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Abstract

We present a novel framework for augmenting data
sets for machine learning based on counterexam-
ples. Counterexamples are misclassified examples
that have important properties for retraining and
improving the model. Key components of our
framework include a counterexample generator,
which produces data items that are misclassified
by the model and error tables, a novel data struc-
ture that stores information pertaining to misclas-
sifications. Error tables can be used to explain the
model’s vulnerabilities and are used to efficiently
generate counterexamples for augmentation. We
show the efficacy of the proposed framework by
comparing it to classical augmentation techniques
on a case study of object detection in autonomous
driving based on deep neural networks.

1 Introduction

Models produced by machine learning algorithms, espe-
cially deep neural networks, are being deployed in domains
where trustworthiness is a big concern, creating the need
for higher accuracy and assurance [Russell et al., 2015;
Seshia et al., 2016]. However, learning high-accuracy models
using deep learning is limited by the need for large amounts
of data, and, even further, by the need of labor-intensive la-
beling. Data augmentation overcomes the lack of data by
inflating training sets with label-preserving transformations,
i.e., transformations which do not alter the label. Tradi-
tional data augmentation schemes [van Dyk and Meng, 2001;
Simard et al., 2003; Cireşan et al., 2011; Ciregan et al., 2012;
Krizhevsky et al., 2012] involve geometric transformations
which alter the geometry of the image (e.g., rotation, scal-
ing, cropping or flipping); and photometric transformations
which vary color channels. The efficacy of these techniques
have been demonstrated recently (see, e.g., [Xu et al., 2016;
Wong et al., 2016]). Traditional augmentation schemes, like
the aforementioned methods, add data to the training set hop-
ing to improve the model accuracy without taking into ac-
count what kind of features the model has already learned.
More recently, a sophisticated data augmentation technique
has been proposed [Liang et al., 2017; Marchesi, 2017] which
uses Generative Adversarial Networks [Goodfellow et al.,

2014], a particular kind of neural network able to generate
synthetic data, to inflate training sets. There are also augmen-
tation techniques, such as hard negative mining [Shrivastava
et al., 2016], that inflate the training set with targeted negative
examples with the aim of reducing false positives.

In this work, we propose a new augmentation scheme,
counterexample-guided data augmentation. The main idea
is to augment the training set only with new misclassified ex-
amples rather than modified images coming from the origi-
nal training set. The proposed augmentation scheme consists
of the following steps: 1) Generate synthetic images that are
misclassified by the model, i.e., the counterexamples; 2) Add
the counterexamples to the training set; 3) Train the model
on the augmented dataset. These steps can be repeated until
the desired accuracy is reached. Note that our augmentation
scheme depends on the ability to generate misclassified im-
ages. For this reason, we developed an image generator that
cooperates with a sampler to produce images that are given
as input to the model. The images are generated in a manner
such that the ground truth labels can be automatically added.
The incorrectly classified images constitute the augmentation
set that is added to the training set. In addition to the pictures,
the image generator provides information on the misclassified
images, such as the disposition of the elements, brightness,
contrast, etc. This information can be used to find features
that frequently recur in counterexamples. We collect infor-
mation about the counterexamples in a data structure we term
as the “error table”. Error tables are extremely useful to pro-
vide explanations about counterexamples and find recurring
patterns that can lead an image to be misclassified. The er-
ror table analysis can also be used to generate images which
are likely to be counterexamples, and thus, efficiently build
augmentation sets.

In summary, the main contributions of this work are:

• A counterexample-guided data augmentation approach
where only misclassified examples are iteratively added to
training sets;

• A synthetic image generator that renders realistic coun-
terexamples;

• Error tables that store information about counterexamples
and whose analysis provides explanations and facilitates
the generation of counterexample images.

We conducted experiments on Convolutional Neural Net-



Figure 1: Counterexample-guided augmentation scheme. M denotes
the modification space, m is a sampled modification, x is the image
generated from m, ŷ is the model prediction.

works (CNNs) for object detection by analyzing differ-
ent counterexample data augmentation sampling schemes
and compared the proposed methods with classic data aug-
mentation. Our experiments show the benefits of using a
counterexample-driven approach against a traditional one.
The improvement comes from the fact that a counterexam-
ple augmentation set contains information that the model had
not been able to learn from the training set, a fact that was
not considered by classic augmentation schemes. In our ex-
periments, we use synthetic data sets generated by our image
generator. This ensures that all treated data comes from the
same distribution.

Overview

Fig. 1 summarizes the proposed counterexample-guided aug-
mentation scheme. The procedure takes as input a modifi-
cation space, M, the space of possible configurations of our
image generator. The space M is constructed based on do-
main knowledge to be a space of “semantic modifications;”
i.e., each modification must have a meaning in the applica-
tion domain in which the machine learning model is being
used. This allows us to perform more meaningful data aug-
mentation than simply through adversarial data generation
performed by perturbing an input vector (e.g., adversarially
selecting and modifying a small number of pixel values in an
image).

In each loop, the sampler selects a modification, m, from
M. The sample is determined by a sampling method that can
be biased by a precomputed error table, a data structure that
stores information about images that are misclassified by the
model. The sampled modification is rendered into a picture x
by the image generator. The image x is given as input to the
model f that returns the prediction ŷ. We then check whether
x is a counterexample, i.e., the prediction ŷ is wrong. If so,
we add x to our augmentation set A and we store x’s infor-
mation (such as m, ŷ) in the error table that will be used by
the sampler at the next iteration. The loop is repeated until
the augmentation set A is large enough (or M has been suffi-
ciently covered).

This scheme returns an augmentation set, that will be used
to retrain the treated model, along with an error table, whose
analysis identifies common features among counterexamples
and aids the sampler to select candidate counterexamples.

The paper structure mostly follows the scheme of Fig. 1:

Sec. 2 introduces some notation; Sec. 3 describes the im-
age generator used to render synthetic images; Sec. 4 in-
troduces some sampling techniques that can be used to ef-
ficiently sample the modification space; Sec. 5 introduces er-
ror tables and details how they can be used to provide ex-
planations about counterexamples; Sec. 6 concludes the pa-
per by evaluating the proposed techniques and comparing
across different tunings of our counterexample-guided aug-
mentation scheme and the proposed methods against classic
augmentation. The implementation of the proposed frame-
work and the reported experiments are available at https:
//github.com/dreossi/analyzeNN.

2 Preliminaries

This section provides the notation used throughout this paper.
Let a be a vector, ai be its i-th element with index starting

at i = 1, ai:j be the range of elements of a from i to j; and

A be a set. X is a set of training examples, x(i) is the i-
th example from a dataset and y(i) is the associated label.
f : A → B is a model (or function) f with domain A and
range B. ŷ = f(x) is the prediction of the model f for input
x. In the object detection context, ŷ encodes bounding boxes,
scores, and categories predicted by f for the image x. fX is
the model f trained on X. Let B1 and B2 be bounding boxes
encoded by ŷ. The Intersection over Union (IoU) is defined
as IoU(AB1 , AB2) = AB1 ∩ AB2/AB1 ∪ AB2 , where ABi

is the area of Bi, with i ∈ {1, 2}. We consider Bŷ to be a
detection for By if IoU(Bŷ, By) > 0.5. True positives tp
is the number of correct detections; false positives fp is the
number of predicted boxes that do not match any ground truth
box; false negatives is the number of ground truth boxes that
are not detected.

Precision and recall are defined as p(ŷ,y) = tp/(tp+fp)
and r(ŷ,y) = tp/(tp + fn). In this work, we consider
an input x to be misclassified if p(ŷ,y) or r(ŷ,y) is less

than 0.75. Let T = {(x(1),y(1)), . . . , (x(m),y(m))} be a
test set with m examples. The average precision and re-

call of f are defined as apf (T) = 1
m

∑m

i=1 p(f(x
(i)),y(i))

arf (T) = 1
m

∑m

i=1 r(f(x
(i)),y(i)). We use average preci-

sion and recall to measure the accuracy of a model, succinctly
represented as accf (T) = (apf (T), arf (T)).

3 Image Generator

At the core of our counterexample augmentation scheme is an
image generator (similar to the one defined in [Dreossi et al.,
2017a; 2017b]) that renders realistic synthetic images of road
scenarios. Since counterexamples are generated by the syn-
thetic data generator, we have full knowledge of the ground
truth labels for the generated data. In our case, for instance,
when the image generator places a car in a specific position,
we know exactly its location and size, hence the ground truth
bounding box is accordingly determined. In this section, we
describe the details of our image generator.

3.1 Modification Space

The image generator implements a generation function γ :
M → X that maps every modification m ∈ M to a feature



γ(m) ∈ X. Intuitively, a modification describes the configu-
ration of an image. For instance, a three-dimensional modi-
fication space can characterize a car x (lateral) and z (away)
displacement on the road and the image brightness. A gener-
ator can be used to abstract and compactly represent a subset
of a high-dimensional image space.

We implemented an image generator based on a 14D mod-
ification space whose dimensions determine a road back-
ground; number of cars (one, two or three) and their x and
z positions on the road; brightness, sharpness, contrast, and
color of the picture. Fig. 2 depicts some images rendered by
our image generator.

We can define a metric over the modification space to mea-
sure the diversity of different pictures. Intuitively, the dis-
tance between two configurations is large if the concretized
images are visually diverse and, conversely, it is small if the
concretized images are similar.

The following is an example of metric distance that can be

defined over our 14D modification space. Let m(1),m(2) ∈
M be modifications. The distance is defined as:

d(m(1),m(2)) =

4∑

i=1

1
m

(1)
i

6=m
(2)
i

+ ‖m
(1)
5:14 −m

(2)
5:14‖ (1)

where 1condition is 1 if the condition is true, 0 otherwise, and
‖ · ‖ is the L2 norm. The distance counts the differences be-
tween background and car models and adds the Euclidean dis-
tance of the points corresponding to x and z positions, bright-
ness, sharpness, contrast, and color of the images.

Fig. 2 depicts three images with their modifications

m(1),m(2), and m(3). For brevity, captions report only
the dimensions that differ among the images, that are back-
ground, car models and x, z positions. The distances

between the modifications are d(m(1),m(2)) = 0.48,

d(m(1),m(3)) = 2.0, d(m(2),m(3)) = 2.48. Note how sim-
ilar images, like Fig. 2 (a) and (b) (same backgrounds and
car models, slightly different car positions), have smaller dis-

tance (d(m(1),m(2)) = 0.48) than diverse images, like Fig.
(a) and (c); or (b) and (c) (different backgrounds, car models,

and vehicle positions), whose distances are d(m(1),m(3)) =
2.0 and d(m(2),m(3)) = 2.48.

Later on, we use this metric to generate sets whose ele-
ments ensure a certain amount of diversity. (see Sec. 6.1)

3.2 Picture Concretization

Once a modification is fixed, our picture generator renders the
corresponding image. The concretization is done by superim-
posing basic images (such as road background and vehicles)
and adjusting image parameters (such as brightness, color, or
contrast) accordingly to the values specified by the modifica-
tion. Our image generator comes with a database of back-
grounds and car models used as basic images. Our database
consists of 35 road scenarios (e.g., desert, forest, or freeway
scenes) and 36 car models (e.g., economy, family, or sports
vehicles, from both front and rear views). The database can
be easily extended or replaced by the user.

(a) m
(1) = (53, 25, 2, 0.11, 0.98, . . . , 0.50, 0.41, . . . )

(b) m
(2) = (53, 25, 2, 0.11, 0.98, . . . , 0.20, 0.80, . . . )

(c) m
(3) = (13, 25, 7, 0.11, 0.98, . . . , 0.50, 0.41, . . . )

Figure 2: Distance over modification space used to measure vi-

sual diversity of concretized images. d(m(1),m(2)) = 0.48,

d(m(1),m(3)) = 2.0, d(m(2),m(3)) = 2.48.

3.3 Annotation Tool

In order to render realistic images, the picture generator must
place cars on the road and scale them accordingly. To facil-
itate the conversion of a modification point describing x and
z position into a proper superimposition of the car image on
a road, we equipped the image generator with an annotation
tool that can be used to specify the sampling area on a road
and the scaling factor of a vehicle. For a particular road, the
user draws a trapezoid designating the area where the image
generator is allowed to place a car. The user also specifies the
scale of the car image on the trapezoid bases, i.e., at the clos-
est and furthest points from the observer (see Fig. 3). When
sampling a point at an intermediate position, i.e., inside the
trapezoid, the tool interpolates the provided car scales and
determines the scaling at the given point. Moreover, the im-
age generator superimposes different vehicles respecting the
perspective of the image. The image generator also performs
several checks to ensure that the rendered cars are visible.

4 Sampling Methods

The goal of the sampler is to provide a good coverage of the
modification space and identify samples whose concretiza-
tions lead to counterexamples.

We now briefly describe some sampling methods (similar
to those defined in [Dreossi et al., 2017a; 2017b]) that we
integrated into our framework:

• Uniform Random Sampling: Uniform random sampling
ensures an equal probability of sampling any possible



Figure 3: Annotation trapezoid. User adjusts the four corners that
represent the valid sampling subspace of x and z. The size of the car
scales according to how close it is to the vanishing point.

point from M, which guarantees a good mix of gener-
ated images for both training and testing. Although a
simple and effective technique for both training as well
as testing, it may not provide a good coverage of the
modification space;

• Low-Discrepancy Sampling: A low-discrepancy (or
quasi-random) sequence is a sequence of n-tuples that
fills a nD space more uniformly than uncorrelated ran-
dom points. Low-discrepancy sequences are useful to
cover boxes by reducing gaps and clustering of points
which ensures uniform coverage of the sample space.

• Cross-Entropy Sampling: The cross-entropy method
was developed as a general Monte Carlo approach to
combinatorial optimization and importance sampling. It
is a iterative sampling technique, where we sample from
a a given probability distribution, and update the distri-
bution by minimizing the cross-entropy.

Some examples of low-discrepancy sequences are the Van
der Corput, Halton [Halton, 1960], or Sobol [Sobol, 1976]

sequences. In our experiments, we use the Halton [Nieder-
reiter, 1988] sequence. There are two main advantages in
having optimal coverage: first, we increase the chances of
quickly discovering counterexamples, and second, the set of
counterexamples will have high diversity; implying the con-
cretized images will look different and thus the model will
learn diverse new features.

5 Error Tables

Every iteration of our augmentation scheme produces a coun-
terexample that contains information pointing to a limitation
of the learned model. It would be desirable to extract patterns
that relate counterexamples, and use this information to ef-
ficiently generate new counterexamples. For this reason, we
define error tables that are data structures whose columns are
formed by important features across the generated images.
The error table analysis is useful for:

1. Providing explanations about counterexamples, and

2. Generating feedback to sample new counterexamples.

In the first case, by finding common patterns across coun-
terexamples, we provide feedback to the user like “The model
does not detect white cars driving away from us in forest
roads”; in the second case, we can bias the sampler towards
modifications that are more likely to lead to counterexamples.

Table 1: Example of error table proving information about coun-
terexamples. First rows describes Fig. 3. Implicit unordered fea-
tures: car model, environment; explicit ordered features: brightness,
x, z car coordinates; explicit unordered feature: background ID.

Car model Background ID Environment Brightness x z
Toyota 12 Tunnel 0.9 0.2 0.9
BMW 27 Forest 1.1 0.4 0.7
Toyota 11 Forest 1.2 0.4 0.8

5.1 Error Table Features

We first provide the details of the kinds of features supported
by our error tables. We categorize features along two dimen-
sions:

1. Explicit vs. implicit features: Explicit features are sampled
from the modification space (e.g., x, z position, bright-
ness, contrast, etc.) whereas implicit features are user-
provided aspects of the generated image (e.g., car model,
background scene, etc.).

2. Ordered vs. unordered features: some features have a do-
main with a well-defined total ordering (e.g., sharpness)
whereas others do not have a notion of ordering (e.g., car
model, identifier of background scene, etc.).

The set of implicit and explicit features are mutually exclu-
sive. In general, implicit features are more descriptive and
characterize the generated images. These are useful for pro-
viding feedback to explain the vulnerabilities of the classifier.
While implicit features are unordered, explicit features can
be ordered or unordered. Rows of error tables are the realiza-
tions of the features for misclassification.

Tab. 1 is an illustrative error table. The table includes car
model and environment scene (implicit unordered features),
brightness, x, z car coordinates (explicit ordered features),
and background ID (explicit unordered feature). The first row
of Tab. 1 actually refers to Fig. 3. The actual error tables gen-
erated by our framework are larger than Tab. 1. They include,
for instance, our 14D modification space (see Sec. 3.1) and
features like number of vehicles, vehicle orientations, domi-
nant color in the background, etc.

Given an error table populated with counterexamples, we
would like to analyze it to provide feedback and utilize this
feedback to sample new images.

5.2 Feature Analysis

A naive analysis technique is to treat all the features equally,
and search for the most commonly occurring element in each
column of the error table. However, this assumes no correla-
tion between the features, which is often not the case. Instead,
we develop separate analysis techniques for ordered and un-
ordered features. In the following we discuss how we can
best capture correlations between the two sets:

• Ordered features: Since these features are ordered, a
meaningful analysis technique would be to find the di-
rection in the feature space where most of the falsifying
samples occur. This is very similar to model order reduc-
tion using Principal Component Analysis (PCA [Wold
et al., 1987]). Specifically, we are interested in the first
principal component, which is the singular vector cor-
responding to the largest singular value in the Singular



Value Decomposition (SVD [Wold et al., 1987]) of the
matrix consisting of all the samples of the ordered fea-
tures. We can use the singular vector to find how sensi-
tive the model is with respect to the ordered features. If
the value corresponding to a feature is small in the vec-
tor, it implies that the model is not robust to changes in
that feature, i.e., changes in that feature would affect the
misclassification. Or alternatively, features correspond-
ing to larger values in the singular vector, act as “don’t
cares”, i.e., by fixing all other features, the model mis-
classifies the image regardless the value of this feature;

• Unordered features: Since these features are unordered,
their value holds little importance. The most meaning-
ful information we can gather from them is the subsets of
features which occurs together most often. To correctly
capture this, we must explore all possible subsets, which
is a combinatorial problem. This proves to be problem-
atic when the space of unordered features is large. One
way to overcome this is by limiting the size of the max-
imum subset to explore.

We conducted an experiment on a set of 500 counterex-
amples. The ordered features included x and z positions of
each car; along with the brightness, contrast, sharpness, and
color of the overall image. The explicit features include the
ordered features along with the discrete set of all possible
cars and backgrounds. The implicit features include details
like color of the cars, color of the background, orientation of
the cars, etc. The PCA on the explicit ordered features re-
vealed high values corresponding to the x position of the first
car (0.74), brightness (0.45) and contrast (0.44). We can con-
clude that the model is not robust to changes in these ordered
features. For the unordered features, the combination of for-
est road with one white car with its rear towards the camera
and the other cars facing the camera, appeared 13 times. This
provides an explanation of recurrent elements in counterex-
amples, specifically “The model does not detect white cars
driving away from us in forest roads”.

5.3 Sampling Using Feedback

We can utilize the feedback provided by the error table anal-
ysis to guide the sampling for subsequent training. Note that
we can only sample from the explicit features:

• Feedback from Ordered Features: The ordered features,
which is a subset of the explicit features, already tell us
which features need to vary more during the sampling pro-
cess. For example, in the example of Sec. 5.2, our sampler
must prioritize sampling different x positions for the first
car, then brightness, and finally contrast among the other
ordered features;

• Feedback from Unordered Features: Let Suf = Sef ∪ Sif

be the subset of most occurring unordered features re-
turned by the analysis, where Sef and Sif are the mutu-
ally exclusive sets of explicit and implicit features, respec-
tively. The information of Sef can be directly incorpo-
rated into the sampler. The information provided by Sif

require some reasoning since implicit features are not di-
rectly sampled. However, they are associated with partic-
ular elements of the image (e.g., background or vehicle).

Table 2: Comparison of augmentation techniques. Precisions (top)
and recalls (bottom) are reported. TT set generated with sampling
method T ; fXT

model f trained on X augmented with technique
T ∈ {S,R,H,C,D,M}; S: standard, R: uniform random, H:
low-discrepancy Halton, C: cross-entropy, D: uniform random with
distance constraint, M : mix of all methods.

TR TH TC TD TM

fX 0.6169
0.7429

0.6279
0.7556

0.3723
0.4871

0.7430
0.8373

0.6409
0.7632

fXS

0.6912
0.8080

0.6817
0.7987

0.3917
0.5116

0.7824
0.8768

0.6994
0.8138

fXR

0.7634
0.8667

0.7515
0.8673

0.5890
0.7242

0.8484
0.9745

0.7704
0.8818

fXH

0.7918
0.8673

0.7842
0.8727

0.5640
0.6693

0.8654
0.9598

0.7980
0.8828

fXC

0.7778
0.7804

0.7632
0.7722

0.6140
0.7013

0.8673
0.8540

0.7843
0.7874

fXD

0.7516
0.8642

0.7563
0.8724

0.6057
0.7198

0.8678
0.9612

0.7670
0.8815

We can use the image generator library and error table to
recognize which elements in the library the components of
Sif correspond to, and set the feature values accordingly.
For instance, in the example of Sec. 5.2, the analysis of
the unordered explicit features revealed that the combina-
tion of bridge road with a Tesla, Mercedes, and Mazda
was most often misclassified. We used this information to
generate more images with this particular combination by
varying brightness and contrast.

Sec 6.3 shows how this technique leads to a larger fraction
of counterexamples that can be used for retraining.

6 Experimental Evaluation

In this section, we show how the proposed techniques can
be used to augment training sets and improve the accuracy
of the considered models. We will experiment with different
sampling methods, compare counterexample guided augmen-
tation against classic augmentation, iterate over several aug-
mentation cycles, and finally show how error tables are useful
tools for analyzing models. The implementation of the pro-
posed framework and the reported experiments are available
at https://github.com/dreossi/analyzeNN.

In all the experiments we analyzed squeezeDet [Wu et al.,
2016], a CNN real-time object detector for autonomous driv-
ing. All models were trained for 65 epochs.

The original training and test sets X and T contain
1500 and 750 pictures, respectively, randomly generated
by our image generator. The initial accuracy accfX(T) =
(0.9847, 0.9843) is relatively high (see Tab. 3). However, we
will be able to generate sets of counterexamples as large as
T on which the accuracy of fX drops down. The highlighted
entries in the tables show the best performances. Reported
values are the averages across five different experiments.

6.1 Augmentation Methods Comparison

As the first experiment, we run the counterexample aug-
mentation scheme using different sampling techniques (see
Sec. 4). Specifically, we consider uniform random sampling,
low-discrepancy Halton sequence, cross-entropy sampling,
and uniform random sampling with a diversity constraint on



the sampled points. For the latter, we adopt the distance de-
fined in Sec. 3.1 and we require that the modifications of the
counterexamples must be at least distant by 0.5 from each
other.

For every sampling method, we generate 1500 counterex-
amples, half of which are injected into the original training
set X and half are used as test sets. Let R,H,C,D de-
note uniform random, Halton, cross-entropy, and diversity
(i.e., random with distance constraint) sampling methods. Let
S ∈ {R,H,C,D} be a sampling technique. XS is the aug-
mentation of X, and TS is a test set, both generated using
S. For completeness, we also defined the test set TM con-
taining an equal mix of counterexamples generated by all the
R,H,C,D sampling methods.

Tab. 2 reports the accuracy of the models trained with vari-
ous augmentation sets evaluated on test sets of counterexam-
ples generated with different sampling techniques. The first
row reports the accuracy of the model fX trained on the origi-
nal training set X. Note that, despite the high accuracy of the
model on the original test set (accfX(T) = (0.9847, 0.9843)),
we were able to generate several test sets from the same dis-
tribution of X and T on which the model poorly performs.

The first augmentation that we consider is the standard
one, i.e., we alter the images of X using imgaug1, a Python
library for images augmentation. We augmented 50% of
the images in X by randomly cropping 10 − 20% on each
side, flipping horizontally with probability 60%, and apply-
ing Gaussian blur with σ ∈ [0.0, 3.0]. Standard augmentation
improves the accuracies on every test set. The average pre-
cision and recall improvements on the various test sets are
4.91% and 4.46%, respectively (see Row 1 Tab. 2).

Next, we augment the original training set X with
our counterexample-guided schemes (uniform random, low-
discrepancy Halton, cross-entropy, and random with distance
constraint) and test the retrained models on the various test
sets. The average precision and recall improvements for uni-
form random are 14.43% and 14.56%, for low-discrepancy
Halton 16.05% and 14.57%, for cross-entropy 16.11% and
6.18%, and for random with distance constraint 14.95% and
14.26%. First, notice the improvement in the accuracy of
the original model using counterexample-guided augmenta-
tion methods is larger compared to the classic augmenta-
tion method. Second, among the proposed techniques, cross-
entropy has the highest improvement in precision but low-
discrepancy tends to perform better than the other methods
in average for both precision and recall. This is due to the
fact that low-discrepancy sequences ensure more diversity on
the samples than the other techniques, resulting in different
pictures from which the model can learn new features or re-
inforce the weak ones.

The generation of a counterexample for the original model
fX takes in average for uniform random sampling 30s, for
Halton 92s, and for uniform random sampling with con-
straints 55s. This shows the trade-off between time and gain
in model accuracy. The maximization of the diversity of the
augmentation set (and the subsequent accuracy increase) re-
quires more iterations.

1imgaug: https://github.com/aleju/imgaug

6.2 Augmentation Loop

For this experiment, we consider only the uniform random
sampling method and we incrementally augment the training
set over several augmentation loops. The goal of this exper-
iments is to understand whether the model overfits the coun-
terexamples and see if it is possible to reach a saturation point,
i.e., a model for which we are not able to generate counterex-
amples. We are also interested in investigating the relation-
ship between the quantity of injected counterexamples and
the accuracy of the model.

Consider the i-th augmentation cycle. For every augmenta-
tion round, we generate the set of counterexamples by consid-
ering the model f

X
[i]
r

with highest average precision and re-

call. Given X
[i], our analysis tool generates a set C[i] of coun-

terexamples. We split C[i] in halves C
[i]
X

and C
[i]
T

. We use C
[i]
X

to augment the original training set X[i] and C
[i]
T

as a test set.

Specifically, the augmented training set X
[i+1]
r′ = X

[i]
r ∪ C

[i]
X

is obtained by adding misclassified images of C
[i]
X

to X
[i].

r, r′ are the ratios of misclassified images to original train-
ing examples. For instance, |X0.08| = |X| + 0.08 ∗ |X|,
where |X| is the cardinality of X. We consider the ratios
0.08, 0.17, 0.35, 0.50. We evaluate every model against ev-
ery test set.

Tab. 3 shows the accuracies for three augmentation cycles.
For each model, the table shows the average precision and re-
call with respect to the original test set T and the tests sets
of misclassified images. The generation of the first loop took
around 6 hours, the second 14 hours, the third 26 hours. We
stopped the fourth cycle after more than 50 hours. This shows
how it is increasingly hard to generate counterexamples for
models trained over several augmentations. This growing
computational hardness of counterexample generation with
the number of cycles is an informal, empirical measure of in-
creasing assurance in the machine learning model.

Notice that for every cycle, our augmentation improves the
accuracy of the model with respect to the test set. Even more
interesting is the fact that the model accuracy on the original
test set does not decrease, but actually improves over time (at
least for the chosen augmentation ratios).

6.3 Error Table-Guided Sampling

In this last experimental evaluation, we use error tables to an-
alyze the counterexamples generated for fX with uniform ran-
dom sampling. We analyzed both the ordered and unordered
features (see Sec. 5.2). The PCA analysis of ordered features
revealed the following relevant values: sharpness 0.28, con-
trast 0.33, brightness 0.44, and x position 0.77. This tells us
that the model is more sensitive to image alterations rather
than to the disposition of its elements. The occurrence count-
ing of unordered features revealed that the top three most oc-
curring car models in misclassifications are white Porsche,
yellow Corvette, and light green Fiat. It is interesting to note
that all these models have uncommon designs if compared
to popular cars. The top three most recurring background
scenes are a narrow bridge in a forest, an indoor parking lot,
and a downtown city environment. All these scenarios are
characterized by a high density of details that lead to false



Table 3: Augmentation loop. For the best (highlighted) model, a test

set C
[i]
T

and augmented training set X
[i+1]
r are generated. r is the

ratio of counterexamples to the original training set.

T C
[1]
T

C
[2]
T

C
[3]
T

fX 0.9847
0.9843

0.6957
0.7982

f
X

[1]
0.08

0.9842
0.9861

0.7630
0.8714

f
X

[1]
0.17

0.9882
0.9905

0.8197
0.9218

0.5922
0.8405

f
X

[1]
0.35

0.9843
0.9906

0.8229
0.9110

f
X

[1]
0.50

0.9872
0.9912

0.7998
0.9149

f
X

[2]
0.08

0.9947
0.9955

0.7286
0.8691

0.7159
0.8612

f
X

[2]
0.17

0.9947
0.9954

0.7424
0.8422

0.7288
0.8628

f
X

[2]
0.35

0.9926
0.9958

0.7732
0.8720

0.7570
0.8762

f
X

[2]
0.50

0.9900
0.9942

0.8645
0.9339

0.8223
0.9187

0.5308
0.7017

f
X

[3]
0.08

0.9889
0.9972

0.7105
0.8571

0.7727
0.8987

0.7580
0.8860

f
X

[3]
0.17

0.9965
0.9970

0.8377
0.9116

0.8098
0.9036

0.8791
0.9473

f
X

[3]
0.35

0.9829
0.9937

0.7274
0.8060

0.8092
0.8816

0.7701
0.8480

f
X

[3]
0.50

0.9905
0.9955

0.7513
0.8813

0.7891
0.9573

0.7902
0.9169

positives. Using the gathered information, we narrowed the
sampler space to the subsets of the modification space identi-
fied by the error table analysis. The counterexample genera-
tor was able to produce 329 misclassification with 10k itera-
tions, against the 103 of pure uniform random sampling, 287
of Halton, and 96 of uniform random with distance constraint.

Finally, we retrained f on the training set XE that includes
250 images generated using the error table analysis. The ob-
tained accuracies are accfXE (TR) = (0.7490, 0.8664),

accfXE (TH) = (0.7582, 0.8751), accfXE (TD) =

(0.8402, 0.9438), and accfXE (TM ) = (0.7659, 0.8811).
Note how error table-guided sampling reaches levels of
accuracy comparable to other counterexample-guided
augmentation schemes (see Tab. 2) but with a third of
augmenting images.

7 Conclusion

In this paper, we present a technique for augmenting machine
learning (ML) data sets with counterexamples. The coun-
terexamples we generate are synthetically-generated data
items that are misclassified by the ML model. Since these
items are synthesized algorithmically, their ground truth la-
bels are also automatically generated. We show how error
tables can be used to effectively guide the augmentation pro-
cess. Results on training deep neural networks illustrate that
our augmentation technique performs better than standard
augmentation methods for image classification. Moreover,
as we iterate the augmentation loop, it gets computationally
harder to find counterexamples. We also show that error ta-
bles can be effective at achieving improved accuracy with a

smaller data augmentation.
We note that our proposed methodology can also be ex-

tended to the use of counterexamples from “system-level”
analysis and verification, where one analyzes the correct-
ness of an overall system (e.g., an autonomous driving func-
tion) in the context of a surrounding environment [Dreossi
et al., 2017a]. Performing data augmentation with such “se-
mantic counterexamples” is an interesting direction for future
work [Dreossi et al., 2018].

Our approach can be viewed as an instance of
counterexample-guided inductive synthesis (CEGIS), a com-
mon paradigm in program synthesis [Solar-Lezama et al.,
2006; Alur et al., 2013]. In our case, the program being
synthesized is the ML model. CEGIS itself is a special case
of oracle-guided inductive synthesis (OGIS) [Jha and Seshia,
2017]. For future work, it would be interesting to explore the
use of oracles other than counterexample-generating oracles
to augment the data set, and to compare our counterexample-
guided data augmentation technique to other oracle-guided
data augmentation methods.

Finally, in this work we decided to rely exclusively on
simulated, synthesized data to make sure that the training,
testing, and counterexample sets come from the same data
source. It would be interesting to extend our augmentation
method to real-world data; e.g., images of road scenes col-
lected during driving. For this, one would need to use tech-
niques such as domain adaptation or transfer learning [Tobin
et al., 2017] that can adapt the synthetically-generated data to
the real world.
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