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Abstract. This paper concerns systems of the form ẋ(t) = Ax(t), y(t) = Cx(t), where A
generates a C0-semigroup. Two conjectures which were posed in 1991 and 1994 are shown not to
hold. The first conjecture (by G. Weiss) states that if the range of C is one-dimensional, then C is
admissible if and only if a certain resolvent estimate holds. The second conjecture (by D. Russell
and G. Weiss) states that a system is exactly observable if and only if a test similar to the Hautus
test for finite-dimensional systems holds. The C0-semigroup in both counterexamples is analytic
and possesses a basis of eigenfunctions. Using the (A,C)-pair from the second counterexample, we
construct a generator Ae on a Hilbert space such that (sI − Ae) is uniformly left-invertible, but its
semigroup does not have this property.
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1. Introduction. Consider the abstract system

ẋ(t) = Ax(t), y(t) = Cx(t), x(0) = x0(1.1)

with x(t) ∈ H and y(t) ∈ Y , where H and Y are Hilbert spaces. For this abstract
differential equation one would like to obtain conditions in terms of A and C such
that it has a solution with certain properties. If one only considers the differential
equation ẋ(t) = Ax(t), then it is well known that it has a unique (weak) solution which
is strongly continuous and depends continuously on the initial state x(0) = x0 ∈ H
if and only if A satisfies the estimates of the Hille–Yosida theorem (see, e.g., [4,
Theorem 2.1.12]). Since ẋ(t) = Ax(t) is a part of (1.1) we have to assume that A
satisfies the estimates of the Hille–Yosida theorem, or equivalently, that A generates
a C0-semigroup. If in addition C is a bounded linear operator from H to Y , then it is
straightforward to see that y(·) in (1.1) is well defined and continuous. However, many
PDEs rewritten in the form (1.1) do not have a bounded operator C, although the
output is a well-defined square integrable function. We assume that C is a bounded
operator from D(A) (with the graph norm) to a Hilbert space Y . If the output is
locally square integrable, then C is called an admissible observation operator (see
Weiss [20] and the survey article by Jacob and Partington [7]). In other words, C
is an admissible observation operator if and only if for some t0 > 0 (and hence any
t0 > 0) there exists a constant L > 0 such that

∫ t0

0

‖CT (t)x‖2 dt ≤ L‖x‖2, x ∈ D(A).
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Here (T (t))t≥0 is the C0-semigroup generated by A. If the C0-semigroup is exponen-
tially stable, then t0 can be replaced by ∞. Now an interesting question is if there are
simple conditions on C (and A) such that C is an admissible observation operator.

Dual to the concept of admissible observation operator is the concept of admis-
sible control operator. An operator B is said to be an admissible control operator
if ẋ(t) = Ax(t) + Bu(t) has a continuous (weak) solution for every locally square
integrable input u. It is well known that C is an admissible observation operator
for A if and only if C∗ is an admissible control operator for A∗; see [20] for a proof
of this statement. Here ∗ denotes the adjoint operator. Because of this duality any
result for admissible observation operators has an equivalent counterpart for admis-
sible control operators, and vice versa. Hence if we refer to a paper which only deals
with control operators, we trust that the reader can make the equivalent statement
for observation operators. Basically, it boils down to replacing B by C∗ and replacing
the infinitesimal generator by its dual one.

In Weiss [21] it is shown that if C is admissible, then there exists a constant
M > 0 such that

‖C(sI −A)−1‖ ≤ M√
Re(s)

(1.2)

for all s in some right-half plane. He conjectured in [21] (see also [22]) that this con-
dition is also sufficient. The sufficiency of condition (1.2) was proved for surjective
semigroups in Weiss [21], for normal, analytic semigroups in Weiss [21, 22], for the
right shift semigroup with scalar output in Partington and Weiss [15], for contraction
semigroups with scalar output by Jacob and Partington [6], and for analytic contrac-
tion semigroups by Le Merdy [12]. Recently, Zwart, Jacob, and Staffans [26] and
Jacob, Partington, and Pott [8] showed that in general estimate (1.2) is not sufficient.
Their observation operator is infinite-dimensional. Here we use techniques similar to
those in [26] to show that (1.2) is not sufficient for scalar outputs. Note that in [5]
a necessary and sufficient condition has been obtained. This condition involves all
powers of the resolvent, as in the Hille–Yosida theorem. Some sufficient conditions
for admissibility can be found in [24].

Apart from the well-posedness of the abstract differential equation (1.1) one would
like to characterize other properties in terms of the pair (A,C). One property that has
received a lot of attention is the property of exact observability. Assuming that the
observation operator C is admissible, the system (1.1) is said to be exactly observable
if there is a bounded mapping from the output trajectory to the initial condition, that
is, for some t0 > 0 (and hence any t0 > 0) there exists a constant l > 0 such that∫ t0

0

‖CT (t)x‖2 dt ≥ l‖x‖2, x ∈ D(A).

If the C0-semigroup is exponentially stable, then t0 can be replaced by ∞. Note
that admissibility gives that the mapping from initial condition to output trajectory
is bounded. If the state space H is finite-dimensional, and thus A and C are just
matrices, then it is well known that (1.1) is exactly observable if and only if

rank

[
C

sI −A

]
is full for all complex s. For infinite-dimensional systems, Russell and Weiss [17],
proposed the following test for exact observability of an exponentially stable system:

‖(sI −A)x0‖2 + |Re(s)|‖Cx0‖2 ≥ m|Re(s)|2‖x0‖2(1.3)
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for all complex s with negative real part, for all x0 ∈ D(A), and for some positive m
independent of s and x0. In [17] they proved that this condition is always necessary,
and that for A and C bounded this condition is sufficient as well. In the same paper
they showed that if A has a Riesz basis of eigenfunctions and an extra condition on
the eigenvalues is satisfied, then (1.3) is sufficient. In Zhou and Yamamoto [23] it was
shown that (1.3) is sufficient if A is skew adjoint and C is bounded. For Riesz spectral
systems with finite-dimensional output space Y inequality (1.3) is sufficient as well;
see Jacob and Zwart [9, 10]. Grabowski and Callier [5] proved that if m in (1.3) is
equal to one, then this estimate implies exact observability. In section 3 we show that
for general m estimate (1.3) is not sufficient. Note that in our counterexample the
output is one-dimensional and that A generates an analytic semigroup. In [11] we
give a refined version of this conjecture.

We conclude this paper with a section on left-invertibility of C0-semigroups. It is
known that uniform left-invertibility of the semigroup implies uniform left-invertibility
of the generator on the open left-half plane. We show that in general the inverse
implication does not hold.

2. General results. Let H be a separable Hilbert space with a conditional basis
{ϕn}n∈N. Since {ϕn}n∈N is a conditional basis, we have that for every x ∈ H there
exists a unique sequence of complex numbers αn such that

x = lim
k→∞

k∑
n=1

αnϕn.(2.1)

Hence, we can write

x =

∞∑
n=1

αnϕn.

Using (2.1) it is not hard to see that the following holds (see also Singer [18, pages
18–20]).

Lemma 2.1. If {ϕn}n∈N is a conditional basis, then the following mappings are
uniformly bounded:

Pnx =

n∑
k=1

αkϕk(2.2)

and

P̃nx = αnϕn,(2.3)

where x =
∑∞

n=1 αnϕn.
Furthermore, if infn∈N ‖ϕn‖ > 0, then

sup
n∈N

|αn| ≤ κ‖x‖(2.4)

for some κ > 0 independent of x.
The following two properties of a conditional basis are important for the con-

struction of our counterexamples.
Definition 2.2. Let {ϕn}n∈N be a conditional basis.
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1. {ϕn}n∈N is Besselian if there exists a constant c > 0 such that

n∑
k=1

|ak|2 ≤ c

∥∥∥∥∥
n∑

k=1

akϕk

∥∥∥∥∥
2

for all finite sequences of scalars a1, . . . , an.
2. {ϕn}n∈N is Hilbertian if there exists a constant c > 0 such that

∥∥∥∥∥
n∑

k=1

akϕk

∥∥∥∥∥
2

≤ c

n∑
k=1

|ak|2

for all finite sequences of scalars a1, . . . , an.
Equivalently, {ϕn}n∈N is Besselian if and only if there exists a bounded linear

operator S such that vn := Sϕn is an orthonormal basis for H. More information on
conditional bases can be found in Singer [18].

For diagonal operators on a conditional basis of H there is the following nice
result, which can be found in Benamara and Nikolski [1, Lemma 3.2.5].

Lemma 2.3. Let {ϕn}n be a conditional basis of H. If Q is defined as

Qϕn = qnϕn

with {qn}n∈N ⊂ C, and the total variation of the sequence {qn} is finite, i.e.,

V ar(qn) :=

∞∑
n=1

|qn+1 − qn| < ∞,

then Q can be extended to a linear bounded operator on H, and

‖Q‖ ≤ K(V ar(qn) + lim sup |qn|),(2.5)

where K is the supremum of ‖Pn‖; see Lemma 2.1.
In order to calculate the total variation, the following observation is useful. If f is

a continuous function which is nondecreasing or nonincreasing on the interval (a, b),
and if the sequence {qn}n ⊂ (a, b) is nondecreasing or nonincreasing, then

V ar(f(qn)) ≤ |f(a) − f(b)|.

In [26] the following useful result can be found.
Lemma 2.4. Let {µn}n ⊂ (−∞,−1] be a monotonically decreasing sequence with

limn→∞ µn = −∞. Furthermore, let {ϕn}n∈N be a conditional basis for the Hilbert
space H.

For t ≥ 0, we define (T (t))t≥0 by

T (t)ϕn := eµntϕn, n ∈ N.(2.6)

The operator valued function (T (t))t≥0 defines an analytic, exponentially stable C0-
semigroup on H.
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3. Counterexample on admissibility. In this section we show that the conjec-
ture of George Weiss for admissibility of scalar observation operators (see [21, 22]) does
not hold. That means we construct an exponentially stable C0-semigroup (T (t))t≥0

on H with infinitesimal generator A and an operator C ∈ L(D(A),C) such that

‖C(sI −A)−1‖ ≤ M√
Re(s)

for all s in some right-half plane and some constant M > 0, but C is not an admissible
observation operator for (T (t))t≥0.

Let {en}n∈N be a conditional basis on H which has the following properties:
1. infn∈N ‖en‖ > 0.
2. {en}n∈N is not Besselian.

Such Hilbert spaces and bases do exist; see, for example, Singer [18, page 351, exam-
ple 11.2].

We define the sequence µn as

µn := −4n, n ∈ N,(3.1)

and the C0-semigroup (T (t))t≥0 as

T (t)en = eµnten.(3.2)

By Lemma 2.4 we know that (T (t))t≥0 is an exponentially stable analytic semigroup.
By A we denote the infinitesimal generator of (T (t))t≥0. It is easy to see that A
satisfies

Aen = µnen, n ∈ N.

For x ∈ D(A), x =
∑∞

n=1 xnen, we further define

Cx =

∞∑
n=1

√
−µnxn.(3.3)

First of all we show that C is a bounded linear operator from the domain of A into C.
Proposition 3.1. Let C be given as in (3.3) and let A be the infinitesimal

generator of the C0-semigroup (3.2). Then we have C ∈ L(D(A),C).
Proof. It is enough to show that there exists a constant c > 0 such that

|CA−1x| ≤ c, x ∈ H, ‖x‖ = 1.

Let x ∈ H with ‖x‖ = 1. Then there exist scalars xn, n ∈ N, such that

x =

∞∑
n=1

xnen.

Using that infn∈N ‖en‖ > 0, we get from Lemma 2.1 that supn∈N |xn| ≤ κ < ∞. Note
that κ is independent of x ∈ H with ‖x‖ = 1. Now we have

|CA−1x| =

∣∣∣∣∣
∞∑

n=1

xn√−µn

∣∣∣∣∣ ≤ κ

∞∑
n=1

2−n = κ.
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Thus the proposition is proved.
Next we show that C satisfies the estimate (1.2).
Proposition 3.2. For C given by (3.3) and A as the infinitesimal generator of

the semigroup (3.2) the following holds. There exists a constant M > 0 such that

‖C(sI −A)−1‖ ≤ M√
Re(s)

, s ∈ C+.

Proof. Let s be an element of C+, and let x ∈ H have norm one. We have the
following estimate:

√
Re(s)|C(sI −A)−1x| =

√
Re(s)

∣∣∣∣∣
∞∑
k=1

2k

s + 4k
xk

∣∣∣∣∣
≤

√
Re(s)

∞∑
k=1

2k

|Re(s) + 4k| |xk|

≤ κ
√

Re(s)

∞∑
k=1

2k

Re(s) + 4k
,

where we have used Lemma 2.1. Note that κ is independent of x. In order to
estimate this last expression we introduce the monotonically decreasing sequence ak :=

1
Re(s)+k2 . Then for N ≥ 2K we have

N∑
k=1

ak ≥ a1 + a2 + (a3 + a4) + · · · + (a2K−1+1 + · · · + a2K )

≥ a2 + 2a4 + · · · + 2K−1a2K

=
1

2

K∑
k=1

2ka2k ,

and so

∞∑
k=1

2k

Re(s) + 4k
≤ 2

∞∑
k=1

1

Re(s) + k2
.

Using this in our estimate of
√

Re(s)|C(sI −A)−1x|, we obtain that

√
Re(s)|C(sI −A)−1x| ≤ 2κ

√
Re(s)

∞∑
k=1

1

Re(s) + k2

≤ 2κ
√

Re(s)

∫ ∞

0

1

Re(s) + t2
dt

≤ 2κ
√

Re(s)

(
1√

Re(s)
arctan

(
t√

Re(s)

)∣∣∣∣∣
∞

0

)

≤ 2κ
π

2
= κπ,

which proves our assertion.
Proposition 3.3. If C given by (3.3) is an admissible observation operator for

the C0-semigroup given by (3.2), then {en} is Besselian.
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Proof. If C is an admissible observation operator for (T (t))t≥0, then there would
exist a constant L > 0 such that∫ ∞

0

|CT (t)x|2dt ≤ L‖x‖2, x ∈ D(A).

Now take a finite sequence of αk’s and consider

x :=

n∑
k=1

αkek.

Then the above estimate gives

∫ ∞

0

∣∣∣∣∣
n∑

k=1

√
−µke

µktαk

∣∣∣∣∣
2

dt ≤ L‖x‖2.

However, from Nikolski and Pavlov [14] (see also Jacob and Zwart [10]), we know that
there exists a constant L1 > 0, independent of x, such that

∫ ∞

0

∣∣∣∣∣
n∑

k=1

√
−µke

µktαk

∣∣∣∣∣
2

dt ≥ L1

n∑
k=1

|αk|2.

Thus we have that for any finite sequence

‖x‖2 ≥ L1

L

n∑
k=1

|αk|2,

which shows that {en} is Besselian.
Thus we have disproved the scalar admissibility conjecture of George Weiss.

4. Counterexample on exact observability. In this section we use the op-
erators A and C constructed in section 3 with different assumptions on the basis to
settle another question about operator semigroups.

We disprove the conjecture of Russell and Weiss [17] on exact observability. That
means we construct an exponentially stable C0-semigroup (T (t))t≥0 with infinitesimal
generator A and an operator C ∈ L(D(A),C) such that

‖(sI −A)x0‖2 + |Re(s)|‖Cx0‖2 ≥ m|Re(s)|2‖x0‖2, s ∈ C−, x0 ∈ D(A),

for some constant m > 0, but the pair (A,C) is not exactly observable.
Let {en}n∈N be a conditional basis on H which is Besselian, normalized—that

is, ‖en‖ = 1, but not Hilbertian. Such Hilbert spaces and bases do exist; see, for
example, Singer [18, page 351, example 11.2].

We define the sequence µn as

µn := −4n, n ∈ N,(4.1)

and the C0-semigroup as

T (t)en = eµnten.(4.2)
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By Lemma 2.4 we know that this is an exponentially stable analytic C0-semigroup.
By A we denote the infinitesimal generator of (T (t))t≥0. It is easy to see that A
satisfies

Aen = µnen, n ∈ N.

Since {en}n∈N is Besselian, we know that there exists a bounded linear operator S
such that vn := Sen is an orthonormal basis for H. On this new basis we define

Ãvn = µnvn.

It is easy to see that Ã generates a C0-semigroup (T̃ (t))t≥0, and that

ST (t) = T̃ (t)S.(4.3)

Now define the operator C̃ as

C̃vn =
√
−µn.

It is easy to see that we can extend C̃ as a bounded operator from the domain
of Ã to C. We denote this extension again by C̃. We shall prove that C̃ is an
admissible observation operator for (T̃ (t))t≥0. Since (T̃ (t))t≥0 has an orthonormal

basis of eigenfunctions, we can use the result of Weiss [19], which tells us that C̃ is
admissible if and only if ∑

−µn∈R(h,ω)

|µn| ≤ βh,

where

R(h, ω) := {s ∈ C+ | Re(s) ≤ h, | Im(s) − ω| ≤ h}

and β is independent of h. Using the definition of µn this is easy to prove. Now we
define for x ∈ D(A),

Cx = C̃Sx.(4.4)

From this and (4.3) we see that for x ∈ D(A)

CT (t)x = C̃T̃ (t)Sx.

Since S is bounded and since C̃ is admissible for (T̃ (t))t≥0, we obtain that C is an
admissible output operator for (T (t))t≥0.

In several steps we shall prove that the pair (A,C) satisfies the estimate of Russell
and Weiss, but that it is not exactly observable. In our proof we follow closely the
proof of Theorem 4.4 of Russell and Weiss [17]. As in [17] we define N : C− → N as
the integer such that

|s− µN(s)| = min
k∈N

|s− µk|.(4.5)

This number is well defined if the real part of s is unequal to (µk + µk+1)/2 for all k.
We define the set for which this mapping is well defined as Cg.
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Lemma 4.1. There exists a constant c > 0 such that, for all s ∈ Cg, we have that∣∣∣∣ Re(s)

s− µk

∣∣∣∣ ≤ c, s ∈ Cg, k 
= N(s),

and ∣∣∣∣ Re(s)

Re(s) − µk

∣∣∣∣ ≤ c, s ∈ Cg, k 
= N(s).

Proof. In Weiss and Russell [17] it is shown that the first estimate holds. Since
{µk} is a real sequence, it is easy to see that N(s) = N(Re(s)). Taking s to be real
in the first inequality, and using this observation, proves the second inequality.

For s ∈ Cg, we define

V (s) := spann �=N(s){en}.(4.6)

Clearly, V (s) is again a Hilbert space and in Singer [18, page 26, Proposition 4.1]
it is shown that {en}n �=N(s) is a conditional basis of V (s). By PV (s) we denote the
projection from H onto V (s) given by

PV (s) := I − P̃N(s).

Using Lemma 2.1 we see that the projections PV (s) are uniformly bounded. For
s ∈ Cg, we introduce the notation

esn :=

{
en, n < N(s),
en+1, n ≥ N(s),

(4.7)

and

µs
n :=

{
µn, n < N(s),
µn+1, n ≥ N(s).

(4.8)

The constant K in Lemma 2.3 is given by K := supn∈N ‖Pn‖. Let K(s) be the
corresponding constant for V (s) with conditional basis {esn}, for s ∈ Cg. Then it
follows easily that K(s) ≤ K.

Let s ∈ Cg. We denote by As the part of A in V (s), that is,

Asx := Ax, x ∈ D(As),

and D(As) := D(A) ∩ V (s). Note that V (s) is a T (t)-invariant subspace. Thus it is
easy to see that Cs, defined by

Csx := Cx, x ∈ D(As),

is an admissible observation operator for (Ts(t))t≥0. Here (Ts(t))t≥0 is the C0-
semigroup generated by As. Now we shall prove two important estimates.

Lemma 4.2. Let As, Cs, and V (s) denote the objects defined above. The following
two estimates hold.

1. There exists a constant M > 0 such that

‖(sI −As)
−1‖V (s) ≤

M

|Re(s)| , s ∈ Cg.
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2. There exists a constant d > 0 such that

‖Cs(sI −As)
−1‖ ≤ d√

|Re(s)|
, s ∈ Cg.

Proof. Part 1. Let s = sr + isi ∈ Cg. Clearly,

(sI −As)
−1esn =

1

s− µs
n

esn, n ∈ N.

This is an operator of the form as discussed in Lemma 2.3, and thus we have to
show that 1/(s − µs

n) is of bounded variation. We begin with the following simple
observation: ∣∣∣∣ 1

s− µs
n+1

− 1

s− µs
n

∣∣∣∣ =

∣∣∣∣ µs
n+1 − µs

n

(s− µs
n+1)(s− µs

n)

∣∣∣∣
≤

∣∣∣∣ µs
n+1 − µs

n

(sr − µs
n+1)(sr − µs

n)

∣∣∣∣
=

∣∣∣∣ 1

sr − µs
n+1

− 1

sr − µs
n

∣∣∣∣ ,(4.9)

where we have used the fact that µs
n is real.

Next we define

h : R− \ {sr} → R, h(x) :=
1

sr − x
.

Then we have h(−∞) = 0, h(0) = 1
sr

, and h is monotonically increasing on (−∞, sr)
and on (sr, 0). Combining the above results with Lemma 2.3 we get the following
estimate for ‖(sI −As)

−1‖:

‖(sI −As)
−1‖

≤ K

(
Var

(
1

s− µs
n

)
+

∣∣∣∣ lim
n→∞

1

s− µs
n

∣∣∣∣
)

= K

∞∑
n=1

∣∣∣∣ 1

s− µs
n+1

− 1

s− µs
n

∣∣∣∣
≤ K

∞∑
n=1

∣∣∣∣ 1

sr − µs
n+1

− 1

sr − µs
n

∣∣∣∣
≤ K

[[
0 +

1

sr − µN(s)+1

]
+

[
1

sr − µN(s)+1
− 1

sr − µN(s)−1

]

+

[
1

sr
− 1

sr − µN(s)−1

]]

≤ (4c + 1)K

|Re(s)| ,

where we have used Lemmas 2.3 and 4.1 and (4.9). Since c and K are independent
of s we have proved the statement.

Part 2. In order to prove this statement we follow Lemma 4.6 of Russell and
Weiss [17]. Let s ∈ Cg. Using the resolvent identity, we have

Cs(sI −As)
−1 = Cs(−s̄I −As)

−1[I − (s̄ + s)(sI −As)
−1].
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Since Cs is an admissible observation operator for (Ts(t))t≥0 there exists a constant

d̃ > 0, independent of s, such that

‖Cs(−s̄I −As)
−1‖ ≤ d̃√

|Re(s)|

(see, e.g., Weiss [22]). Combining this with Part 1, the statement is proved.
Now we can prove the estimate of Russell and Weiss [17].
Lemma 4.3. For C defined by (4.4) and A as the infinitesimal generator of (4.2)

the following holds. There exists a constant m > 0 such that, for every s ∈ C− and
every x ∈ D(A), we have

1

|Re(s)|2 ‖(sI −A)x‖2 +
1

|Re(s)| ‖Cx‖2 ≥ m‖x‖2.(4.10)

Proof. The proof of this lemma is divided into two steps. First, we show that the
estimate holds for s ∈ C− \ Cg. Second, we prove the estimate for s ∈ Cg.

Part 1. If s is not in Cg, then there exists an k0 ∈ N such that Re(s) = (µk0+1 +
µk0

)/2. It is easy to see that

(sI −A)−1en =
1

s− µn
en.

We use Lemma 2.3 to estimate the norm of this operator. Using (4.9) we see that it
is sufficient to show that { 1

Re(s)−µn
} is of bounded variation. Similar to the proof of

Part 1 of Lemma 4.2, we obtain that

‖(sI −A)−1‖ ≤ K

∞∑
n=1

∣∣∣∣ 1

Re(s) − µn+1
− 1

Re(s) − µn

∣∣∣∣ .
Now we have that Re(s) = (µk0+1 + µk0)/2, and thus we obtain

‖(sI −A)−1‖

≤ K

[[
0 +

1

Re(s) − µk0+1

]
+

[
1

Re(s) − µk0+1
− 1

Re(s) − µk0

]

+

[
1

Re(s)
− 1

Re(s) − µk0

]]

≤ K

[
8

µk0 − µk0+1
+

1

|Re(s)|

]
.

Now the sequence {µn} = {−4n} satisfies

1

µn − µn+1
=

5/3

|µn + µn+1|
.

So we see that

‖(sI −A)−1‖ ≤ 40K

3|µk0 + µk0+1|
+

K

|Re(s)| =
23K

3|Re(s)| .

This is equivalent to

|Re(s)|−1‖(sI −A)x‖ ≥ 3

23K
‖x‖,
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and so (4.10) holds for s ∈ C− \ Cg.
Part 2. In order to prove this statement we follow Theorem 4.4 of Russell and

Weiss.
If (4.10) would not hold, then there would exist sequences {sn} and {zn} such

that sn ∈ Cg, z
n ∈ D(A), ‖zn‖ = 1, and

1

|Re(sn)|2 ‖(snI −A)zn‖2 +
1

|Re(sn)| |Czn|2 = ε2
n,(4.11)

where εn ≥ 0 and εn → 0.
Now define

qn :=
1

|Re(sn)| (snI −Asn)PV (sn)z
n

and the scalar αn such that

αneN(sn) = P̃N(sn)z
n = (I − PV (sn))z

n.

Thus we have that

1

|Re(sn)| (snI −A)zn =
sn − µN(sn)

|Re(sn)| αneN(sn) + qn.

Now we have that

‖qn‖ =

∥∥∥∥PV (sn)
1

|Re(sn)| (snI −A)zn
∥∥∥∥ ≤ K

1

|Re(sn)| ‖(snI −A)zn‖ ≤ Kεn(4.12)

by (4.11). For αn, we obtain∣∣∣∣sn − µN(sn)

Re(sn)
αn

∣∣∣∣ =

∥∥∥∥sn − µN(sn)

Re(sn)
αneN(sn)

∥∥∥∥ =

∥∥∥∥sn − µN(sn)

Re(sn)
P̃N(sn)z

n

∥∥∥∥
=

1

|Re(sn)| ‖P̃N(sn)(sn −A)zn‖

≤ 2K
1

|Re(sn)| ‖(sn −A)zn‖ ≤ 2Kεn.(4.13)

By definition of qn, we have that

PV (sn)z
n = |Re(sn)|(snI −Asn)−1qn.

Using (4.12) and Lemma 4.2, we get

‖PV (sn)z
n‖ ≤ MKεn,

whence PV (sn)z
n → 0. Since ‖zn‖ = 1, it follows that ‖(I − PV (sn))z

n‖ → 1, i.e.,

lim
n→∞

|αn| = 1.(4.14)

Together with (4.13) this implies that

lim
n→∞

∣∣∣∣sn − µN(sn)

Re(sn)

∣∣∣∣ = 0.



COUNTEREXAMPLES CONCERNING OBSERVATION OPERATORS 149

It is now easy to see that

lim
n→∞

∣∣∣∣µN(sn)

Re(sn)

∣∣∣∣ = 1.(4.15)

Now we turn our attention to the second term of (4.11). We have

Czn = C(I − PV (sn))z
n + CPV (sn)z

n

= αnCeN(sn) + Csn(snI −Asn)−1(snI −Asn)PV (sn)z
n

= αn

√
−µN(sn) + |Re(sn)|Csn(snI −Asn)−1qn.

Thus we can estimate the norm of this number as

|Czn| ≥ |αn

√
−µN(sn)| − |Re(sn)||Cs(snI −Asn)−1qn|.

Hence using Lemma 4.2, Part 2, we obtain that

1√
|Re(sn)|

|Czn| ≥ |αn|
∣∣∣∣µN(sn)

Re(sn)

∣∣∣∣
1
2

− d‖qn‖.(4.16)

By (4.12) and (4.14)–(4.16), we conclude that there exists a positive number κ such
that for n sufficiently large,

1

|Re(sn)| |Czn|2 ≥ κ.

On the other hand, (4.11) implies that for each n ∈ N,

1

|Re(sn)| |Czn|2 ≤ ε2
n,

which is a contradiction. Therefore, (4.10) must be true.
So we know that the system (A,C) as defined in the beginning of this section

satisfies the estimate of Russell and Weiss. Suppose now that the pair would be
exactly observable. Then there would exist a constant l > 0 such that∫ ∞

0

|CT (t)x|2dt ≥ l‖x‖2, x ∈ D(A).

Now take a finite sequence of αk’s and consider

x :=

n∑
k=1

αkek.

Then the above estimate gives

∫ ∞

0

∣∣∣∣∣
n∑

k=1

√
−µke

µktαk

∣∣∣∣∣
2

dt ≥ l‖x‖2.

However, from Nikolski and Pavlov [14] (see also Russell and Weiss [17]) we know
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that there exists a constant l1 > 0 such that

∫ ∞

0

∣∣∣∣∣
n∑

k=1

√
−µke

µktαk

∣∣∣∣∣
2

dt ≤ l1

n∑
k=1

|αk|2.

Thus we have that for any finite sequence,

‖x‖2 ≤ l1
l

n∑
k=1

|αk|2.

However, this implies that {en} is Hilbertian, providing the contradiction.
Thus we have disproved the conjecture of Russell and Weiss on exact observability.

5. On left-invertibility of C0-semigroups. We consider a bounded C0-
semigroup (Te(t))t≥0 with infinitesimal generator Ae on a separable Hilbert space
Z. A natural question is whether uniform left-invertibility of the C0-semigroup, that
is,

‖Te(t)x‖ ≥ c1‖x‖, x ∈ Z,(5.1)

for some c1 > 0, is equivalent to uniform left-invertibility of sI − Ae on the open
left-half plane, that is,

‖(sI −Ae)x‖ ≥ c2|Re(s)| ‖x‖, x ∈ D(Ae), s ∈ C−,(5.2)

for some constant c2 > 0.
In van Neerven [13] it is shown that (5.1) implies (5.2). Van Neerven considered

only the case of a semigroup of isometries, but the general case can be proved in a
similar way. If (Te(t))t≥0 can be extended to a group or if C− is contained in the
resolvent set of A, then (5.2) implies (5.1); see van Casteren [2, 3] or Zwart [25].

We now show that in general (5.2) does not imply (5.1). Consider the operators
A and C of section 3, and let (T (t))t≥0 denote the exponentially stable C0-semigroup

generated by A. We now define the semigroup (Te(t))t≥0 on H ⊕ L2(0,∞) by

Te(t)

(
x

f

)
:=

(
T (t)x

CT (t− ·)x|[0,t] + f(· − t)|[t,∞)

)
.

In Grabowski and Callier [5] it is shown that (Te(t))t≥0 is a uniformly bounded C0-

semigroup on H ⊕ L2(0,∞), and that the infinitesimal generator Ae of (Te(t))t≥0 is
given by

Ae

(
x

f

)
:=

(
Ax

−ḟ

)
,

(
x

f

)
∈ D(Ae),

D(Ae) :=

{(
x

f

)
| x ∈ D(A), f, ḟ ∈ L2(0,∞),

f is absolutely continuous and f(0) = Cx

}
.
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Next we calculate the norm of ‖(sI −Ae)(
x
f )‖. For s = sr + isi ∈ C− we have

∥∥∥∥(sI −Ae)

(
x

f

)∥∥∥∥
2

= ‖(sI −A)x‖2 + ‖sf + ḟ‖2
L2(0,∞)

= ‖(sI −A)x‖2 + |s|2‖f‖2
L2(0,∞) + ‖ḟ‖2

L2(0,∞)

+2sr Re(〈f, ḟ〉L2(0,∞)) + isi(〈f, ḟ〉L2(0,∞) − 〈ḟ , f〉L2(0,∞))

= ‖(sI −A)x‖2 + ‖isif + ḟ‖2
L2(0,∞) + s2

r‖f‖2
L2(0,∞) + 2sr Re(〈f, ḟ〉L2(0,∞))

= ‖(sI −A)x‖2 + ‖isif + ḟ‖2
L2(0,∞) + s2

r‖f‖2
L2(0,∞)

+sr

∫ ∞

0

d

dt
〈f(t), f(t)〉 dt

= ‖(sI −A)x‖2 + ‖isif + ḟ‖2
L2(0,∞) + s2

r‖f‖2
L2(0,∞) − sr‖Cx‖2,

because f(0) = Cx and f, ḟ ∈ L2(0,∞). Thus

∥∥∥∥(sI −Ae)

(
x

f

)∥∥∥∥
2

≥ ‖(sI −A)x‖2 + |Re(s)|2‖f‖2
L2(0,∞) + |Re(s)|‖Cx‖2

≥ c2|Re(s)|2
∥∥∥∥
(
x

f

)∥∥∥∥
2

(using Lemma 4.3),

where c2 is independent of x and f . This shows that (5.2) holds. Assuming (5.1)
holds as well, we get∥∥∥∥Te(t)

(
x

f

)∥∥∥∥ ≥ c1

∥∥∥∥
(
x

f

)∥∥∥∥ , t ≥ 0, x ∈ H, f ∈ L2(0,∞),

for some constant c1 > 0. Thus

‖T (t)x‖2 + ‖CT (·)x‖2
L2(0,t) =

∥∥∥Te(t)
(x

0

)∥∥∥ ≥ c1‖x‖2, x ∈ H, t ≥ 0.(5.3)

Using that (T (t))t≥0 is exponentially stable, we get limt→∞ ‖T (t)x‖2 = 0, and so
letting t to infinity in (5.3) gives

‖CT (·)x‖L2(0,∞) ≥
√
c1‖x‖, x ∈ H,

which says that the pair (A,C) is exactly observable. However, this is in contradiction
with section 3, where we showed that the pair (A,C) is not exactly observable. Thus
(5.2) holds, but (5.1) is not valid.

We conclude this section with a positive result; it shows that (5.2) implies (5.1)
if the constant c2 satisfies c2 ≥ 1.

Proposition 5.1. Let (Te(t))t≥0 be a bounded C0-semigroup with infinitesimal
generator Ae on a separable Hilbert space Z. If (5.2) holds with c2 ≥ 1, then (5.1)
holds as well.

Proof. If c2 ≥ 1, then it is easy to see that (5.2) implies that

‖(sI −Ae)x‖ ≥ |Re s|‖x‖, s ∈ C−,
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for all x ∈ D(A). Choosing s < 0 and taking the square of the above equation gives

‖(sI −Ae)x‖2 ≥ s2‖x‖2.

Using the fact that Z is a Hilbert space gives that the above inequality is equivalent
to

s2‖x‖2 − 2sRe〈x,Aex〉 + ‖Aex‖2 ≥ s2‖x‖2,

which is equivalent to

−2sRe〈x,Aex〉 + ‖Aex‖2 ≥ 0.

Since this must hold for all negative s, we see that

Re〈x,Aex〉 ≥ 0.

We now consider the function f(t) := ‖Te(t)x‖2. Taking the derivative of f gives

ḟ(t) = 2 Re〈Te(t)x,AeTe(t)x〉 ≥ 0.

Hence f is nondecreasing, and thus

‖Te(t)x‖2 = f(t) ≥ f(0) = ‖x‖2.

Since x was arbitrary, we have shown the result.

REFERENCES

[1] N.-E. Benamara and N. Nikolski, Resolvent test for similarity to a normal operator, Proc.
London Math. Soc., 78 (1999), pp. 585–626.

[2] J. A. van Casteren, Operators similar to unitary or selfadjoint ones, Pacific J. Math., 104
(1983), pp. 241–255.

[3] J. A. van Casteren, Boundedness properties of resolvents and semigroups of operators, in
Linear Operators (Warsaw, 1994), Banach Center Publ. 38, Polish Acad. Sci., Warsaw,
1997, pp. 59–74.

[4] R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems The-
ory, Texts Appl. Math. 21, Springer-Verlag, New York, 1995.

[5] P. Grabowski and F. M. Callier, Admissible observation operators, semigroup criteria of
admissibility, Integral Equations Operator Theory, 25 (1996), pp. 182–198.

[6] B. Jacob and J. R. Partington, The Weiss conjecture on admissibility of observation opera-
tors for contraction semigroups, Integral Equations Operator Theory, 40 (2001), pp. 231–
243.

[7] B. Jacob and J. R. Partington, Admissibility of control and observation operators for semi-
groups: A survey, in Proceedings of the IWOTA 2002, J. A. Ball, J. W. Helton, M. Klaus,
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