Ψ = Hv:B × Hvar × Hλ × Hv:U × H∗ with associated
product operator Y : 2Π × 2Σ −→ 2Ψ and projectors
P[b,v,λ,c0,cn]((b, v, λ, c0, c

n) ∈ Ψ) = [b, v, λ, c0, c
n]. We

can now define an iterative process for (c, π, σ, ψ) such that

given ci, πi, σi, ψi and qi ∈ ψi, let (ci+1, τq, πq, σq) =
Iλ(qi) in πi+1 = πi ∪ πq, σi+1 = σi ∪ σq and ψi+1 =
(ψi − {q}) ∪ Y (πi, σq) ∪ Y (πq, σi) ∪ Y (πq, σq). Note that
πi and σi are strictly increasing with respect to set inclusion,
and

⋃i
j=0 ψj = Y (πi, σi). In other words, ψi is the cartesian

product of πi and σi minus the qi selected at each iteration.
Now observe that for each qi = (b, v, λ, c0, c

n), if mi |= ci
exists such that mi |= L(λ) = c0 then we have Iλ(qi) as
a top-level conjunct in ci and interpretation-independence
with respect to v is ensured. Let us now define an equivalence
relation πq on Ψ such that q1 πqq2 iff q1 and q2 share a
common source in Π. Formally,

(q1, q2) ∈ πq ⇐⇒ P[b,v,c0,cn](q1) = P[b,v,c0,cn](q2).

We call Qπ(Q ∈ 2Ψ) =
{

[q]πq | q ∈ ψ
}

the set of equiva-
lence classes in ψ with respect to πq. For qπ ∈ Qπ(Q), all
elements share a common (b, v, c0, c

n), so we can view qπ
as (b, v,Λ, c0, c

n) where Λ = {Pλ(q) | q ∈ qπ}. If we look
at quf (i) = {qj | 0 ≤ j < i}, for qπ = (b, v,Λ, c0, c

n) ∈
Qπ(quf (i)), if there exists a λ ∈ Λ such that mi |= L(λ) =
c0, then mi is interpretation-independent with respect to v.
Also, we have that if mi |= ¬b then mi is interpretation-
independent with respect to v as v is found on the right-hand
side of an implication from b in ci. These observations lead
to the following constraint on b given Λ and c0

Bq(qπ) = ¬

(∨
λ∈Λ

c0 = L(λ)

)
=⇒ ¬b

Furthermore, we can extend this constraint to all unfoldings
as

BQ(i) =
∧

qπ∈Qπ(quf (i))

Bq(qπ)

Finally, let Bleft(ψi) = {b | (b, v, c0, cn) ∈ ψi} −
{b | (b, v,Λ, c0, cn) ∈ Qπ(quf (i))} and in Bλ(ψi) =
BQ(i) ∧

∧
b∈Bleft(ψi) ¬b. Assuming a Bπ,σ defined by anal-

ogy to Bτ , we have the following lemma:

Lemma 4. If ci, πi, σi and ψi are built from
(c0, τ0, π0, σ0) = CH(η ∈ H) and ψ0 = Y (π0, σ0), then
Bλ(ψi) =⇒ Bπ,σ(Y (π, σ), vπ, vp,λ) where (vπ, vp,λ) de-
pend on ci.

Defining the process. We discussed an iterative process
satisfying certain properties above, let us now define it
completely. Let U(η) = u0, u1, u2, ... be a sequence where
u0 = (c, τ, π, σ, Y (π, σ)) and given ui = (ci, τi, πi, σi, ψi),
we compute ui+1 = (ci+1, τi+1, πi+1, σi+1, ψi+1) as

if [i is even] select t ∈ τi and define ci+1 and τi+1 as
discussed in the function invocation case. The remaining
items are obtained as πi+1 = πi ∪ πt, σi+1 = σ ∪ σt and
ψi+1 = ψi ∪ Y (πi, σt) ∪ Y (πt, σi) ∪ Y (πt, σt).

if [i is odd] select q ∈ ψi and define ci+1, πi+1, σi+1

and ψi+1 as in the function application case, and let
τi+1 = τi ∪ τq .

25

Theorem 5. For η ∈ H with ui = (ci, τi, πi, σi, ψi) ∈ U(η),
if mi |= ci ∧ Bf (τi) ∧ Bλ(ψi), then mi is interpretation-
independent.

Proof. By noting that alternating unfoldings preserves valid-
ity, follows from Lemmas 3 and 4.

4.6 Eventual Unblocking
We have discussed an iterative process that progressively un-
folds function calls and provides formulas with interpretation-
independent models that prove accurate reflections of an
evaluation input. We now wish to show that beyond sound-
ness, our procedure is complete and is therefore guaran-
teed to find such an input if it exists. Note that our se-
lection strategy for ti ∈ τi and qi ∈ ψi in the previous
section was left open. We now constraint it to first-in first-
out selection to provide breadth-first exploration of the re-
maining unfoldings. This requirement allows us to state
that eventually, any blocker b will be unlocked as long as
the concerned functions are terminating. Let us first de-
fine the set of blockers for ui = (ci, τi, πi, σi, ψi) given
B B(ui) = {b | (b, v, f, cn) ∈ πi} ∪ Bleft(ψi), which leads
to the final theorem.

Theorem 6. For η ∈ H with η : Boolean such that for
all f(e1, ..., en) ⊆ η, f is terminating and ∃m.η[m] −→
true, there is a ui = (ci, τi, πi, σi, ψi) ∈ U(η) for which
∃mH.mH |= ci ∧ Bf (τi) ∧ Bλ(ψi), and by converting mH
to mH , we have η[mH] −→ true.

In other words, for any negated verification property η ∈
H that has a counter-example, there comes a point ui in our
unfolding procedure U(η) where a model for ci exists and this
constitutes a counter-example to the considered verification
property, ergo we have soundness and completeness.

The proof of Theorem 6 as well as the remaining theorems
and lemmas is in the Appendix.

4.7 Soundness for Proofs
Up to now, we abstracted away the over-approximations (see
3.1) in our formalizations, but completeness depends on these
as well. Note, however, that, for η ∈ H with η : Boolean
and ui = (ci, τi, πi, σi, ψi) ∈ U(η), if ci is Unsat, then
clearly ci ∧ Bf (τi) ∧ Bλ(ψi) is Unsat, and furthermore, for
any j > i, we have that cj ∧ Bf (τj) ∧ Bλ(ψj) is Unsat as
well since cj is obtained by adding top-level conjuncts to
cj−1. These observations let us conclude that performing
Unsat checks on ci provide us simply with early guarantees
that no counter-example can be reported in the future, so it
does not change the set of cases when a counter-example
is reported. This translates counter-example soundness and
completeness to the procedure with both under- and over-
approximation checks. The procedure stops as soon as it finds
a counter-example or detects Unsat. If a counter-example
exists, it is eventually found. If Unsat is reported, we know
that no counter-example is reported, and, by completeness, no

Table 1. Summary of evaluation results, featuring lines of
code, (V)alid, (I)nvalid and (U)nknown verification condi-
tions and running time of our tool.

Operation LoC V I U Time (s)
List.forall 105 15 1 0 0.44
List.exists 20 7 0 0 0.17
List.map 60 6 4 0 0.31
List.sort 51 3 1 0 0.11
List.flatMap 48 8 0 0 0.24
List.foldRight 101 20 0 0 0.94
CommutativeFold 141 18 4 0 0.42
ListOps 111 17 0 0 0.33
OptionMonad 47 9 0 0 0.13
DeMorganSets 23 2 0 0 0.07
AssocSets 23 2 0 0 0.07
SetOps 16 0 1 0 0.04
Closures 50 4 0 0 0.20
Continuations 27 1 1 0 0.07
Switch 16 0 2 0 0.07
Transformations 49 3 1 0 0.63
ParBalanceFold 206 33 0 2 0.45
FiniteQuantifiers 39 1 0 0 157.00

Total 1082 149 15 2 161.69
Total (non-
degenerate)

847 115 15 0 4.69

counter-example exist. This establishes soundness for proofs
(Unsat answers) as well.

5. Evaluation
We have implemented our technique within the Leon verifier.
Our implementation is available in the master branch of the
public Leon repository.1 The results of our initial evaluation
are presented in Table 1. Our set of benchmarks covers the
verification of different program properties involving higher-
order functions. We mostly focus on recursive data-structures
for which the framework is particularily well adapted, but
also showcase various other verification tasks that illustrate
the flexibility of the tool. The set of list operations we verify
mainly consists in different correspondence properties be-
tween higher-order operators mixed in with a few equivalent
first-order recursive definitions. We also verify associativity
of certain operators such as map and flatMap as well as fold
reassociativity.

All of the benchmarks in Table 1 make some use of higher-
order functions. Our system generates a number of verifi-

1 https://github.com/epfl-lara/leon

26

cation conditions, including match exhaustiveness checks
and call-site precondition checks; not all of these verifica-
tion conditions end up referring to higher-order functions.
One should also note here that call-site precondition verifi-
cation must be deferred when passing named functions to
higher-order functions. This can be perfomed during unfold-
ing or preconditions can simply be desugared as implying the
postcondition.

We have focused in this work on counter-example find-
ing, for which our system is complete. That said, the results
also show that there are also many valid specifications in-
volving higher-order functions that our system can prove.
We have found many useful properties that can be expressed
and proved correct, despite the fact that our specification
language does not support quantifiers in specifications. Be-
cause we have not yet integrated more sophisticated inductive
reasoning of CVC4 [13], some of the properties are writ-
ten containing proof hints to specify the necessary recursion
schema. These hints are specified directly in the input lan-
guage as recursive function calls, and they do not require
special handling by the framework. The ability to specify
hints and automate induction is outside of the scope of the
present paper.

We find the running time of our tool to be usable for in-
teractive development of verified software with higher-order
functions. There are degenerate cases where the running time
is extremely poor as one can see in the FiniteQuantifiers
case in Table 1. This benchmark uses finite lists as univer-
sal and existential quantification domains and closures that
themselves perform finite quantification checks are specified
as quantified formulas. This leads to combinatorial explosion
and the tool ends up performing search in a large call-tree
(just under 103 nodes) with regular (and extremely large)
solver queries.

Each proved property can be used as a basis for further
proofs, thus providing good scalability to large but modular
projects. Even in the presence of invalid specifications for
which counter-examples will be reported, verification of valid
properties does not suffer a performance hit, so the tool can
easily be integrated into a development workflow, where the
validity of verification conditions is not known in advance.

6. Related Work
Automated first-order program verification already boasts
impressive results and has resulted in industrial-grade frame-
works such as ACL2 [6] and Spec# [1]. When dealing with
pure functional languages, we can leverage their mathemat-
ical structure and have sound inductive proofs in a counter-
example complete procedure [3, 19]. However, reasoning
about higher-order functions is hard [15, 16], and the field
still in its infancy with tool support lacking.

Dependent refinement types provide a powerful avenue for
higher-order functional verification and have been applied in
Liquid Types [14] as well as Liquid Haskell [20] that extended

the technique to call-by-name evaluation. Refinement types
enables predicate specification on program types which can
then be used constructively for sound verification. Further-
more, type invariants can be further strengthened through
counter-example-guided abstraction refinement and the sys-
tem can therefore report witnesses to invalid specifications in
some cases. However, counter-examples are not the focus of
these systems and they boast no completeness-results in that
direction.

Model checking higher-order recursion schemas is an-
other main techniques used in higher-order function veri-
fication [7]. This approach reduces the verification problem
to an equivalent one of model checking through source analy-
sis by turning the input program into a (possibly) infinite tree
where each path represents an event sequence in the program
execution. Once a model has been built, it can be checked
using HORS to determine validity. Type refinements can also
be leveraged during model creation and many refinement
techniques can be applied in this setting as well. Recursion
schemas are not well suited for handling infinite domains,
but this limitation has proven to be a worthwhile research
direction and has been (partially) addressed in later work
[8, 12].

Higher-order logic provers. Among the most powerful
generalization of our approach are techniques employed in
the LEO II prover [2], which guarantee completeness for
proofs for certain semantics of higher-order logic, and can
also detect non-theorems. While we were not able to make
direct experimental comparisons, additional encoding would
be needed to describe the data type and integer theories
we use within the higher-order logic supported by LEO
II. We expect that the generality of these approaches will
translate into lower performance for finding counter-examples
for our benchmarks. Another related avenue are powerful
interactive proof-assistants such as Isabelle/HOL [10] or
Coq [5]. These frameworks are also capable of reasoning
about universal quantification and do so in a somewhat
more predictable manner, but typically require interaction.
Counterexample finders such as Alloy* [9] and Nitpick
[4] can handle propositions in higher-order logics. These
tools offer a high level of automation and boast impressive
theoretical results with sound handling of universal and
existential quantification. However, completeness in Alloy*
is limited to bounded domains. Nitpick supports unbounded
domains, but we are not aware of its completeness guarantees.

Reasoning using first-order quantifiers enables encoding
higher-order functions, but completeness guarantees are miss-
ing with current first-order theorem provers and SMT solvers.
Dafny verifier has a limited support for higher-order func-
tions https://dafny.codeplex.com. However, the nature
of the support for quantifiers precludes their use in a system
that aims for completeness result such as ours.

27

7. Conclusions and Analysis
The techniques we presented offer complete counter-example
discovery for pure higher-order recursive functional programs
using quantifier-free logic. The procedure constructs a bi-
nary decision tree with blocked branches and iteratively
extends/unblocks paths until a valid model is found. This
procedure can be viewed as an iteratively increasing under-
approximation. The extension to the initial procedure with
higher-order functions retains the same philosophy of even-
tual validity, thus maintaining completeness. Interestingly,
the technique also enables proofs for a variety of programs
using higher-order functions. Furthermore, the examples we
have where proofs fail do not seem restricted by our exten-
sion, but by the first-order reasoning procedure that fails to
discover invariants for complex inductive steps. Finally, the
guarded unfolding technique we presented could open the
way to reasoning about other programming language features
such as objects with subtyping.

Acknowledgments
We thank Philippe Suter for his contributions to Leon and for
discussions about verification of higher-order functions.

References
[1] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller,

W. Schulte, and H. Venter. Specification and verification: the
Spec# experience. CACM, 54(6):81–91, 2011. .

[2] C. Benzmüller and N. Sultana. LEO-II version 1.5. In PxTP
2013, volume 14 of EPiC Series, pages 2–10, 2013.

[3] R. Blanc, V. Kuncak, E. Kneuss, and P. Suter. An overview
of the Leon verification system: Verification by translation to
recursive functions. In 4th Scala Workshop, 2013.

[4] J. C. Blanchette and T. Nipkow. Nitpick: A counterexample
generator for higher-order logic based on a relational model
finder. In ITP, 2010.

[5] P. Castéran and Y. Bertot. Interactive theorem proving and
program development. Coq’Art. Springer Verlag, 2004.

[6] M. Kaufmann, J. S. Moore, and P. Manolios. Computer-aided
reasoning: an approach. Kluwer Academic Publishers, 2000.

[7] N. Kobayashi. Types and higher-order recursion schemes for
verification of higher-order programs. In Z. Shao and B. C.
Pierce, editors, POPL, 2009.

[8] N. Kobayashi, N. Tabuchi, and H. Unno. Higher-order multi-
parameter tree transducers and recursion schemes for program
verification. In POPL, 2010.

[9] A. Milicevic, J. P. Near, E. Kang, and D. Jackson. Al-
loy*: A Higher-Order Relational Constraint Solver. Tech-
nical report, MIT-CSAIL-TR-2014-018, 2014. URL http:
//hdl.handle.net/1721.1/89157.

[10] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A
Proof Assistant for Higher-Order Logic. Springer, 2002.

[11] M. Odersky. Contracts for Scala. In RV, pages 51–57, 2010.

[12] C. L. Ong and S. J. Ramsay. Verifying higher-order functional
programs with pattern-matching algebraic data types. In POPL,
2011.

[13] A. Reynolds and V. Kuncak. Induction for SMT solvers. In
VMCAI, 2015.

[14] P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In
PLDI, 2008.

[15] O. Shivers. Control-flow analysis in scheme. In R. L. Wexel-
blat, editor, PLDI, pages 164–174. ACM, 1988. .

[16] O. Shivers. Control-flow analysis of higher-order languages.
PhD thesis, Citeseer, 1991.

[17] P. Suter. Programming with Specifications. PhD thesis, EPFL,
December 2012.

[18] P. Suter, M. Dotta, and V. Kuncak. Decision procedures for
algebraic data types with abstractions. In POPL, 2010.

[19] P. Suter, A. S. Köksal, and V. Kuncak. Satisfiability modulo
recursive programs. In SAS, 2011.

[20] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. L. P.
Jones. Refinement types for haskell. In ICFP, 2014.

Appendix: Proofs
List of complete proofs ommited when discussing counter-
example completeness.

Theorem 2. For η ∈ H with η : T for some T ∈ Htype

and mH |= CH(η), if mH is interpretation-independent, then
corresponding mH is such that η[mH] −→ true.

Proof. We will start by defining a helper function C∧ for
ηi ⊆ η and associated bi where C∧(ηi, bi) = c ∧ e given
(c, e, τ, π, σ) = C(ηi, bi). Note that C∧(ηi, bi) depends on all
conjuncts generated in C for the pair (ηi, bi).

Let us prove by induction that for ηi ⊆ η with associated
bi, if mH |= bi then

mH |= C∧(ηi, bi) =⇒ ηi[mH] −→ true (4)
mH |= ¬C∧(ηi, bi) =⇒ ηi[mH] −→ false (5)

mH |= C∧(ηi, bi) = L(λ) =⇒ ηi[mH] −→ λ ∈ Hλ (6)

If ηi ∼ 〈Definition〉∗Expr, then the induction step is
trivial. The same holds for ηi ∼ g ∈ Hval and ηi ∼ v ∈
Hvar. If ηi ∼ ¬ηj ∈ H , then the definition of C tells us
that bj associated to ηj is the same as bi. Therefore, mH |=
C∧(ηj , bj) implies both ηj [mH] −→ true (by induction)
and mH |= ¬C∧(ηi, bi), which gives us ηi[mH] −→ false.
Consequently, we have proposition 5, and 4 by symmetry.
Note that we can safely ignore 6 since η is well-typed.

Let us now consider ηi ∼ f(ηA1, ..., ηAn). Given
interpretation-independence, we know that either the un-
interpreted result is non-critical to the model, or the cor-
responding unfolding t has already taken place. The first
case is identical to ηi ∼ v ∈ Hvar and the hypothesis
holds. In the second case, all sub-term bj’s are the same as
bi so the induction hypothesis holds for ηA1, ..., ηAn. Let

28

us augment models mH and mH to m′H and m′H by re-
spectively adding bindings for farg,1 and V(fnarg). We de-
scribed unfolding equivalence in H , so assuming by symme-
try that m′H |= C∧(fbody, bi), we have fbody[m′H] −→ true
and these observations imply both mH |= If (ηi, bi) and
ηi[mH] −→ true. The ηi ∼ ηλ(ηA1, ..., ηAn) case is simi-
lar but when dealing with the unfolded case for (p, λ), we
must also consider ηλ[mH] −→ λk where λk 6= λ. If this is
the case, mH |= L(λk) 6= L(λ) and therefore mH |= ¬bp
from Iλ(p, λ), so we fall back to the ηi ∼ v ∈ Hvar case and
preserve validity.

It remains to consider ηi ∼ if(ηc) ηt else ηe. We can
assume by symmetry that mH |= C∧(ηc, bc) and mH |=
C∧(ηt, bt) and therefore mH |= C∧(ηi, bi). The definition
of C again tells us that bc associated to ηc is the same as bi
and the induction hypothesis implies that ηc[mH] −→ true.
We also know given the definitions of e in the if case
of C that mH |= bi =⇒ C∧(ηc, bc) =⇒ bt and
therefore mH |= bt. Again, the induction hypothesis tells
us that ηt[mH] −→ true, and evaluation rules on H give us
ηi[mP] −→ true.

To complete the proof, it suffices to note thatmH |= bstart
and mH |= C∧(η, bstart) by construction and we therefore
have η[mH] −→ true.

Lemma 3. If (ci, τi) are built from (c0, τ0, π0, σ0) =
CH(η ∈ H), then Bf (τi) =⇒ Bτ (τall, vτ , vt) where
(vτ , vt) depend on ci and τall =

⋃i
j=0 τi is the union of

all τ generated during unfolding.

Proof. Let us start by defining tuf (i) = {tj | 0 ≤ j < i},
vuf (i) = {v | (b, v, f, cn) ∈ tuf (i)} and Vi =
{v | (b, v, f, cn) ∈ (τi ∪ tuf (i))}. We know by con-
struction that vτ ⊆ Vi and given the definition of unfolding,
vuf (i) ⊆ vt which gives us Vi − vuf (i) ⊆ vτ − vt.

Lemma 4. If ci, πi, σi and ψi are built from
(c0, τ0, π0, σ0) = CH(η ∈ H) and ψ0 = Y (π0, σ0), then
Bλ(ψi) =⇒ Bπ,σ(Y (π, σ), vπ, vp,λ) where (vπ, vp,λ) de-
pend on ci.

Proof. For any v ∈ vπ, we either have (1) an associated
(b, v,Λ, c0, c

n) ∈ Qπ(quf (i)) or (2) a (b, v, c0, c
n) ∈ ψi.

Note that we consider these two cases as distinct, realizing
the second only if the first falls through.

1. Given the definition of unfolding, we have Iλ(p, λ) a top-
level conjunct in ci for all λ ∈ Λ. Hence, either mi |=
c0 = L(λ) for one of these λ’s or we have mi |= ¬b, both
options leading to interpretation-independence.

2. We have that b ∈ Bleft(ψi) by definition and
interpretation-independence is therefore also guaranteed.

Theorem 6. For η ∈ H with η : Boolean such that for
all f(e1, ..., en) ⊆ η, f is terminating and ∃m.η[m] −→
true, there is a ui = (ci, τi, πi, σi, ψi) ∈ U(η) for which
∃mH.mH |= ci ∧ Bf (τi) ∧ Bλ(ψi), and by converting mH
to mH , we have η[mH] −→ true.

Proof. We will begin by proving that for any b from τi or
πi, there exists a j > i such that b /∈ B(τj , ψj) where
B(τj , ψj) = Bf (τj)∪Bλ(ψj). Let us argue by contradiction
that there exists an infinite chain in U(η) of ul, ul+1, ul+2, ...
with 0 ≤ l such that b ∈ B(τk, ψk) for all k ≥ l.

We start by looking at which conditions are necessary for
b to belong to B(τi+1, ψi+1) given b ∈ B(τi, ψi). We define
Eb to be the set of all expressions in H such that if the body
associated to ti or qi (depending on whether i is even or odd)
is in Eb, then b ∈ B(τi+1, ψi+1). Given the definitions of
ui+1 and C, we can easily see that

Eb ::= f(e1, ..., en)

|λ(e1, ..., en)

| if(Eb) e1 else e2

| ¬Eb

We therefore have that an infinite chain of uk where b ∈
B(τk, ψk) must correspond to an infinite chain of alternating
tk/qk where the body of the function associated to each tk/qk
is in Eb. However, if such an infinite chain exists, then we
have non-termination and our contradiction.

Let us now consider the BQ(i) clause. For q =
(b, v,Λi, c0, c

n) ∈ Qπ(qunfol(i)), only Λi depends on i and
it is increasing in i since any later qj with j > i such that
q πqqj will imply Λi ∪ {Pλ(qj)} ⊆ Λj+1. Also, due to the
fair selection of qj , for any λ ∈ Hλ encountered during
evaluation of η[m], λ ∈ Λk for some k > 0.

The model m is given, so η[m] is a valid input to the
evaluator. We can therefore define the sets I of all nodes e =
if(COND[m]) THEN[m] else ELSE[m] and C of all nodes
e = λ(E1, ..., En) where λ ∈ Hλ. Finally, let IB be the
union of all {bt, be} generated at corresponding points C(e, b)
with e ∈ I along with bstart and Cλ be the set of all caller
λ’s in C. Note that all functions encountered are terminating
so I , IB, C and Cλ are finite.

We have just seen that for all b ∈ IB, there exists a kb ∈ N
such that b /∈ B(τk, ψk). Also, for all λ ∈ Cλ there exists a
kλ ∈ N such that for all (b, v,Λkλ , c0, c

n) ∈ Qπ(quf (kλ)),
λ ∈ Λkλ . Based on these, we can define

k̂ = max(max
b∈IB

kb, max
λ∈Cλ

kλ)

and let mH |= ck̂ ∧Bf (τk̂)∧Bλ(ψk̂). Since m exists and all
extra variables introduced by C are free, mH is guaranteed
to exist, and Theorems 2 and 5 ensure η[mH] −→ true for
mH associated to mH.

29

