
Counterexamples for Expected Rewards

Tim Quatmann1, Nils Jansen1, Christian Dehnert1, Ralf Wimmer2,
Erika Ábrahám1, Joost-Pieter Katoen1, and Bernd Becker2

1 RWTH Aachen University, Germany
2 Albert-Ludwigs-Universität Freiburg, Germany

Abstract. The computation of counterexamples for probabilistic systems
has gained a lot of attention during the last few years. All of the proposed
methods focus on the situation when the probabilities of certain events are
too high. In this paper we investigate how counterexamples for properties
concerning expected costs (or, equivalently, expected rewards) of events
can be computed. We propose methods to extract a minimal subsystem
which already leads to costs beyond the allowed bound. Besides these
exact methods, we present heuristic approaches based on path search
and on best-first search, which are applicable to very large systems when
deriving a minimum subsystem becomes infeasible due to the system size.
Experiments show that we can compute counterexamples for systems
with millions of states.

1 Introduction

Probabilistic model checking. Model checking is a well-established verification
technique used in software and hardware industry. One of its key features is the
ability to generate counterexamples in case the property is refuted [1]. Probabilistic
model checkers such as PRISM [2] aim at verifying models that incorporate
randomness. Successful applications include randomized distributed algorithms,
hardware [3], security [4], and systems biology [5]. Properties typically quantify
the likelihood of reachability objectives such as “Is the probability that the
protocol successfully terminates at least 0.99?”. Probabilistic model checking has
recently been identified as one of the three main new avenues in verification [6].

Rewards. This paper focuses on the treatment of resource consumption in proba-
bilistic model checking. In addition to probabilistic reachability this allows to
consider the cost – measured in terms of units of used resources – of reaching a
certain set of states. Such costs can be used to keep track of memory consump-
tion, battery usage, and heat generation, to mention a few. Treating resource
consumption in verification models has resulted in extensions of timed automata
with “prices” [7], games with “energy” [8] and “battery” transition systems [9].
We consider discrete-time Markov chains (DTMCs, for short) that are extended
with rewards. These so-called Markov reward models (MRMs) [10] are pivotal
in the field of performability, i. e., the interdependent analysis of reliability and
performance of systems, as stressed in [11].

a1

1

a2

1

a3

1

del1 err1

0.2 0.2

0.8 0.8 0.8 0.2

(a) MRM of a simple communication protocol.

a1

1

a2

1

t1

0.2

0.8 1

(b) Critical subsystem.

Fig. 1. Example MRM and critical subsystem.

Topic of this paper. The verification of MRMs is well-developed since more than
a decade [12], and is efficiently supported by tools like PRISM. Key performabil-
ity questions that can be handled are of the form “Is the expected number of
steps until termination at most ten?”. Although such questions can be handled
efficiently (and symbolically), the feedback in case such questions are violated is
limited. Typically, only the expected resource consumption is provided, but no
indication is provided about the cause of property violation. This paper attempts
to fill this gap by providing several algorithms to generate counterexamples to
expected cost properties. That is to say, we present automated means that yield
diagnostic information in case the expected accumulated resource consumption
exceeds an a priori given upper bound. These counterexamples are fragments
of the MRM under consideration – so-called critical subsystems – that already
violate the expected cost property. This paper thus extends the current facilities
for counterexample generation for probabilistic reachability (and ω-regular) prop-
erties, cf. a recent survey [13], with expected cost properties. We consider two
possible types of counterexamples which are both natural extensions of the ones
for reachability: a critical part of the original MRM that is computed narrowing
down the faulty behavior or the MRM in which the reward of irrelevant states is
set to zero while the probabilistic behavior of the system is preserved.

An example. Let us illustrate this by means of a small example. Figure 1(a)
presents a model of a simple communication protocol. Up to three times a message
is being sent (states a1, a2, and a3). The loss probability of a message is 0.2. The
protocol terminates in state del when the message is successfully delivered or
otherwise in state err. States ai are equipped with reward one; all other states
have reward zero. It is easy to see that the protocol refutes the property “the
expected number of steps until termination is below 1.2”. A fragment of the
protocol model already violating the property is given in Figure 1(b).

Approach and related work. Our approach is based on extending the notion of crit-
ical subsystems, which were introduced in [14, 15] to expected cost properties. This
gives the first direct method for counterexamples against expected cost properties.
As explained above, two types of such subsystems are considered. To compute
these counterexamples, we present three different techniques. The first one is an
encoding of critical subsystems by means of mixed-integer linear programming

2

(MILP). Together with different optimization functions, minimal counterexamples
can be obtained using standard MILP solvers such as Gurobi [16]. This approach
is applicable to both types of counterexamples. The second algorithm is based
on path searching algorithms. Intuitively, a subsystem is incrementally built by
connecting path fragments of high costs with respect to their probability. This
extends an approach presented in [15]. The last approach exploits best-first (bf)
search which is in fact an on-the-fly exploration the MRM’s state space [14]. The
last two methods are applicable to critical subsystems and strongly depend on an
appropriate value function that takes both the rewards and the path probabilities
into account; we will discuss several different options for such functions. Note that
all approaches on counterexample generation in the probabilistic setting suffer
from the fact that the verification process—mostly based on the solving of linear
equation systems—does not incorporate the computation of counterexamples
as a by-product, see for instance [13]. We have implemented all our approaches
and compare their applicability on several PRISM benchmarks. The conducted
experiments show that the MILP approaches often yield a (nearly) minimal
critical subsystem in just a few seconds, whereas the best-first search approach
scales to models of 107 states and 108 transitions while yielding larger results
than the path search.

2 Preliminaries

In this section we introduce the foundations needed for our methods.

Definition 1 (Discrete-time Markov Chain). A discrete-time Markov chain
(DTMC) is a tuple D = (S, sI , P) with a finite set of states S, an initial state sI ∈
S, and a transition probability matrix P : S×S → [0, 1] ⊆ R with

∑
s′∈S P (s, s′) =

1 for all s ∈ S.3

Assume a DTMC D. The graph of D is given by GD = (S,E) where (s, s′) ∈
E ⇔ P (s, s′) > 0. E is called the set of transitions. A state s ∈ S is absorbing iff
P (s, s) = 1.

A path of a DTMC D is a non-empty (finite or infinite) sequence π = s0s1 . . .
of states si ∈ S such that P (si, si+1) > 0 for all i. Let PathsDfin denote all finite

paths of D and PathsDfin(s) those starting in s ∈ S. For a set T ⊆ S, we denote
the set of finite paths starting in s and ending in the first visit of some t ∈ T
by PathsDfin(s,♦T) = {s0 . . . sn ∈ PathsDfin(s) | sn ∈ T and si /∈ T for all i < n}.

A state s′ ∈ S is reachable from s iff PathsDfin(s,♦{s
′}) 6= ∅. Let PathsDfin(S

′, S′′)
for S′, S′′ ⊆ S denote the set of paths starting in a state from S′ and ending in a
state from S′′ without visiting a state from S′ ∪ S′′ in between.

Let π = s0s1 . . . sn ∈ PathsDfin be a finite path. Its probability is given by

P (π) =
∏n−1

i=0 P (si, si+1). Consider a state s ∈ S and a set of dedicated target

3 Note that for our methods we assume probabilities and rewards to be from Q.

3

states T ⊆ S. The reachability probability, i. e., the probability to eventually reach
a state t ∈ T when starting in s is given by

PrD(s |= ♦T) :=
∑

π∈PathsD
fin

(s,♦T)

P (π).

Note that no path π ∈ PathsDfin(s,♦T) is a proper prefix of another path π′ ∈

PathsDfin(s,♦T) as these paths end at the first visit of a state in T ⊆ S. Therefore
we can take the sum of their probabilities to obtain the reachability probability.

Definition 2 (Markov Reward Model). A Markov reward model (MRM) is
a tuple M = (D, rew) with the underlying DTMC D = (S, sI , P) and the reward
function rew: S → R≥0.

Note that for our applications only rational numbers are used as rewards. The
presented notions for DTMCs are also applicable to MRMs and refer to the
underlying DTMC. For instance, PathsMfin refers to paths in the DTMC D of
the MRM M = (D, rew). Intuitively, the reward rew(s) is earned on leaving the
state s ∈ S. The (cumulative) reward of a finite path π = s0 . . . sn ∈ PathsMfin is

given by rewM(π) =
∑n−1

i=0 rew(si). The expected reward is the expected amount
of reward that has been accumulated until a set of target states T ⊆ S is reached
when starting in a state s. If PrD(s |= ♦T) < 1, we follow the usual definition
and set ExpRewM(s |= ♦T) := ∞.4 Otherwise we define

ExpRewM(s |= ♦T) :=
∑

π∈PathsD
fin

(s,♦T)

P (π) · rew(π) .

For all notations, we will in the following omit the superscript M (or D) if it
is clear from the context. Note that rewards can also be defined for transitions.
These transition rewards can be transformed to state rewards by means of a
simple transformation.

Definition 3 (Reachability Property, Expected Reward Property). For
a DTMC D = (S, sI , P) with s ∈ S and T ⊆ S, a probability bound λ ∈ [0, 1],
and a comparison operator ⊳ ∈ {<,≤}, the reachability property P⊳λ(♦T) is
satisfied in s, written s |= P⊳λ(♦T), iff Pr(s |= ♦T) ⊳ λ.

Given an MRM M = (D, rew) and a reward bound λ′ ∈ R≥0, the ex-
pected reward property E⊳λ′(♦T) is satisfied in s, denoted by s |= E⊳λ′(♦T), iff
ExpRew(s |= ♦T) ⊳ λ′.

Let D |= P⊳λ(♦T) ⇔ sI |= P⊳λ(♦T) and M |= E⊳λ′(♦T) ⇔ sI |= E⊳λ′(♦T).

As transitions leaving a target state t ∈ T do not affect reachability probabilities
and expected rewards, we assume that all target states are absorbing. Note that

4 The intuition is as follows: If a state with positive reward from which no target state
is reachable is visited infinitely often, an infinite amount of reward will be collected.
If this case is excluded, the definition can be generalized.

4

we explicitly do not include properties with lower bounds here. For reachability
properties with lower bounds, we can formulate equivalent properties with upper
bounds by considering the probability to reach a state from which no state t ∈ T
is reachable. This transformation is, however, not applicable for expected reward
properties. The standard method to check whether s |= E⊳λ(♦T) (or s |= P⊳λ(♦T))
for a state s ∈ S is to solve a linear equation system. For expected rewards the
equation system has the following shape (assuming PrM(s |= ♦T) = 1):

rs =

{
0 for s ∈ T ,

rew(s) +
∑

s′∈S P (s, s′) · rs′ otherwise .
(1)

The unique solution for rs yields the values ExpRew(s |= ♦T)) for every state s ∈
S. For more details and the corresponding linear equation system for reachability
probabilities we refer to [17].

We will need mixed integer linear programs (MILPs) which optimize a linear
objective function under a condition specified by a conjunction of linear inequali-
ties. A subset of the variables in the inequalities is restricted to take only integer
values, which makes solving MILPs NP-hard [18, Problem MP1].

Definition 4 (Mixed Integer Linear Program). Let A ∈ Qm×n, B ∈ Qm×k,
b ∈ Qm, c ∈ Qn, and d ∈ Qk. A mixed integer linear program (MILP) consists
of minimizing cTx+ dT y such that Ax+By ≤ b and x ∈ Rn, y ∈ Zk.

MILPs are typically solved by a combination of a branch-and-bound algorithm
with the generation of so-called cutting planes. These algorithms heavily rely
on the fact that relaxations of MILPs which result by removing the integrality
constraints can be solved efficiently. Efficient tools are available, e. g., Gurobi [16].
We refer the reader to [19] for more information on solving MILPs.

We now briefly recall the central definitions of counterexamples for reachability
properties.

Definition 5 (Evidence, Counterexample [20]). Let D = (S, sI , P) be a
DTMC, T ⊆ S be a set of target states, and P⊳λ(♦T) be a reachability property
violated by D. Paths in PathsDfin(sI ,♦T) are called evidences. A counterexample
C is a set of evidences such that P (C) :=

∑
π∈C P (π) 6⊳ λ. C is minimal if

|C| ≤ |C ′| holds for all counterexamples C ′ and smallest if it is minimal and
P (C) ≥ P (C ′) holds for all minimal counterexamples C ′.

Smallest counterexamples can be computed using algorithms for finding the
k shortest paths in a directed graph. As it is infeasible to compute smallest
counterexamples for large DTMCs, numerous heuristic approaches have been
proposed, based on best-first search, SAT-based bounded model checking, and
BDD-based symbolic methods.

The drawback of all path-based counterexamples is that the number of paths
even in a minimal counterexample can be very large; [20] presents an example
where the number of paths in a minimal counterexample is doubly exponential in
the system parameters – and therefore much larger than the number of system

5

states. To obtain a more compact representation, the usage of critical subsystems
has been proposed [14, 15].

Definition 6 (Selection, Critical Subsystem). Let D = (S, sI , P) be a
DTMC, T ⊆ S a set of target states, and P⊳λ(♦T) a reachability property which
is violated by D. A subset S′ ⊆ S of states with sI ∈ S′ is called a selection. The
subsystem of D induced by a selection S′ is the DTMC D′ = (S′ ⊎ {t}, sI , P

′)
where t 6∈ S is a new state and P ′ is defined by

P ′(s, s′) =

P (s, s′) if s, s′ ∈ S′

∑
s′′∈S\S′ P (s, s′′) if s ∈ S′ and s′ = t

1 if s = s′ = t

0 otherwise.

We call a selection S′ and its induced subsystem critical for P⊳λ(♦T) if P⊳λ(♦T
′)

is violated in the induced subsystem with T ′ = T ∩ S′.

The additional absorbing state t 6∈ S is only required here to ensure that the
probabilities of the transitions leaving a certain state sum up to one. Critical
subsystems have the property that the set of paths from the initial to a target
state forms a counterexample according to Definition 5.

The computation of critical subsystems with a minimum number of states
using MILP has been investigated in [21]. Heuristic approaches which typically
yield small, but not necessarily minimal counterexamples are also available. They
are mostly based on the path-search approaches mentioned above.

3 Critical Subsystems for Expected Rewards

Consider in the following an MRM M = (D, rew) with D = (S, sI , P) and
an expected reward property E⊳λ(♦T) with ⊳ ∈ {<,≤}, λ ∈ R≥0 such that
M 6|= E⊳λ(♦T). We assume all target states t ∈ T to be absorbing.

If Pr(sI |= ♦T) < 1, the expected reward is infinite, and it directly follows
that E⊳λ(♦T) is violated for all λ ∈ R≥0. In this case, a path from sI to a state
from which no state in T is reachable indicates why Pr(sI |= ♦T) < 1 holds and
can therefore serve as a counterexample. Such a path can be found via simple
reachability analysis on the graph of the DTMC.

In the following, we will only consider the more interesting case where Pr(sI |=
♦T) = 1 and thus ExpRew(sI |= ♦T) < ∞ holds.

To indicate why the MRM M violates the property E⊳λ(♦T), we adjust
the notion of critical subsystems for reachability properties to expected reward
properties. The idea is to select states of the original system in order to form a
subsystem that already refutes the property.

Definition 7 (Critical Subsystem for Expected Reachability). Let M =
(D, rew) be an MRM with D = (S, sI , P). For a selection of states S′ ⊆ S, a
subsystem of M is given by the MRM M′ = (D′, rew′) with D′ = (S′⊎{t}, sI , P

′)

6

where t /∈ S is a new state, rew′(t) = 0, rew′(s) = rew(s) for all s ∈ S′ and
P ′ as in Definition 6. The subsystem M′ is critical for a property E⊳λ(♦T) iff
M′ 6|= E⊳λ(♦T

′) where T ′ = (T ∩ S′) ∪ {t}.

In contrast to critical subsystems for reachability properties, the new absorbing
state t has to be considered as a target state. This is reasonable because in the
original MRM the probability to reach a target state is one by assumption. If t
were not a target state, the probability to reach a target state in the subsystem
would be less than one and therefore the expected reward infinite. That means, the
subsystem would be critical for every bound λ ∈ R≥0, even ifM |= E⊳λ(♦T). Such
a subsystem can obviously not be considered a counterexample. The definition

above ensures that PrM
′

(sI |= ♦T ′) = 1 holds for every possible subsystem M′ of
M by adding the new state t to the set of target states. From PrM(sI |= ♦T) = 1,
it also follows that PrM(s |= ♦T) = 1 holds for every state s that lies on a path
in PathsMfin(sI ,♦T).

This means that the reachability of target states is already given by assumption.
In a subsystem M′, the transitions leading to t can be interpreted as “shortcuts”
to a target state. If M′ is critical, then the reward collected within the subsystem
is already too large, even if all other states would have reward zero. This allows
us to hide the unimportant details of how a state in T will eventually be reached
and we can focus on the parts of the model where reward is collected. Note that
this reasoning would not be valid if we allow for states with negative rewards:
Parts of the model where enough reward is collected might be followed by states
with negative rewards. Hence, the details of how a state in T is reached would
not be unimportant anymore. A critical subsystem can also not serve as a
counterexample for an expected reward property with a lower bound as this
would require to indicate an upper bound of the expected reward of the model.

Alternative Definition of Critical Subsystems. We discuss another notion for
critical subsystem for expected reward properties. According to Definition 7, the
original system was restricted with respect to its states. It is also natural to
change the rewards that are assigned to states without changing the behavior of
the system. The goal is now to only restrict the positive rewards in the system as
much as possible. To avoid confusion, this is called a critical reward subsystem.

Definition 8 (Critical Reward Subsystem). Let M = (D, rew) be an MRM
with D = (S, sI , P). For a selection S′ ⊆ S, the reward subsystem of M induced
by S′ is defined as the MRM M′ = (D, rew′) where

rew′(s) =

{
rew(s) for s ∈ S′

0 otherwise.

The reward subsystem M′ is critical for a property E⊳λ(♦T) iff M′ 6|= E⊳λ(♦T).

A critical reward subsystem indicates the parts of the system that give enough
reward to refute a property without ruling out possible system behavior (i. e.,

7

a1

1

a2

1

t1

0.2

0.8 1

(a) Critical subsystem

a1

1

a2

1

a3

0

del1 err1

0.2 0.2

0.8 0.8 0.8 0.2

(b) Critical reward subsystem

Fig. 2. The different notions of critical subsystems.

without disregarding states in the underlying DTMC). Depending on the partic-
ular application, this can be advantageous, although there are examples where a
critical subsystem according to Definition 7 should be preferred. For instance,
consider an MRM M with exactly one state s such that rew(s) > 0. Every
reward subsystem of M is either equal to M or only has states with reward zero
and is therefore less useful for debugging purposes.

In conclusion, we reconsider the MRM depicted in Figure 1(a). For the violated
property E<1.2(♦{del , err}), we show the two notions of critical subsystems
in Figure 2. The critical subsystem according to Definition 7 in Figure 2(a)
has reduced state space, while for the critical reward subsystem according to
Definition 8 in Figure 2(b), a reward of zero is assigned to state a3.

4 Generation of Critical Subsystems

We now present different approaches to generate a subsystem of the MRM
M = (D, rew), D = (S, sI , P), that is critical for the property E<λ(♦T)

5. We
assume in the following that M violates the property, that PrM(s |= ♦T) = 1,
that the target states in T are absorbing, that all states in S are reachable from
the initial state sI /∈ T , and that ExpRewM(sI |= ♦T) > 0.

4.1 Minimal Critical Subsystem Generation

We start with the problem of generating minimal critical subsystems. A critical
subsystem is called minimal if it is induced by a selection S′ ⊆ S such that
|S′| ≤ |S′′| holds for all selections S′′ ⊆ S that induce critical subsystems. We fix
the set of states with positive reward by SR := {s ∈ S | rew(s) > 0}. To reduce
the number of states that have to be considered, the first step is to determine
the set of contributing states, which are given by

Ŝ = {s ∈ S \ T | a state s′ ∈ SR is reachable from s} .

Ŝ can be obtained via a reachability analysis in the underlying graph of the
MRM. Starting from a non-contributing state s ∈ S \ Ŝ, a state with positive

5 the subsequently discussed Path search and Best-first search approaches are also
applicable for E≤λ(♦T).

8

reward cannot be reached. Therefore, adding s to a selection S′ does not have
any effect on the expected reward of the subsystem induced by S′ and minimal
critical subsystems contain only contributing states.

In a second step we formulate an MILP to find a selection S′ ⊆ Ŝ that induces
a minimal critical subsystem M′ of M for E<λ(♦T). For all s ∈ Ŝ, variables
xs ∈ {0, 1} are used with the interpretation that xs = 1 iff s ∈ S′. Furthermore,
variables rs ∈ R≥0 are used to take into account the expected reward for the

states in the resulting subsystem, more precisely, 0 ≤ rs ≤ ExpRewM′

(s |= ♦T ′)
with T ′ = (T ∩ S′) ∪ {t}. The MILP can be formulated as follows:

minimize −
1

2 · ExpRewM(sI |= ♦T)
· rsI +

∑

s∈Ŝ

xs (2a)

such that

∀s ∈ Ŝ : rs ≤ (ExpRewM(s |= ♦T)) · xs (2b)

∀s ∈ Ŝ : rs ≤ rew(s) +
∑

s′∈Ŝ

P (s, s′) · rs′ (2c)

rsI ≥ λ (2d)

We can obtain the values ExpRewM(s |= ♦T) for all s ∈ Ŝ as a side-product
from model checking. Condition 2b ensures that, if the state is not included,
i. e., xs = 0, rs is explicitly set to zero in order to avoid unwanted contribution
to the expected reward of the initial state in the subsystem. For states in
the selected subsystem, i. e., xs = 1, Condition 2b is not a real restriction as

ExpRewM′

(s |= ♦T ′) ≤ ExpRewM(s |= ♦T) holds for all states s ∈ S′. In
Constraint 2c, the value of rs is bounded from above by the actual expected
reward in the subsystem by using the linear equation system as in Equation 1.
Transitions that lead to states in S\Ŝ are not considered since the expected reward
of these states is always 0. Constraint 2d ensures the criticality of the subsystem
by forcing the expected reward of the initial state to be at least λ. Finally, consider
the objective function in (2a), which enforces a minimal critical subsystem with
maximal expected reward among all minimal critical subsystems: The second
summand ensures the minimality of the critical subsystem by minimizing the
sum of all xs-variables. The first summand ensures a maximal value for the
rsI -variable of the initial state by minimizing its negative value. Additionally,
this value needs to be in the open interval (0, 1) as otherwise the solver could
include another state s, i. e., xs = 1, and thereby break the minimality criterion.
This is achieved by the factor c · 1/ExpRewM(sI |=♦T) for arbitrary 0 < c < 1 (we
chose c = 1/2). This maximal value will be exactly the expected reward of the
initial state in the minimal critical subsystem. Note that this is not necessary in
order to achieve a state-minimal subsystem. In our experiments as well as in the
following objective functions, we omit this summand.

Redundant constraints which prune sub-optimal solutions from the search
space can be added to this MILP to assist the solver in finding an optimal solution

9

quickly. We omit these constraints here as they have a very similar shape as for
reachability properties. We refer the reader to [21] for details.

Alternative Objective Functions. Instead of a critical subsystem with a minimal
number of states, other notions might be beneficial dependent on the application
at hand. We discuss a few possibilities below to give an intuition on how our
approach can be adapted in the desired way. For instance, we replace (2a) with
one of the following objective functions:

minimize
∑

s∈SR

xs (3)
∑

s∈SR

rew(s) · xs (4)
∑

s∈SR

rew(s)2 · xs (5)

To obtain a minimal number of selected states with positive rewards, (3) can be
used. By (4), the sum of all rewards occurring in the subsystem is minimized,
while we minimize the norm of the rewards occurring in the subsystem by (5).

Critical Reward Subsystems. We also give an MILP formulation to generate
minimal critical reward subsystems as in Definition 8:

minimize
∑

s∈SR

xs (6a)

such that

∀s ∈ Ŝ : rs ≤ rew(s) · xs +
∑

s′∈Ŝ

P (s, s′) · rs′ (6b)

rsI ≥ λ (6c)

The objective function (6a) only minimizes the number of states with positive

reward from SR. In Constraint 6b, the expected reward for each state s ∈ Ŝ
that is included in the selection is computed and assigned as upper bound to rs.
Constraint 6c ensures the criticality of the subsystem.

Note that in contrast to the MILP formulation (2a)–(2d), we do not need to
explicitly assign non-selected states an expected reward of zero as it suffices to
only set the contributing reward of non-selected states to zero.

4.2 Path Search Approach

The path search approach is an extension of the local path search presented in [15].
Originally, this heuristic approach is used to generate small critical subsystems
of DTMCs for reachability properties. The algorithm can be adapted to work for
MRMs and expected reward properties by taking the rewards into consideration.

For this purpose, a value function V : S × S → [0, 1] ⊆ R is used to evaluate
the benefit of transitions. The function should take rewards and probabilities
into account such that a high value V (s, s′) means that it might be beneficial
to include the states s and s′ in the subsystem. A sequence of states s0 . . . sn
with V (si, si+1) > 0 for all 0 ≤ i < n should be a valid path of M and vice versa.
We therefore require V (s, s′) > 0 iff P (s, s′) > 0 for all s, s′ ∈ S. For a path

10

π = s0 . . . sn ∈ PathsMfin the value of a path is given by V (π) =
∏n−1

i=0 V (si, si+1).

Given a set of paths Π ⊆ PathsMfin , a path π ∈ Π is called most valuable if
V (π) ≥ V (π′) for all π′ ∈ Π . To ensure that there is always a most valuable path,
we require that 0 ≤ V (s, s′) ≤ 1 for all s, s′ ∈ S. If V (s, s′) = 1, we additionally
require V (s, s′′) = 0 for all s′′ 6= s′ to exclude infinitely many most valuable
paths that arbitrarily often take loops with value one. Reasonable definitions for
V will be discussed later.

We consider paths from PathsMfin(Sstart, Send) for Sstart, Send ⊆ S. Further-
more, for paths of length two we require that the last state is not contained in
Sstart (note that the sets Sstart and Send do not have to be disjoint).

The first step of the path search approach is always to find a most valuable
path that starts in the initial state and ends in one of the target states. A selection
S′ is initialized with the states visited on that path. After that, most valuable
paths connecting already selected states with target states or, again, selected
states are repeatedly searched. The selection S′ is extended by the states visited
on these paths until it induces a critical subsystem. Algorithm 1 describes the
procedure. Here, the function FindMostValuablePath(V, Sstart, Send) returns
a most valuable path with respect to the value function V that connects Sstart

with Send. Such a function can be realized by using an adaptation of Dijkstra’s
shortest path algorithm where the values are multiplied (instead of summed)
and paths with maximal (instead of minimal) values are chosen. The function
SubSys(M, S′) returns the subsystem of M induced by S′.

Algorithm 1 Path Search Approach

Input: MRMM, property E⊳λ(♦T)
Output: A critical subsystem ofM for E⊳λ(♦T)

1: initialize value function V : S × S → [0, 1]
2: π ← FindMostValuablePath(V, {sI }, T)
3: S′ ← {s ∈ S | s is visited by π}
4: while SubSys(M, S′) is not critical for E⊳λ(♦T) do
5: π ← FindMostValuablePath(V, S′, S′ ∪ T)
6: S′ ← S′ ∪ {s ∈ S | s is visited by π}
7: end while

8: return SubSys(M, S′)

It is not required to check in every iteration whether the current selection
already induces a critical subsystem. To save computation time, the condition is
checked only if at least |S| · c additional states have been selected since the last
check (for a constant 0 < c ≤ 1).

Value functions. We propose two different value functions. First, we want to take
both the probability of a transition (s, s′) ∈ E and the reward of the state s into

11

account by using their product:

V1(s, s
′) = P (s, s′) ·

rew(s) + ε

maxs′′∈S(rew(s′′)) + ε

In order to avoid a value of zero and the division by zero, we add a constant
ε > 0 to both the numerator and the denominator. The value is scaled by the
maximal occurring reward in order to ensure it to be from [0, 1].

As a second proposal, we make use of the actual expected reward of all states
inside the original system:

V2(s, s
′) =

ExpRew(s |= ♦T) + ε

maxs′′∈S(ExpRew(s′′ |= ♦T)) + 2ε

We scale these values by the maximal occurring expected reward and add con-
stants. For the denominator we add a larger value in order to have a value which
is smaller than one. Note that V2(s, s

′) is independent of s′. This is not disadvan-
tageous since the value of a path will still depend on all visited states (except
the last one which is either a target state or already selected). It is also possible
to just use probabilities for our computations. However, in our experiments V2

performed best for most cases.

4.3 Best-first Search Approach

The best-first search approach is another heuristic approach to generate critical
subsystems. It is related to the extended best first search (XBF) presented in [14].
A value function f : S → R evaluates how beneficial it is to select a given state.
For the best-first search, we denote value functions with f (instead of V) to avoid
confusion with the value functions of the path search approach. In contrast to
XBF, where the model is explored in an on-the-fly manner, the model is analyzed
in advance. The obtained information can be used for f . On the one hand, this
increases the effort to get the values of the function but, on the other hand, the
provided values can be more accurate.

Algorithm 2 illustrates how a critical subsystem is generated with the help
of such a value function f . It uses two sets of states: S′ and Sexplore. S

′ is a
selection to which more and more states are added until it induces a critical
subsystem. The set Sexplore always contains the states that are considered to be
explored, starting with the initial state sI . Repeatedly a state s ∈ Sexplore with
maximal value f(s) is explored. This means that s is added to the selection S′,
removed from Sexplore, and all non-selected successors of s are added to Sexplore.
Target states do not need to be explored and are therefore directly added to S′

and not added to Sexplore. The procedure stops as soon as the subsystem of M
induced by S′ (denoted by SubSys(M, S′)) is critical. Similar to the path search
approach, computation time can be saved by only checking this condition if at
least |S| · c states have been added to S′ since the last check.

12

Algorithm 2 Best-first Search Approach

Input: MRMM, property E⊳λ(♦T)
Output: A critical subsystem ofM for E⊳λ(♦T)

1: initialize function f : S → R

2: S′ ← ∅
3: Sexplore ← {sI }
4: repeat

5: choose s ∈ Sexplore with f(s) ≥ f(s′) for all s′ ∈ Sexplore

6: S′ ← S′ ∪ {s} ∪ {s′ ∈ T | P (s, s′) > 0}
7: Sexplore ← (Sexplore ∪ {s

′ ∈ S | P (s, s′) > 0 and s′ /∈ S′}) \ {s}
8: until SubSys(M, S′) is critical for E⊳λ(♦T)
9: return SubSys(M, S′)

Possible value functions f for all s ∈ S are:

f1(s) := ExpRew(s |= ♦T) f2(s) := P (πs
sI
) · ExpRew(s |= ♦T)

f3(s) := P (πs
sI
) ·max

s′∈S
(P (πs′

s) · rew(s′))

Here, πs′

s denotes a path from s ∈ S to s′ ∈ S with maximal probability, i. e.,
P (πs′

s) ≥ P (π) for all paths π from s to s′. The expected rewards of every state
can be obtained as a side product from model checking. For a state s ∈ S, the
value f1(s) provides information about the benefit of s itself as well as the “future”
of s, i. e., the benefit of the states that are reachable via s. To also consider the
“past” of s, f2 uses the probability to reach s. Hence, the probability to reach a
state s is estimated by the probability of a single path. The probabilities P (πs

sI
)

for all states s ∈ S can be obtained by using a variant of Dijkstra’s shortest
path algorithm. Finally, function f3 evaluates whether there is a state s′ that is
reachable from s with high probability and that has high reward.

5 Experimental Results

In this section we report on a selection of our benchmark results. We implemented
all approaches presented in the previous sections in C++ using Gurobi [16] as
MILP solver. All experiments were conducted on a Windows 64 bit system with
a 2.66 GHz CPU and 6 GB RAM. We used the following benchmarks which are
all available (partly without the reward definitions) for Prism [2].

The aim of the crowds protocol [22] (crowds) is to hide the identity of the
sender of a message by randomly routing the message within a group of crowd
members, consisting of good and bad members, the latter ones trying to collect
information about the identity of a sender. The model can be scaled in the
number N of good members and the number K of message deliveries. The time a
single crowd member requires to forward or deliver a message varies between one
and five time units. We consider the expected time needed to deliver K messages.

13

Table 1. Experimental results (TO> 1h, MO> 6GB).

Critical Subsystem Crit. Rew. Subsys.
Minimal Heuristic Mininimal
MILP MILP Path Search BF Search MILP

m
o
d
el N [−K] |S′| |S′| |S′| |S′| |S′| / |SR|

#states time (seconds) time (seconds) time (seconds) time (seconds) time (seconds)
#transitions memory (MB) memory (MB) memory (MB) memory (MB) memory (MB)

cr
ow

d
s

10-3 109 109 161 292 26 / 1 560
6 563 13.38 ≤1 0.091 0.16 0.25
15 143 48 24 9 9 16
10-6 972* 1 293 2 447 3 780 229 / 87 360
352 535 TO (25.30 %) 36 79.44 2.47 238.72
833 015 1 678 819 246 246 439
15-6 1 820* 2 478 5 208 10 578 424 / 610 470
2 464 168 TO (41.30 %) 241 1 573.16 10.35 3 270.84
7 347 928 4 662 4 793 1 783 1 782 3 181
20-6 23 386

10 633 591 MO MO TO 194.72 MO
38 261 191 5 567.24

h
er
m
a
n

7 25 25 31 45 14 / 128
128 0.39 ≤1 0.004 0.003 0.06
2 188 9 9 5 5 8
13 228* 292 230 231 109 / 8 192
8 192 TO (15.1 %) 4 1.59 1.48 1.65
1 594 324 655 103 104 104 132
15 360* 415 362 381 167 / 32 768
32 768 TO (16.2 %) 22 20.27 19.26 20.38
14 348 908 1 177 831 832 832 1 057
17 542* 550 546 572 248 / 131 072
131 072 TO (19.8 %) 333 237.63 245.48 280.65
129 140 164 5 267 5 506 5 623 5 542 5 466

eg
l

4-8 1 319 1 319 1 407 1 606 330 / 668
31 486 7.34 2 0.15 1.33 0.2
31 741 32.6 28 25 25 31
5-2 2 353 2 353 2 481 2 848 574 / 1 163
33 790 375.93 4 3.42 2.74 0.16
34 813 58 33 26 26 33
7-4 86 943* 87 016 106 538 93 681 9 462 / 18 987
1 654 782 TO (0.01 %) 45 3 504.7 82.06 9.18
1 671 165 1 448 1 033 1 033 1 033 1 273
7-8 126 716* 126 732 134 383 11 240 / 22 543
3 489 790 TO (0.06 %) 126 TO 120.13 23.41
3 506 173 2 172 2 172 2 171 2 686

The self-stabilization protocol (herman) [23] considers a ring of N identical
processes. A configuration is called stable if there is exactly one designated
process. The purpose of this protocol is to transform the system from an arbitrary
configuration into a stable one. We are interested in the expected number of steps
until the system reaches a stable configuration.

The contract signing protocol (egl) [24] is dedicated to fairly exchange com-
mitments to a contract between two parties A and B. It is assumed that both
parties have N pairs of secrets of length L which will be exchanged. A party has
committed to a contract whenever both secrets of one of its pairs are known by
the other party. We investigate the expected number of messages that A needs to
receive in order to know a pair of B where only the messages after B knows a
pair of A are considered.

14

crowds5-5 crowds10-6 herman15 egl5-2
0

1,000

2,000

3,000

4,000

TO TO

N
u
m
b
er

o
f
se
le
ct
ed

S
ta
te
s

Minimal

MILP Heur.

Path Search

BF Search

Fig. 3. Sizes of the critical subsystems generated by the different approaches.

The results for all benchmarks are depicted in Table 1. First, we computed
critical subsystems using the MILP approach (see Equations 2a–2d) and the
heuristic approaches (Path search and BF Search, see Sections 4.2 and 4.3).
For all approaches we give the size of the selection, the computation time in
seconds and the memory consumption in MB. The reward thresholds were set to
half of the expected reward in the original system. Minimal MILP refers to the
minimization including the proof of minimality. Whenever we reached the time
limit, we depict the smallest critical subsystem found until that point (*) as well
as the gap to the lower bound.

We also made use of the nature of MILP solving. Iteratively, an interme-
diate solution is compared w. r. t. its minimality to a certain lower bound on
the optimal solution. This intermediate solution satisfies all conditions for a
critical subsystem while minimality is not yet proven. We basically aborted the
computation of Gurobi after roughly the same time as was consumed for the
heuristic approaches and refer to this intermediate result as MILP as heuristic
approach. This demonstrates the practical use of this approach as a heuristic
method. The optimal results, excluding the minimization, are always depicted
boldfaced.

We first observe that for the heuristic MILP a very small subsystem which
is near the actual minimum is often found after a few seconds. This justifies
the MILP approach also as a heuristic method, as benchmarks with millions of
states and transitions are possible. Note that the herman benchmark is strongly
connected having a large number of transitions. The heuristic approaches perform
well for large benchmarks while the BF search is even able to compute results
for over 107 states and 108 transitions. Note that the methods were not able to
handle larger systems because this was the threshold for explicit storing.

We tested all value functions explained above where for Path search V2 and
for BF search f2 performed best. For these approaches, the memory consumption
is rather high due to the initial model checking that we perform. For the MILP
approaches it is even higher due to the nature of the solving process.

Results for minimal critical reward subsystems as in Definition 8 depict both
the size of the selection, i. e., the number of states having a positive reward in
the subsystem as well as the original number of such states. We observe that in

15

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

λ/ExpRew(sI |= ♦T)

S
iz
e
o
f
re
su
lt
in
g
se
le
ct
io
n

crowds10-3

Minimal

MILP Heur.

Path Search

BF Search

0 0.2 0.4 0.6 0.8 1
0

2

4

6

λ/ExpRew(sI |= ♦T)

R
u
n
ti
m
e
(s
ec
o
n
d
s)

crowds10-3

Minimal

MILP Heur.

Path Search

BF Search

Fig. 4. Results of the different approaches plotted against different reward bounds λ.

a relatively small amount of time the number of states having positive reward
can drastically be reduced; in some cases even by three orders of magnitude.

For a better overview, Figure 3 shows the sizes for different benchmarks for
all approaches. In general, the path search computes smaller subsystems than
the BF search. Figure 4 depicts results for a specific benchmark and different
reward bounds in terms of the size of the subsystem and the running time. The
nearer the reward bound is to the actual expected reward of the original system,
the larger the size of the subsystems becomes. Similarly, the times required by
the Path search and the BF search increase if the bound is high. The running
times for computing minimal critical subsystems do not exhibit such a monotony.
For certain reward bounds, the MILP solver is able to find a solution and proof
its minimality comparatively fast. A notable example is the case where the ratio
between the reward threshold and the actual expected reward is nearly one. Here,
the MILP approaches only select the set of contributing states and therefore take
nearly no time.

Summary. Using the MILP approaches we are able to compute optimal results
for both types of critical subsystems. We note that computing critical reward
subsystems is more efficient. This is due to the fact that the number of possible
solutions is smaller. However, it might be beneficial to compute small counterex-
amples, in which case this approach is not feasible as the original system’s size is
not reduced. The path search yields smaller subsystems than the BF search. For
very large benchmarks, BF is the only method that can compute results within
the time limit.

6 Conclusion and Future Work

In this paper we thoroughly investigated different notions and methods to compute
counterexamples in the form of critical system parts for Markov reward models.
The experiments were very promising and showed the applicability for rather
large benchmark instances. In the future, we will adapt the heuristic methods to
symbolic data structures such as binary decision diagrams to enable the treatment
of significantly larger systems.

16

References

1. Clarke, E.M.: The birth of model checking. In: 25 Years of Model Checking –
History, Achievements, Perspectives. Volume 5000 of LNCS. Springer (2008) 1–26

2. Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: Verification of probabilistic
real-time systems. In: Proc. of CAV. Volume 6806 of LNCS, Springer (2011) 585–591

3. Norman, G., Parker, D., Kwiatkowska, M.Z., Shukla, S.K.: Evaluating the reliability
of NAND multiplexing with PRISM. IEEE Trans. on CAD of Integrated Circuits
and Systems 24(10) (2005) 1629–1637

4. Norman, G., Shmatikov, V.: Analysis of probabilistic contract signing. Journal of
Computer Security 14(6) (2006) 561–589

5. Kwiatkowska, M.Z., Norman, G., Parker, D.: Using probabilistic model checking
in systems biology. SIGMETRICS Performance Evaluation Review 35(4) (2008)
14–21

6. Alur, R., Henzinger, T., Vardi, M.: Theory in practice for system design and
verification. ACM Siglog News 2(1) (2015) 46–51

7. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Priced timed automata: Algorithms
and applications. In: Formal Methods for Components and Objects. Volume 3657
of LNCS, Springer (2005) 162–182

8. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.F.: Generalized Mean-payoff
and Energy Games. In: Proc. of FSTTCS. Volume 8 of LIPIcs, Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik (2010) 505–516

9. Boker, U., Henzinger, T.A., Radhakrishna, A.: Battery transition systems. In: Proc.
of POPL, ACM Press (2014) 595–606

10. Howard, R.A.: Dynamic Probabilistic Systems; Volume I: Markov models. John
Wiley & Sons (1971)

11. Baier, C., Hahn, E.M., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model checking
for performability. Mathematical Structures in Computer Science 23(4) (2013)
751–795

12. Andova, S., Hermanns, H., Katoen, J.P.: Discrete-time rewards model-checked. In:
Proc. of FORMATS. Volume 2791 of LNCS, Springer (2003) 88–104

13. Ábrahám, E., Becker, B., Dehnert, C., Jansen, N., Katoen, J.P., Wimmer, R.:
Counterexample generation for discrete-time Markov models: An introductory
survey. In: Proc. of SFM. Volume 8483 of LNCS, Springer (2014) 65–121

14. Aljazzar, H., Leue, S.: Directed explicit state-space search in the generation of coun-
terexamples for stochastic model checking. IEEE Trans. on Software Engineering
36(1) (2010) 37–60

15. Jansen, N., Ábrahám, E., Katelaan, J., Wimmer, R., Katoen, J.P., Becker, B.:
Hierarchical counterexamples for discrete-time Markov chains. In: Proc. of ATVA.
Volume 6996 of LNCS, Springer (2011) 443–452

16. Gurobi Optimization, Inc.: Gurobi optimizer reference manual. http://www.gurobi.
com (2013)

17. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
18. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W.H. Freeman & Co Ltd (1979)
19. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1986)
20. Han, T., Katoen, J.P., Damman, B.: Counterexample generation in probabilistic

model checking. IEEE Trans. on Software Engineering 35(2) (2009) 241–257
21. Wimmer, R., Jansen, N., Ábrahám, E., Katoen, J.P., Becker, B.: Minimal coun-

terexamples for linear-time probabilistic verification. Theoretical Computer Science
549 (2014) 61–100

17

22. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. ACM Trans.
on Information and System Security 1(1) (1998) 66–92

23. Herman, T.: Probabilistic self-stabilization. Information Processing Letters 35(2)
(1990) 63–67

24. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Communications of the ACM 28(6) (1985) 637–647

18

