
 Open access  Posted Content  DOI:10.1101/2021.06.13.448255

Counterdiabatic control of biophysical processes — Source link 

Efe Ilker, Efe Ilker, Efe Ilker, Özenç Güngör ...+7 more authors

Institutions: University of Paris, PSL Research University, Max Planck Society, Case Western Reserve University ...+3 more
institutions

Published on: 14 Jun 2021 - bioRxiv (Cold Spring Harbor Laboratory)

Related papers:

 Exploiting Natural Fluctuations to Identify Kinetic Mechanisms in Sparsely Characterized Systems

 Designer gene networks: Towards fundamental cellular control

 Dynamics of simple gene-network motifs subject to extrinsic fluctuations.

 Identifying dynamical bottlenecks of stochastic transitions in biochemical networks.

 Characterization of noise in multistable genetic circuits reveals ways to modulate heterogeneity.

Share this paper:    

View more about this paper here: https://typeset.io/papers/counterdiabatic-control-of-biophysical-processes-
3jflznat0y

https://typeset.io/
https://www.doi.org/10.1101/2021.06.13.448255
https://typeset.io/papers/counterdiabatic-control-of-biophysical-processes-3jflznat0y
https://typeset.io/authors/efe-ilker-2xpqd9o0c3
https://typeset.io/authors/efe-ilker-2xpqd9o0c3
https://typeset.io/authors/efe-ilker-2xpqd9o0c3
https://typeset.io/authors/ozenc-gungor-25kqc3gxvt
https://typeset.io/institutions/university-of-paris-3fpqqchm
https://typeset.io/institutions/psl-research-university-rkwcx9tr
https://typeset.io/institutions/max-planck-society-3o0xx7lg
https://typeset.io/institutions/case-western-reserve-university-2hhmm3wx
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/papers/exploiting-natural-fluctuations-to-identify-kinetic-372nyrev85
https://typeset.io/papers/designer-gene-networks-towards-fundamental-cellular-control-3z10of20h0
https://typeset.io/papers/dynamics-of-simple-gene-network-motifs-subject-to-extrinsic-1g9peo9qkb
https://typeset.io/papers/identifying-dynamical-bottlenecks-of-stochastic-transitions-4c4i3sf036
https://typeset.io/papers/characterization-of-noise-in-multistable-genetic-circuits-3aikedwahy
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/counterdiabatic-control-of-biophysical-processes-3jflznat0y
https://twitter.com/intent/tweet?text=Counterdiabatic%20control%20of%20biophysical%20processes&url=https://typeset.io/papers/counterdiabatic-control-of-biophysical-processes-3jflznat0y
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/counterdiabatic-control-of-biophysical-processes-3jflznat0y
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/counterdiabatic-control-of-biophysical-processes-3jflznat0y
https://typeset.io/papers/counterdiabatic-control-of-biophysical-processes-3jflznat0y


Counterdiabatic control of biophysical processes
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The biochemical reaction networks that regulate living systems are all stochastic to varying de-
grees. The resulting randomness affects biological outcomes at multiple scales, from the functional
states of single proteins in a cell to the evolutionary trajectory of whole populations. Controlling
how the distribution of these outcomes changes over time—via external interventions like time-
varying concentrations of chemical species—is a complex challenge. In this work, we show how
counterdiabatic (CD) driving, first developed to control quantum systems, provides a versatile tool
for steering biological processes. We develop a practical graph-theoretic framework for CD driving
in discrete-state continuous-time Markov networks. We illustrate the formalism with examples from
gene regulation and chaperone-assisted protein folding, demonstrating the possibility that nature
can exploit CD driving to accelerate response to sudden environmental changes. We generalize the
method to continuum Fokker-Planck models, and apply it to study AFM single-molecule pulling
experiments in regimes where the typical assumption of adiabaticity breaks down, as well as an evo-
lutionary model with competing genetic variants subject to time-varying selective pressures. The
AFM analysis shows how CD driving can eliminate non-equilibrium artifacts due to large force
ramps in such experiments, allowing accurate estimation of biomolecular properties.

A fundamental dichotomy for biological processes is
that they are both intrinsically stochastic and tightly
controlled. The stochasticity arises from the random
nature of the underlying biochemical reactions, and has
significant consequences in a variety of contexts: gene
expression [1], motor proteins [2], protein folding [3], all
the way up to the ecological interactions and evolution
of entire populations of organisms [4, 5]. Theories for
such systems often employ discrete state Markov models
(or continuum analogues like Fokker-Planck equations)
which describe how the probability distribution of sys-
tem states evolves over time. On the other hand, biology
utilizes a wide array of control knobs to regulate such dis-
tributions, most often through time-dependent changes
in the concentration of chemical species that influence
state transition rates. In many cases these changes oc-
cur due to environmental cues—either threatening or
beneficial—and the system response must be sufficiently
fast to avoid danger or gain advantage.
The interplay of randomness and regulation naturally

leads us to ask about the limits of control: to what extent
can a biological system be driven through a prescribed
trajectory of probability distributions over a finite time
interval? Beyond curiosity over whether nature actu-
ally tests these limits in vivo, this question also arises
in experimental contexts. Certain biophysical methods
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like optical tweezers or atomic force microscopy (AFM)
apply perturbations (e.g. mechanical force) to alter the
state distribution of single biomolecules in order to ex-
tract their intrinsic properties [6]. Controlling the dis-
tribution can facilitate interpretation of the data. In
synthetic biology [7] one may want to precisely specify
the probabilistic behavior of genetic switches or other
regulatory circuit components in response to a stimulus.

Control of a system is generally easiest to describe
and quantify if the perturbation is applied slowly. For
example, some tweezer or AFM experiments use an in-
creasing force ramp to unfold single molecules or rup-
ture molecular complexes [8]. Theoretical treatments of
this process typically assume the force changes slowly
enough (adiabatically) that the system remains in quasi-
equilibrium [8–11]. The advantage of this assumption is
that, at each moment of the experimental protocol, the
approximate form of the state probability distribution is
known from equilibrium thermodynamics. Deriving re-
sults for faster pulling rates is more challenging [12], but
useful in order to compare experiments with molecular
dynamics simulations. In natural settings, responses to
rapid environmental changes may entail sharp changes
in the concentrations of biochemical components. For
instance, an ambient temperature increase of even a few
degrees can significantly increase the probability that
proteins misfold and aggregate. In response to such
“heat shock”, cells quickly upregulate the number of
chaperones—specialized proteins that facilitate unfold-
ing or disaggregating misfolded proteins [13–18].

There is no guarantee that the quasi-equilibrium as-
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sumption holds throughout such a process, and thus the
standard tools of equilibrium or near-equilibrium ther-
modynamics (i.e. linear response theory) do not neces-
sarily apply. If we are driving a system over a finite-
time interval, subject to fluctuations that take us far
from equilibrium, can we still attain a degree of con-
trol? In particular, can we force the system to mimic
quasi-equilibrium behavior, following a certain sequence
of known target distributions, but at arbitrarily fast
speeds?
Interestingly this situation strongly resembles ques-

tions from quantum control and quantum thermodynam-
ics [19], where a new line of research has been dubbed
“shortcuts to adiabaticity”. In recent years a great deal
of theoretical and experimental work has been dedicated
to mathematical tools and practical schemes to suppress
nonequilibrium excitations in finite-time, nonequilibrium
processes. To this end, a variety of techniques have
been developed: the use of dynamical invariants [20],
the inversion of scaling laws [21], the fast-forward tech-
nique [22–29], optimal protocols from optimal control
theory [30–33], optimal driving from properties of quan-
tum work statistics [34], “environment” assisted meth-
ods [35], using the properties of Lie algebras [36], and
approximate methods such as linear response theory
[37–40], fast quasistatic dynamics [41], or time-rescaling
[42, 43], to name just a few. See Refs. [44, 45] and ref-
erences therein for comprehensive reviews of these tech-
niques.
Among this plethora of different approaches, counter-

diabatic (CD) or transitionless quantum driving stands
out, since it is the only method that suppresses ex-
citations away from the adiabatic manifold at all in-
stants. In this paradigm [46–49] one considers a time-
dependent Hamiltonian H0(t) with instantaneous eigen-
values {ǫn(t)} and eigenstates {|n(t)〉}. In the adiabatic
limit no transitions between eigenstates occur [50], and
each eigenstate acquires only a time-dependent phase
that can be separated into a dynamical and a geomet-
ric contribution [51]. In other words, if we start in a
particular eigenstate |n(0)〉 at t = 0, we remain in the
corresponding instantaneous eigenstate |n(t)〉 at all later
times, up to a phase. The goal of CD driving is to make
the system follow the same target trajectory of eigen-
states as in the adiabatic case, but over a finite time.
To accomplish this, a CD Hamiltonian H(t) can be

constructed, such that the adiabatic approximation as-
sociated with H0(t) is an exact solution of the dy-
namics generated by H(t) under the time-dependent
Schrödinger equation. It is reasonably easy to derive
that time-evolution under [46–48],

H(t) = H0(t) +H1(t)

= H0(t) + i~
∑

n

(|∂tn〉 〈n| − 〈n|∂tn〉 |n〉 〈n|) ,
(1)

maintains the system on the adiabatic manifold. Note
that it is the auxiliary Hamiltonian H1(t) that enforces
evolution along the adiabatic manifold of H0(t): if a
system is prepared in an eigenstate |n(0)〉 of H0(0) and

subsequently evolves under H(t), then the term H1(t)
effectively suppresses the non-adiabatic transitions out
of |n(t)〉 that would arise in the absence of this term.

To date, a few dozen experiments have implemented
and utilized such shortcuts to adiabaticity to, for in-
stance, transport ions or load BECs into an optical trap
without creating parasitic excitations [45]. However, due
to the mathematical complexity of the auxiliary Hamil-
tonian (1), counterdiabatic driving has been restricted to
“simple” quantum systems. Note that in order to com-
pute H1(t) one requires the instantaneous eigenstates of
the unperturbed Hamiltonian, which is practically, con-
ceptually, and numerically a rather involved task.

On the other hand, the scope of CD driving is not lim-
ited to the quantum realm. Because of the close math-
ematical analogies between classical stochastic systems
and quantum mechanics, it was recently recognized that
the CD paradigm can also be formalized for classical sce-
narios [29, 49, 52–57]. The classical analogue of driving
a system along a target trajectory of eigenstates is a tra-
jectory of instantaneous stationary distributions. Last
year, our group and collaborators developed the first bi-
ological application of CD driving: controlling the dis-
tribution of genotypes in an evolving cellular population
via external drug protocols [58]. This type of “evolution-
ary steering” has various potential applications, most no-
tably in designing strategies to combat drug resistance
in bacterial diseases and tumors. The CD formalism in
this case was built around a multi-dimensional Fokker-
Planck model, generalizing the one-dimensional Fokker-
Planck approach of Ref. [55].

To date however, there does not exist a universal
framework for calculating CD strategies that covers the
wide diversity of stochastic models used in biology, in-
cluding both discrete state and continuum approaches.
In the following, we develop such a framework, taking
advantage of graph theory to construct a general CD
algorithm that can be applied to systems of arbitrary
complexity. The usefulness of this method is of course
not confined to biology, but is relevant to other classi-
cal systems described by Markovian transitions between
states. However biology provides a singularly fascinating
context in which to explore CD driving, both because
it sheds light on the possibility of control in complex
stochastic systems with many interacting components,
and provides an accessible platform for future experi-
mental tests of these ideas.

Outline: In Sec. I we formulate a theory of CD driv-
ing for any discrete state Markov model. By looking
at the properties of the probability current graph asso-
ciated with the master equation of the model, we can
express CD solutions in terms of spanning trees and fun-
damental cycles of the graph. Beyond its practical util-
ity, the graphical approach highlights the degeneracy of
CD driving: the potential existence of many distinct,
physically realizable CD protocols that drive a system
through the same target trajectory of probability distri-
butions. The graphical approach is schematically sum-
marized in Fig. 1, highlighting the components in the
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most general form for CD solutions, Eq. (26).
In Sec. II we apply our formalism to two biologi-

cal examples, a repressor-corepressor genetic regulatory
switch, and a chaperone protein that catalyzes the un-
folding of a misfolded protein in response to a heat shock.
The examples allow us to investigate the physical con-
straints and thermodynamic costs associated with spe-
cific CD solutions, and the usefulness of the CD approach
even in cases where an exact CD protocol cannot be
physically implemented.
In Sec. III we show how CD driving in contin-

uum systems (i.e. Fokker-Planck models with position-
dependent diffusivity) is a special limiting case of our
discrete state approach. We then apply the contin-
uum theory to analysis of AFM pulling experiments
on biomolecules, and show how CD driving can com-
pensate for non-equilibrium artifacts, allowing us to
extract molecular information even in non-adiabatic,
fast pulling scenarios. This Fokker-Planck example is
one-dimensional, but the Supplementary Information
[SI] shows how our approach can be used on higher-
dimensional continuum systems as well. We demonstrate
a numerical CD solution for a two-dimensional Fokker-
Planck equation describing an evolving cell population
with three competing genetic variants, where the distri-
bution of variants is driven along a target trajectory by
time-varying selective pressures.
The examples in Secs. II, III, and the SI are self-

contained, so after going over the general solution in
Sec. I the reader is free to jump to any one that may be
of particular interest. The diversity of the examples—
from biochemical networks describing individual genes
and proteins to the evolution of entire populations of
cells—is meant to provide a practical guide on how to
apply our theory to the kinds of models that regularly
appear in biophysical contexts.
Sec. IV concludes with connections to other areas of

nonequilibrium thermodynamics and questions for fu-
ture work.

I. GENERAL THEORY OF

COUNTERDIABATIC DRIVING IN DISCRETE

STATE MARKOV MODELS

A. Setting up the counterdiabatic driving problem

1. Master equation and the CD transition matrix

Consider an N -state Markov system described by a
vector p(t) whose component pi(t), i = 1, . . . , N , is the
probability of being in state i at time t. The distribution
p(t) evolves under the master equation [59, 60],

∂tp(t) = Ω(λt)p(t). (2)

The off-diagonal element Ωij(λt), i 6= j, of the N × N
matrix Ω(λt) represents the conditional probability per
unit time to transition to state i, given that the sys-
tem is currently in state j. The diagonal elements

Ωii(λt) = −
∑

j 6=i Ωji(λt) ensure each column of the ma-

trix sums to zero [59]. The transition rates Ωij(λt) de-
pend on a control protocol: a set of time-varying exter-
nal parameters, denoted collectively by λ(t) ≡ λt. Ω(t)
plays the role of the Hamiltonian H0(t) in the classical
analogy.
The instantaneous stationary probability ρ(λt) associ-

ated with Ω(λt) is the right eigenvector with eigenvalue
zero,

Ω(λt)ρ(λt) = 0. (3)

When λt has a non-constant time dependence, ρ(λt) in
general is not a solution to Eq. (2), except in the adi-
abatic limit when the control parameters are varied in-
finitesimally slowly, ∂tλt → 0. The sequence of distribu-
tions ρ(λt) as a function of λt defines a target trajectory
for the system, analogous to the eigenstate trajectory
|n(t)〉 in the quantum version of CD.
Given an instantaneous probability trajectory ρ(λt)

defined by Eq. (3), we would like to find a counterdia-

batic (CD) transition matrix Ω̃(λt, λ̇t) such that the new
master equation,

∂tρ(λt) = Ω̃(λt, λ̇t)ρ(λt), (4)

evolves in time with state probabilities described by
ρ(λt). Here λ̇t ≡ ∂tλt. We are thus forcing the sys-

tem to mimic adiabatic time evolution, even when λ̇t is

nonzero. As we will see below, Ω̃(λt, λ̇t) will in general
depend both on the instantaneous values of the control
parameters λt and their rate of change λ̇t. In the limit
of adiabatic driving we should recover the original tran-

sition matrix, Ω̃(λt, λ̇t → 0) = Ω(λt). Solving for the
CD protocol corresponds to determining the elements of

the Ω̃(λt, λ̇t) matrix in Eq. (4) given a certain ρ(λt).
This corresponds to finding the CD Hamiltonian H(t) of
Eq. (1) in the quantum case.
We can look at the counterdiabatic problem as a spe-

cial case of a more general question: given a certain
time-dependent probability distribution that is our tar-
get, what is the transition matrix of the master equation
for which this distribution is a solution? In effect, this is
the inverse of the typical approach for the master equa-
tion, where we know the transition matrix and solve for
the distribution.

2. Representing the system via an oriented current graph

To facilitate finding CD solutions, we start by express-
ing the original master equation of Eq. (2) equivalently
in terms of probability currents between states,

∂tpi(t) =
∑

j

Jij(t), i = 1, . . . , N (5)

where the current from state j to i is given by:

Jij(t) ≡ Ωij(λt)pj(t)− Ωji(λt)pi(t). (6)
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We can interpret any pair of states (i, j) where either
Ωij(λt) 6= 0 or Ωji(λt) 6= 0 at some point during the pro-
tocol as being connected via an edge on a graph whose
vertices are the states i = 1, . . . , N . Let E be the num-
ber of edges in the resulting graph, and define a num-
bering α = 1, . . . , E and an arbitrary orientation for the
edges such that each α corresponds to a specific edge
and choice of current direction. For example if edge α
was between states (i, j), and the choice of direction was
from j to i, then we can define current Jα(t) ≡ Jij(t) for
that edge. Alternatively if the choice of direction was
from i to j, then Jα(t) ≡ Jji(t) = −Jij(t). In this way
we associate the master equation with a directed graph,
a simple example of which is illustrated in Fig. 2. Eq. (5)
can be rewritten in terms of the oriented currents Jα(t)
as

∂tp(t) = ∇J(t), (7)

where J(t) is an E-dimensional vector with components
Jα(t), and ∇ is an N ×E dimensional matrix known as
the incidence matrix of the directed graph [61] (closely
related to the stoichiometric matrix of Ref. [62]). The
components of ∇ are given by

∇iα =





1 if the direction of edge α is toward i

−1 if the direction of edge α is away from i

0 if edge α does not connect to i

.

(8)
The αth column of ∇ contains a single 1 and a single −1,
since each edge must have an origin and a destination
state. Conservation of probability is thus enforced by
summing over rows in Eq. (7), since

∑
i ∇iα = 0, and so∑N

i=1 ∂tpi(t) = 0. Since any given row of Eq. (7) is thus
linearly dependent on the other rows, it is convenient to
work in the reduced representation of the equation where
we leave out the row corresponding to a certain reference
state (taken to be state N),

∂tp̂(t) = ∇̂J(t). (9)

Here p̂(t) = (p1(t), . . . , pN−1(t)) and the (N − 1) × E

dimensional reduced incidence matrix ∇̂ is equal to ∇
with the Nth row removed. Our focus will be on systems
where there is a unique instantaneous stationary prob-
ability vector ρ(λt) at every t. In this case the master
equation necessarily corresponds to a connected graph
in the oriented current picture [59]. By a well known re-
sult in graph theory, both the full and reduced incident

matrices ∇ and ∇̂ of a connected, directed graph with N
vertices have rank N −1 [61]. This means that all N −1

rows of ∇̂ are linearly independent for the systems we
consider.
Having described the original master equation of

Eq. (2) in terms of oriented currents, we can do the same
for Eqs. (3) and (4). Let us define the oriented station-
ary current Jα(t) for the distribution ρ(λt) as follows: if
the αth edge is oriented from j to i then

Jα(t) ≡ Ωij(λt)ρj(λt)− Ωji(λt)ρi(λt). (10)

The reduced representation of Eq. (3) corresponds to

∇̂J (t) = 0. (11)

Analogously for the CD master equation, Eq. (4), we
define the oriented current

J̃α(t) ≡ Ω̃ij(λt, λ̇t)ρj(λt)− Ω̃ji(λt, λ̇t)ρi(λt). (12)

The time dependence of J̃α is explicitly through λt and

λ̇t, but we write it in more compact form as J̃α(t) to
avoid cumbersome notation. Then Eq. (4) can be ex-
pressed as

∂tρ̂(λt) = ∇̂J̃ (t). (13)

3. Counterdiabatic current equation

Subtracting Eq. (11) from Eq. (13) we find

∂tρ̂(λt) = ∇̂δJ (t), (14)

where δJ (t) ≡ J̃ (t) − J (λt) is the difference between
the CD and stationary current vectors. For the CD prob-
lem, we are given the original matrix elements Ωij(λt)
and thus also have the corresponding stationary distribu-
tion values ρi(λt) and stationary currents Jα(λt). What
we need to determine, via Eq. (14), are the CD currents

J̃ (t). We can then use Eq. (12) to solve for the CD ma-

trix transition rates Ω̃ij(λt, λ̇t). By construction, these
satisfy Eq. (4), and hence define a CD protocol for the
system.
As a first step, let us consider the invertibility of

Eq. (14) to solve for δJ (t). The (N − 1) × E dimen-

sional matrix ∇̂ is generally non-square: N(N − 1)/2 ≥
E ≥ N − 1 for a connected graph. Only in the special
case of tree-like graphs (no loops) do we have E = N −1

and a square (N−1)× (N−1) matrix ∇̂. Since the rank

of ∇̂ is N − 1, as mentioned above, for tree-like graphs

∇̂ is invertible and Eq. (14) can be solved without any
additional complications:

δJ (t) = ∇̂−1∂tρ̂(λt) iff E = N − 1. (15)

As described in the next section, the elements of ∇̂−1

for a tree-like graph can be obtained directly through a
graphical procedure, without the need to do any explicit
matrix inversion.
In the case where E > N − 1, the solution proce-

dure is more involved, but the end result has a relatively
straightforward form: the most general solution δJ (t)
can always be expressed as a finite linear combination of
a basis of CD solutions. How to obtain this basis, and its
close relationship to the spanning trees and fundamental
cycles of the graph, is the topic we turn to next.
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FIG. 1. Overview of the graphical approach for deriving CD solutions. We start with a Markov model defined by a transition
matrix Ω(λt) dependent on the control protocol λt. Associated with this is a graph with N states, E edges, and a target
trajectory ρ(λt) consisting of instantaneous stationary states of Ω(λt). The eventual goal is to find the CD transition matrix

Ω̃(λt, λ̇t) where ρ(λt) is the solution to the associated master equation, Eq. (4). To facilitate this, we must first find the CD

currents J̃ (t), the main goal of the graphical approach. The most general form of the solution for J̃ (t) is given by Eq. (26),

and consists of two components: (i) a spanning tree CD solution δJ (1)(t), given by Eq. (18) and derived via the procedure

outlined in Sec. I B; (ii) a linear combination of the fundamental basis cycle vectors c(γ), γ = 1, . . . ,∆, where ∆ = E −N +1,
as described in Sec. ID. The coefficient functions Φγ(t) are arbitrary.

B. General graphical solution for the

counterdiabatic protocol

The graphical procedure described in this and the fol-
lowing two sections, culminating in the general solution
of Eq. (26), is summarized in Fig. 1. To illustrate the
procedure concretely, we will use the two-loop system
shown in Fig. 2A as an example, where N = 4, E = 5.
The solution for this case is relevant to the biophysical
model for chaperone-assisted protein folding discussed
later in the paper. Fig. 2A shows the rates ki(λt) and
ri(λt) that determine the transition matrix Ω(λt), and
Fig. 2B labels the oriented stationary currents Jα(t),
α = 1, . . . , E. Explicit expressions for ρi(λt) and Jα(t)
in terms of the rates are given in Appendix A.

Every connected graph has a set of spanning trees:
subgraphs formed by removing ∆ ≡ E − N + 1 edges
such that the remaining N − 1 edges form a tree link-
ing together all the N vertices. The number T of
such spanning trees is related to the reduced incidence
matrix through Kirchhoff’s matrix tree theorem [61],

T = det
(
∇̂∇̂T

)
. For the current graph of Fig. 2B, this

matrix is

∇̂ =



−1 0 1 −1 0
1 −1 0 0 1
0 1 −1 0 0


 , (16)

and the number of trees is thus T = 8.
Let us select one spanning tree to label as the reference

tree. The choice is arbitrary, since any spanning tree can
be a valid starting point for constructing the basis. The
left side of Fig. 2C shows one such tree chosen for the
two-loop example. Here ∆ = 2, so we have removed
two edges: J1 and J5. From this reference tree we can
derive ∆ other distinct spanning trees using the following
method: 1) Take one of the ∆ edges that were removed
to get the reference tree, and add it back to the graph. 2)
This creates a loop in the graph, known as a fundamental
cycle (highlighted in green in Fig. 2C) [61]. 3) Remove
one of the other edges in that loop (not the one just
added), such that the graph returns to being a spanning
tree. This new tree is distinct from the reference because
it contains one of the ∆ edges not present in the reference
tree. For example, in the top right of Fig. 2C, we added
back edge 1, forming the fundamental cycle on the left
loop. We then delete edge 2 from this loop, creating
spanning tree 2. A similar procedure is used to construct
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FIG. 2. A two-loop discrete state Markov model, with N = 4
states and E = 5 edges. A) The black arrows correspond
to entries in the transition matrix Ω(λt): transition rates
ki(λt) and ri(λt) between states that depend on an external
protocol λt. B) The red arrows label the oriented stationary
currents Jα(λt), defined in Eq. (10). C) On the left, one of
the spanning trees of the graph, chosen to be a reference for
constructing the tree basis. Edges deleted to form the tree
are shown in faint red. On the right, two trees in this set
derived from the reference one. Each such derived tree has
a one-to-one correspondence with a fundamental cycle of the
graph (highlighted in green).

tree 3.

We denote the ∆+1 trees (one reference + ∆ derived
trees) constructed in this manner as the tree basis. We
will label the trees in the basis set with γ = 1, . . . ,∆+1,
where γ = 1 corresponds to the reference. In general,
this basis is a subset of all possible trees, since T ≥ ∆+1.
To every tree in the basis, we will associate a CD solu-

tion as follows. Let δJ (γ)(λt, λ̇t) be a current difference
vector that satisfies Eq. (14), but with the constraint
that at every edge α that is not present in the γth tree,

we have δJ
(γ)
α (t) = 0. We call this a fixed current con-

straint, since it corresponds to not being able to perturb
the current associated with that edge via external con-
trol parameters. For example imposing the restriction

Ωij = Ω̃ij and Ωji = Ω̃ji for the pair (i, j) associated

with edge α would make make δJ
(γ)
α (t) = 0.

To find δJ (γ)(t), consider the (N−1)×E-dimensional

reduced incidence matrix ∇̂ of the original graph; for
example, Eq. (16) in the case of the two-loop graph of
Fig. 2B. For a given spanning tree γ, we can construct an

(N−1)×(N−1) submatrix ∇̂(γ) from ∇̂ by choosing the

N − 1 columns in ∇̂ that correspond to edges present in

γ. This submatrix ∇̂(γ) is equal to the reduced incidence
matrix of the spanning tree γ. Hence we know that it

has rank N − 1 and there exists an inverse [∇̂(γ)]−1. Let
us now construct a “stretched inverse”: an E× (N − 1)-

dimensional matrix [∇̂(γ)]−1
S where the rows are popu-

lated by the following rule. If the row corresponds to
one of the ∆ edges that was removed from the original
graph to get the tree γ, it is filled with zeros; otherwise,

it is filled with the corresponding row of [∇̂(γ)]−1. For
the three trees in Fig. 2C, labeled γ = 1, 2, 3 clockwise

from left, the matrices [∇̂(γ)]−1
S have the following form:

[∇̂(1)]−1
S =




0 0 0
0 −1 0
0 −1 −1
−1 −1 −1
0 0 0


 ,

[∇̂(2)]−1
S =




0 1 0
0 0 0
0 0 −1
−1 −1 −1
0 0 0


 , [∇̂(3)]−1

S =




0 0 0
1 0 1
1 0 0
0 0 0
1 1 1


 .

(17)

Moreover, it turns out one does not have to explicitly

write down or invert ∇̂(γ) in order to find the elements
of [∇̂(γ)]−1

S . We can take advantage of a known graphi-
cal procedure for constructing inverse reduced incidence
matrices of connected tree-like graphs [63, 64]. To de-

termine the ith column of the matrix [∇̂(γ)]−1
S , start at

the reference state (the state removed when construct-

ing the reduced incidence matrix ∇̂, which in our case is
always state N). Among the edges of the spanning tree
γ, there is a unique path that connects state N to state
i. Following that path, if you encounter the current ar-
row Jα oriented in the direction of the path, put a +1 in

the row of [∇̂(γ)]−1
S corresponding to Jα. Similarly if the

current arrow is oriented opposite to the path, put a −1.
All other entries in the ith column (current arrows not
on the path, or not in the spanning tree) are set to zero.

For example, consider the second column of [∇̂(1)]−1
S in

Eq. (17). The corresponds to the path from state N = 4
to state 2 in the tree on the left of Fig. 2C. This includes
edges 4, 3, and 2, with the arrows along those edges all
oriented opposite to the path. Hence the column has a
−1 at the 4th, 3rd, and 2nd rows, and all other entries
are set to zero.
By construction, each matrix [∇̂(γ)]−1

S acts as a right

pseudoinverse of ∇̂, satisfying ∇̂[∇̂(γ)]−1
S = IN−1, where

IN−1 is the (N−1)×(N−1) dimensional identity matrix.

We can now write down a solution for δJ (γ)(t),

δJ (γ)(t) = [∇̂(γ)]−1
S ∂tρ̂(λt). (18)

If we act from the left on both sides by ∇̂, we see that this

form satisfies Eq. (14). The αth row of of [∇̂(γ)]−1
S is zero

if edge α corresponds to a fixed current constraint (edge

not present in the tree γ). Thus δJ
(γ)
α (t) = 0 for these α.

Not only do the vectors δJ (t) associated with the tree
basis constitute ∆ + 1 solutions to Eq. (14), they are
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also linearly independent from one another. To see this,
note that because of the procedure to construct derived
trees (adding back a distinct edge that was removed in
the reference tree), a tree with γ ≥ 2 will have non-zero

entry in δJ (γ)(t) in a position where every other tree
(reference or derived) has a zero because of constraints.

Hence the δJ (γ)(t) vector for each derived tree is linearly
independent from all the other vectors in the basis.
We also know that any linear combination of solutions

to Eq. (14) can be scaled by an overall normalization
factor (to make the coefficients sum to one) so that it is
also a solution to Eq. (14). Hence the following linear
combination of basis vectors is a valid solution:

δJ (t) =
∆+1∑

γ=1

wγ(t)δJ
(γ)(t), (19)

Here wγ(t) are any real-valued functions where∑∆+1
γ=1 wγ(t) = 1 at each λt and λ̇t. As we argue in the

next section, the tree basis is complete: any CD solution
δJ (t) can be expressed in the form of Eq. (19). Note
that Eq. (15) is a special case of Eq. (19). When the
original graph is tree-like, ∆ = 0 and there is only one
spanning tree (γ = 1), equivalent to the original graph.

In this case [∇̂(1)]−1
S = ∇̂−1 and the sole coefficient func-

tion w1(t) = 1 by normalization.

C. Completeness of the tree basis

To prove that any CD solution can be expressed as a

linear combination of tree basis solutions δJ (γ)(t), let
us first introduce ∆ vectors of the following form:

V
(γ)(t) = δJ (γ)(t)− δJ (1)(t), (20)

for γ = 2, . . . ,∆ + 1. Since both basis vectors on the
right-hand side of Eq. (20) satisfy Eq. (14), we know
that

∇̂V
(γ)(t) = ∂tρ̂(λt)− ∂tρ̂(λt) = 0. (21)

Hence V
(γ)(t) is a vector in the null space of ∇̂. More-

over since the basis vectors δJ (γ)(t) are linearly inde-

pendent, the set V(γ)(t) constitutes ∆ linearly indepen-

dent null vectors of ∇̂. We can find the dimension of
the null space, nullity(∇̂), using the rank-nullity theo-

rem: rank(∇̂) + nullity(∇̂) = E, where E is the num-

ber of columns in ∇̂. Since rank(∇̂) = N − 1 for
a connected graph, as described earlier, we see that

nullity(∇̂) = E − (N − 1) = ∆. Thus the ∆ lin-

early independent vectors V
(γ)(t) span the whole null

space. If there existed a vector δJ (t) that satisfied
Eq. (14) but could not be expressed as a linear com-
bination of basis vectors, then the corresponding vector

V(t) = δJ (t) − δJ (1)(t) would be a null vector that is

linearly independent of all the V(γ)(t). But since the lat-
ter span the whole null space, this is impossible. Hence

every CD solution δJ (γ)(t) satisfying Eq. (14) must be
expandable in the form of Eq. (19).

D. General solution in the cycle basis

The discussion in the previous section also allows us to
rewrite the expansion in Eq. (19) in an alternative form
that is convenient in practical applications. Using the

fact that
∑∆+1

γ=1 wγ(t) = 1, Eq. (19) can be equivalently
expressed as

δJ (t) = δJ (1)(t) +
∆+1∑

γ=2

wγ(t)
(
δJ (γ)(t)− δJ (1)(t)

)

= δJ (1)(t) +
∆+1∑

γ=2

wγ(t)V
(γ)(t).

(22)

Since the vectors V(γ)(t) form a basis for the null space of

∇̂, the second term in the last line of Eq. (22), with its
arbitrary coefficient functions wγ(t), is general enough
to describe any vector function in the null space. With
no loss of generality, we can rewrite this second term in
another basis for the null space instead. A convenient
choice is the fundamental cycle basis corresponding to
some reference spanning tree (we need not choose the

same reference as used to find δJ (1)(t)). The ∆ fun-
damental cycles were identified in the procedure to con-
struct derived trees. If we assign an arbitrary orientation
to the cycles (clockwise or counterclockwise), then the
E-dimensional cycle vector c(γ), associated with the de-
rived tree γ +1, is defined as follows: a ±1 at every row
whose corresponding edge in the original graph belongs
to the fundamental cycle, with a +1 if the edge direction
is parallel to the cycle orientation, −1 if anti-parallel. All
edges not belonging to the fundamental cycle are zero.
For the reference tree in Fig. 2C the fundamental cycles
are highlighted in green on the right of the panel. Here
the two cycle vectors are:

c(1) =




1
1
1
0
0


 , c(2) =




0
1
1
1
1


 . (23)

In general, the ∆ fundamental cycle vectors form a basis

for the null space of ∇̂ [61].
In terms of the cycle vectors, Eq. (22) can be written

as

δJ (t) = δJ (1)(t) +
∆∑

γ=1

vγ(t)c
(γ), (24)

where vγ(t) for γ = 1, . . . ,∆ are another set of arbitrary
coefficient functions. The convenience of Eq. (24) over
Eq. (19) is that we only need to find one spanning tree

solution δJ (1)(t). Both have the same number of degrees
of freedom: in the first case ∆ coefficient functions wγ(t)
for γ = 2, . . . ,∆ + 1 (since w1(t) depends on the rest
through the normalization constraint); in the second case
∆ coefficient functions vγ(t).
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Finally we note that because of Eq. (11), the oriented
stationary current vector J (t) corresponding to the orig-

inal protocol is in the null space of ∇̂. Hence it can also
be expanded in terms of the cycle vectors as

J (t) =
∆∑

γ=1

uγ(t)c
(γ), (25)

with some coefficient functions uγ(t). Since the CD cur-

rents J̃ (t) = J (t) + δJ (t), we can combine Eqs. (24)
and (25) to get the most general expression for any set
of currents that satisfies Eq. (13):

J̃ (t) = δJ (1)(t) +
∆∑

γ=1

Φγ(t)c
(γ). (26)

Here Φγ(t) ≡ uγ(λt)+ vγ(t). Because the vγ(t) are arbi-
trary, the functions Φγ(t) are also arbitrary, and we still
have the same ∆ degrees of freedom to span the solution
space.

E. Thermodynamic costs of CD driving

Consider a driving protocol where the control param-
eters λt are varied from λ0 to λτ over a time interval
τ . The system starts in the initial stationary state,
p(0) = ρ(λ0). If we implement the CD protocol, the

transition matrix is given by Ω̃(λt, λ̇t) and the dynam-
ics are described by Eq. (4), with the probability dis-
tribution at time t equal to ρ(λt). The total entropy

production rate Ṡtot(t) at time t is given by [60],

Ṡtot(t)

= kB
∑

ij

Ω̃ij(λt, λ̇t)ρj(λt) ln
Ω̃ij(λt, λ̇t)ρj(λt)

Ω̃ji(λt, λ̇t)ρi(λt)
,

(27)

and is non-negative in accordance with the second law
of thermodynamics, Ṡtot(t) ≥ 0. For a system coupled
to a single heat reservoir at temperature T , we can de-
compose Ṡtot(t) into the rates of change of the system
and reservoir entropies,

Ṡtot(t) = Ṡ(t) + Ṡr(t), (28)

where S(t) = −kB
∑

i ρi(λt) ln ρi(λt) is the system en-
tropy, and Sr(t) is the reservoir entropy. The heat
flow from the reservoir into the system is given by
−T Ṡr, and there is some rate Ẇ at which external
work is being done on the system during the driv-
ing. By energy conservation, the mean system energy
E(t) =

∑
i ρi(λt)Ei(λt), where Ei(λt) is the energy of

state i, must change according to:

Ė(t) = −T Ṡr + Ẇ . (29)

Solving for Ṡr from Eq. (29) and plugging into Eq. (28),
we can write

Ẇ (t) = Ė(t)− T Ṡ(t) + T Ṡtot(t)

= Ḟ (t) + T Ṡtot(t),
(30)

where the free energy F (t) = E(t)− TS(t).
In the special case where we begin and end in an equi-

librium stationary state, F (0) = F eq(λ0) and F (τ) =
F eq(λτ ). Here the equilibrium free energy F eq(λt) =
−kBT lnZ(λt), and Z(λt) =

∑
i exp (−βEi(λt)) is the

corresponding partition function, with β = (kBT )
−1. In-

tegrating both sides of Eq. (30), we can relate the total
work expended over the driving, ∆W , to the free energy
difference of the system ∆F eq = F eq(τ)− F eq(0):

∆W = ∆F eq + T∆Ṡtot, (31)

where for any observable Ȯ(t) we write ∆O ≡
∫ τ

0
dt Ȯ(t).

We can then define the dissipated (or irreversible) work

∆W diss ≡ ∆W − ∆F eq = T∆Ṡtot [65]. From the fact

that Ṡtot(t) ≥ 0 at all times t, we see that ∆Ṡtot ≥ 0 and
hence the dissipated work during driving between two
equilibrium states is always non-negative, ∆W diss ≥ 0.
The dissipated work is a measure of the thermodynamic
cost of the driving. From Eq. (31) we have to put in work
∆W at least equal ∆F eq to get between the starting and
end states. ∆W diss tells us the additional work cost on
top of this baseline.
From Eq. (28) we know ∆W diss = T∆S+T∆Sr. The

first term just depends on the system entropy difference
at the beginning and end of the protocol, and hence on
the probability distributions ρ(λ0) and ρ(λτ ). For any
CD solution corresponding to the same target trajectory
of distributions ρ(λt), the term T∆S is always the same.
However the excess work T∆Sr dissipated throughout
the protocol can vary among CD solutions. To see this,
note that from Eqs. (27)-(28) and the definition of S(t)
we can write the reservoir contribution to the total en-
tropy change as [60]:

∆Sr = kB
∑

ij

∫ τ

0

dt Ω̃ij(λt, λ̇t)ρj(λt) ln
Ω̃ij(λt, λ̇t)

Ω̃ji(λt, λ̇t)
.

(32)
This clearly depends not just on ρ(λt), but the values

of the CD transition matrix elements Ω̃ij(λt, λ̇t), which
vary among CD solutions for the same target. A bi-
ological realization of this variation in ∆W diss among
solutions will be explored in the repressor-corepressor
protein example of the next section.

For a CD current solution J̃ (t) of the form given in

Eq. (26), each current component J̃α(t) is related to the

corresponding transition rates Ω̃ij(λt, λ̇t) and Ω̃ji(λt, λ̇t)
via Eq. (12). In many physical systems we may not have
the ability to freely modify both transition rates—one
may be fixed, and other tunable over some range by
changing an external parameter (like concentration of
a reactant in a biochemical system). But let us imagine
a hypothetical scenario where we have the ability to im-

plement any Ω̃ij(λt, λ̇t) and Ω̃ji(λt, λ̇t) compatible with
Eqs. (12) and (26) for all the edges in the network. In
this case we can show for any CD solution there always
exists a choice of transition rates that makes ∆W diss ar-
bitrarily small.
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To accomplish this, it is convenient to rewrite Ṡtot(t)
from Eq. (27) in terms of a sum over edges α in the
oriented current graph [60],

Ṡtot(t) = kB
∑

α

J̃α(t)χα(t), (33)

where

χα(t) ≡ ln
Ω̃ij(λt, λ̇t)ρj(λt)

Ω̃ji(λt, λ̇t)ρi(λt)
. (34)

Here α is the label of the edge associated with (i, j). We

take Ω̃ij to be the CD transition rate along the arrow

direction of edge α, and Ω̃ji to be the reverse transition.
The difference between the numerator and denominator
inside the logarithm in Eq. (34) is just the current at
that edge, which is determined by the CD solution:

Ω̃ij(λt, λ̇t)ρj(λt)− Ω̃ji(λt, λ̇t)ρi(λt) = J̃α(t). (35)

To simultaneously satisfy Eqs. (34) and (35), the transi-
tion rates must be given by

Ω̃ij(λt, λ̇t) = J̃α(t)
eχα(t)

ρj(λt)(eχα(t) − 1)
,

Ω̃ji(λt, λ̇t) = J̃α(t)
1

ρi(λt)(eχα(t) − 1)
.

(36)

The current J̃α(t) is fixed by choosing a particular CD
solution, but in this scenario we have the freedom to

manipulate both Ω̃ij(λt, λ̇t) and Ω̃ji(λt, λ̇t) at each edge.
We can thus choose the rates to make |χα(t)| ≪ 1 for
every α. Eq. (36) in this limit becomes

Ω̃ij(λt, λ̇t) ≈
J̃α(t)

ρj(λt)χα(t)
,

Ω̃ji(λt, λ̇t) ≈
J̃α(t)

ρi(λt)χα(t)
.

(37)

We are free to make |χα(t)| arbitrarily small for fixed

J̃α(t), so long as χα(t) and J̃α(t) have the same sign.

Approaching the limit |χα(t)| → 0 makes Ṡtot(t) → 0
from Eq. (33) and hence ∆W diss → 0. Of course to
achieve this, both transition rates in Eq. (37) have to
become arbitrarily large, while the current in Eq. (35)
remains finite. It may seem counterintuitive that though
this CD protocol can drive the system at arbitrary speed
over a trajectory, the associated ∆W diss is small. How-
ever in this particular case the CD solution involves mak-
ing the local “diffusivity” in the system large (if we imag-
ine dynamics on the network as a discrete diffusion pro-
cess). In other words we are reducing the effective fric-
tion to zero in order to eliminate dissipation.
In practice this extreme limit is not realistic. There

are likely to be physical constraints that prevent us from
simultaneously tuning each pair of rates in the network
over an arbitrary range, so the CD implementation with

∆W diss → 0 is not realizable. However, among the fam-
ily of realizable CD solutions for a given target trajec-
tory, we can ask which one makes ∆W diss as small as
possible. We illustrate this in the repressor-corepressor
biological example described in the next section.

II. CD DRIVING IN BIOLOGICAL NETWORKS

To illustrate the general theory in specific biologi-
cal contexts, we consider two examples of CD driving
in biochemical networks. The first example is a sim-
ple genetic regulatory switch involving a repressor pro-
tein and corepressor ligand binding to an operator site
on DNA, turning off the expression of a set of genes.
Here it turns out there are enough control knobs—
concentrations of repressors, corepressors, and repressor-
corepressor complexes—to implement a whole family of
exact CD solutions. Among this family we can then ex-
amine which ones satisfy certain physical constraints, or
minimize thermodynamic costs. The second example in-
volves a chaperone protein that binds to a misfolded sub-
strate, catalyzing the unfolding of this misfolded protein
and giving it another chance to fold into the correct (“na-
tive”) state. The available control knobs—chaperone
and ATP concentrations—are in fact insufficient to im-
plement any exact CD solution. In this scenario, ap-
proximate CD driving by sharply increasing chaperone
concentration can rapidly decrease the probability of a
protein being in a misfolded state, a key factor in ame-
liorating the damage due to heat shock. We thus find
that even when the CD control formalism cannot be ap-
plied in full, it can still provide a useful way to interpret
time-dependent regulation in certain biological systems.

A. Repressor-corepressor model

The first system we consider is a common form of
gene regulation in bacteria, illustrated schematically in
Fig. 3A: a repressor protein has the ability to bind to
an operator site on DNA. When bound, it interferes
with the ability of RNA polymerase to attach to the
nearby promoter site, preventing the transcription of the
genes associated with the promoter. The system acts
as a genetic switch, with the empty operator site the
“on” state for gene expression, and the occupied op-
erator site the “off” state. In many cases, additional
regulatory molecules—inducers or corepressors— influ-
ence the binding affinity of repressor proteins [66]. In
the present model, binding of the bare repressor to the
operator site is weak (it unbinds easily), but the bind-
ing strength is enhanced in the presence of a particular
small molecule—the corepressor. Hence the corepressor
concentration acts like an input signal, with sufficiently
high levels leading to the promoter site being occupied
with high probability, and the associated genes being
turned off.
As is generally the case with genetic regulation in bi-
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FIG. 3. A) Biochemical network of a repressor-corepressor
model, showing an operator site on DNA in three differ-
ent states: 1) free; 2) bound to a bare repressor protein; 3)
bound to a represssor-corepressor complex. Transition rates
between the states are shown in green. The binding reaction
rates depend on three concentrations of molecules in solution:
R(t) for bare repressors, C(t) for corepressors, and X(t) for
the complexes. B) One of the spanning trees for the associ-
ated network graph, with the edge deleted to form the tree
shown in faint red. We take this to be the reference spanning
tree for the tree basis. C) The other tree in the basis, with
the corresponding fundamental cycle in green.

ology, the processes underlying repressor dynamics are
stochastic [67]. Here we model the system through
Markovian transitions among three discrete states: 1)
free operator; 2) bare repressor bound to the operator;
3) repressor-corepressor complex bound to the opera-
tor. Transitions in both directions (clockwise and coun-
terclockwise in Fig. 3A) are possible. In each pair of
transition rates between neighboring states there is a
binding reaction proportional to the concentration of a
chemical species in solution. The relevant concentrations
are those of bare repressors R(t), corepressors C(t), and
repressor-corepressor complexes X(t). The associated
binding constants, which multiply the concentrations to
give the binding rates, are kr, kc, and kx respectively.
The other transition rate in each pair is the correspond-
ing unbinding reaction, k−r, k−c, or k−x.

To be concrete, we base parameter values on the
purine repressor (PurR) system of E. coli [66, 68]. The
PurR protein turns off genes responsible for the de novo
production of purines, a class of molecules including
guanine and adenine that are essential ingredients in
DNA/RNA and energy transducing molecules like ATP.
If the cell has an excess of purines (for example from en-
vironmental sources), this is signaled by an abundance
of the corepressors guanine or hypoxanthine (a purine

derivative) that form complexes with PurR, enabling it
to bind strongly with its operator site. This way, the
cell can switch off the energetically expensive de novo
production of purines when it is not needed. The entire
biochemical network of Fig. 3A, including both clock-
wise and counterclockwise transitions, was experimen-
tally measured for PurR, and the parameters are given
by [68]: kr = 0.0191 nM−1 min−1, kc = 7.83 × 10−4

nM−1 min−1, kx = 0.9 nM−1 min−1, k−r = 1.68 min−1,
k−c = 0.72 min−1, k−x = 0.072 min−1. Note that
k−x ≪ k−r (the repressor-corepressor complex unbinds
from the operator more slowly than bare repressor) and
kx ≫ kr (it binds more easily), demonstrating the en-
hanced affinity of the complex to the operator relative
to the bare repressor.
Three of the transition rates depend on the external

concentration parameters λt = (R(t), C(t), X(t)), and
time-dependent changes in these concentrations consti-
tute a driving protocol that alters the probability land-
scape of the operator. Note that while our system de-
scription focuses on the state of the operator, the re-
pressor and corepressor can also bind/unbind in solution
away from the operator [68], and in some systems there
are other molecules (like inducers) competing for the re-
pressor in solution. The relative concentrations of the
two reactants, R(t), C(t) and the complex X(t) in so-
lution can be expressed in terms of a chemical potential
for the reaction:

∆µ(t) = kBT ln

(
krR(t)kcC(t)k−x

k−rk−ckxX(t)

)
. (38)

The fraction inside the logarithm is just the product
of all the clockwise rates divided by the product of all
the counterclockwise rates. When ∆µ(t) = 0 there is
an equal chance of making clockwise versus counter-
clockwise transitions, and hence the reaction at that in-
stant satisfies detailed balance. While ∆µ(t) = 0 may
be possible in cellular conditions (for example if the
binding/unbinding rates are very fast compared to the
timescale of the protocol), it is not necessarily always the
case [67]. Sudden environmental influxes of corepressor
C(t) might drive the concentrations out of detailed bal-
ance. This can also occur due to cellular processes that
influence the availability of bare repressors—like changes
in inducer abundance, in the case where inducers and
corepressors compete for the same binding site on re-
pressors. In general then we will take the solution con-
centrations (R(t), C(t), X(t)) to be arbitrary functions
determined by processes outside of the system, and ex-
plore how these three control knobs can influence the
state of the operator.
Imagine ρ(λt) is some target trajectory of distribu-

tions for the operator. For example (as we illustrate
below) we might want to rapidly turn off gene expres-
sion, going from a situation where state 1 predominates
to one where state 3 predominates. For any concentra-
tion protocol λt = (R(t), C(t), X(t)), the corresponding
trajectory ρ(λt) is described explicitly by expressions
in Appendix A. Given this target trajectory ρ(λt), we
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can derive a family of counterdiabatic concentration pro-
tocols, in terms of alternative concentration functions

(R̃(t), C̃(t), X̃(t)) such that the operator is guaranteed
have the distribution ρ(λt) at every t during the driv-
ing.
Following the graphical solution procedure of Sec. I B,

we start with the fact that the oriented current graph
corresponding to Fig. 3A has N = 3, E = 3. If Ji(t) is
the current oriented clockwise starting from state i, the
reduced incidence matrix for the one-loop graph is

∇̂ =

(
−1 0 1
1 −1 0

)
. (39)

Because ∆ = E−N +1 = 1, we have ∆+1 = 2 trees in
a tree basis. Taking the tree with edge 1 missing as the
reference (tree 1 in Fig. 3B), we choose the other tree in
the basis to be the one with edge 2 missing (tree 2 in
Fig. 3C). Using the graphical algorithm, we can easily
write down stretched inverse reduced incidence matrices
for these trees:

[∇̂(1)]−1
S =



0 0
0 −1
1 0


 , [∇̂(2)]−1

S =



0 1
0 0
1 1


 . (40)

One can readily check that ∇̂[∇̂(γ)]−1
S for γ = 1, 2 is the

2×2 identity matrix. There is a single fundamental cycle
vector for the graph, shown as a dashed line in Fig. 3C,
given by c(1) = (1, 1, 1).

Using Eq. (18) for δJ (1)(t) and Eq. (26) for the most

general form of the CD currents J̃ (t), we have

J̃ (t) = δJ (1)(t) + Φ1(t)c
(1)

= [∇̂(1)]−1
S ∂tρ̂(λt) + Φ1(t)c

(1),
(41)

where Φ1(t) is an arbitrary function. Given the defini-

tion of the oriented CD currents J̃α(t) in Eq. (12), we
can write Eq. (41) as a series of equations for each edge
α:

J̃1(t) = krR̃(t)ρ1(λt)− k−rρ2(λt) = Φ1(t),

J̃2(t) = kcC̃(t)ρ2(λt)− k−cρ3(λt) = −∂tρ2(λt) + Φ1(t),

J̃3(t) = k−xρ3(λt)− kxX̃(t)ρ1(λt) = ∂tρ1(λt) + Φ1(t).
(42)

Here we have assumed that our ability to influence the
currents at each edge is via the CD concentration pro-

tocols R̃(t), C̃(t), and X̃(t), with all other parameters
fixed. Solving Eq. (42) for these concentrations, we find

R̃(t) =
Φ1(t) + k−rρ2(λt)

krρ1(λt)
,

C̃(t) =
Φ1(t)− ∂tρ2(λt) + k−cρ3(λt)

kcρ2(λt)
,

X̃(t) = −
Φ1(t) + ∂tρ1(λt)− k−xρ3(λt)

kxρ1(λt)
.

(43)

Different choices of Φ1(t) correspond to different CD so-
lutions that drive the system through the same trajec-
tory ρ(λt). The one additional constraint is that only
Φ1(t) functions that lead to non-negative concentrations
in Eq. (43) at all t during driving are physically allow-
able.
To illustrate a family of CD solutions, let us choose

a target trajectory ρ(λt) by specifying a concentration
protocol. To mimic a rapid switch in gene expression,
we select C(t) to sharply increase in a sigmoidal fashion,
with R(t) kept at a constant level and X(t) in detailed
balance with C(t) and R(t):

R(t) = R0, C(t) = C0 + (Cf − C0)
ek(t−t0)

1 + ek(t−t0)
,

X(t) =
krR(t)kcC(t)k−x

k−rk−ckx
,

(44)

where R0 = 20 nM, C0 = 0.2 µM, Cf = 20 µM, k =
3 min−1, t0 = 5 min, and the remaining parameters
described above. The form of X(t) means that ∆µ(t) =
0 at all t for this protocol. As a result the stationary
current for this protocol is zero at all edges, J1(t) =
J2(t) = J3(t) = 0. The concentrations in Eq. (44) are
shown as dotted curves in Fig. 4D. The elements of the
corresponding stationary distribution ρ(λt), calculated
using the expressions in Appendix A, are depicted as
solid curves in Fig. 4A. They represent a transition from
a system dominated by state 1 at the beginning of the
protocol to one dominated by state 3 at the end (the gene
turning mostly “off”). As expected, if we actually drove
the system using the protocol of Eq. (44) the resulting
probability distribution p(t) (dashed curves in Fig. 4A)
would lag behind the target distribution ρ(λt).
To keep the system on target, we need to use one of

the CD concentration protocols given by Eq. (43). For
example, consider the one associated with tree 1, which
means setting Φ1(t) = 0 at all t, so that from Eq. (41)

we have J̃ (t) = [∇̂(1)]−1
S ∂tρ̂(λt). The corresponding CD

concentrations are shown in violet in Fig. 4D. Tree 1 has
edge 1 missing, so the CD current there is constrained

to be equal to the original stationary current, J̃1(t) =

J1(t) = 0. Since the edge 1 current determines R̃(t), we

see that R̃(t) = R(t) (the violet curve overlaps with the

dotted one), while both C̃(t) and X̃(t) differ from the
original protocol. In a similar way, we can look at the
CD protocol associated with tree 2. To implement this,

making Eq. (41) take the form J̃ (t) = [∇̂(2)]−1
S ∂tρ̂(λt),

with [∇̂(2)]−1
S given by Eq. (40), we set Φ1(t) = ∂tρ2(λt).

The corresponding CD concentrations are colored teal in
Fig. 4D. Note that since edge 2 is missing in tree 2, here

C̃(t) = C(t).
Even though the original protocol satisfies detailed

balance, the tree 1 and tree 2 CD solutions that force
the system to stay along the target trajectory ρ(λt) vi-
olate detailed balance. As can be seen from Fig. 4C,
∆µ(t) for both these solutions veers significantly neg-
ative during the driving (where ∆µ(t) for any CD so-
lution is calculated via Eq. (38) with the CD concen-

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.13.448255doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.13.448255
http://creativecommons.org/licenses/by-nc/4.0/


12

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ilit
y

A

( )
( )
( )

( )
( )
( )

0.0

0.5

1.0

1.5

()
 [

/m
in

] B
CD solutions:
optimal
detailed balance
tree 1
tree 2

0 2 4 6 8
Time  [min]

10 10

10 6

10 2

()

4

2

0

()
 [

]

C

0 1 2 3 4 5 6 7 8
Time  [min]

10 3

10 2

10 1

100

101

102

103

104

C
on

ce
nt

ra
tio

ns
 [n

M
] ( )

( )

( )

D

original protocol

FIG. 4. A) Components of the target stationary distribution
trajectory ρ(λt) (solid curves) for the repressor-corepressor
system, defined by the protocol of Eq. (44). In the absence
of CD driving, the actual distribution p(t) (dashed curves)
lags behinds the target. B-D) Characteristics of four differ-
ent CD solutions that all drive the system along the target
trajectory ρ(λt). The four solutions are: spanning tree 1
(violet, corresponding to Fig. 3B); spanning tree 2 (teal, cor-
responding to Fig. 3C); the solution satisfying detailed bal-
ance, ∆µ(t) = 0 at all t (yellow); and the optimal solution

that minimizes Ṡtot(t) at all t (thick black). For each solution

we depict: B) the total entropy production rate Ṡtot(t), with

the inset showing the difference δṠtot(t) ≡ Ṡtot(t)−Ṡtot,opt(t)
between non-optimal and optimal rates on a log scale [units:
kB/min]; C) the instantaneous chemical potential ∆µ(t), cal-
culated using Eq. (38) with the CD concentrations; D) the

CD concentrations C̃(t), R̃(t), X̃(t).

trations from Eq. (43) substituted for the original con-
centrations). Interestingly, one can find a CD solution
where the concentrations satisfy ∆µ(t) = 0, by solving
Φ1(t) at each t that enforces this condition. The result-
ing CD protocol is shown in yellow in Fig. 4D. Note that
despite the fact that ∆µ(t) = 0 for this solution, the tar-
get trajectory ρ(λt) is not an instantaneous stationary

distribution of the CD transition matrix Ω̃(λt, λ̇t) during
the driving. Hence there is still nonzero entropy produc-
tion Ṡtot(t), as seen in Fig. 4B. All three CD solutions

discussed so far have different Ṡtot(t) profiles, and hence
involve different amount of dissipated work ∆W diss (the

integrated area under the Ṡtot(t) curve). We can also
determine the CD solution for the given target trajec-
tory that has the smallest ∆W diss, by numerically find-
ing Φ1(t) at each t that minimizes Ṡtot(t). This yields
the CD protocol shown as a thick black curve in Fig. 4D.
It is close, but not exactly equal to, the ∆µ(t) = 0 pro-
tocol, exhibiting slightly negative ∆µ(t) at intermediate
times (Fig. 4C). The inset of Fig. 4B shows the difference

δṠtot(t) ≡ Ṡtot(t)− Ṡtot,opt(t) between each non-optimal
solution and the optimal one. The ∆µ(t) = 0 solution is
significantly closer to optimal entropy production than
the two tree solutions.
This simple three state biological example illustrates

the variety of physically realizable CD solutions that ex-
ist in certain systems. The CD solutions can have quite
distinct physical characteristics, i.e. concentrations that
vary by up to an order of magnitude among different
protocols in Fig. 4D, or different dissipation profiles in
Fig. 4B. Yet all of them drive the system through the
same target trajectory ρ(λt). Thus there can be a rich
array of options available to nature (or to an experi-
mentalist engineering a synthetic system) to achieve a
specific probabilistic target. Indeed in this scenario an
interesting question for future studies would be to ask
whether certain driving options would be evolutionarily
favored over others because of selection pressures due to
energetic costs [69].
In contrast to this abundance of exact solutions, the

next example explores the other extreme: what if the
available control knobs are insufficient to exactly imple-
ment CD driving? Can the CD theoretical framework
still provide insights?

B. Chaperone model

Many newly synthesized proteins, susceptible to mis-
folding, become trapped in long-lived metastable states
that are prone to aggregation. Since aggregates present
a danger to the survival of the cell, there exists an elab-
orate rescue machinery of molecular chaperone proteins
that facilitate unfolding or disaggregating misfolded pro-
teins [13–16]. In the case of E .coli , which has the most
extensively studied chaperone network, certain compo-
nents like the GroEL-GroES system are obligatory for
survival [70]. Environmental stresses further exacerbate
the problem, and an increase of ambient temperature by
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FIG. 5. A) Conformational states of a protein interacting with a chaperone. Transition rates in our kinetic network model
are indicated by solid green arrows. Related transitions outside the scope of the model are shown as dashed arrows. B)
A chosen control protocol, labeled “original” (dotted curves), and the corresponding exact CD solution (solid curves) based

on the reference spanning tree of Fig. 2C. Top: chaperone concentrations C(t) and C̃(t) for the original and CD protocols

respectively; middle: chaperone enzymatic reaction rates ka and k̃a(t); bottom: the intermediate-to-native transition rates kn
and k̃n(t). C) Probabilities versus time for the four system states. The dotted curve shows that stationary distribution target
trajectory defined by the original protocol, which exhibits a rapid decrease of the misfolded (state 2) probability given by
Eq. (48). The red solid curve shows the actual state probabilities under the original protocol, which diverge from the target. In
contrast, the exact CD solution (purple solid curve) perfectly follows the target. The dashed curves show two approximations
to the CD solution, when we lack the ability to vary all three quantities shown in panel B. Approximation 1 implements the

CD protocol for C̃(t), but lets ka and kn stay fixed. Approximation 2 implements the CD protocol for C̃(t) and k̃a(t), while
keeping kn fixed.

just a few degrees can significantly enhance protein mis-
folding and consequently aggregation [17]. Responding
to a heat shock requires creating extra capacity, since
even under normal conditions the majority of chaper-
ones are occupied by misfolded proteins [15] (i.e. oc-
cupancy for GroEL can approach 100% for fast-growing
E. coli [16]). This is accomplished by rapidly upregu-
lating the number of chaperones to cope with additional
misfolded proteins [17, 18].

Most chaperones require constant power input in the
form of ATP hydrolysis. As a result the stationary
probability distribution of conformational states for a
protein interacting with a chaperone will generally be
out of equilibrium (non-Boltzmannian) [71, 72]. When
the chaperone concentration increases after a heat shock
(for example following a sudden rise to a new temper-
ature [73]), the protein is driven away from the previ-
ous stationary distribution, and eventually relaxes to a
new stationary distribution once the chaperone concen-
trations reach steady-state values at the new tempera-
ture. Chaperone upregulation during heat shock there-
fore serves as a natural example of nonequilibrium driv-

ing in a biological system.

In this section we consider a four-state Markov model
for chaperone-assisted protein unfolding, inspired by ear-
lier models like those of Refs. [71, 72]. We focus on a net-
work of four states for a particular substrate (“client”)
protein, and one type of chaperone, depicted in Fig. 5A:
1) an intermediate conformational state of the protein,
along the folding pathway between the unfolded and na-
tive states; 2) a misfolded protein state, prone to aggre-
gation; 3) the misfolded protein bound to chaperone; 4)
the correctly folded “native” state. These four states can
interconvert with transition rates denoted in the figure
(further details below). The model is a small biochem-
ical module within a broader set of processes, some of
which are depicted schematically with dashed arrows in
the figure: protein synthesis and the initial folding to the
intermediate state, and aggregation of the misfolded pro-
teins. Our focus will be on a single protein once it enters
the intermediate state, and then transitions among the
four states. Similarly we ignore the aggregation process,
occurring over much larger timescales than the transi-
tions in the network. We model the dynamics in the

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.13.448255doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.13.448255
http://creativecommons.org/licenses/by-nc/4.0/


14

aftermath of a heat shock [17, 74]: a sudden jump to
some high temperature T , which then remains fixed as
the system adapts. The conditions favor misfolding over
the native folding pathway. In the absence of chaper-
ones, state 2 (misfolded) would be most likely, and over
longer timescales this would eventually result in a build-
up of aggregates. To prevent such a fate, which can be
lethal for the cell, the cell engages in a complex heat
shock defense mechanism. A key part of the defense is
rapidly increasing the concentration of chaperones, low-
ering the probability of the protein being in state 2. The
heat shock response is an example of nature regulating
the state distribution of proteins via at least one time-
varying parameter (chaperone concentration), in a situ-
ation where a fast shift in the distribution is crucial for
survival. It is thus an interesting scenario to investigate
the possibility of CD-like control.
As a first step, let us detail the various transitions

in the network. The protein can interconvert between
states 1 and 2 with rates km and k−m, which satisfy a
local detailed balance relationship,

k−m

km
= e−βǫm , (45)

where ǫm > 0 is the free energy difference between the in-
termediate and misfolded states. A chaperone can bind
to the misfolded protein at rate kcC(t), where C(t) is
the concentration of unoccupied chaperones and kc is
the binding constant. Once bound, the chaperone cat-
alyzes the partial unfolding of the misfolded state to the
intermediate state at rate ka. This conversion may in-
volve several substeps and hydrolysis of multiple ATP
molecules, but we simplify the process to a single reac-
tion step hydrolyzing one ATP molecule, with some rate
function ka.
Though typically negligible compared to the forward

rate ka, the reverse rate k−aC(t), proportional to chap-
erone concentration, must be formally defined in order
to have a thermodynamically complete description of the
system. Since a full traversal of the left loop clockwsise
(states 1 → 2 → 3 → 1) involves hydrolysis of an ATP
molecule, the product of clockwise/counterclockwise rate
ratios over the entire cycle is related to the chemical po-
tential difference ∆µ of ATP hydrolysis:

kmkcC(t)ka
k−mk−ck−aC(t)

=
kmkcka

k−mk−ck−a
= eβ∆µ. (46)

Transitions from the intermediate to native state occur
with rate kn, and from the native to misfolded state with
rate ku. The corresponding reverse rates k−n and k−u

are related to the forward ones through the local detailed
balance relations

k−n

kn
= e−βǫn ,

k−u

ku
= e−βǫu . (47)

Here ǫn and ǫu are the free energy differences between
the intermediate and native, and between the native and
misfolded states respectively. Since going from states 2

→ 4 → 1 should yield the same cumulative free energy
difference as going directly from 2 → 1, we know that
ǫm = ǫu + ǫn.
We base the parameter values in our model on those

associated with the chaperone GroEL assisting the fold-
ing of the substrate protein MDH, estimated from fitting
to experimental data [71]: km = 0.37 min−1, kn = 0.366
min−1, ku = 0.025 min−1, k−u = 7.78 × 10−3 min−1,
kc = 1.7 × 106 M−1min−1, ka = 4 min−1. In cases
where only upper or lower bounds on the parameters
could be determined, we used the values at the bound.
Using Eq. (47) and the values of ku and k−u yield an
estimate of ǫu = 1.17 kBT . We do not know the pre-
cise value of ǫm from the experimental fitting, but we
assume a typical value of ǫm = 3 kBT , which then gives
ǫn = ǫm − ǫu = 1.83 kBT . Similarly, we set k−c = 0.1
min−1 as the unbinding rate of the chaperone, a typi-
cal scale assuming strong binding affinity between the
chaperone and substrate. The remaining unknown pa-
rameters can now be determined using Eqs. (45)-(47)
(setting the ATP hydrolysis potential difference ∆µ = 22
kBT [75]): k−m = 0.0184 min−1, k−n = 0.0585 min−1.

The chaperone network of Fig. 5A has exactly the
same form as the two-loop network of Fig. 2A, with the
mapping k1 = km, k2 = kcC(t), k3 = ka, k4 = kn,
k5 = ku, r1 = k−m, r2 = k−c, r3 = k−aC(t), r4 = k−n,
r5 = k−u. There is a unique stationary state for ev-
ery distinct value of chaperone concentration C(t). The
time-varying concentration protocol plays the role of the
external control parameter, λt = C(t). Explicit expres-
sions for the stationary probabilities are given in Ap-
pendix A.

In the initial aftermath of the step rise in temperature,
we imagine a scenario where the available concentration
of free chaperones is C(0), and the system rapidly has re-
laxed to a stationary state corresponding to C(0). This
t = 0 time point is the start of the driving. We assume
C(0) is insufficient to cope with the conditions favor-
ing misfolded proteins, so chaperones are upregulated to
some final concentration C(τ) by the end of the driv-
ing (t = τ). Given the parameters described above, and
a small starting chaperone concentration C(0) = 3.55
nM, the stationary probability values are shown as the
t = 0 initial points on the dotted curve in Fig. 5C. The
misfolded probability ρ2(0) = 0.7 and the native prob-
ability ρ4(0) = 0.256. At the end of the protocol we
choose a final concentration C(τ) = 0.454 µM. Once the
system relaxes to the stationary state at this concentra-
tion, the corresponding misfolded and native probabil-
ities are ρ2(τ) = 0.1 and ρ4(τ) = 0.719. Driving the
system between these two stationary states thus signifi-
cantly reduces the probability of misfolding and increases
the probability of being in the native state.

Can this driving be accomplished in a finite time, fol-
lowing a particular target trajectory of stationary states?
Let us consider an example target trajectory ρ(λt) where
the misfolded probability shifts from 0.7 to 0.1 over sev-
eral minutes,

ρ2(λt) = A tanh(κ(t− t0)) +B (48)
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with A = −0.3, B = 0.4, t0 = 2 min, κ = 1 min−1.
Using the stationary probability expressions from Ap-
pendix A, one can solve Eq. (48) for the λt = C(t)
curve corresponding to this trajectory, which we label as
the “original” protocol (dotted curve in the top panel of
Fig. 5B). As expected, if one were to directly implement
this original protocol the actual state probabilities p(t)
(red curves in Fig. 5C) diverge from the target (dotted
curves in Fig. 5C).
The complete set of possible CD solutions for the two-

loop system was derived earlier. Let us take for exam-
ple the solution corresponding to the reference spanning
tree in Fig. 2C. The associated current perturbations

are δJ (1)(t) = [∇̂(1)]−1
S ∂tρ̂(λt), with [∇̂(1)]−1

S given by
Eq. (17). To solve for the CD transition rates, we need
to combine these perturbations with the stationary cur-

rents for the original protocol, J̃ (t) = J (t) + δJ (1)(t).
The stationary currents for the various edges (as la-
beled according to Fig. 2B) are J1(t) = JL(t) − JR(t),
J2(t) = J3(t) = JL(t), J4(t) = J5(t) = JR(t). Expres-
sions for the left-loop stationary current JL(t) and the
right-loop stationary current JR(t), which depend on the
control parameter C(t), are shown in Appendix A (see
also Eq. (51) below). Putting everything together, we

have three edges α where δJ
(1)
α 6= 0, and hence we need

to modify the currents there to implement CD driving:

J̃2(t) = kcC̃(t)ρ2(λt)− k−cρ3(λt)

= JL(t)− ∂tρ2(λt),

J̃3(t) = k̃a(t)ρ3(λt)− k−aC̃(t)ρ1(λt)

= JL(t)− ∂tρ2(λt)− ∂tρ3(λt),

J̃4(t) = k̃n(t)ρ1(λt)− k−nρ4(λt)

= JR(t)− ∂tρ1(λt)− ∂tρ2(λt)− ∂tρ3(λt).

(49)

This particular CD solution could be implemented if we

employ a modified concentration protocol C̃(t) and time-

dependent transition rates k̃a(t), k̃n(t). Solving for these
from Eq. (49) we find:

C̃(t) = C(t)−
1

kc

∂tρ2(λt)

ρ2(λt)
,

k̃a(t) = ka −
∂tρ2(λt) + ∂tρ3(λt)

ρ3(λt)
−

k−a

kc

ρ1(λt)∂tρ2(λt)

ρ2(λt)
,

k̃n(t) = kn −
∂tρ1(λt) + ∂tρ2(λt) + ∂tρ3(λt)

ρ1(λt)
.

(50)

To get the final form for Eq. (50) we have used the fact
that

JL(t) = kcC(t)ρ2(λt)− k−cρ3(λt)

= kaρ3(λt)− k−aρ1(λt),

JR(t) = knρ1(λt)− k−nρ4(λt).

(51)

Eq. (50) implements the reference spanning tree CD so-
lution for any desired target trajectory ρ(λt). For the
specific trajectory corresponding to Eq. (48) we show the

time-dependent CD protocol as solid curves in Fig. 5B.
Qualitatively, the CD protocol takes the form of a tran-

sient peak or overshoot in the three parameters C̃(t),

k̃a(t), and k̃n(t) relative to the original protocol. This
transient perturbation eliminates the discrepancy be-
tween p(t) and ρ(λt), as we see in the purple CD curves
in Fig. 5C, where the system now exactly follows the
target (dotted) trajectory. From the form of Eq. (50),
it is clear that in the limit of adiabatically slow driv-
ing, where ∂tρ(λt) → 0, the perturbation vanishes and
the CD solution approaches the original protocol, as ex-
pected.

However in an actual chaperone system the full CD
solution in Eq. (50) cannot be implemented exactly, be-
cause we cannot simultaneously vary chaperone concen-
tration and both rates via external parameters. Carrying

out the concentration protocol C̃(t) alone is in principal
realizable, and in Fig. 5C we show the behavior of the
system under this approximate CD approach (labeled

“approximation 1”), where C̃(t) is given by Eq. (50), but

k̃a(t) = ka, k̃n(t) = kn are fixed. As expected, the state
probabilities no longer exactly follow the target trajec-
tory, but the driving is partially effective. In particular
the state 2 (misfolded) probability still follows the tar-
get closely, dropping steeply over the course of several
minutes. The reason for this is that the transition rates
on all edges in the network that connect to state 2 agree
with the exact CD solution: km, k−m, ku, k−u are fixed

in the reference spanning tree solution, and C̃(t) follows
Eq. (50). On the other hand, the edges involving ka and
kn diverge from the exact CD solution, and so the prob-
abilities of states connected by these edges (1, 3, and 4)
veer further from the target than in the case of state 2.

Even partially implemented in this manner, the biolog-
ical benefit of CD driving is clear: rapidly reducing the
probability of a misfolded protein helps protect the cell

against the threat of aggregation. In fact the C̃(t) proto-
col shown in Fig. 5B—its quick rise and overshoot, even-
tually leveling off at a higher concentration—has quali-
tative analogues in the actual heat shock response of or-
ganisms. In the immediate aftermath of a temperature
increase in yeast, heat shock proteins needed for rapid
response (like molecular chaperones) typically peak in
concentration within the first ten minutes [17, 74], be-
fore reducing to lower levels. These later levels are still
elevated relative to the pre-shock state, and remain so
for hours while long-term recovery processes kick in. A
similar overshoot occurs in the first few minutes after
heat shock for the sigma factor σ32 of E. coli, a reg-
ulatory protein responsible for promoting the synthesis
of a variety of heat shock proteins [76]. We then see
downstream echoes of this overshoot in levels of mRNA
transcribed from chaperone genes like dnaK and ibp [73].

Can the approximation to the CD solution be im-
proved by adding another control knob? Since the en-
zymatic action of the chaperone, reverting the misfolded
protein back to an intermediate state, involves the hy-
drolysis of ATP, the rate ka depends on ATP concen-
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tration. If that concentration could vary significantly

over time, then a time-dependent protocol like k̃a(t) in
Eq. (50) is imaginable. The curves labeled “approxi-
mation 2” in Fig. 5C show the results of this modified

approximation, where C̃(t) and k̃a(t) follow Eq. (50),

and k̃n(t) = kn is fixed. Since now all edges connected
to state 3 and state 2 have rates obeying the exact CD
solution, the probabilities of both these states follow the
target closely. For state 2 there is limited improvement
relative to the first approach, with the state 2 probabil-
ities nearly the same for both approximations. At least
for this parameter set, the biological implications of the
added control knob are small, since control of state 3 is
not linked to a direct threat in the same way as state
2: misfolded proteins bound to chaperones are protected
from aggregation. And thus it is not surprising that un-
like the rise in chaperone concentration, increasing ATP
concentrations is not a universal feature of the heat shock
response. There is one documented case however where
it does occur: in E. coli the concentration of ATP in-
creases sharply by about a factor of two in the first min-
utes after heat shock, and then gradually decreases [73],
an observation additionally supported by metabolic ev-
idence [77]. This has rough similarities to the transient

increase seen in our k̃a(t) protocol of Fig. 5B. So while

manipulating k̃a(t) does seem feasible (to an extent) in
certain real systems, its precise significance in chaperone-
mediated driving is debateable: the transient ATP in-
crease in E. coli might be related to other aspects of the
heat shock response.
In summary, some biological systems may not have

enough controllable degrees of freedom to implement a
full CD solution. However, a partial implementation,
focused on edges connected to certain states of interest,
allows us to approximately follow a target trajectory for
that subset of states. This significantly broadens the
scope of applicability of the CD approach, beyond just
scenarios where exact CD is possible.

III. CD DRIVING IN CONTINUOUS SYSTEMS

Let us consider discrete-state Markov models on lat-
tice graphs (also known as grid graphs). In these
cases the states can be visualized as points on some d-
dimensional lattice, with transitions occurring between
neighboring lattice points. If we imagine the states as
actual positions in a d-dimensional space, and allow the
lattice spacing to become infinitesimal as the number
of states N → ∞, then the behavior of such models
should approach continuum diffusive dynamics described
by Fokker-Planck equations. Thus, taking appropriate
limits, we should be able to use our formalism to derive
CD solutions for Fokker-Planck systems. In Sec. IIIA,
we describe how to do this for a d = 1 lattice, while
the SI describes a d = 2 example. The d = 1 deriva-
tion recovers the Fokker-Planck CD driving results of
Refs. [55, 78], while for d = 2 we show a generalized ver-
sion of the CD driving used for the evolutionary Fokker-

1 2 3 N
. . .

1 2 3 N
. . .

4

4

N-1

N-1B

A

FIG. 6. A) N -state Markov model on a one-dimensional lat-
tice graph, with E = N − 1 edges. Black arrows correspond
to transitions between neighboring states, ki(λt) and ri(λt),
i = 1, . . . , N−1, which depend on the control protocol λt. B)
Oriented stationary currents Jα(t), α = 1, . . . , N − 1. These
currents form the only spanning tree for the graph.

Planck system in Ref. [58]. The higher-dimensional case
also shows how the graphical algorithm enables a dis-
cretized approach for numerically solving continuum CD
problems, capable of handling fine meshes with large N .
Beyond this validation, we demonstrate how CD driving
works for systems exhibiting position-dependent diffu-
sivity (not considered in Refs. [55, 78]) and in Sec. IIIB
illustrate the usefulness of this feature with a concrete
example from AFM force spectroscopy on biomolecules.

A. Generalization to Fokker-Planck systems

To connect our earlier formalism to Fokker-Planck dy-
namics, let us first describe a one-dimensional Fokker-
Planck equation for the time evolution of a probability
density p(x, t),

∂tp(x, t) = −
∂

∂x
[A(x)p(x, t)] +

∂2

∂x2
[D(x)p(x, t)] , (52)

where x is our position variable, A(x, t) is the drift func-
tion, andD(x) is the position-dependent local diffusivity.
Though D(x) is often taken to be a constant, D(x) = D,
here we allow it to be position-dependent for generality
(and since it will prove useful for our later force spec-
troscopy example). We focus on the case where the drift
A(x, t) = −D(x)∂xE(x, λt), and hence arises from forces
due to a potential energy E(x, λt) that may be depen-
dent on time-varying control parameters λt. Eq. (52)
can then be rewritten as

∂tp(x, t) = −
∂

∂x

[
−D(x)ρ(x, λt)

∂

∂x

p(x, t)

ρ(x, λt)

]
,

≡ −
∂

∂x
J(x, t),

(53)

where

ρ(x, λt) =
e−βE(x,λt)

Z(λt)
. (54)

From the structure of Eq. (53) it is clear that ρ(x, λt) is
the instantaneous stationary distribution that makes the
right-hand side vanish. We assume the energy function
E(x, λt) → ∞ as x → xL and x → xR, defining a domain

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.13.448255doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.13.448255
http://creativecommons.org/licenses/by-nc/4.0/


17

of x of width ∆x = xR−xL. Thus the partition function
Z(λt) =

∫ xR

xL

dx exp(−βE(x, λt)) is well-defined. An in-

finite domain would correspond to the special case where
∆x → ∞. The second line of Eq. (53) defines a probabil-
ity current density J(x, t), in terms of which the Fokker-
Planck equation takes the form of a continuity equation
for probability.
To apply our general solution approach for discrete

Markov systems, let us construct a one-dimensional
lattice graph Markov model with N states, shown in
Fig. 6A, that approximates the Fokker-Planck equation
as N → ∞. State i corresponds to position xi = xL+ ia,
where a = ∆x/N is the lattice spacing, which becomes
infinitesimal for large N . In this limit the probability
pi(t) of being in state i is related to the probability den-
sity p(x, t) through a−1pi(t) → p(xi, t).

In the discrete model the nonzero transition ma-
trix elements correspond to the forward (right) arrows,
Ωi+1,i(λt) = ki(λt), and the backward (left) arrows,
Ωi,i+1(λt) = ri(λt), for i = 1, . . . , N − 1. We choose
the following forms for the transition rates [79]:

ki(λt) =
Di

a2
e−

1
2β(Ei+1(λt)−Ei(λt)),

ri(λt) =
Di

a2
e

1
2β(Ei+1(λt)−Ei(λt)).

(55)

Here Di ≡ D(xi) and Ei(λt) ≡ E(xi, λt) are the discrete
versions of the local diffusivity and potential energy. The
ratio of the forward and backward transitions satisfies
the local detailed balance relationship

ki(λt)

ri(λt)
= e−β(Ei+1(λt)−Ei(λt)). (56)

As a result, the instantaneous stationary distribution for
this system assumes a form analogous to Eq. (54),

ρi(λt) =
e−βEi(λt)

Z(λt)
, (57)

where Z(λt) =
∑N

i=1 exp(−βEi(λt)). To check whether
the transition rates of Eq. (55) give the correct Fokker-
Planck equation in the continuum limit, we note that the
master equation for the discrete system can be written
as:

∂tpi(t) =
∑

j

Ωij(λt)pj(t) = −Ji+1(t) + Ji(t), (58)

where the current from state i to i+ 1 is given by

Ji(t) = ki(λt)pi(t)− ri(λt)pi+1(t). (59)

Eq. (58) is the discrete analogue of the second line
in Eq. (53), with the conversion Ji(t) → J(xi, t),
a−1pi(t) → p(xi, t). Plugging Eq. (55) into Eq. (59),
we can rewrite the current Ji(t) as

Ji(t) = −
1

a
Di

√
ρi+1(λt)ρi(λt)

1

a

[
pi+1(t)

ρi+1(λt)
−

pi(t)

ρi(λt)

]
.

(60)

Eq. (60) goes to the correct limit in the continuum case,
becoming the current density in the square brackets in
Eq. (53). To see this, note that

a−1
√
ρi+1(λt)ρi(λt)

→ [ρ(xi + a, λt)ρ(xi, λt)]
1/2

≈ [(ρ(xi, λt) + a∂xρ(xi, λt)) ρ(xi, λt)]
1/2

= ρ(xi, λt) +O(a),

(61)

where O(a) denotes corrections of order a. Thus Eq. (55)
is a valid discretization of the Fokker-Planck system. It
is not unique (other choices are possible, as shown in the
SI) but any valid discretization should lead to the same
CD results in the continuum limit.
With the discretization validated, we can now proceed

to applying the general solution procedure. The oriented
current graph (N states, E = N − 1 edges) is tree-like,
so the graph itself is the only spanning tree. Using the
graphical algorithm we can write down the (N − 1) ×
(N − 1) dimensional stretched inverse reduced incidence
matrix for this tree,

[∇̂(1)]−1
S =




−1 0 0 0 · · · 0
−1 −1 0 0 · · · 0
−1 −1 −1 0 · · · 0
−1 −1 −1 −1 · · · 0
...

...
...

...
. . .

...
−1 −1 −1 −1 · · · −1




. (62)

Because the graph is tree-like, the stretched inverse is
also the ordinary inverse of the reduced incidence matrix,

[∇̂(1)]−1
S = ∇̂−1. From Eqs. (55) and (57) we can deduce

that the stationary currents have zero magnitude:

Ji(t) = ki(λt)ρi(λt)− ri(λt)ρi+1(λt) = 0. (63)

Hence we know that J̃ (t) = δJ (t). Moreover, since
there are no cycles in the graph, Eq. (18) gives us the
full CD current solution:

J̃ (t) = [∇̂(1)]−1
S ∂tρ̂(λt). (64)

Let us assume CD rates k̃i(t) and r̃i(t) of a form anal-
ogous to Eq. (55),

k̃i(t) =
D̃i(t)

a2
e−

1
2β(Ẽi+1(t)−Ẽi(t)),

r̃i(t) =
D̃i(t)

a2
e

1
2β(Ẽi+1(t)−Ẽi(t)),

(65)

where D̃i(t) represents a modified, potentially time-
dependent, local diffusivity which we allow for generality,

and Ẽi(t) is the energy associated with state i in the CD
protocol. In many cases it may not be possible to control
the local diffusivity via external parameters, and hence it

remains unchanged, D̃i(t) = Di. However as will be seen
from the structure of the CD solution described below,

we have in principle the freedom to choose D̃i(t) to be
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any non-negative function. The energy perturbation at

each site due to the CD protocol is Ui(t) = Ẽi(t)−Ei(λt).
To solve for these CD perturbations Ui(t), the first step
is to rewrite Eq. (64) using Eq. (62) and the expression

for J̃ (t) in terms of the CD transition rates:

k̃i(t)ρi(λt)− r̃i(t)ρi+1(λt) = −
i∑

j=1

∂tρ̂j(λt). (66)

After plugging in Eq. (65) for the CD rates, and Eq. (57)
for the stationary distribution, Eq. (66) can be written
as:

− 2a−2D̃i(t)
√

ρ̂i(λt)ρ̂i+1(λt) sinh

[
β(Ui+1(t)− Ui(t))

2

]

= −
i∑

j=1

∂tρ̂j(λt).

(67)

We can invert this to find a recursion relation for the
Ui(t),

Ui+1(t)− Ui(t) =
2

β
sinh−1

[
a2

∑i
j=1 ∂tρ̂j(λt)

2D̃i(t)
√

ρ̂i(λt)ρ̂i+1(λt)

]
.

(68)
Given an arbitrary choice of function U1(t) (which cor-
responds to the freedom of redefining the zero level for
energies), we can use consecutive applications of Eq. (68)
to solve for Ui(t), i = 2, . . . , N .
The final step is to transform the CD results back to

the continuum, where the CD energies can be expressed

as Ẽ(x, t) = E(x, λt)+U(x, t). The perturbations U(x, t)
can be found from the continuum analogue of Eq. (68),

∂U(x, t)

∂x
=

1

βD̃(x, t)ρ(x, t)

∫ x

xL

dx′∂tρ(x
′, λt). (69)

To derive this we have expanded in small a and used the
fact that sinh−1(ǫ) ≈ ǫ to lowest order in ǫ. In the con-

tinuum limit
∑i

j=1 a ∂tρ̂j(λt) →
∫ x

xL

dx′∂tρ(x
′, λt) and

a−1
√

ρ̂i(λt)ρ̂i+1(λt) → ρ(x, λt), to leading order. This
follows from the same argument as Eq. (61), setting
x = xi.
From Eq. (69) we can directly solve for U(x, t),

U(x, t) = U0(t)

+

∫ x

x0

dx′ 1

βD̃(x′, t)ρ(x′, λt)

∫ x′

xL

dx′′∂tρ(x
′′, λt),

(70)

where x0 is an arbitrary reference position and U0(t) is
an arbitrary energy offset function (which does not affect
the driving).
In practice, a particular CD protocol means simultane-

ously implementing the diffusivity D̃(x, t) and perturb-
ing the energy landscape by U(x, t). As mentioned ear-
lier, in many experimental scenarios control of diffusivity

will not be possible, so the only available CD protocols
will involve keeping the diffusivity equal to the value in

the original system, D̃(x, t) = D(x). One special case of
this is a position-independent diffusivity D(x) = D that
is not varied during the CD protocol. This was solved by
Li et al. [78] and Patra & Jarzynski [55] using alternative
approaches, and their expressions for the CD perturba-
tion are equivalent to our Eq. (69) with the substitution

D̃(x, t) = D.
From the perspective of thermodynamic costs,

Eq. (33) for our discrete-state system takes the form

Ṡtot(t)

= kB

N−1∑

i=1

J̃i(t) ln
k̃i(t)ρi(λt)

r̃i(t)ρi+1(λt)

= −
1

T

N−1∑

i=1

J̃i(t)(Ui+1(t)− Ui(t))

= 2kB

N−1∑

i=1

J̃i(t) sinh
−1

[
a2J̃i(t)

2D̃i(t)
√

ρ̂i(λt)ρ̂i+1(λt)

]
,

(71)

where we have used the CD rates from Eq. (65) and

J̃i(t) = −
∑i

j=1 ∂tρ̂j(λt) from Eqs. (62)-(64). The func-

tional form for Ṡtot(t) is always non-negative, since
y sinh−1(cy) ≥ 0 for any y when c ≥ 0. In the limit
of adiabatically slow driving, ∂tρ̂j(λt) → 0, we see

that J̃i(t) → 0 and hence the entropy production rate

Ṡtot(t) → 0. As noted in Sec. IE, under the (unlikely)

scenario that one can control the local diffusivity D̃i(t)

and make it large during the CD protocol, then Ṡtot(t)
can be made small even for fast driving.

In the continuum limit, Eq. (71) becomes

Ṡtot(t) = kB

∫ xR

xL

dx
J̃ 2(x, t)

D̃(x, t)ρ(x, t)
, (72)

where J̃i(t) → J̃ (x, t) is the continuum CD current.
This expression has the same form as the standard
Fokker-Planck result for Ṡtot(t) [80], with the CD cur-
rent and CD local diffusivity substituted for the original
ones.

B. AFM force spectroscopy on biomolecules

As an example application of the Fokker-Planck CD
theory described in the previous section, let us consider
the analysis of biomolecular force spectroscopy experi-
ments [6]. We will focus on a single-molecule atomic
force microscopy (AFM) setup, illustrated schematically
in Fig. 7A, though our approach readily generalizes to
other force spectroscopy setups, like those involving op-
tical tweezers [81, 82]. In our case a complex of two
biomolecules bound to each other (or alternatively a sin-
gle biomolecule) is attached to two polymeric handles
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(i.e. DNA or polyproteins) in solution. The bottom
handle is bound to the surface of a stage whose vertical
position is controlled by the experimentalist. The top
handle is attached to the tip of the AFM cantilever, and
the other end of the cantilever is fixed to a stationary
support. Let us denote the vertical distance between
the unloaded position of the cantilever tip and the cur-
rent stage position ℓt. In a single experimental run, the
experimentalist moves the stage downward, increasing ℓt
according to some pre-defined control protocol, so we will
take our control parameter λt ≡ ℓt. A simple protocol
involves starting at some initial separation ℓ0, and then
increasing ℓt at some constant velocity v. As the handles
become taut, the force on the handle / biomolecule sys-
tem increases, and the cantilever begins to deflect down-
ward. Eventually the tension becomes large enough that
the complex ruptures (the two biomolecules unbind), or
if we are studying a single biomolecule, it unfolds. In
either case the rupture/unfolding event is apparent to
the experimentalist as a sudden decrease in the amount
of force registered in the AFM cantilever (a decrease in
the deflection). The time t at which the event occurs
is recorded, and the experimental run is done. Many
iterations of the same protocol on the same biomolec-
ular system will typically yield different values of t for
each iteration, because the rupture/unfolding process is
inherently stochastic. The resulting distribution prup(t)
of rupture times t is the main experimental quantity of
interest.

What can we learn about the biomolecular complex
from knowing prup(t) for a given protocol ℓt? Often we
are interested in extracting a more basic property of the
system, like the mean lifetime τ(F ) of the bond holding
the complex together, at a certain constant applied force
F . Though the experiment is done with time-varying
force (because a force ramp accelerates rupture and al-
lows more events to be recorded), prup(t) in principle
contains information to deduce τ(F ) under hypothetical
constant force conditions [8, 9]. Knowledge of τ(F ) can
in turn be used (under certain assumptions) to charac-
terize properties of the underlying free energy landscape
of the bond, like the transition-state distance or energy
barrier to rupture [10, 83]. Alternatively, prup(t) can be
used to infer the presence or absence of long-lived het-
erogeneous bound states of the complex [11]. However
most such approaches to analyze prup(t) [8–11] assume
that the experiment is being done quasi-adiabatically:
in other words, the pulling speed v must be slow enough
that at each value of ℓt the entire system is approxi-
mately in instantaneous equilibrium. Some analysis is
also possible in the asymptotic limit of extremely fast
pulling [12], but the quasi-adiabatic limit remains the
most common starting point for building models to in-
terpret single-molecule force spectroscopy data.

What if we could mimic quasi-adiabatic behavior even
when pulling at arbitrarily fast speeds? To see how this
can be done through the CD theory above, let us first
construct a Fokker-Planck description of the system dy-
namics.

1. Constructing a model of an AFM pulling experiment

Let xt be the vertical distance between stage surface
and the cantilever tip (Fig. 7A) at time t. This is the ver-
tical extension of what we will refer to as the molecular
portion of the system (the two handles + the biomolec-
ular complex). The amount by which the cantilever is
deflected vertically is given by ℓt − xt, and hence the
force exerted by the cantilever on the molecular portion
is:

Fcant(xt, ℓt) = kcant(ℓt − xt), (73)

where kcant is the cantilever spring constant. We take
kcant = 10 pN/nm as typical for AFM cantilevers. Our
stage position protocol has the following form:

ℓt = ℓ0 +
1

ζ
log

(
1 + eζ(t−tr)v

)
, (74)

with parameters ℓ0 = 200 nm, ζ = 0.5 nm−1, v = 105

nm/s, and tr = 0.2 ms. As illustrated by the red curve
in Fig. 7B, the protocol starts at ℓ0 for t ≪ tr, and then
smoothly transitions to a constant velocity ramp, with
ℓt ≈ v(t − tr) for t ≫ tr. The smoothing parameter
ζ controls the abruptness of the transition, which we
have made continuously differentiable for mathematical
convenience. As we will see, the velocity v = 105 nm/s
is rapid enough that the system is out of instantaneous
equilibrium in the absence of CD driving.
We estimate the force Fmol(xt) exerted by the molec-

ular portion of the system on the cantilever as follows.
The complex will typically have a much stiffer effective
spring constant than the handles, and since the two han-
dles and complex are in series, the primary contribution
to Fmol(xt) is from the elastic properties of the poly-
meric handles. We can approximate this force using an
extensible semiflexible polymer model, appropriate for
example for DNA handles. In this case Fmol(xt) satisfies
the following approximate relation [84, 85]:

Fmol(xt) ≈

kBT

lp




1

4
(
1− xt

L + Fmol(xt)
K

)2 −
1

4
+

xt

L
−

Fmol(xt)

K


 .

(75)

We assume parameters typical for double-stranded DNA:
persistence length lp = 50 nm, stretch modulus K =
1100 pN [85]. We take the combined contour length of
both handles to be L = 300 nm. Note Fmol(xt) ap-
pears on both the left and right sides of Eq. (75). For
a given molecular extension xt, Eq. (75) can be numeri-
cally solved for the corresponding value of Fmol(xt), and
hence we can construct a numerical interpolation of the
function Fmol(xt).
Thus the dynamics of the cantilever tip, described by

vertical position xt relative to the stage surface, are sub-
ject to the cantilever and molecular forces pulling in op-
posite directions, yielding a total force

F (xt, ℓt) = Fcant(xt, ℓt)− Fmol(xt). (76)
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FIG. 7. A) Schematic of an AFM pulling experiment designed
to probe rupture properties of a biomolecular complex. B)
Original control protocol ℓt and the corresponding CD pro-

tocol ℓ̃t. Under the original protocol the mean extension
x̄t lags behind the instantaneous equilibrium extension x

eq
t .

The effective spring constant k(ℓt) during the original pro-
tocol is also shown for comparison. C) Forces in the system
under both original and CD protocols (details in the text).
D) The rupture time distribution prup(t) under the original
protocol, which disagrees with the quasi-equilibrium expec-
tation peqrup(t). In contrast, the distribution p̃rup(t) under CD
driving closely mimics the quasi-equilirium result.

We can interpret F (x, ℓt) to be due to an effective po-
tential energy defined through

E(x, ℓt) = −

∫ x

0

dx′F (x′, ℓt). (77)

Note the dependence on the protocol ℓt, which means the
energy landscape changes continuously in time. Since
the region x < 0 is forbidden, we take E(x, ℓt) = ∞ for
x < 0. Let us denote the position at which the potential
energy is minimized at time t to be xeq

t . This is the
equilibrium position where the cantilever and molecular
forces cancel, Fcant(x

eq
t , ℓt) = Fmol(x

eq
t ) ≡ F eq

t . In the
vicinity of xeq

t the potential energy can be approximated
as a harmonic well,

E(x, ℓt) ≈ E(xeq
t , ℓt) +

1

2
k(ℓt)(x− xeq

t )2, (78)

with a protocol-dependent effective spring constant

k(ℓt) = kcant +
∂Fmol

∂x
(xeq

t ). (79)

Fig. 7B shows numerical results for the equilibrium po-
sition xeq

t versus t (dotted curve) for the protocol pa-
rameters described above, as well as the effective spring
constant k(ℓt) (dashed curve). Initially the molecular
portion of the system is slack, and the spring constant is
dominated by the cantilever contribution, k(ℓt) ≈ kcant.
In this regime xeq

t remains close to ℓt and the equilibrium
force F eq

t (shown as circles in Fig. 7C) is small. For t & 1
ms the molecular portion starts becoming taut, giving
an added contribution to the spring constant k(ℓt). The
equilibrium position xeq

t begins to diverge from ℓt, as
the cantilever gets deflected downwards, and the corre-
sponding force F eq

t starts to increase roughly as a linear
ramp.

To complete the model, we need to write down a
Fokker-Planck equation for xt. We can treat xt as a po-
sition variable that fluctuates in a time-varying potential
E(x, ℓt). Though xt represents the junction of the AFM
cantilever and the molecular portion, the associated dif-
fusivity of xt is dominated by the viscous drag of the
cantilever, whose dimensions are typically much larger
than the molecular portion. Thus to good approxima-
tion we can set the diffusivity equal to that of the can-
tilever, using a phenomenological model of the drag on a
cantilever in the vicinity of a surface that has proven to
fit well in earlier experimental analyses of AFM pulling
experiments [86, 87]:

D(xt) =
kBT (xt + heff)

6πηa2eff
, (80)

where temperature T = 298 K, η = 0.89 mPa·s is the
viscosity of water, and aeff, heff are parameters with di-
mensions of length. We set aeff = 25 µm, heff = 5
µm, values in the typical experimental range [86, 87].
Note the decrease of diffusivity D(xt) with decreasing
xt, which approximately captures wall drag effects due
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to hydrodynamic interactions as the tip approaches the
surface [88, 89].
If the biomolecular complex were not allowed to rup-

ture, the resulting dynamics would be described by a
probability density p(x, t) to find the system with tip-
to-surface distance x at time t, obeying a Fokker-Planck
equation of the form of Eq. (53),

∂tp(x, t) =
∂

∂x
D(x)e−βE(x,ℓt)

∂

∂x
eβE(x,ℓt)p(x, t), (81)

To account for rupture, we interpret p(x, t) as referring
to the intact system, and add a sink term to Eq. (81)
to model the loss of probability over time as the system
undergoes stochastic rupture events [79]. There are a va-
riety of possible functional forms to describe the rupture
rate at a given force (or equivalently the inverse mean
bond lifetime τ−1(F )), but the simplest one is the Bell
model [83], where the probability per unit time for the
biomolecular complex to rupture under force F is given
by τ−1(F ) = k0 exp(βFd). Here k0 is the base rupture
rate when the handles are slack (negligible force on the
complex), and the exponential term accounts for the in-
crease in rupture rate as the tension F in the molecular
portion of the system increases. We choose experimen-
tally typical parameter values of k0 = 0.1 s−1, d = 0.4
nm, the latter parameter often interpreted as the dis-
tance between the bound and transition state along the
reaction coordinate.
Then the final form for the Fokker-Planck equation,

incorporating the sink term due to rupture, is:

∂tp(x, t) =
∂

∂x
D(x)e−βE(x,ℓt)

∂

∂x
eβE(x,ℓt)p(x, t)

− k0e
βFmol(x)dp(x, t),

(82)

where we use Fmol(x) in the sink term, since this is the
tension felt at the molecular complex. To connect p(x, t)
to the experimental observable prup(t), we note that the
probability Σ(t) that the system is intact (not ruptured)
at time t is given by

Σ(t) =

∫ ∞

−∞

dx p(x, t). (83)

where we have taken the domain bounds to be xL = −∞,
xR = ∞. Then the probability prup(t)dt that the system
ruptured between times t and t+ dt is just Σ(t)−Σ(t+
dt) ≈ −dt ∂tΣ(t). Hence

prup(t) = −∂tΣ(t). (84)

The other observable of interest is the mean extension
x̄t at time t (conditioned on the system being intact),
defined by

x̄t =
1

Σ(t)

∫ ∞

−∞

dx xp(x, t). (85)

2. Pulling in the absence of counterdiabatic driving

First, we numerically solve the Fokker-Planck equa-
tion of Eq. (82) with the protocol ℓt described by

Eq. (74). At the given velocity, v = 105 nm/s, the sys-
tem before rupture is clearly not in the quasi-adiabatic
regime. The mean extension x̄t (green dotted curve in
Fig. 7B) lags behind the instantaneous equilibrium ex-
tension xeq

t (blue dotted curve). This means that at the
mean extension the cantilever and molecular forces do
not balance each other out: Fcant(x̄t, ℓt) (red solid curve
in Fig. 7C) does not equal Fmol(x̄t) (red dashed curve),
or the instantaneous equilibrium force F eq

t (purple cir-
cles) one would expect for quasi-adiabatic pulling.
In an actual experimental setting, the force on the

molecule at the moment of rupture would be estimated
in the following way. Since the force on the cantilever
can be determined from measurements of its deflection,
the mean force on the cantilever Fcant(x̄t, ℓt) right be-
fore the rupture would be recorded, and then com-
pared to the mean force on the unloaded cantilever
Funl(x̄t) right after the rupture. The latter is nonzero
because the cantilever still feels fluid drag even after the
complex has ruptured, Funl(x̄t) = kBTv/D(x̄t) (green
dotted curve in Fig. 7C). The difference F exp

mol (x̄t) =
Fcant(x̄t, ℓt) − Funl(x̄t) (green dashed curve) is the ex-
perimentally estimated force on the molecule at rup-
ture. F exp

mol (x̄t) is closer to the actual mean force on the
molecule, Fmol(x̄t), than the uncorrected Fcant(x̄t, ℓt) be-
fore factoring out hydrodynamic drag. However because
of non-equilibrium effects F exp

mol (x̄t) is still an underesti-
mate of Fmol(x̄t) [87].

The rupture time distribution prup(t) is shown in
Fig. 7D. If one were to naively apply the assumption
of instantaneous equilibrium in analyzing this data, as is
done in the most common approaches to analyze pulling
experiments [8, 9], we end up with significant errors.
The quasi-adiabatic assumption rests on believing that
at any given time t in the experiment, the applied force
is changing sufficiently slowly that the system behaves
as if it equilibrates at the instantaneous force F eq

t . For
the Bell model the instantaneous rate of rupture at this
force would be τ−1(F eq

t ) = k0 exp(βF
eq
t d), and the in-

tact probability would then obey the simple equation

∂tΣt = −k0e
βF eq

t
dΣ(t). (86)

The solution to this equation is

Σ(t) = exp

(
−k0

∫ t

t0

dt′ eβF
eq

t′
d

)
. (87)

We only focus on times t ≥ t0, where t0 is the effective
start time of recording rupture events in the experiment:
the time when the force on the molecule begins to ramp
up. From Eq. (84) the corresponding rupture time dis-
tribution is given by

peqrup(t) = k0 exp

(
βF eq

t d− k0

∫ t

t0

dt′ eβF
eq

t′
d

)
. (88)

Here the superscript eq denotes that the distribution is
derived assumed quasi-equilibrium at all times before
rupture. Typically F eq

t is approximated by fitting a lin-
ear ramp to the experimentally estimated force on the
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rexp t0 k0 d

[pN/s] [ms] [s−1] [nm]

best-fit to data (no CD) 2.3× 105 1.4 3.1 0.45

expected (ground truth) 2.5× 105 1.1 0.10 0.40

best-fit to data (with CD) 2.6× 105 1.1 0.12 0.39

TABLE I. Analysis of an AFM pulling numerical simulation.
rexp is the force ramp rate determined from the simulated
data, t0 the approximate starting time of the ramp, k0 the
zero-force rupture rate of the biomolecular complex, and d the
transition-state distance of the complex. The first row shows
the best-fit parameter values based on fitting to the rupture
time distribution prup(t) from the original protocol using the
typical quasi-adiabatic assumption. The second row shows
the expected values if the experiment actually satisfied the
quasi-adiabatic assumption (which it does not). The final row
shows the best-fit values for the distribution p̃rup(t) using
the CD protocol. The parameters extracted from the CD
protocol closely match the true values for the complex.

molecule, F exp
mol (t) ≈ rexp(t− t0) with fitting parameters

rexp and t0. Substituting rexp(t− t0) for F
eq
t in Eq. (88),

we can evaluate the integral in the expression to get

peqrup(t) = k0 exp

[
βrexp(t− t0)d

+
k0

βrexpd

(
1− eβrexp(t−t0)d

)]
.

(89)

The experimental analysis procedure would then consist
of two steps: i) use the estimate F exp

mol (t) to extract rexp
and t0, ii) plug these values into Eq. (89), and then fit
to the experimental prup(t) to extract the Bell model pa-
rameters k0 and d. If we apply this quasi-adiabatic ap-
proach to our numerical experimental results for F exp

mol (t)
and prup(t) from Fig. 7C-D, the best-fit results yield the
values shown in the first row of Table I. The expected
results, if the quasi-adiabatic assumption were true, us-
ing the actual equilibrium force F eq

t instead of F exp
mol and

the true values for the Bell model, are shown in the sec-
ond row. The quasi-adiabatic analysis leads to a signif-
icant discrepancy in the extracted value for k0, which
is off by an order of magnitude, and smaller errors in
the other parameters. We can also see this by compar-
ing peqrup(t) from Eq. (89) with the expected parameter
values (purple circles in Fig. 7D) with the numerical re-
sults for prup(t) (red curve). The two distributions are
non-trivially displaced from another, with the fast, non-
adiabatic pulling leading to longer than expected rupture
times.

3. Pulling with counterdiabatic driving

To see how CD driving can alleviate the non-adiabatic
discrepancies described above, we first need to determine
the CD protocol. Given the potential energy of Eq. (78)
we evaluate the corresponding instantaneous equilibrium

distribution from Eq. (54),

ρ(x, ℓt) =

√
βk(ℓt)

2π
exp

(
−
1

2
βk(ℓt)(x− xeq

t )2
)
. (90)

Since we do not have the experimental means to eas-
ily control diffusivity, we choose the diffusivity for the
protocol to be the same as in the original system from

Eq. (80), D̃(x, ℓt) = D(x). Using Eq. (70), the energy
perturbation needed to achieve CD driving is

U(x, t) = U0(t)

+

∫ x

x0

dx′ kBT

D(x′)ρ(x′, ℓt)

∫ x′

−∞

dx′′∂tρ(x
′′, ℓt),

(91)

with some arbitrary x0 and U0(t). The inner integral in
Eq. (91) can be evaluated exactly, but it turns out an ap-
proximate form is sufficient in our case: instead of inte-
grating over the full expression for ∂tρ(x

′′, ℓt), we ignore
the terms that involve ∂tk(ℓt). This is because the time
derivative of the effective spring constant is nearly zero
over the time range of interest except for a narrow time
window where k(ℓt) shifts upwards, as seen from Fig. 7B.
Using this approximation, the inner integral evaluates to

∫ x′

−∞

dx′′ρ̇(x′′, ℓt)

≈

√
βk(ℓt)

2π
ẋeq
t exp

(
−
1

2
βk(ℓt)(x

′ − xeq
t )2

)
,

(92)

where ẋeq
t ≡ (d/dt)xeq

t , and Eq. (91) simplifies to

U(x, t) = U0(t) + kBT ẋ
eq
t

∫ x

x0

dx′

D(x′)
. (93)

This energy perturbation corresponds to modifying the
total force on the cantilever tip to a new value

F̃ (x, ℓt) = F (x, ℓt) +
∂U(x, t)

∂x

= F (x, ℓt) +
kBT ẋ

eq
t

D(x)
.

(94)

Since Fcant(xt, ℓt) = kcant(ℓt − xt), this can be accom-

plished by replacing ℓt with an alternative protocol ℓ̃t,

ℓ̃t = ℓt +
kBT ẋ

eq
t

kcantD(x)
. (95)

Under the new protocol, the cantilever force Fcant(x̄t, ℓ̃t)
(blue curve in Fig. 7C) now overlaps with the the ex-
pected equilibrium force F eq

t . Crucially, the protocol
requires only knowledge about components of the ex-
perimental setup, and is independent of the intrinsic
properties of the biomolecular complex (k0, d) that we
are trying to estimate from the experiment. kcant is
a known parameter of the cantilever, and the param-
eters that determine D(x) through Eq. (80) can be
deduced from calibration experiments in the absence

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.13.448255doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.13.448255
http://creativecommons.org/licenses/by-nc/4.0/


23

of any attached molecule. The equilibrium extension
curve xeq

t that is used to calculate ẋeq
t is the solution to

Fcant(x
eq
t , ℓt) = Fmol(x

eq
t ). Under the assumption that

the biomolecular complex is small and stiff relative to
the polymeric handles, the function Fmol(xt) given by
Eq. (75) is determined by the handle properties (contour
length, persistence length, and stretch modulus) which
all can be fit via calibration experiments. Thus once
the apparatus is parametrized in this manner, one can
carry out experiments on a biomolecular complex with
unknown k0 and d. The stage can be programmed to ex-

ecute the CD protocol ℓ̃t in Eq. (95), and with repeated
trials we can construct an experimental estimate for the
rupture time distribution.
We do this for the numerical model system described

above, and the rupture time distribution p̃rup(t) under
the CD protocol is shown in blue in Fig. 7D. As expected,
it closely overlaps with the distribution peqrup(t) predicted
by the quasi-equilibrium assumption. As a result, the
best-fit parameters (third row of Table I) all agree well
with the ground truth values, and in particular we have
eliminated the large discrepancy in the estimated k0.
Thus CD driving allows us to mimic quasi-equilibrium
conditions and apply quasi-equilibrium analysis to accu-
rately extract biomolecular properties even under fast,
non-adiabatic pulling.

IV. CONCLUDING REMARKS

Our theory of classical CD driving and its biolog-
ical applications open up a variety of questions for
future work. The fact that there can exist many
CD protocols for the same target trajectory, with
distinct thermodynamic properties, means that one
can search among these protocols for those that op-
timize certain quantities—like minimizing dissipated
work under given physical constraints. Optimal con-
trol of nonequilibrium and finite-time processes is an
active research area [90–93], with connections to tech-
niques like Monge-Kantorovich transport theory [94] and
trajectory-observable biasing within the framework of
large deviations [95, 96]. Situating CD driving within
the broader context of these earlier optimal control ap-
proaches is an interesting topic for further study, both
generically and in specific biological implementations in
areas like ecology and evolution [97, 98].
Driving a system between long-lived states is also sub-

ject to universal bounds or “speed limits” [99–101] that
constrain the speed of driving in terms of dissipated
work. Does CD driving saturate these bounds in cer-
tain circumstances? If so, are there biological impli-
cations, for example cases where natural selection has
pushed a control process close to the theoretical limit?
Finally, we can relax the goal of the control, and tar-
get only the initial and final distributions, rather than a
specific trajectory between them. In quantum systems
there are so-called fast-forward techniques to tackle this
problem [22–29], but what are the classical stochastic

analogues?

In summary, stochastic processes and their biologi-
cal realizations are an ideal laboratory for investigating
nonequilibrium control ideas. The CD driving frame-
work we have developed is a particularly useful starting
point, because the control protocols can be expressed an-
alytically in terms of easy-to-calculate graph properties
of the underlying Markov model. We can thus in prin-
ciple explore a wide swath of CD solutions, and identify
generic features of control in diverse biological systems
sharing similar graph topologies. The practicality of our
formulation makes it well suited for deriving CD driv-
ing prescriptions in specific experimental contexts, like
evolving cell populations [58] or the example systems in
the current work. Because the CD protocols involve ac-
cessible control knobs—varying drug/protein concentra-
tions, or the stage position in the AFM case— we believe
near-term experimental validation is within reach. CD
driving is thus poised to become an important tool both
for implementing control of biological systems in the lab,
and understanding how that control operates in nature.

Appendix A: Stationary probabilities and currents

in one-loop and two-loop examples

Explicit expressions for stationary probability compo-
nents ρi(λt) in the one-loop system of Fig. 3A and the
two-loop system of Fig. 2A can be calculated by solving
Eq. (3) for the system, or equivalently employing the
graphical method of Ref. [102]. The result is that each
component can be expressed as ρi(λt) = Di(λt)/D(λt),

where D(λt) =
∑N

i=1 Di(λt) for functions Di(λt), i =
1, . . . , N defined below.

For the one-loop example, let ki(λt) be the clockwise
(forward) transition starting from state i, and ri(λt) the
corresponding counterclockwise (reverse) rate. These
can be expressed in terms of binding/unbinding con-
stants and concentrations as shown in Fig. 3A. The func-
tions Di(λt) are given by:

D1 = k2k3 + r1(k3 + r2)

D2 = k1(k3 + r2) + r2r3

D3 = k1k2 + (k2 + r1)r3

(96)

For conciseness, in the equation above we have not shown
the λt dependence of all the rate variables. The station-
ary currents in the system are all equal, and given by
J1 = J2 = J3 = (k1k2k3 − r1r2r3)/D.

For the two-loop system, the labeling of the rates
ki(λt) and ri(λt) is shown in Fig. 2A. The functions
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Di(λt) are given by:

D1 =k2k3 (k5 + r4) + (k3 + r2) (k5r1 + r4 (r1 + r5)) ,

D2 =k5r2 (k4 + r3) + k1 (k3 + r2) (k5 + r4) + k3k4k5

+ r2r3r4,

D3 =k2k5 (k4 + r3) + k2r3r4 + k1k2 (k5 + r4)

+ r1r3 (k5 + r4) + r3r4r5

D4 =k4r1 (k3 + r2) + (k1 + k4) r5 (k3 + r2) + k2k3k4

+ r2r3r5.
(97)

In this case there is one stationary current in the left
loop, JL ≡ J2 = J3, and one in the right loop, JR ≡
J4 = J5. Edge 1, shared between the loops, has station-
ary current J1 = JL − JR. The left and right currents
can be expressed as JL = DL/D and JR = DR/D,

where the two numerator functions are given by:

DL =k1k2k3 (k5 + r4)− r2r3 (r1 (k5 + r4) + r4r5)

+ k2k3k4k5,

DR =k4k5r1 (k3 + r2)− r4r5 (k1 (k3 + r2) + r2r3)

+ k2k3k4k5.

(98)
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D. Guéry-Odelin, and J. G. Muga, “Fast optimal fric-
tionless atom cooling in harmonic traps: Shortcut to
adiabaticity,” Phys. Rev. Lett. 104, 063002 (2010).

[21] A. del Campo and M. G. Boshier, “Shortcuts to adi-
abaticity in a time-dependent box,” Sci. Rep. 2, 648
(2012).

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.13.448255doi: bioRxiv preprint 

http://dx.doi.org/ https://doi.org/10.1016/j.plrev.2005.03.003
http://dx.doi.org/ https://doi.org/10.1103/RevModPhys.92.025001
http://dx.doi.org/ https://doi.org/10.1103/RevModPhys.92.025001
http://dx.doi.org/ https://doi.org/10.1073/pnas.1201810109
http://dx.doi.org/ https://doi.org/10.1073/pnas.1201810109
http://dx.doi.org/ https://doi.org/10.1073/pnas.0501865102
http://dx.doi.org/ https://doi.org/10.1073/pnas.0501865102
http://dx.doi.org/https://doi.org/10.1371/journal.pcbi.1004493
http://dx.doi.org/ https://doi.org/10.1016/S0079-6107(00)00014-6
http://dx.doi.org/ https://doi.org/10.1016/S0079-6107(00)00014-6
http://dx.doi.org/ https://doi.org/10.1038/nrg2775
http://dx.doi.org/ https://doi.org/10.1038/nrg2775
http://dx.doi.org/ https://doi.org/10.1016/S0006-3495(97)78802-7
http://dx.doi.org/ https://doi.org/10.1016/S0006-3495(97)78802-7
http://dx.doi.org/https://doi.org/10.1073/pnas.0806085105
http://dx.doi.org/https://doi.org/10.1073/pnas.0806085105
http://dx.doi.org/10.1103/PhysRevLett.96.108101
http://dx.doi.org/10.1103/PhysRevLett.96.108101
http://dx.doi.org/https://doi.org/10.1073/pnas.1518389113
http://dx.doi.org/https://doi.org/10.1073/pnas.1518389113
http://dx.doi.org/https://doi.org/10.1038/ncomms5463
http://dx.doi.org/https://doi.org/10.1038/ncomms5463
http://dx.doi.org/10.1096/fasebj.10.1.8566548
http://dx.doi.org/ https://doi.org/10.1146/annurev.biophys.30.1.245
http://dx.doi.org/ https://doi.org/10.1146/annurev.biophys.30.1.245
http://dx.doi.org/ https://doi.org/10.1016/j.cell.2005.05.028
http://dx.doi.org/10.1073/pnas.1620646114
http://dx.doi.org/10.1073/pnas.1620646114
http://dx.doi.org/ 10.1016/j.molcel.2010.10.006
http://dx.doi.org/https://doi.org/10.1093/femsre/fux015
http://dx.doi.org/https://doi.org/10.1093/femsre/fux015
http://dx.doi.org/10.1088/2053-2571/ab21c6
http://dx.doi.org/10.1103/PhysRevLett.104.063002
http://dx.doi.org/10.1038/srep00648
http://dx.doi.org/10.1038/srep00648
https://doi.org/10.1101/2021.06.13.448255
http://creativecommons.org/licenses/by-nc/4.0/


25

[22] S. Masuda and K. Nakamura, “Fast-forward of adia-
batic dynamics in quantum mechanics,” Proc. R. Soc.
A 466, 1135 (2010).

[23] S. Masuda and K. Nakamura, “Acceleration of adi-
abatic quantum dynamics in electromagnetic fields,”
Phys. Rev. A 84, 043434 (2011).

[24] E. Torrontegui, S. Mart́ınez-Garaot, A. Ruschhaupt,
and J. G. Muga, “Shortcuts to adiabaticity: Fast-
forward approach,” Phys. Rev. A 86, 013601 (2012).

[25] E. Torrontegui, X. Chen, M. Modugno, S. Schmidt,
A. Ruschhaupt, and J. G. Muga, “Fast transport of
Bose—Einstein condensates,” New J. Phys. 14, 013031
(2012).

[26] S. Masuda, K. Nakamura, and A. del Campo, “High-
fidelity rapid ground-state loading of an ultracold gas
into an optical lattice,” Phys. Rev. Lett. 113, 063003
(2014).

[27] A. Kiely, J. P. L. McGuinness, J. G. Muga, and
A. Ruschhaupt, “Fast and stable manipulation of a
charged particle in a penning trap,” J. Phys. B: At.
Mol. Opt. Phys. 48, 075503 (2015).

[28] S. Deffner, “Shortcuts to adiabaticity: suppression of
pair production in driven dirac dynamics,” New Journal
of Physics 18, 012001 (2015).

[29] C. Jarzynski, S. Deffner, A. Patra, and Y. Subaş ı,
“Fast forward to the classical adiabatic invariant,”
Phys. Rev. E 95, 032122 (2017).

[30] X. Chen, E. Torrontegui, Di. Stefanatos, J. Li, and
J. G. Muga, “Optimal trajectories for efficient atomic
transport without final excitation,” Phys. Rev. A 84,
043415 (2011).

[31] D. Stefanatos, “Optimal shortcuts to adiabaticity for a
quantum piston,” Automatica 49, 3079 (2013).

[32] S. Campbell, G. De Chiara, M. Paternostro, G. M.
Palma, and R. Fazio, “Shortcut to Adiabaticity in the
Lipkin-Meshkov-Glick Model,” Phys. Rev. Lett. 114,
177206 (2015).

[33] S. Deffner, “Optimal control of a qubit in an optical
cavity,” J. Phys. B: At. Mol. Opt. Phys. 47, 145502
(2014).

[34] G. Xiao and J. Gong, “Suppression of work fluctuations
by optimal control: An approach based on Jarzynski’s
equality,” Phys. Rev. E 90, 052132 (2014).

[35] S. Masuda and S. A. Rice, “Fast-Forward Assisted
STIRAP,” J. Phys. Chem. A 119, 3479 (2015),
arXiv:1410.1883 [cond-mat.mes-hall].

[36] E. Torrontegui, S. Mart́ınez-Garaot, and J. G. Muga,
“Hamiltonian engineering via invariants and dynamical
algebra,” Phys. Rev. A 89, 043408 (2014).

[37] M. V. S. Bonança and S. Deffner, “Optimal driving
of isothermal processes close to equilibrium,” J. Chem.
Phys. 140, 244119 (2014).

[38] T. V. Acconcia, M. V. S. Bonança, and S. Deffner,
“Shortcuts to adiabaticity from linear response theory,”
Phys. Rev. E 92, 042148 (2015).

[39] M. V. S. Bonança and S. Deffner, “Minimal dissipation
in processes far from equilibrium,” Phys. Rev. E 98,
042103 (2018).

[40] Sebastian Deffner and Marcus V. S. Bonança, “Ther-
modynamic control —an old paradigm with new appli-
cations,” EPL (Europhysics Letters) 131, 20001 (2020).

[41] S. Mart́ınez-Garaot, A. Ruschhaupt, J. Gillet, Th.
Busch, and J. G. Muga, “Fast quasiadiabatic dynam-
ics,” Phys. Rev. A 92, 043406 (2015).
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Supplementary Information:
Counterdiabatic control of biophysical processes

CD DRIVING OF A 2D FOKKER-PLANCK SYSTEM:

APPLICATION TO AN EVOLUTIONARY MODEL

As an illustration of the versatility of the graphical CD algorithm described in the main text, we apply it here to
a Markovian model on a two-dimensional lattice graph. For small lattice spacing and a large number of states, this
provides a discretized numerical approach for implementing CD driving in a two-dimensional Fokker-Planck system.
Though we focus on the 2D case for simplicity, the method readily generalizes to higher-dimensional systems.

Our example is based on an evolutionary Fokker-Planck model [103, 104] describing an evolving population of N
organisms, each of which belongs to one of M genetic variants with potentially different fitnesses. The population is
assumed to be at carrying capacity, with births exactly compensating for deaths, and hence N is fixed. Mutations
at birth allow for different variants to arise, and these compete via natural selection. The relative magnitudes of
the selective pressures can be tuned via external parameters, as is the case for example in bacterial populations
evolving under externally controlled concentrations of antibiotic drugs. As we demonstrated in a recent work [58],
such tunability enables the possibility of CD driving in evolutionary systems: guiding the probability distribution
of variants in the population through a target sequence of distributions over time. This level of control could
facilitate novel drug protocols to combat the evolution of drug resistance. Our main focus in the earlier paper
was an approximate CD solution that had certain practical advantages for experimental implementation in microbial
contexts. Here we look explicitly at the exact CD solution, which requires the ability to implement selective pressures
that depend on the relative proportion of the different variants. One way to accomplish this would be through time-
varying culling strategies: killing different proportions of each variant depending on their current distribution in the
population.

1. 2D Fokker-Planck model description

We consider a system with M = 3 variants, where the fraction of the population in variant i is xi, i = 1, . . . , 3. For
large population size N , we can approximately take xi to be a continuous variable between 0 and 1, with

∑3
i=1 xi = 1.

Since x3 is linearly dependent on x1 and x2, we can specify the state of the system by the 2D vector x = (x1, x2).
The probability distribution p(x, t) of observing state x obeys the Fokker-Planck equation [103, 104]:

∂p(x, t)

∂t
= −

2∑

i=1

∂

∂xi
[Ai(x, t)p(x, t)] +

2∑

i=1

2∑

j=1

∂2

∂xi∂xj
[Dij(x)p(x, t)] . (S1)

The first term on the right represents the deterministic contribution to the dynamics, with the mean state trajectory
x̄(t) governed by the set of equations ∂tx̄i(t) = Ai(x, t). The function Ai(x, t) has the form

Ai(x, t) = µ(1− xi)− 2µxi +
2∑

j=1

gij(x)sj(t). (S2)

Here we have assumed that all three variants can mutate into each other with the same rate µ, so µ(1 − xi) is the
contribution of the other variants mutating into type i and −2µxi is the loss of type i due to mutations into the
other two variants. The final term in Eq. (S2) encapsulates the effect of natural selection. Let us take fi(t) to be
fitness of type i, which varies due to some externally controlled protocol. Then we define the selection coefficient
si(t) = fi(t)/f3(t) − 1 for i = 1, 2 as a measure of the relative fitness of type i compared to type 3. We choose the
latter to be our reference, or “wild” type. A positive value for si(t) means type i is fitter than the wild type at time
t, while a negative value means it is less fit. We typically assume fitness differences between competitive variants are
small, with |si(t)| ≪ 1. The selection coefficient vector s(t) = (s1(t), s2(t)) plays the role of the control parameter
λt. In practice it could reflect the effects of time-varying drug concentrations or other controllable environmental
factors [58]. The gij(x) element of the 2× 2 matrix g(x) represents the contribution of the jth selection coefficient
to the mean behavior of type i. The matrix elements are given by [104]:

gij(x) =

{
xi(1− xi) i = j

−xixj i 6= j
. (S3)
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Finally, the second term on the right hand side of Eq. (S1) represents diffusive spreading of the distribution due
to the stochastic nature of reproduction in a population of finite size N . The 2 × 2 diffusivity matrix Dij(x) has
elements of the form [103, 104],

Dij(x) =
gij(x)

2N
. (S4)

The proportionality between D(x) and the matrix g(x), which controls the response of the system to relative fitness
differences, is an evolutionary analogue to the fluctuation-dissipation theorem, with population size N playing the
role of inverse temperature.

Because of the constraints that x1 ≥ 0, x2 ≥ 0 and x1 + x2 = 1− x3 ≤ 1, the distribution p(x, t) is defined over a
2D probability simplex. To simplify the geometry, we introduce new variables u1 = x1, u2 = x2/(1− x1) [103]. The
domain of the state vector u = (u1, u2) is now the unit square: 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1. Using this mapping the
corresponding distribution p(u, t) obeys a Fokker-Planck equation of the form,

∂p(u, t)

∂t
= −

2∑

i=1

∂

∂ui
[Ai(u, t)p(u, t)] +

2∑

i=1

∂2

∂u2
i

[Di(u)p(u, t)]

≡ −
2∑

i=1

∂

∂ui
Ji(u, t).

(S5)

Here A(u, t) and D(u, t) are vector functions with components given by

A1(u, t) = µ− 3µu1 + u1(1− u1)(s1(t)− u2s2(t)),

A2(u, t) =
µ− 2µu2

1− u1
+ u2(1− u2)s2(t),

D1(u) =
u1(1− u1)

2N
,

D2(u) =
u2(1− u2)

2N (1− u1)
.

(S6)

and J(u, t) is the probability current density with components given by

Ji(u, t) = Ai(u, t)p(u, t)−
∂

∂ui
[Di(u)p(u, t)] , i = 1, 2. (S7)

To derive Eq. (S5) we have taken into account the Jacobian for the change of variables which relates the probability
densities in the old and new variables as: p(u, t) = (1− u1)p(x, t) [103].

Eq. (S5) has an instantaneous stationary distribution ρ(u, s(t)) of the form

ρ(u, s(t)) =
e−E(u,s(t))

Z(λt)
, (S8)

where

E(u, s(t)) = 2N (1− u1)(s1(t)− s2(t)u2)− log
[
4 (u1(1− u1)u2(1− u2))

2µN−1
(1− u1)

2µN
]
, (S9)

and the normalization constant Z(λt) can be determined numerically from the integral
∫ 1

0
du1

∫ 1

0
du2 ρ(u, λt) = 1.

The current densities in Eq. (S7) can be rewritten in terms of the stationary distribution as

Ji(u, t) = −Di(u)ρ(u, s(t))
∂

∂ui

[
p(u, t)

ρ(u, s(t))

]
, i = 1, 2. (S10)

It is then easy to see that the corresponding stationary probability current densities J (u, t) vanish:

Ji(u, t) = Ji(u, t)|p(u,t)=ρ(u,s(t)) = 0, i = 1, 2. (S11)
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2. Formulating the CD driving problem

To define an example target sequence of distributions for our CD driving, let us adopt the following simple linear
forms for the time-varying selection coefficient protocol,

s1(t) = s01 + (sτ1 − s01)t/τ, s2(t) = s02 + (sτ2 − s02)t/τ. (S12)

The protocol runs from initial time t = 0 to final time t = τ , with time in the evolutionary Fokker-Planck system
measured in units of generations. We choose parameter values as follows: N = 5000, µ = 0.001, s01 = −0.003,
sτ1 = 0.005, s02 = 0.005, sτ2 = −0.01, τ = 1000. Initially s2(0) > 0 > s1(0), and hence the initial stationary
distribution ρ(u, s(0)) is dominated by type 2 organisms, corresponding to large u2 and small u1, as shown in the left
panel of Fig. S1A. As time increases, the s(t) protocol from Eq. (S12) leads to a continuous sequence of distributions
ρ(u, s(t)) that shift towards large u1 and small u2, as seen in the center and right panels of Fig. S1A. At the final
time, s1(τ) > 0 > s2(τ), and hence the distribution is dominated by type 1 organisms. The green dashed line in

Fig. S1A shows the positions of the stationary mean value ū(t) =
∫ 1

0
du1

∫ 1

0
du2 uρ(u, s(t)) for this target trajectory

of distributions.
The goal of CD driving in this system is to find modified selection coefficient functions s̃(u, t) for which the target

distribution trajectory ρ(u, s(t)) is a solution to the corresponding Fokker-Planck equation. In other words we want
a modified version of Eq. (S5),

∂ρ(u, s(t))

∂t
= −

2∑

i=1

∂

∂ui
J̃i(u, t), (S13)

where

J̃i(u, t) = Ãi(u, t)ρ(u, s(t))−
∂

∂ui
[Di(u)ρ(u, s(t))] ,

Ã1(u, t) = µ− 3µu1 + u1(1− u1)(s̃1(u, t)− u2s̃2(u, t)),

Ã2(u, t) =
µ− 2µu2

1− u1
+ u2(1− u2)s̃2(u, t).

(S14)

Note that because the original stationary current densities vanish, as shown in Eq. (S11), we can express the CD
current densities as

J̃i(u, t) = δJi(u, t) ≡ δAi(u, s(t))ρ(u, s(t)) (S15)

where δAi(u, t) ≡ Ãi(u, t) − Ai(u, t) is the perturbation to the Ai(u, t) function due to the modified CD selection
coefficient. From Eqs. (S6) and (S14) these perturbations take the form,

δA1(u, t) = u1(1− u1)(δs1(u, t)− u2δs2(u, t)),

δA2(u, t) = u2(1− u2)δs2(u, t),
(S16)

where δs(u, t) = s̃(u, t) − s(t) is the CD perturbation to the original selection coefficient protocol. A CD solution

means finding J̃i(u, t) that satisfy Eq. (S13). If those are known, then the perturbations to the selection protocol
that implement the currents can be found by inverting Eqs. (S15)-(S16):

δs1(u, t) =
1

ρ(u, s(t))

[
J̃1(u, t)

u1(1− u1)
+

J̃2(u, t)

1− u2

]
, δs2(u, t) =

J̃2(u, t)

ρ(u, s(t))u2(1− u2)
. (S17)

Note that the perturbation δs(u, t) will in general depend on u. Translated back to the original variables x, this
means applying selection pressures in a way that depends on the instantaneous proportion of different variants. In
cases where this is not practically achievable, we can also do an approximate form of CD by replacing δs(u, t) with
an averaged version δs̄(t) independent of u, as described below.

3. Calculating CD solutions using the graphical algorithm

To apply the graphical CD algorithm described in the main text, we will discretize the u unit box by dividing
each axis into L equal segments of length a = 1/L, creating an L × L lattice graph shown in Fig. S1. Each state,
n = 1, . . . , N , in the corresponding Markov model will be associated with a square of area a2 centered at position

u(n) = a

(
1

2
+ (n− 1) mod L,−

1

2
+ ⌈n/L⌉

)
, (S18)
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1 21 3 4

65 7 8

109 11 12

1413 15 16

21 3

54 6

87 9

FIG. S1. An example of discretizing the u unit box for the evolutionary system using an L × L lattice graph, with L = 4.
The numbered blue circles represent states n = 1, . . . , N , located at positions u

(n) given by Eq. (S18), with N = 16. There
are E = 24 edges in the graph, depicted as light or dark red arrows representing oriented currents. The subset of N − 1 dark
red arrows is a spanning tree. A set of fundamental cycles, numbered γ = 1, . . . ,∆, with ∆ = 9, is shown as green dashed
squares.

where ⌈x⌉ denotes the smallest integer greater or equal to x. Note, N = L2. There are E = 2L(L − 1) edges in
the lattice graph, and hence ∆ = E − N + 1 = (L − 1)2. Fig. S1 shows the case of L = 4, with N = 16 states at
positions u(n) denoted by blue circles, E = 24 oriented currents denoted by dark or light red arrows, and a set of
∆ = 9 fundamental cycles denoted by green dashed lines. The N − 1 = 15 dark red arrows constitute one example
of a spanning tree for the oriented current graph.
To ensure that the discrete Markov model corresponds to the Fokker-Planck equation of Eq. (S5) in the continuum

(L → ∞) limit, we choose the following scheme for the transition rate Ωmn(s(t)) from state n to m:

Ωmn(s(t)) =





a−2D1(u
(n))e−(E(u(m),s(t))−E(u(n),s(t))) if m = n+ 1 and n mod L 6= 0

a−2D1(u
(m)) if m = n− 1 and m mod L 6= 0

a−2D2(u
(n))e−(E(u(m),s(t))−E(u(n),s(t))) if m = n+ L and n ≤ L(L− 1)

a−2D2(u
(m)) if m = n− L and n > L

0 otherwise

. (S19)

The top two rows on the right-hand side above are the horizontal right and left transitions in the lattice graph, and
the next two rows are the vertical up and down transitions. With this choice of matrix Ω(s(t)), any pair of non-zero
forward and reverse rates satisfy the local detailed balance relation,

Ωmn(s(t))

Ωnm(s(t))
= e−(E(u(m),s(t))−E(u(n),s(t))), (S20)

which guarantees that the instantaneous stationary distribution is given by the discrete analogue of Eq. (S8),

ρn(s(t)) =
e−E(u(n),s(t))

Z(s(t))
, (S21)

where Z(s(t)) =
∑N

n=1 exp(−E(u(n), s(t))). We can also check the form of the current for edge α, corresponding to
an arrow from state n to a state m directly to the right or above. Using Eq. (S19) this can be rewritten as:

Jα(t) = Ωmn(s(t))pn(t)− Ωnm(s(t))pm(t) = −
1

a
Di(u

(n))ρm(s(t))
1

a

[
pm(t)

ρm(s(t))
−

pn(t)

ρn(s(t))

]
. (S22)
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FIG. S2. Numerically calculated CD driving results for the evolutionary system, using a discretization with L = 80. All
panels are shown in terms of u1 and u2 on the axes, and the three columns represent snapshots at three times t = 0, 500, and
1000 generations. A) The target distributions ρ(u, s(t)), defined by the selection coefficient protocol given in Eq. (S12). The
goal of CD is to steer the evolving population through this trajectory of distributions. The green dashed curves represent the
instantaneous stationary mean ū(t), and the green circle is the value of the mean in that snapshot. B) The cycle coefficient

functions Φ(u, t). This specific choice corresponds to the CD solution that minimizes the overall CD current magnitude (J̃
2
(t)

in the discrete model) at each time t. C-D) The components of the selection coefficient perturbations δsi(u, t), i = 1, 2 that
implement this particular CD solution.
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Here i = 1 if the edge is horizontal and i = 2 if vertical. In the limit as L → ∞ and a = 1/L → 0 we see
that a−1Jα(t) → Ji(u, t) from Eq. (S10). The factor a−1 converts the discrete current to a current density in
the continuum. In taking this limit, note that discrete state probabilities are related to 2D probability densities
as a−2ρn(s(t)) → ρ(u, s(t)). Thus we see Eq. (S19) leads to the correct continuum formulation. This choice for
discretized transition rates is not unique, but it will be convenient for our purposes.
Once the discretization is defined, we can directly apply the general solution method. Any possible CD solution

for this system can be expressed in the form of main text Eq. (26),

J̃ (t) = δJ (1)(t) +
∆∑

γ=1

Φγ(t)c
(γ). (S23)

Here δJ (1)(t) is a spanning tree solution (i.e. associated with the tree shown as dark red arrows in Fig. S1),

δJ (1)(t) = [∇̂(γ)]−1
S ∂tρ̂(s(t)), (S24)

and we allow arbitrary coefficient functions Φγ(t) multiplying the cycle vectors c(γ). All components of this solution
are relatively straightforward to implement numerically, even for large graphs. The results in Fig. S2, for example,
correspond to L = 80, where N = 6400, E = 12640, and ∆ = 6241. The vector ∂tρ̂(s(t)) is calculated by
differentiating the components of the stationary distribution in Eq. (S21). The E × (N − 1) dimensional matrix

[∇̂(γ)]−1
S is constructed by the graphical procedure described in main text Sec. IIB. Finally, the simplest cycle vector

basis for the lattice graph is shown in green in Fig. S1. In this case each cycle vector c(γ) involves the edges making
up a square plaquette of neighboring states. We can associate the γth cycle vector with the position u(γ) around
which the loop is centered:

u(γ) = a (1 + (γ − 1) mod (L− 1), ⌈γ/(L− 1)⌉) . (S25)

This allows us to plot a given choice of Φγ(t) as a heat map Φ(u, t) for large L, as shown for example in Fig. S2B.
Similarly any function of state number n, such as ρn(s(t)), can be plotted as a heat map ρ(u, s(t)) using the positions
u(n) defined in Eq. (S18), as seen in Fig. S2A.
Any choice of Φγ(t) at each t leads to a valid CD solution, giving us an infinite family of solutions where we can

seek out specific ones with desirable properties. A natural choice is the solution that leads to the overall smallest

magnitude of CD currents, minimizing J̃
2
(t) at each t. This solution is in a sense the smallest amount of “driving”

that is necessary to still get the system to follow the target trajectory, and can be readily found using any standard
numerical optimization algorithm. For the target trajectory defined by the control protocol of Eq. (S12), snapshots
of the current-minimizing Φ(u, t) at three different times are shown in Fig. S2B.

Once Φγ(t) is chosen, giving us numerical values for the CD current vector J̃ (t), we can convert those to estimates

of the current densities J̃i(u, t), i = 1, 2, in the continuum. The horizontal densities J̃1(u, t) correspond to a−1J̃α(t)

for horizontal edges α, with each edge assigned the position u(n) at the origin of the current arrow. We find J̃2(u, t)

analogously, except using the vertical edges in the graph. Knowledge of J̃i(u, t) then allows us to use Eq. (S17) to
calculate the selection coefficient perturbations necessary to implement the driving. For our choice of the current-
minimizing Φ(u, t) in Fig. S2B, the heatmaps of δs1(u, t) and δs2(u, t) are shown in Fig. S2C and D respectively.

4. Approximate CD solution

Since the perturbation δs(u, t) to achieve exact CD driving is in general dependent on u and hence the fraction
x of different variants in the population, it requires a way of monitoring the distribution of variants throughout the
driving process. When this monitoring is not possible, a simpler approximate strategy can be used, where we apply
an averaged perturbation δs̄(t) independent of u:

δs̄(t) =

∫ 1

0

du1

∫ 1

0

du2 ρ(u, s(t))δs(u, t). (S26)

Since this is weighted by the instaneous stationary distribution, the approximation should provide an overall driving
that works well for typical realizations of the system, particularly in the large N case where the distribution ρ(u, s(t))
is narrow.
Plugging Eq. (S17) into Eq. (S26) we find

δs̄1(t) =

∫ 1

0

du1

∫ 1

0

du2

[
J̃1(u, t)

u1(1− u1)
+

J̃2(u, t)

1− u2

]
, δs̄2(t) =

∫ 1

0

du1

∫ 1

0

du2
J̃2(u, t)

u2(1− u2)
. (S27)
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FIG. S3. Averaged CD perturbation δs̄(t), calculated using two methods: directly via Eq. (S26) [blue solid curves], and using
the approximation of Eq. (S30) [red dashed curves]. Panels A and B show the components δs̄1(t) and δs̄2(t) respectively.

Similar to the discussion in Ref. [58], for the large N case we can focus on the region of the u space in the vicinity of
the instantaneous stationary mean ū(t). Replacing the components of u with ū(t) in the denominators of Eq. (S27),
and pulling the resulting constants out of the integrals, we get the approximate expressions

δs̄1(t) ≈
1

ū1(t)(1− ū1(t))

∫ 1

0

du1

∫ 1

0

du2 J̃1(u, t) +
1

1− ū2(t)

∫ 1

0

du1

∫ 1

0

du2 J̃2(u, t),

δs̄2(t) ≈
1

ū2(t)(1− ū2(t))

∫ 1

0

du1

∫ 1

0

du2 J̃2(u, t).

(S28)

We can now take advantage of the identity

∫ 1

0

du1

∫ 1

0

du2 J̃j(u, t) = ∂tūj(t), j = 1, 2. (S29)

This can be derived from Eq. (S13) by multiplying both sides of that equation by uj and integrating over the entire
u unit box, then using integration by parts and the fact that the currents normal to the boundaries of the unit box
vanish. Plugging Eq. (S29) into Eq. (S28) we find:

δs̄1(t) ≈
∂tū1(t)

ū1(t)(1− ū1(t))
+

∂tū2(t)

1− ū2(t)
, δs̄2(t) ≈

∂tū2(t)

ū2(t)(1− ū2(t))
. (S30)

This approximation to Eq. (S26) is useful since it only depends on knowledge of the mean trajectory ū(t) and its
derivative ∂tū(t). Note that any of the infinite family of CD solutions δs(u, t), integrated via Eq. (S26), will yield
approximately the same result, Eq. (S30). This is true so long as the dominant contributions to ρ(u, s(t)) are in
the vicinity of ū(t), justifying the approximation in Eq. (S28). For the L = 80 CD driving results in Fig. S2,
the corresponding averaged perturbation from Eq. (S26) is shown as a blue solid curve in Fig. S3. The Eq. (S30)
approximation is plotted for comparison as a red dashed curve. The two curves match quite well, as expected given
the narrowness of the ρ(u, s(t)) distributions along our target trajectory, seen in Fig. S2A.
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