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Abstract. We introduce the first program synthesis engine imple-
mented inside an SMT solver. We present an approach that extracts
solution functions from unsatisfiability proofs of the negated form of
synthesis conjectures. We also discuss novel counterexample-guided tech-
niques for quantifier instantiation that we use to make finding such proofs
practically feasible. A particularly important class of specifications are
single-invocation properties, for which we present a dedicated algorithm.
To support syntax restrictions on generated solutions, our approach can
transform a solution found without restrictions into the desired syntactic
form. As an alternative, we show how to use evaluation function axioms
to embed syntactic restrictions into constraints over algebraic datatypes,
and then use an algebraic datatype decision procedure to drive synthe-
sis. Our experimental evaluation on syntax-guided synthesis benchmarks
shows that our implementation in the CVC4 SMT solver is competitive
with state-of-the-art tools for synthesis.

1 Introduction

The synthesis of functions that meet a given specification is a long-standing
fundamental goal that has received great attention recently. This functionality
directly applies to the synthesis of functional programs [17,18] but also trans-
lates to imperative programs through techniques that include bounding input
space, verification condition generation, and invariant discovery [28-30]. Func-
tion synthesis is also an important subtask in the synthesis of protocols and reac-
tive systems, especially when these systems are infinite-state [3,27]. The SyGuS
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format and competition [1,2,22] inspired by the success of the SMT-LIB and
SMT-COMP efforts [5], has significantly improved and simplified the process of
rigorously comparing different solvers on synthesis problems.

Connection between synthesis and theorem proving was established already
in early work on the subject [12,20]. It is notable that early research [20] found
that the capabilities of theorem provers were the main bottleneck for synthesis.
Taking lessons from automated software verification, recent work on synthesis
has made use of advances in theorem proving, particularly in SAT and SMT
solvers. However, that work avoids formulating the overall synthesis task as a
theorem proving problem directly. Instead, existing work typically builds cus-
tom loops outside of an SMT or SAT solver, often using numerous variants of
counterexample-guided synthesis. A typical role of the SMT solver has been to
validate candidate solutions and provide counterexamples that guide subsequent
search, although approaches such as symbolic term exploration [15] also use an
SMT solver to explore a representation of the space of solutions. In existing
approaches, SMT solvers thus receive a large number of separate queries, with
limited communication between these different steps.

Contributions. In this paper, we revisit the formulation of the overall synthesis
task as a theorem proving problem. We observe that SMT solvers already have
some of the key functionality for synthesis; we show how to improve existing
algorithms and introduce new ones to make SMT-based synthesis competitive.
Specifically, we do the following.

— We show how to formulate an important class of synthesis problems as the
problem of disproving universally quantified formulas, and how to synthesize
functions automatically from selected instances of these formulas.

— We present counterexample-guided techniques for quantifier instantiation,
which are crucial to obtain competitive performance on synthesis tasks.

— We discuss techniques to simplify the synthesized functions, to help ensure
that they are small and adhere to specified syntactic requirements.

— We show how to encode syntactic restrictions using theories of algebraic
datatypes and axiomatizable evaluation functions.

— We show that for an important class of single-invocation properties, the syn-
thesis of functions from relations, the implementation of our approach in
CV(4 significantly outperforms leading tools from the SyGuS competition.

Preliminaries. Since synthesis involves finding (and so proving the existence)
of functions, we use notions from many-sorted second-order logic to define the
general problem. We fix a set S of sort symbols and an (infix) equality predicate
~ of type o x ¢ for each ¢ € S. For every non-empty sort sequence o € ST
with o = o01---0,0, we fix an infinite set X, of variables x?""? of type
o1 X -+ X o, — o. For each sort ¢ we identity the type () — o with ¢ and
call it a first-order type. We assume the sets X, are pairwise disjoint and let
X be their union. A signature X' consists of a set X* C S of sort symbols
and a set X of function symbols f71 "% of type o1 X -+ X 0, — 0, where
n > 0 and oy,...,0,,0 € X5 We drop the sort superscript from variables or
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function symbols when it is clear from context or unimportant. We assume that
signatures always include a Boolean sort Bool and constants T and L of type Bool
(respectively, for true and false). Given a many-sorted signature X' together with
quantifiers and lambda abstraction, the notion of well-sorted (X-)term, atom,
literal, clause, and formula with variables in X are defined as usual in second-
order logic. All atoms have the form s ~ t. Having =~ as the only predicate
symbol causes no loss of generality since we can model other predicate symbols
as function symbols with return sort Bool. We will, however, write just ¢ in place
of the atom ¢t &~ T, to simplify the notation. A X-term/formula is ground if it has
no variables, it is first-order if it has only first-order variables, that is, variables
of first-order type. When & = (z1,...,,) is a tuple of variables and @ is either
V or 3, we write Qx ¢ as an abbreviation of Qz1 - Qx, . If e is a X-term or
formula and & = (x1,...,x,) has no repeated variables, we write e[x] to denote
that all of e’s free variables are from «x; if t = (¢1,...,t,) is a term tuple, we write
e[t] for the term or formula obtained from e by simultaneously replacing, for all
i=1,...,n, every occurrence of x; in e by t;. A X-interpretation 7 maps: each
o € X® to a non-empty set o, the domain of o in Z, with Bool* = {T,L}; each
uoton? ¢ XU X! to a total function u? : 0 x---x 0L — o7 whenn > 0 and to
an element of 07 when n = 0. The interpretation Z induces as usual a mapping
from terms t of sort o to elements tZ of oZ. If x1,...,x, are variables and
U1, ..., 0y, are well-typed values for them, we denote by Z[x1 — v1,..., Ty — Uy)
the Y-interpretation that maps each x; to v; and is otherwise identical to Z.
A satisfiability relation between X-interpretations and Y-formulas is defined
inductively as usual.

A theory is a pair T' = (X, I) where X' is a signature and I is a non-empty class
of Y-interpretations, the models of T, that is closed under variable reassignment
(i.e., every Y-interpretation that differs from one in I only in how it interprets
the variables is also in I) and isomorphism. A Y-formula @[z] is T-satisfiable
(resp., T-unsatisfiable) if it is satisfied by some (resp., no) interpretation in I.
A satisfying interpretation for ¢ models (or is a model of) ¢. A formula ¢ is
T-valid, written =1 ¢, if every model of T is a model of ¢. Given a fragment L of
the language of Y-formulas, a X-theory T is satisfaction complete with respect
to L if every T-satisfiable formula of L is T-valid. In this paper we will consider
only theories that are satisfaction complete wrt the formulas we are interested in.
Most theories used in SMT (in particular, all theories of a specific structure such
various theories of the integers, reals, strings, algebraic datatypes, bit vectors,
and so on) are satisfaction complete with respect to the class of closed first-
order Y-formulas. Other theories, such as the theory of arrays, are satisfaction
complete only with respect to considerably more restricted classes of formulas.

2 Synthesis Inside an SMT Solver

We are interested in synthesizing computable functions automatically from for-
mal logical specifications stating properties of these functions. As we show later,
under the right conditions, we can formulate a version of the synthesis problem in
first-order logic alone, which allows us to tackle the problem using SMT solvers.
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We consider the synthesis problem in the context of some theory T of sig-
nature X that allows us to provide the function’s specification as a Y-formula.
Specifically, we consider synthesis conjectures expressed as (well-sorted) formulas
of the form

E'fo'l"'o'no' vx‘fl fo;" P[f,l'l,---,xn] (1)

or 3fVx P[f,x], for short, where the second-order variable f represents the
function to be synthesized and P is a X-formula encoding properties that f
must satisfy for all possible values of the input tuple @ = (z1,...,2,). In this
setting, finding a witness for this satisfiability problem amounts to finding a
function of type o1 X -+ X 0, — o in some model of T that satisfies Va P[f, x].
Since we are interested in automatic synthesis, we the restrict ourselves here to
methods that search over a subspace S of solutions representable syntactically
as X-terms. We will say then that a synthesis conjecture is solvable if it has a
syntactic solution in S.

In this paper we present two approaches that work with classes L of syn-
thesis conjectures and X-theories T' that are satisfaction complete wrt L. In
both approaches, we solve a synthesis conjecture 3f Va P[f, ] by relying on
quantifier-instantiation techniques to produce a first-order X-term t[x] of sort
o such that Va P[t, x| is T-satisfiable. When this ¢ is found, the synthesized
function is denoted by Ax.t.

In principle, to determine the satisfiability of 3f Ve P[f, ] an SMT solver
supporting the theory T can consider the satisfiability of the (open) formula
Va P[f, x] by treating f as an uninterpreted function symbol. This sort of Skolem-
ization is not usually a problem for SMT solvers as many of them can process
formulas with uninterpreted symbols. The real challenge is the universal quan-
tification over x because it requires the solver to construct internally (a finite
representation of) an interpretation of f that is guaranteed to satisfy P[f, ] for
every possible value of  [11,24].

More traditional SMT solver designs to handle universally quantified formu-
las have focused on instantiation-based methods to show unsatisfiability. They
generate ground instances of those formulas until a refutation is found at the
ground level [10]. While these techniques are incomplete in general, they have
been shown to be quite effective in practice [9,25]. For this reason, we advo-
cate approaches to synthesis geared toward establishing the unsatisfiability of
the negation of the synthesis conjecture:

Vfdx -P[f, ] (2)

Thanks to our restriction to satisfaction complete theories, (2) is T-unsatisfiable
exactly when the original synthesis conjecture (1) is T-satisfiable.! Moreover, as

1 Other approaches in the verification and synthesis literature also rely implicitly, and
in some cases unwittingly, on this restriction or stronger ones. We make satisfaction
completeness explicit here as a sufficient condition for reducing satisfiability problems
to unsatisfiability ones.
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we explain in this paper, a syntactic solution Az.t for (1) can be constructed
from a refutation of (2), as opposed to being extracted from the valuation of f
in a model of Yz P[f, x].

Two Synthesis Methods. Proving (2) unsatisfiable poses its own challenge
to current SMT solvers, namely, dealing with the second-order universal quan-
tification of f. To our knowledge, no SMT solvers so far had direct support
for higher-order quantification. In the following, however, we describe two spe-
cialized methods to refute negated synthesis conjectures like (2) that build on
existing capabilities of these solvers.

The first method applies to a restricted, but fairly common, case of syn-
thesis problems 3f Va P[f, x] where every occurrence of f in P is in terms of
the form f(x). In this case, we can express the problem in the first-order form
Va.Jy.Qlx, y] and then tackle its negation using appropriate quantifier instanti-
ation techniques.

The second method follows the syntaz-guided synthesis paradigm [1,2] where
the synthesis conjecture is accompanied by an explicit syntactic restriction on
the space of possible solutions. Our syntax-guided synthesis method is based on
encoding the syntax of terms as first-order values. We use a deep embedding into
an extension of the background theory T with a theory of algebraic data types,
encoding the restrictions of a syntax-guided synthesis problem.

For the rest of the paper, we fir a X-theory T and a class P of quantifier-free
X-formulas P[f,x] such that T is satisfaction complete with respect to the class
of synthesis conjectures L := {3fVa P[f,x] | P € P}.

3 Refutation-Based Synthesis

When axiomatizing properties of a desired function f of type o1 X -+ X 0, — 0,
a particularly well-behaved class are single-invocation properties (see, e.g., [13]).
These properties include, in particular, standard function contracts, so they can
be used to synthesize a function implementation given its postcondition as a
relation between the arguments and the result of the function. This is also the
form of the specification for synthesis problems considered in complete functional
synthesis [16-18]. Note that, in our case, we aim to prove that the output exists
for all inputs, as opposed to, more generally, computing the set of inputs for
which the output exists.

A single-invocation property is any formula of the form Q[z, f(x)] obtained
as an instance of a quantifier-free formula Q[x,y| not containing f. Note that
the only occurrences of f in Q[x, f(x)] are in subterms of the form f(x) with the
same tuple x of pairwise distinct variables.? The conjecture 3f Vx Q[z, f(x)] is
logically equivalent to the first-order formula

Ve 3y Q[z, ] (3)

2 An example of a property that is not single-invocation is Va1 z2 f(x1,z2) = f(z2,z1).
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By the semantics of V and 3, finding a model Z for it amounts (under the
axioms of choice) to finding a function h : 0% x --- x 0 — o such that for all
s € of x --- x ok, the interpretation Z|x +— s,y > h(s)] satisfies Q[x,y]. This
section considers the case when P consists of single-invocation properties and
describes a general approach for determining the satisfiability of formulas like (3)
while computing a syntactic representation of a function like h in the process.
For the latter, it will be convenient to assume that the language of functions
contains an if-then-else operator ite of type Bool x ¢ x ¢ — ¢ for each sort o,
with the usual semantics.

If (3) belongs to a fragment that admits quantifier elimination in 7', such
as the linear fragment of integer arithmetic, determining its satisfiability can be
achieved using an efficient method for quantifier elimination [7,21]. Such cases
have been examined in the context of software synthesis [17]. Here we propose
instead an alternative instantiation-based approach aimed at establishing the
unsatisfiability of the negated form of (3):

Jz Vy -Qlx, ] (4)

or, equivalently, of a Skolemized version Yy —Qlk,y] of (4) for some tuple k of
fresh uninterpreted constants of the right sort. Finding a 7T-unsatisfiable finite
set I" of ground instances of —=Q[k, y|, which is what an SMT solver would do to
prove the unsatisfiability of (4), suffices to solve the original synthesis problem.
The reason is that, then, a solution for f can be constructed directly from I', as
indicated by the following result.

Proposition 1. Suppose some set I' = {-Q[k,t1]k]],...,Q[k,t,[k]]} where
ti[x], ..., tp[x] are X-terms of sort o is T-unsatisfiable. One solution for

Af Ve Qx, f(x)] is Ax.ite(Q[z, tp), tp, (- - ite(Q[z, L], ta, t1) -+ +)).

Example 1. Let T be the theory of linear integer arithmetic with the usual sig-
nature and integer sort Int. Let @ = (z1, 22). Now consider the property

Plf,al:=f(w) 2 21 A f() 2 22 A (f(@) m a1V f(z) = 22) (5)

with f of type Int x Int — Int and x1, x5 of type Int. The synthesis problem
3f Va P[f, x] is solved exactly by the function that returns the maximum of its
two inputs. Since P is a single-invocation property, we can solve that problem
by proving the T-unsatisfiability of the conjecture Jx Vy -Q[x, y] where

Qe yl =y>zANy>a2A(y= 21 Vy=x2) (6)

After Skolemization the conjecture becomes Vy—Q[a,y] for fresh constants
a = (a1,a2). When asked to determine the satisfiability of that conjecture an
SMT solver may, for instance, instantiate it with a; and then as for y, produc-
ing the T-unsatisfiable set {—Q[a, a1], 7Q[a, az]}. By Proposition 1, one solution
for Ve P[f,x] is f = Ax.ite(Q[z, z2], z2, x1), which simplifies to Az.ite(xy >
Z1,%9,x1), representing the desired maximum function. |
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1. I' := {G = Q[k, e]} where k consists of distinct fresh constants
2. Repeat
If there is a model Z of T satisfying I" and G
then let I" := I" U {=Q][k, t[k]]} for some X-term ¢[x] such that t[k]* = e’;
otherwise, return “no solution found”
until I” contains a T-unsatisfiable set {—Q[k, t1[K]], ..., ~Q[k, t,[k]]}
3. Return A\zx. ite(Qlz, tp[x]], tpx], (- ite(Q[z, t2[x]], t2[x], t1]x]) ---)) for f

Fig.1. A refutation-based synthesis procedure for single-invocation property

3fVa Qlx, f(x)].

Synthesis by Counterexample-Guided Quantifier Instantiation. Given
Proposition 1, the main question is how to get the SMT solver to generate the
necessary ground instances from Yy =@k, y]. Typically, SMT solvers that reason
about quantified formulas use heuristic quantifier instantiation techniques based
on E-matching [9], which instantiates universal quantifiers with terms occurring
in some current set of ground terms built incrementally from the input formula.
Using E-matching-based heuristic instantiation alone is unlikely to be effective in
synthesis, where required terms need to be synthesized based on the semantics of
the input specification. This is confirmed by our preliminary experiments, even
for simple conjectures. We have developed instead a specialized new technique,
which we refer to as counterezample-guided quantifier instantiation, that allows
the SMT solver to quickly converge in many cases to the instantiations that
refute the negated synthesis conjecture (4).

The new technique is similar to a popular scheme for synthesis known as
counterexample-guided inductive synthesis, implemented in various synthesis
approaches (e.g., [14,29]), but with the major difference of being built-in directly
into the SMT solver. The technique is illustrated by the procedure in Fig.1,
which grows a set I' of ground instances of =Q[k, y] starting with the formula
G = QJk, €] where G and e are fresh constants of sort Bool and o, respectively.
Intuitively, e represents a current, partial solution for the original synthesis con-
jecture 3f Va Q[x, f(x)], while G represents the possibility that the conjecture
has a (syntactic) solution in the first place.

The procedure, which may not terminate in general, terminates either when
I' becomes unsatisfiable, in which case it has found a solution, or when I is
still satisfiable but all of its models falsify G, in which case the search for a
solution was inconclusive. The procedure is not solution-complete, that is, it is
not guaranteed to return a solution whenever there is one. However, thanks to
Proposition 1, it is solution-sound: every A-term it returns is indeed a solution
of the original synthesis problem.

Finding Instantiations. The choice of the term ¢ in Step 2 of the procedure
is intentionally left under Specified because it can be done in a number of ways.
Having a good heuristic for such instantiations is, however, critical to the effec-
tiveness of the procedure in practice. In a Y-theory T, like integer arithmetic,
with a fixed interpretation for symbols in X' and a distinguished set of ground
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J)-terms denoting the elements of a sort, a simple, if naive, choice for ¢ in Fig. 1
is the distinguished term denoting the element eZ. For instance, if o is Int in
integer arithmetic, ¢ could be a concrete integer constant (0,41,+£2,...). This
choice amounts to testing whether points in the codomain of the sought function
f satisfy the original specification P.

More sophisticated choices for ¢, in particular where ¢ contains the variables
x, may increase the generalization power of this procedure and hence its ability
to find a solution. For instance, our present implementation in the cvc4 solver
relies on the fact that the model Z in Step 2 is constructed from a set of equiva-
lence classes over terms computed by the solver during its search. The procedure
selects the term ¢ among those in the equivalence class of e, other than e itself.
For instance, consider formula (6) from the previous example that encodes the
single-invocation form of the specification for the max function. The DPLL(T)
architecture, on which cvcd is based, finds a model for Q[a, e] with a = (a1, a2)
only if it can first find a subset M of that formula’s literals that collectively entail
Q[a, €] at the propositional level. Due to the last conjunct of (6), M must include
either e &~ a; or e = az. Hence, whenever a model can be constructed for Q[a, €],
the equivalence class containing e must contain either a; or as. Thus using the
above selection heuristic, the procedure in Fig.1 will, after at most two itera-
tions of the loop in Step 2, add the instances —Q[a,a;] and —Q[a, as] to I'. As
noted in Example 1, these two instances are jointly T-unsatisfiable. We expect
that more sophisticated instantiation techniques can be incorporated. In par-
ticular, both quantifier elimination techniques [7,21] and approaches currently
used to infer invariants from templates [8,19] are likely to be beneficial for cer-
tain classes of synthesis problems. The advantage of developing these techniques
within an SMT solver is that they directly benefit both synthesis and verifica-
tion in the presence of quantified conjectures, thus fostering cross-fertilization
between different fields.

4 Refutation-Based Syntax-Guided Synthesis

In syntax-guided synthesis, the functional specification is strengthened by an
accompanying set of syntactic restrictions on the form of the expected solutions.
In a recent line of work [1,2,22] these restrictions are expressed by a grammar R
(augmented with a kind of let binder) defining the language of solution terms,
or programs, for the synthesis problem. In this section, we present a variant of
the approach in the previous section that incorporates the syntactic restriction
directly into the SMT solver via a deep embedding of the syntactic restriction
R into the solver’s logic. The main idea is to represent R as a set of algebraic
datatypes and build into the solver an interpretation of these datatypes in terms
of the original theory 7'

While our approach is parametric in the background theory T" and the restric-
tion R, it is best explained here with a concrete example.
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Vzyev(xi,z,y) ~x Vs1 s2xzyev(leq(si, s2),x,y) = (ev(s1, z,y) < ev(sz,z,y))
Vzyev(xe,z,y) ®y Vs1 s2xyev(eq(st, s2),z,y) ~ (ev(s1,z,y) ~ ev(s2,x,y))
Vz y ev(zero,z,y) = 0 Ver cx zyev(and(ci, c2),x,y) = (ev(ci, z,y) Aev(ce, z,y))
Vzyev(one,z,y) = 1 Vexyev(not(c), z,y) = —ev(c, z,y)

Vs1 sz zy ev(plus(si, s2),z,y) = ev(si,z,y) + ev(sa, x,y)
Vs1 s2 zy ev(minus(si, s2),x,y) = ev(s1, z,y) — ev(sz, z,y)
Vesy sz xy ev(if(c, s1,82), 2,y) = ite(ev(c, z,y), ev(s1, x,y),ev(s2, z,y))

Fig. 2. Axiomatization of the evaluation operators in grammar R from Example 2.

Ezample 2. Consider again the synthesis conjecture (6) from Example 1 but now
with a syntactic restriction R for the solution space expressed by these algebraic
datatypes:

S = xy|x2]zero|one|plus(S,S) | minus(S,S) | if(C,S,S)
C := leq(S,S) | eq(S,S) | and(C, C) | not(C)

The datatypes are meant to encode a term signature that includes nullary con-
structors for the variables x; and x9 of (6), and constructors for the symbols of
the arithmetic theory T'. Terms of sort S (resp., C) refer to theory terms of sort
Int (resp., Bool).

Instead of the theory of linear integer arithmetic, we now consider its com-
bination Tp with the theory of the datatypes above extended with two evalua-
tion operators, that is, two function symbols eyS*!ntxInt=Int 54 gyCxIntxint—Bool
respectively embedding S in Int and C in Bool. We define T so that all of its
models satisfy the formulas in Fig. 2. The evaluation operators effectively define
an interpreter for programs (i.e., terms of sort S and C) with input parameters
r1 and x».

It is possible to instrument an SMT solver that supports user-defined
datatypes, quantifiers and linear arithmetic so that it constructs automatically
from the syntactic restriction R both the datatypes S and C and the two eval-
uation operators. Reasoning about S and C is done by the built-in subsolver
for datatypes. Reasoning about the evaluation operators is achieved by reduc-
ing ground terms of the form ev(d, t1,t3) to smaller terms by means of selected
instantiations of the axioms from Fig. 2, with a number of instances proportional
to the size of term d. It is also possible to show that Tp is satisfaction complete
with respect to the class

Lo := {3gVz P[Az.ev(g, 2), x| | P[f,x] € P}

where instead of terms of the form f(¢;,¢3) in P we have, modulo S-reductions,
terms of the form ev(g,t1,t2).> For instance, the formula P[f,z] in Eq. (5) from
Example 1 can be restated in Tp as the formula below where g is a variable of
type S:

3 We stress again, that both the instrumentation of the solver and the satisfaction
completeness argument for the extended theory are generic with respect to the syn-
tactic restriction on the synthesis problem and the original satisfaction complete
theory T
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Pog,x] :=ev(g,x) > 1 Nev(g,x) > 22 A (ev(g,x) = 71 V ev(g, ) = x2)

In contrast to P[f,z], the new formula P,[g, ] is first-order, with the role of
the second-order variable f now played by the first-order variable g.

When asked for a solution for (5) under the restriction R, the instru-
mented SMT solver will try to determine instead the 7Tp-unsatisfiability
of Vg3x—Plg,x]. Instantiating g in the latter formula with s :=
if (leq(x1,x2),X2,x1), say, produces a formula that the solver can prove to be
Tp-unsatisfiable. This suffices to show that the program ite(x; < xs,x2,x1), the
analogue of s in the language of T', is a solution of the synthesis conjecture (5)
under the syntactic restriction R. ]

1. I':=0
2. Repeat
(a) Let k be a tuple of distinct fresh constants.
If there is a model Z of Tp satistying I" and G, then I" := I' U {=P.,[e*, K]} ;
otherwise, return ‘“no solution found”
(b) If there is a model J of Tp satisfying I, then I" := I' U {G = Pue, kj]} R
otherwise, return e as a solution

Fig. 3. A refutation-based syntax-guided synthesis procedure for 3f Ve Pe,[f, x].

To prove the unsatisfiability of formulas like Vg 3@ —Pe,[g, ] in the exam-
ple above we use a procedure similar to that in Sect. 3, but specialized to the
extended theory Tp. The procedure is described in Fig. 3. Like the one in Fig. 1,
it uses an uninterpreted constant e representing a solution candidate, and a
Boolean variable G representing the existence of a solution. The main difference,
of course, is that now e ranges over the datatype representing the restricted
solution space. In any model of T, a term of datatype sort evaluates to a term
built exclusively with constructor symbols. This is why the procedure returns
in Step 2b the value of e in the model Z found in Step 2a. As we showed in
the previous example, a program that solves the original problem can then be
reconstructed from the returned datatype term.

Implementation. We implemented the procedure in the cvc4 solver. Figure 4
shows a run of that implementation over the conjecture from Example 2. In this
run, note that each model found for e satisfies all values of counterexamples found
for previous candidates. After the sixth iteration of Step 2a, the procedure finds
the candidate if (leq(x1,X2), X2, X1 ), for which no counterexample exists, indicating
that the procedure has found a solution for the synthesis conjecture. Currently,
this problem can be solved in about 0.5s in the latest development version of
CvC4.

To make the procedure practical it is necessary to look for small solutions to
synthesis conjectures. A simple way to limit the size of the candidate solutions is
to consider smaller programs before larger ones. Adapting techniques for finding
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Step Model Added Formula
2a {er—>x1,...} ﬂPev[xl,al,bl]
2b {a1|—>0,b1|—>1,...} G:>Pe\,[e,0,1}
2a {errxa,...} —Pey[x2, a2, ba]
26 {az—1,ba—0,...} G = Pule, 1,0]
2a {e+>one,...} —Pey[one, as, bs]
2b {az—2,bg—0,...} G = P.le, 2,0]
2a  {e > plus(xi,x2),...} = Pey[plus(x1,x2), aa, ba]
26 {as>1,bs1,...} G = Pule,1,1]
2a  {e > if(leq(x1,0ne),one,x1),...} —Plif(leq(x1,one),one, x1),as, bs]
2b {35'—> 1,b5'—>2,...} GéPev[e,l,Q}
2a  {e > if(leq(x1,x2),X2,X1),...} = Pey[if(leq(x1, x2), X2, X1), as, bg]
2b  none
Fori=1,...,6, a; and b; are fresh constants of type Int.

Fig. 4. A run of the procedure from Fig. 3.

finite models of minimal size [26], we use a strategy that starting, from n = 0,
searches for programs of size n + 1 only after its has exhausted the search for
programs of size n. In solvers based on the DPLL(T) architecture, like cvc4,
this can be accomplished by introducing a splitting lemma of the form (size(e) <
0V —size(e) < 0) and asserting size(e) < 0 as the first decision literal, where size
is a function symbol of type o — Int for every datatype sort ¢ and stands for the
function that maps each datatype value to its term size (i.e., the number of non-
nullary constructor applications in the term). We do the same for size(e) < 1
if and when —size(e) < 0 becomes asserted. We extended the procedure for
algebraic datatypes in cvc4 [6] to handle constraints involving size. The extended
procedure remains a decision procedure for input problems with a concrete upper
bound on terms of the form size(u), for each variable or uninterpreted constant
u of datatype sort in the problem. This is enough for our purposes since the only
term u like that in our synthesis procedure is e.

Proposition 2. With the search strategy above, the procedure in Fig. 3 has the
following properties:

1. (Solution Soundness) Every term it returns can be mapped to a solution of
the original synthesis conjecture 3f Va P[f, 2] under the restriction R.

2. (Refutation Soundness) If it answers “no solution found”, the original con-
jecture has no solutions under the restriction R.

3. (Solution Completeness) If the original conjecture has a solution under R,
the procedure will find one.

Note that by this proposition the procedure can diverge only if the input
synthesis conjecture has no solution. We refer the reader to a longer version of
this paper for a proof of Proposition 2 [23]. For a general idea, the proof of solu-
tion soundness is based on the observation that when the procedure terminates
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at Step 2b, I" has an unsatisfiable core with just one instance of =P[g, x]. The
procedure is refutation sound since when no model of I" in Step 2a satisfies G, we
have that even an arbitrary e cannot satisfy the current set of instances added
to I' in Step 2b. Finally, the procedure is solution complete first of all because
Step 2a and 2b are effective thanks to the decidability of the background theory
Tp. Each execution of Step 2a is guaranteed to produce a new candidate since
Tp is also satisfaction complete. Thus, in the worst case, the procedure amounts
to an enumeration of all possible programs until a solution is found.

5 Single Invocation Techniques for Syntax-Guided
Problems

In this section, we considered the combined case of single-invocation synthesis
conjectures with syntactic restrictions. Given a set R of syntactic restrictions
expressed by a datatype S for programs and a datatype C for Boolean expres-
sions, consider the case where (i) S contains the constructor if : CxS xS — S
(with the expected meaning) and (i) the function to be synthesized is specified
by a single-invocation property that can be expressed as a term of sort C. This
is the case for the conjecture from Example 2 where the property Pe[g, ] can
be rephrased as:

Pclg, ] := ev(and(leq(x1, ), and(leq(xz, 9), or(eq(g,x1), eq(g,%2)))), ) (7)

where again g has type S, © = (x1,22), and z; and x5 have type Int. The
procedure in Fig. 1 can be readily modified to apply to this formula, with Pc[g, k]
and g taking the role respectively of Q[k, y] and y in that figure, since it generates
solutions meeting our syntactic requirements. Running this modified procedure
instead the one in Fig. 3 has the advantage that only the outputs of a solution
need to be synthesized, not conditions in ite-terms. However, in our experimental
evaluation found that the overhead of using an embedding into datatypes for
syntax-guided problems is significant with respect to the performance of the
solver on problems with no syntactic restrictions. For this reason, we advocate an
approach for single-invocation synthesis conjectures with syntactic restrictions
that runs the procedure from Fig.1 as is, ignoring the syntactic restrictions
R, and subsequently reconstructs from its returned solution one satisfying the
restrictions. For that it is useful to assume that terms ¢ in T' can be effectively
reduced to some (T-equivalent and unique) normal form, which we denote by ¢ |.

Say the procedure from Fig. 1 returns a solution Ax.t for a function f. To
construct from that a solution that meets the syntactic restrictions specified by
datatype S, we run the iterative procedure described in Fig. 5. This procedure
maintains an evolving set A of triples of the form (¢, s, D), where D is a datatype,
t is a term in normal form, s is a term satisfying the restrictions specified by D.
The procedure incrementally makes calls to the subprocedure rcon, which takes
a normal form term ¢, a datatype D and the set A above, and returns a pair
(s,U) where s is a term equivalent to ¢ in T, and U is a set of pairs (s, D) where
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1. A=0;t =t
2. fori=1,2,...
@ (s,U) :=rcon(t,S, A);
(b) if U is empty, return s; otherwise, for each datatype D; occurring in U
let d; be the 7' term in a fair enumeration of the elements of D;
let ¢; be the analogue of d; in the background theory T’
add (tz‘\l,, ti, D]') to A

rcon(t, D, A)
if (t,s, D) € A, return (s, 0); otherwise, do one of the following:
(1) choose a f(t1,...,tn) s.t. f(t1,... t,L)i =t and f has an analogue ¢*~-P»? in D
let (s, U;) = rcon(t; |, D7,A) fori =1,.
return (f(s1,...,8n), U L UUy)
(2) return (¢, {(t, D)})

Fig. 5. A procedure for finding a term equivalent to ¢ that meets the syntactic restric-
tions specified by datatype S.

s’ is a subterm of s that fails to satisfy the syntactic restriction expressed by
datatype D’. Overall, the procedure alternates between calling rcon and adding
triples to A until rcon(t, D, A) returns a pair of the form (s, ), in which case s
is a solution satisfying the syntactic restrictions specified by S.

Ezample 3. Say we wish to construct a solution equivalent to A\xy xo.21 + (2% 22)
that meets restrictions specified by datatype S from Example 2. To do so, we let
A =10, and call rconggx1+(2*x2)) 1,S, A). Since A is empty and + is the analogue
of constructor plus™> of S, assuming (21 + (2 * x2)) | = 21 + (2 * 22), we may
choose to return a pair based on the result of calling rcon on 1 | and (2 * x2) |.
Since x3 is a constructor of S and 1 | = 21, rcon(z1,S, A) returns (1, ). Since
S does not have a constructor for *, we must either choose a term ¢ such that
t| = (2xx2) | where the topmost symbol of ¢ is the analogue of a constructor in
S, or otherwise return the pair (2«2, {(2*x2,S)}). Suppose we do the latter, and
thus rcon(zy + (2% x3),S, A) returns (1 + (2% 2x2), {(2*%x2,S)}). Since the second
component of this pair is not empty, we pick in Step 2b the first element of S,
x; say, and add (z1,21,S) to A. We then call rcon((z1 + (2 * x2)) |, S, A) which
by the same strategy above returns (x1 + (2 * x2),{(2 * 22,5)}). This process
continues until we pick, the term plus(xz,x2) say, whose analogue is za + zo.
Assuming (z2 + 22) | = (2 * x2) |, after adding the pair (2 % z3,29 + 22,5) to
A, rcon((x1 + (2 x m2)) |, S, A) returns the pair (z; + (72 + z2),0), indicating
that A\xy xo. 21 + (22 + x2) is equivalent to Azq zo. 21 + (2 x 23), and meets the
restrictions specified by S. ]

This procedure depends upon the use of normal forms for terms. It should be
noted that, since the top symbol of ¢ is generally ite, this normalization includes
both low-level rewriting of literals within ¢, but also includes high-level rewriting
techniques such as ite simplification, redundant subterm elimination and destruc-
tive equality resolution. Also, notice that we are not assuming that t | = s | if
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and only if ¢ is equivalent to s, and thus normal forms only underapproximate
an equivalence relation between terms. Having a (more) consistent normal form
for terms allows us to compute a (tighter) underapproximation, thus improv-
ing the performance of the reconstruction. In this procedure, we use the same
normal form for terms that is used by the individual decision procedures of
cvc4. This is unproblematic for theories such as linear arithmetic whose normal
form for terms is a sorted list of monomials, but it can be problematic for theo-
ries such as bitvectors. As a consequence, we use several optimizations, omitted
in the description of the procedure in Fig.5, to increase the likelihood that the
procedure terminates in a reasonable amount of time. For instance, in our imple-
mentation the return value of rcon is not recomputed every time A is updated.
Instead, we maintain an evolving directed acyclic graph (dag), whose nodes are
pairs (¢,.5) for term ¢ and datatype S (the terms we have yet to reconstruct),
and whose edges are the direct subchildren of that term. Datatype terms are
enumerated for all datatypes in this dag, which is incrementally pruned as pairs
are added to A until it becomes empty. Another optimization is that the pro-
cedure rcon may choose to try simultaneously to reconstruct multiple terms of
the form f(¢1,...,t,) when matching a term ¢ to a syntactic specification S,
reconstructing ¢ when any such term can be reconstructed.

Although the overhead of this procedure can be significant when large sub-
terms do not meet the syntactic restrictions, we found that in practice it quickly
terminates successfully for a majority of the solutions we considered where recon-
struction was possible, as we discuss in the next section. Furthermore, it makes
our implementation more robust, since it effectively treats in the same way dif-
ferent properties that are equal modulo normalization (which is parametric in
the built-in theories we consider).

6 Experimental Evaluation

We implemented the techniques from the previous sections in the SMT solver
cved [4], which has support for quantified formulas and a wide range of theo-
ries including arithmetic, bitvectors, and algebraic datatypes. We evaluated our
implementation on 243 benchmarks used in the SyGuS 2014 competition [1]
that were publicly available on the StarExec execution service [31]. The bench-
marks are in a new format for specifying syntax-guided synthesis problems [22].
We added parsing support to ¢vc4 for most features of this format. All SyGuS
benchmarks considered contain synthesis conjectures whose background theory
is either linear integer arithmetic or bitvectors. We made some minor modifica-
tions to benchmarks to avoid naming conflicts, and to explicitly define several
bitvector operators that are not supported natively by cvc4.

We considered multiple configurations of cvc4 corresponding to the tech-
niques mentioned in this paper. Configuration cvcd+sg executes the syntax-
guided procedure from Sect.4, even in cases where the synthesis conjecture is
single-invocation. Configuration cved+si-r executes the procedure from Sect. 3
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array (32) | bv(7) | hd (56) icfp (50) int (15) | let (8) |multf (8)| Total (176)
# time| # time| # time| # time| # time| # time| # time| # time
esolver 4 2250.712 71.2] 50 878.5] 0 0| 5 141672 00[7 06| 70 4617.7
cved+sg | 1 3.1/ 0 34 4308.9| 1 0.5 3 1712 0.5| 7 628.3| 48 4943
cved+si-r((32) 1.2{(6) 4.7|(56) 2.1{(43) 3403.5((15) 0.6[(8) 1.0/(8) 0.2]|(168) 3413.3
cved+si | 30 1449.5|5  0.1| 52 23229 O 0| 6 0.1{2 05|7 0.1] 102 3773.2

(=}

Fig. 6. Results for single-invocation synthesis conjectures, showing times (in seconds)
and number of benchmarks solved by each solver and configuration over 8 bench-
mark classes with a 3600 s timeout. The number of benchmarks solved by configuration
cvcdsi-r are in parentheses because its solutions do not necessarily satisfy the given
syntactic restrictions.

on all benchmarks having conjectures that it can deduce are single-invocation.
In total, it discovered that 176 of the 243 benchmarks could be rewritten into
a form that was single-invocation. This configuration simply ignores any syntax
restrictions on the expected solution. Finally, configuration cvc4-+-si uses the
same procedure used by cvcd+si-r but then attempts to reconstruct any found
solution as a term in required syntax, as described in Sect. 5.

We ran all configurations on all benchmarks on the StarExec cluster.* We
provide comparative results here primarily against the enumerative CEGIS solver
ESOLVER [32], the winner of the SyGuS 2014 competition. In our tests, we found
that ESOLVER performed significantly better than the other entrants of that
competition.

Benchmarks with Single-Invocation Synthesis Conjectures. The results
for benchmarks with single-invocation properties are shown in Fig.6. Config-
uration cved+si-r found a solution (although not necessarily in the required
language) very quickly for a majority of benchmarks. It terminated successfully
for 168 of 176 benchmarks, and in less than a second for 159 of those. Not all
solutions found using this method met the syntactic restrictions. Nevertheless,
our methods for reconstructing these solutions into the required grammar, imple-
mented in configuration cved-+si, succeeded in 102 cases, or 61 % of the total.
This is 32 more benchmarks than the 70 solved by ESOLVER, the best known
solver for these benchmarks so far. In total, cve4+si solved 34 benchmarks that
ESOLVER did not, while ESOLVER solved 2 that cvc4+si did not.

The solutions returned by cve4+si-r were often large, having an order of
10K subterms for harder benchmarks. However, after exhaustively applying
simplification techniques during reconstruction with configuration cvc4-+si, we
found that the size of those solutions is comparable to other solvers, and in
some cases even smaller. For instance, among the 68 benchmarks solved by both
ESOLVER and cvc4+-si, the former produced a smaller solution in 15 cases and
the latter in 9. Only in 2 cases did cvc4+si produce a solution that had 10
more subterms than the solution produced by ESOLVER. This indicates that in
addition to having a high precision, the techniques from Sect. 5 used for solution
reconstruction are effective also at producing succinct solutions for this bench-
mark library.

% A detailed summary can be found at http://lara.epfl.ch/w/cvc4-synthesis.
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int (3) |invgu (28)| invg (28) | vetrl (8) | Total (67)
# time |# time |# time |# time |# time
esolver (3 1.6 |25 86.3 |25 85.6 [5 29.5 |58 203.0
cved+sg|3 1476.0|123 811.6 (22 2283.2|5 2933.1|53 7503.9

Fig. 7. Results for synthesis conjectures that are not single-invocation, showing times
(in seconds) and numbers of benchmarks solved by cvc4 and ESOLVER over 4 bench-
mark classes with a 3600 s timeout.

Configuration cved+sg does not take advantage of the fact that a synthesis
conjecture is single-invocation. However, it was able to solve 48 of these bench-
marks, including a small number not solved by any other configuration, like one
from the icfp class whose solution was a single argument function over bitvectors
that shifted its input right by four bits. In addition to being solution complete,
cvcd+-sg always produces solutions of minimal term size, something not guaran-
teed by the other solvers and cvc4 configurations. Of the 47 benchmarks solved
by both cvc4+sg and ESOLVER, the solution returned by cvc4+sg was smaller
than the one returned by ESOLVER in 6 cases, and had the same size in the oth-
ers. This provides an experimental confirmation that the fairness techniques for
term size described in Sect.4 ensure minimal size solutions.

Benchmarks with Non-single-invocation Synthesis Conjectures. Con-
figuration cvec4+sg is the only cvcd configuration that can process bench-
marks with synthesis conjectures that are not single-invocation. The results for
ESOLVER and cvec4+sg on such benchmarks from SyGuS 2014 are shown in
Fig. 7. Configuration cvc4+sg solved 53 of them over a total of 67. ESOLVER
solved 58 and additionally reported that 6 had no solution. In more detail,
ESOLVER solved 7 benchmarks that cved4+sg did not, while cve4-+sg solved 2
benchmarks (from the vetrl class) that ESOLVER could not solve. In terms of
precision, cve4—+-sg is quite competitive with the state of the art on these bench-
marks. To give other points of comparison, at the SyGuS 2014 competition [1]
the second best solver (the Stochastic solver) solved 40 of these benchmarks
within a one hour limit and Sketch solved 23.

Overall Results. In total, over the entire SyGuS 2014 benchmark set, 155
benchmarks can be solved by a configuration of cvc4 that, whenever possible,
runs the methods for single-invocation properties described in Sect. 3, and other-
wise runs the method described in Sect. 4. This number is 27 higher than the 128
benchmarks solved in total by ESOLVER. Running both configuration cvc4+sg
and cvcd+-si in parallel® solves 156 benchmarks, indicating that cvcd4 is highly
competitive with state-of-the-art tools for syntax guided synthesis. cvc4’s per-
formance is noticeably better than ESOLVER on single-invocation properties,
where our new quantifier instantiation techniques give it a distinct advantage.

Competitive Advantage on Single-Invocation Properties in the Pres-
ence of Ite. We conclude by observing that for certain classes of benchmarks,

5 ovod has a portfolio mode that allows it to run multiple configurations at the same
time.
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n 2 3 41 5]6[7]8]9]10
esolver [0.01(1377.10| — | — |- |-|-|-| -
cved+si|0.01 0.02/0.03]0.05|0.1]0.3]1.6|8.9|81.5

Fig. 8. Results for parametric benchmarks class encoding the maximum of n integers.
The columns show the run time for ESOLVER and cvc4 with a 3600 s timeout.

configuration cvc4—si scales significantly better than state-of-the-art synthe-
sis tools. Figure 8 shows this in comparison with ESOLVER for the problem of
synthesizing a function that computes the maximum of n integer inputs. As
reported by Alur et al. [1], no solver in the SyGuS 2014 competition was able to
synthesize such a function for n = 5 within one hour.

For benchmarks from the array class, whose solutions are loop-free programs
that compute the first instance of an element in a sorted array, the best reported
solver for these in [1] was Sketch, which solved a problem for an array of length
7in approximately 30 minutes.® In contrast, cve44si was able to reconstruct
solutions for arrays of size 15 (the largest benchmark in the class) in 0.3s, and
solved each of the benchmarks in the class but 8 within 1s.

7 Conclusion

We have shown that SMT solvers, instead of just acting as subroutines for
automated software synthesis tasks, can be instrumented to perform synthe-
sis themselves. We have presented a few approaches for enabling SMT solvers to
construct solutions for the broad class of syntax-guided synthesis problems and
discussed their implementation in ¢vc4. This is, to the best of our knowledge,
the first implementation of synthesis inside an SMT solver and it already shows
considerable promise. Using a novel quantifier instantiation technique and a
solution enumeration technique for the theory of algebraic datatypes, our imple-
mentation is competitive with the state of the art represented by the systems
that participated in the 2014 syntax-guided synthesis competition. Moreover,
for the important class of single-invocation problems when syntax restrictions
permit the if-then-else operator, our implementation significantly outperforms
those systems.

Acknowledgments. We would like to thank Liana Hadarean for helpful discussions
on the normal form used in cvc4 for bit vector terms.
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