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COUNTEREXAMPLES IN IMPORTANCE SAMPLING
FOR LARGE DEVIATIONS PROBABILITIES1

BY PAUL GLASSERMAN AND YASHAN WANG

Columbia University

A guiding principle in the efficient estimation of rare-event probabili-
ties by Monte Carlo is that importance sampling based on the change of
measure suggested by a large deviations analysis can reduce variance by
many orders of magnitude. In a variety of settings, this approach has led
to estimators that are optimal in an asymptotic sense. We give examples,
however, in which importance sampling estimators based on a large
deviations change of measure have provably poor performance. The esti-
mators can have variance that decreases at a slower rate than a naive
estimator, variance that increases with the rarity of the event, and even
infinite variance. For each example, we provide an alternative estimator
with provably efficient performance. A common feature of our examples is
that they allow more than one way for a rare event to occur; our alterna-
tive estimators give explicit weight to lower probability paths neglected by
leading-term asymptotics.

1. Introduction. Among the most dramatic successes in variance reduc-
tion for efficient Monte Carlo simulation are applications of importance
sampling for estimating rare-event probabilities. It has been shown in a
variety of settings that a large deviations analysis of a rare event often
suggests a particularly effective change of measure}one that is often opti-

w xmal in an asymptotic sense. Siegmund 30 gave perhaps the first result of
this type. He showed that the uniquely optimal exponential change of mea-
sure for estimating a gambler’s ruin probability is determined by the expo-
nential rate of decay of the probability as one of the boundaries recedes. The
subsequent literature can be roughly divided in two: results showing that
specific estimators have provably good performance, and the development of
estimators}often evaluated experimentally}suggested by, but not strictly
supported by, rare-event asymptotics. While the first type of result may be
more mathematically complete, the second type is also essential, because in
applications it is necessary to have good heuristics for developing estimators
even if a rigorous analysis of their variance may be inaccessible.

The purpose of this article is to show, however, that there is some risk in
assuming that an importance sampling estimator based on a large deviations
analysis of a rare event is sure to perform well. Large deviations seeks to
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identify the most likely path and this may have adverse effects on the
variance. Simply put, an analysis of a first moment cannot be expected to
carry a guarantee about the behavior of a second moment. General necessary

w x w x w xand sufficient conditions in 28 , 12 and 27 point out the requirements
beyond a large deviations limit that must be verified to ensure effective
variance reduction. Our objective is to show just how poorly seemingly
optimal estimators can perform when these types of conditions do not hold.

w xGlasserman and Kou 16 make a related point in a queueing-network
application, but the observation there is qualified by the fact that a complete
large deviations analysis of the process is unavailable. The examples we
consider here can be more thoroughly analyzed and lead to much stronger
negative conclusions.

2. Problem setting. A reasonably generic formulation of the problem
� 4we consider starts with an indexed family of events A , x ) 0 satisfyingx

either a logarithmic limit

1
1 lim log P A s yg ,Ž . Ž .xxxª`

for some g ) 0, or the stronger exponential asymptotic

2 P A ; Ceyg x ,Ž . Ž .x

for some constant C ) 0. An even more general formulation along the lines of
the usual statement of a large deviations principle would consider an indexed
sequence of probability measures, but the simpler case suffices for our

w w xpurpose. Asmussen and Binswanger 5 consider rare-event simulation in a
Ž .heavy-tailed setting where not even 1 holds and a different formulation is

xtherefore necessary.
Ž . Ž .To estimate a x J P A , straightforward simulation generates indepen-x

dent replications of the indicator 1 or something that approximates it. TheA x
2 Ž .variance of this estimator is a y a . If P A ª 0 then this variance ap-x

Žproaches 0, but the relative error of the estimator the ratio of its standard
.deviation to its mean satisfies

2'a x y a x 1Ž . Ž .
relative error s G ª `.

a xŽ . 'a xŽ .
Ž .If 1 holds, the increase to infinity is exponential. This further implies that

the number of independent replications of 1 required to achieve a fixedA x

relative error grows exponentially in x.
Importance sampling generates samples under a different measure P with

expectation operator E and uses the representation

w x3 P A s E L ; A J E L 1 ,Ž . Ž .x x x x A x

in which L is a likelihood ratio. More precisely, L is the likelihood ratio ofx x
a restriction of P to a restriction of P, the restriction being to a sub-s-algebra
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containing A on which P 4 P. Often, absolute continuity of the unre-x
stricted measures fails; this is the case in our examples and indeed in all
examples where switching from P to P changes the common distribution of
an infinite i.i.d. sequence.

Ž . Ž .Based on 3 , we obtain an unbiased estimator of P A by averagingx
independent replications of

a x s L 1Ž .ˆ x A x

generated under P. Assuming the computational requirements of the estima-
tors are roughly comparable, the new one is better than the straightforward

Ž .one if its standard deviation is smaller, at least for large x. If 1 holds, then
nonnegativity of variance implies

1
2lim sup y log E a x F 2g ,Ž .ˆ½ 5xxª`

meaning that the exponential rate of decrease of the second moment can be at
most twice that of the probability itself. An estimator is called asymptotically

Ž .efficient or asymptotically optimal if this maximum rate is achieved}that
is, if

1
24 lim y log E a x s 2g .Ž . Ž .ˆ½ 5xxª`

An estimator is said to have bounded relative error if it satisfies the stronger
requirement that

2E a x' Ž .ˆ
5 lim sup - `.Ž .

P AŽ .xª` x

The number of independent replications required to achieve a fixed relative
Ž .error grows at a subexponential rate under 4 and remains bounded under

Ž . Ž . Ž w x5 , no matter how small P A . See 27, 26 for efficiency criteria sensitivex
.to all moments of an estimator. Specific estimators suggested by rare-event

asymptotics have been shown to satisfy these types of properties in, for
w x w x w x Ž . w x w x Ž . w x w x w x w xexample, 3 , 6 , 8 Section 8.B , 9 , 10 Section 2 , 11 , 16 , 17 , 19 ,

w x w x w x w x w x Ž . w x Ž . w x21 , 23 , 25 and 29 . In, for example, 8 Section 8.C , 10 Section 3 , 1 ,
w x w x w x w x14 , 20 , 22 and 24 , estimators are proposed based on large deviations or
related asymptotics for probabilities but without a corresponding analysis for

w x Ž . Ž .second moments. See 18 for further background on 4 and 5 and a survey
of rare-event simulation.

Since our objective is to show that estimators suggested by asymptotics of
Ž . ŽP A may fail to have desirable properties and may even be inferior tox

.straightforward estimators , we need to make precise the mechanism by
which an estimator is suggested. One can imagine quite a few senses in
which a change of measure is consistent with a large deviations result, and it
seems unlikely that any one sense can meaningfully cover all settings.
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Perhaps the most attractive notion is the existence of a conditioned limit
theorem showing roughly that P conditioned on A converges to P as x ª `:x
simulating under the conditional law produces a zero-variance estimator.

w xAsmussen 2 has established a conditioned limit theorem for random walks
and queues, and this forms an important underpinning of the associated
theory for simulation. A related notion is the existence of a large deviations
result for an empirical measure on paths in A , generalizing Sanov’s theoremx
Ž w x.see 13 . We work with two apparently weaker notions, intended to accom-

Ž . Ž .pany 1 and 2 , respectively. We say that P is consistent with the large
Ž . Ž .deviations result for P A if lim inf P A ) 0 and, under P, eitherx x ª` x

1
6 y log L ª g in probabilityŽ . xx

or

7 eg xL has a proper limiting distribution,Ž . x

where proper excludes distributions putting mass on "`. These are not
intended to cover all cases, but rather to provide some concrete link between
a large deviations result and a proposed change of measure. Each of these
suggests that P conditioned on A is approximated by P because thex
likelihood ratio is not too spread out: the conditional law itself has constant
likelihood ratio with respect to P on A . In some settings, it would bex

Ž .preferable to multiply by the indicator 1 in 7 ; but in the examples ofA x
Ž .Section 4 we have P A s 1 for all x, and in Section 3 P will be at thex

boundary of a parametric family of measures under which the probability of
A converges to 1. One could argue that stronger notions of ‘‘consistent withx
large deviations’’ would be preferable. But in applications stronger notions
may be impossible to verify, and in practice one often finds that no precise
link is made between rare-event asymptotics and a suggested importance
sampling measure.

Section 3 presents an example based on logarithmic asymptotics in which
Ž .an estimator consistent with 6 turns out to have infinite variance. Section 4

gives examples based on exponential asymptotics in which estimators consis-
Ž .tent with 7 have variances that increase to infinity. In each case, we present

an alternative estimator that has bounded relative error or is at least
asymptotically efficient. Proofs are deferred to Section 5.

3. Tail probabilities for sums of random variables. Let X , X , . . .1 2
Ž .be i.i.d. with cumulant generating function c.g.f.

w u X1 xc u s log E eŽ .

whose domain has nonempty interior. Suppose there is an a ) 0 with
< <EX - a for which there are solutions u and u in the interior of the1 a ya

XŽ . XŽ .domain of c to the equations c u s a and c u s ya. Let S sa ya n
n Ž w xÝ X , n s 1, 2, . . . . It is well known from Cramer’s theorem see 13 ,´is1 i
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.Corollary 2.2.19 that

1
8 y lim log P S G an s u a y c u J gŽ . Ž . Ž .n a a annª`

and

1
9 y lim log P S F yan s yu a y c u J g .Ž . Ž . Ž .n ya ya yannª`

Ž .Efficient estimation of P S G an and its generalizations are among then
most extensively studied applications of importance sampling to large devia-

w x w xtions probabilities; see, in particular, 9 and 26 . The unique asymptotically
efficient change of measure twists the common distribution of the X by u : byi a
definition

P X F x s E exp u X y c u ; X F x ,Ž . Ž .Ž .u 1 a 1 a 1a

Žand under P the X are still i.i.d. The measures P and P are mutuallyu i ua a

absolutely continuous when restricted to the s-algebra generated by
� 4X , . . . , X , though not on that generated by the infinite sequence1 n
� 4 .X , X , . . . . Thus,1 2

P S G an s E exp yu S q nc u ; S G an .Ž . Ž .Ž .n u a n a na

We verify below that if g - g then P is consistent with the largea ya u a
Ž < < .deviations behavior of P S G an , so the obvious extension of the methodn

above generates independent replications of

10 a n s exp yu S q nc u 1 J L 1Ž . Ž . Ž .Ž .ˆ a n a � < S < G an4 n � < S < G an4n n

under P . An alternative estimator generates, at each replication,ua

b̂ n s exp yu S q nc u 1Ž . Ž .Ž .q a n a �S G an4n

under P andua

b̂ n s exp yu S q nc u 1Ž . Ž .Ž .y ya n ya �S Fyan4n

ˆŽ .independently under P and sums them to get b n . We analyze theuya

estimators in the following two results. Their proofs are deferred to Section 5.

PROPOSITION 1. Suppose g - g . Then we have the following:a ya

Ž . y1 Ž < < .i yn log P S G an ª g ;n a
Ž . Ž . Ž .ii L in 10 satisfies 6 with g s g ;n a

ˆŽ . Ž .iii b n is asymptotically efficient.

Ž .The next theorem analyzes the performance of a n , the estimator sug-ˆ
Ž < < .gested by the leading-term asymptotics of P S G an . The performance ofn

� 4this estimator can be very poor because even though P gives S F yanu na

little probability, L can be very large on this set.n
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THEOREM 1. Suppose g - g .a ya

Ž . Ž . Ž .i If c yu s `, then a n has infinite variance.ˆa
Ž . Ž . w 2Ž .xii If u q u G 0 and c yu - `, then E a n ª `.ˆa ya a ua

Ž . Ž . w 2Ž .x � Ž .iii If u q u - 0 then y 1rn log E a n ª min 2g , yc u yˆa ya u a aa
Ž . Ž .4c u y a u q u .ya a ya

To show that these results have content, we give two specific examples. For
Ž . Ž .the first, let X s A y B, with A ; N 1.5, 1 , B ; Exp 1 and A, B indepen-1

Ž . 2 Ž . Ž .dent, so that c u s 1.5u q 0.5u y log 1 q u for u g y1, ` . Let a s 2.5.
' 'Ž .Then u s 2 and g f 1.2956; u s y5 q 13 r2 f y0.6972 and g fa a ya ya

1.3511; but yu - y1 is outside the domain of c so we get infinite variance,a 'Ž . Ž .as in Theorem 1 i . If we let a s 1.5, then u s 5 y 1 r2 f 0.6180 anda'Ž .g f 0.2902; u s y2 q 2 f y0.5858 and g f 0.7044. Since u qa ya ya a
Ž .u ) 0, the variance increases with n, as in Theorem 1 ii . This case isya

illustrated in Figure 1.
Ž . Ž .Our next example illustrates case iii in Theorem 1. Let X ; N 1, 1 . For1
Ž .2 Ž .a ) 1, we have u s a y 1 and g s a y 1 r2; u s y a q 1 and g sa a ya ya

Ž .2a q 1 r2. The conditions g - g and u q u - 0 always hold, anda ya a ya
Ž . Ž . Ž . 2yc u y c u y a u q u s ya q 2 a q 1. For values of a in thea ya a ya' ' ' 'Ž x Ž x Ž x Ž .ranges 1, 2 , 2, 1 q 2r 3 , 1 q 2r 3 , 1 q 2 and 1 q 2 , q` , the rate

Ž . w . w . Ž .in iii falls in the ranges 2g , g , 2g , 0, g and y`, 0 , respectively.a a a a

Ž . wREMARKS. a Examination of the proof of Proposition 1 see especially
Ž .x15 reveals that P is the only exponential change of measure for which theua

resulting likelihood ratio is consistent with the large deviations behavior of
Ž < < . Ž .P S G an , even in the weaker sense 6 . Notice also that for u ) u ,n a

FIG. 1. Graph of c for the first example. The tangent to c has slope a and ya at points u anda
Ž .u , respectively. The vertical distance from c u to the line through the origin with slope "aya " a

is g ." a
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Ž < < . Ž .P S G an ª 1 as suggested in the discussion following 7 . For the secondu n
example after Theorem 1, it can be shown that the exponential change of
measure that maximizes the exponential rate of decrease of the variance

Ž . Ž .twists by min 1, a y 1 s min 1, u for all a ) 1, so the large deviationsa
change of measure is the best exponential change of measure only for

Ž .1 - a F 2. Twisting by u s min 1, a y 1 maximizes the minimum of the
w 2 x w 2 xrates of decrease of E L ; S G an and E L ; S F yan . The resultingu n n u n n

estimator fails to be asymptotically efficient for a ) 2.
Ž .b The variance of the crude estimator 1 generated without impor-� < S < G an4n

tance sampling decreases exponentially at rate g . In particular, then, thea
large deviations estimator is dramatically outperformed by the crude one

Ž . Ž . Ž .when Theorem 1 i ] ii apply. This may also be the case in iii , as illustrated
by the second example above.

ˆ ˆ ˆŽ .c We could alternatively have defined b as a mixture of b and b andq y
still obtained asymptotic efficiency. In practice, one would allocate a fraction

ˆ ˆof runs to evaluation of b and the remainder to evaluation of b . It is wellq y
Ž .known and easily verified that allocating runs in proportion to standard

ˆdeviations minimizes variance. The optimal fraction allocated to b isy
therefore

exp yg n q o nŽ .Ž .ya
.

exp yg n q o n q exp yg n q o nŽ . Ž .Ž . Ž .ya a

The resulting estimator thus remains asymptotically efficient by allocating an
� 4asymptotically negligible fraction of runs to the secondary event S F yan ,n

whereas the usual large deviations estimator produces potentially infinite
variance in ignoring this event altogether.

Ž .d The example treated in Theorem 1 satisfies the necessary condition for
w xasymptotic efficiency in 28 , but not the sufficient condition given there.

Violation of this sufficient condition might be taken to suggest poor perfor-
w xmance, but Sadowsky and Bucklew 28 do not discuss what happens when

their sufficient condition fails to hold. Interestingly, in the second example
after Theorem 1, for values of a between 1 and 2, the sufficient condition is
violated but a is asymptotically efficient. For a ) 2, the same exampleˆ

w xviolates the necessary and sufficient condition of Proposition 2 of 12 for
w xGaussian probabilities. Sadowsky 27 gives a very general formulation of

this necessary and sufficient condition that applies to arbitrary moments of
an importance sampling estimator, not just the second moment.

Ž . w x w xe Fresnedo 15 and Sadowsky and Bucklew 28 also propose mixtures
w xof importance sampling measures. Nakayama 23 notes the importance of

secondary paths to failure in simulating highly reliable systems modeled as
Markov chains, but contrasts this with the large deviations setting.

Ž .f Some might argue that the setting treated in Theorem 1 is rigged
Ž < < .because P S G an is obviously the sum of two more primitive probabili-n

ties. We counter that virtually all interesting rare events arising in applica-
tions are unions of meaningful events describing alternative ways in which
the rare event can occur. One of these may dominate the probability of the
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rare event though the others carry sufficient weight to affect the variance.
The setting of Theorem 1 merely makes transparent a possibility present in
more general cases.

4. Level crossing probabilities. Just as the example of the previous
section builds on classical results for sum tails, the examples of this section
build on classical results for level crossing probabilities. We begin with some
background, continuing to use notation from the previous section.

XŽ . w x � 4Suppose that c 0 ' E X - 0 so that S , n G 0 is a negative-drift1 n
random walk. Suppose that in the interior of the domain of c there is strictly

Ž . Ž .positive g necessarily unique, by the convexity of c at which c g s 0.
XŽ . Ž . XŽ .Then c g exists and is necessarily positive because c 0 s 0; c 0 - 0 and

c is convex. For x ) 0 define
� 4T x s inf n G 0: S ) x .Ž .1 n

It is well known that, if the distribution of X is nonlattice, then1

11 P T x - ` ; Ceyg x as x ª `,Ž . Ž .Ž .1

Ž . w Ž .for some constant C g 0, 1 . In the lattice case, 11 holds for x increasing
xthrough multiples of the span of X . Importance sampling for the estimation1

of this probability starts from the representation

P T x - ` s E exp ygS ; T x - ` s E exp ygS ,Ž . Ž .Ž . Ž . Ž .1 g T Žr . 1 g T Ž x .1 1

where E is expectation with respect to the g-twisted measure, andg

Ž Ž . . w x XŽ . Ž .P T x - ` s 1 because E X s c g ) 0. The estimator exp ygSg 1 g 1 T Ž x .1

generated under P satisfiesg

E exp y2gS' Ž . 'exp y2g x exp yg x 1Ž . Ž .g T Ž x .1 F s ª
P T x - ` P T x - ` P T x - ` CŽ . Ž . Ž .Ž . Ž . Ž .1 1 1

and thus has bounded relative error. The examples in this section build on
this background but in a two-dimensional setting.

�Ž 1 2 . 4Let X , X , n G 1 be an i.i.d. sequence of two-dimensional vectorsn n
i i i n i Ž .with EX - 0, i s 1, 2. Set S s 0, S s Ý X for n G 0, and T s T x s1 0 n js1 j i i

� i 4 1 2inf n G 0: S ) x , i s 1, 2. For simplicity, we suppose X and X have non-n 1 1
lattice distributions. Then

12 P T - ` ; C exp yg x ,Ž . Ž . Ž .i i i

Ž .i iif g ) 0 solves c g s 0 in the interior of the domain of c . Our objectivei X i X
Ž . Ž . � 4is to estimate a x J P T - ` with T s min T , T .1 2

We set
1 213 c u , u s log E exp u X q u XŽ . Ž . Ž .1 2 1 1 2 1

and work with bivariate twisted distributions of the form

P X 1 F x , X 2 F xŽ .u , u 1 21 2

1 2 1 2s E exp u X q u X y c u , u ; X F x , X F x ,Ž .� 41 2 1 2 1 2

w i x Ž .repeatedly using the standard property E X s ­ c u , u , i s 1, 2.u , u u 1 21 2 i
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Ž . w Ž 1 .xSince P T - ` s E exp yg S , the estimatorg , 0 1 T1

14 a x s exp yg S1Ž . Ž .ˆ Ž .1 T

generated under P is unbiased and even consistent with the large devia-g , 01 ˆ ˆ� Ž . 4 Ž . Ž .tions behavior of T x - ` if g - g . An alternative is b x s b x q1 2 1
ˆ ˆ 1 ˆŽ . Ž . Ž . Ž .b x with b x s exp yg S 1 generated under P and b x s2 1 1 T �T F T 4 g , 0 21 2 1

Ž 2 .exp yg S 1 generated under P . We analyze these estimators in2 T �T - T 4 0, g2 1 2

the following two results. Their proofs are deferred to Section 5.

PROPOSITION 2. Suppose g - g . Then we have the following:1 2

Ž . Ž Ž . . Ž .i P T x - ` ; C exp yg x .1 1
Ž . Ž . Ž .ii The likelihood ratio in 14 satisfies 7 .

ˆŽ . Ž .iii The estimator b x has bounded relative error.

Ž .It remains to analyze the performance of the estimator a x , the oneˆ
Ž Ž . .suggested by the leading-term asymptotics of P T x - ` . For this analysis,

�Ž .we impose the mild regularity condition that for some « ) 0, the set u , u :1 2
Ž . 4 Ž .c u , u F « is compact it is automatically convex . This then implies that1 2

�Ž . Ž . 4the level curve u , u : c u , u s 0 is the boundary of the compact, convex1 2 1 2
�Ž . Ž . 4 Ž . Ž . Ž .set u , u : c u , u F 0 . The points 0, 0 , g , 0 and 0, g all lie on this1 2 1 2 1 2

level curve. Convexity of c implies that at any point u on this level curve, the
Ž Ž . Ž ..gradient ­ c u , ­ c u is normal to the level curve. Defineu u1 2

uys min u : ' u , c u , u s 0� 4Ž .1 1 2 1 2

y Ž y y. y Ž y y.and u as the solution to c u , u s 0. Then u s u , u is the leftmost2 1 2 1 2
Ž y. Ž y.point on the level curve and thus ­ c u - 0 and ­ c u s 0. Defineu u1 2

q Ž q q. Ž q. Ž q. Ž q.u s u , u by the requirement that c u s 0 and ­ c u s ­ c u ) 0.1 2 u u1 2

This is the unique point at which the normal to the level curve points at a 458
angle. We always have uy- uq. Finally, set1 1

u X s sup u : c yg , u F 0 ,� 4Ž .2 2 1 2

the highest point at which the line u s yg crosses the level curve, if it1 1
crosses it at all. These points are illustrated in Figure 2.

THEOREM 2. Suppose g - g .1 2

Ž . y w 2Ž .xi If yg - u , then E a x ª `.ˆ1 1 g , 01
Ž . y q w 2Ž .x Ž � X 4 .ii If u F yg - u , then E a x ; C exp ymin 2g , u x for someˆ1 1 1 g , 0 1 21

finite, positive constant C.
Ž . q w 2Ž .x Ž .iii If u F yg , then E a x ; C exp y2g x for some finite, posi-ˆ1 1 g , 0 11

tive constant C.

Ž . Ž .Because we know from Proposition 2 i that a x decreases exponentially
Ž . Ž .at rate g , the estimator a x has bounded relative error only in case iii ofˆ1
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FIG. 2. Level curve of c for a bivariate normal distribution with independent marginals. The
X Ž X . y q Ž .point u has coordinates yg , u . In this example, yu - yg - u , so case ii of Theorem 21 2 1 1 1

Ž . y Ž .applies. Case i would apply if the vertical dashed line at yg were to the left of u . Case iii1
would apply if the line were to the right of uq, which would require nonzero correlation.

Ž .Theorem 2. In case ii , the exponential rate of decrease of the variance of
Ž . w Ž .a x may be less than 2g in which case a x fails to be asymptoticallyˆ ˆ1

xefficient , and it may even be less than g , the rate of decrease of the variance1
of 1 under the original measure. The proof of Theorem 2 shows that in�T Ž x .-`4

Ž .case i , the rate of increase of the variance is faster than any exponential.
Each of these cases may prevail, even for well-behaved distributions, as

the following examples show. Suppose X 1, X 2 are independent and X i ;
Ž 2 . 2 2N ym , s , i s 1, 2. The requirement g - g entails m rm ) s rs .i i 1 2 2 1 2 1

2 2 2 2 w 2Ž .x XWhen D ' m y 8m s rs - 0, E a x ª `; when D G 0, u sˆ2 1 2 1 g , 0 21X2'Ž . Ž . Ž .m q D rs , and u may take values in 0, g and g , 2g . See Figure 2.2 2 2 1 1 1
Ž .For case iii , we give a specific numerical example. Suppose X , X are1 2

jointly normal with means y1 and y4.5, variances 4 and 2.25 and correla-
tion 0.6. Then we have g s 0.5 - g s 4; uqf y0.62265 - yg .1 2 1 1

The analysis above applies to a problem in queueing by exploiting a
standard connection between waiting time distributions and level crossing

Ž w x.probabilities see, e.g., Chapter VIII of 4 . The probability that at least one
coordinate of a two-dimensional random walk crosses a threshold gives, with
minor modification, the tail distribution of the response time in a fork-join
queue}a system in which each job splits into two subjobs which join parallel

Žqueues, receive independent service, and are ultimately rejoined. The details
of this correspondence are in an earlier version of this paper, available from

.the authors.
As an example, suppose arrivals are Poisson with rate 1 and service times

at the two queues are exponentially distributed with rates 2 and 2.6 at
queues 1 and 2, respectively. Then, in the notation of Theorem 2, g s 1 -1
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g s 1.6. Numerically we find that at u f y0.94026 and u f 1.27013 we2 1 2
Ž .are in the setting of Theorem 2 i . If the second service rate is changed to 2.9,

y q X Ž .then u f y1.21278, u f 0.65639 and u f 1.86130. Here, case ii of Theo-1 1 2
w 2 x Xrem 2 applies, so E a goes to zero exponentially at rate u f 1.8613,ˆg , 0 21

which is slower than 2g s 2. In particular, the estimator fails to be asymp-1
totically efficient.

This example could hardly be considered pathological as it involves stan-
w xdard distributions and reasonable parameters. Based on observations in 1 ,

w x w x24 and 16 , one might expect the effectiveness of importance sampling to
deteriorate when the service rates at the two queues are close. It is perhaps
surprising just how poorly the standard approach to importance sampling
performs in this case, in spite of a substantial difference in the rates.

5. Proofs. We now prove the results stated in Section 3 and Section 4.

Ž . Ž . Ž .PROOF OF PROPOSITION 1. Part i follows from 8 , 9 and the general
Ž . Ž . Ž . Ž . Ž .property log x q y s log x q O yrx as yrx ª 0. For ii ,
1 Sn

15 y log L s u y c u ª u a y c u ' g , P -a.s.,Ž . Ž . Ž .n a a a a a uan n
w x XŽ .by the strong law of large numbers and the c.g.f. property E X s c u .u 1

y1 ˆ2Ž . w x w xFor iii we know from Theorem 2 of 9 that yn log E b ª 2g .u " " a" aˆ ˆ ˆŽ . Ž . Ž .Because b n is the sum of b n and b n , the logarithm of its secondq y
moment decreases asymptotically at rate no less than the smaller of the rates

� 4for the two estimators separately, that is, no less than min 2g , 2g s 2g .a ya a
ˆŽ .Nonnegativity of the variance of b n implies that the rate can be no greater

than this, so the rate must get exactly 2g , as required for asymptotica
efficiency. I

PROOF OF THEOREM 1. Write
2 < <E a n s E exp y2 u S y nc u ; S G anŽ . Ž .Ž .ˆ Ž .u u a n a na a

< <s E exp y u S y nc u ; S G anŽ .Ž .Ž .a n a n

s E exp y u S y nc u ; S G anŽ .Ž .Ž .a n a n

16Ž .

q E exp y u S y nc u ; S F yan .Ž .Ž .Ž .a n a n

Ž .For i , we have
2E a n G E exp y u S y nc u ; S F yanŽ . Ž .Ž .ˆ Ž .u a n a na

s E exp y u S y nc uŽ .Ž .Ž .a n a

y E exp y u S y nc u ; S ) yanŽ .Ž .Ž .a n a n

G exp nc u E exp yu S y exp nu aŽ . Ž . Ž .Ž . Ž .a a n a

s exp nc u exp nc yu y exp nu a s `Ž . Ž . Ž .Ž . Ž .Ž .a a a

Ž .because c yu s `.a
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Ž . Ž . Ž .For ii and iii , write the second term of 16 as

E exp y u S y nc u ; S F yanŽ .Ž .Ž .a n a n

s E exp yu S q nc u y yu S q nc yu ;Ž . Ž . Ž .Ž .yu a n a a n aa

S F yann

17Ž .

s exp nc u q nc yu P S F yan .Ž . Ž . Ž .Ž .a a yu na

w x X Ž . X Ž .If u q u G 0 then E X s c yu F c u s ya anda y a y u 1 a y aa
Ž . Ž .lim inf P S F yan ) 0. Convexity of c implies that c u qnª` yu n aa

Ž . Ž . Ž . Ž . Ž .c yu ) 2c 0 s 0 so the result in ii follows from 16 and 17 .a
w x XŽ .If u q u - 0 then E X s c yu ) ya. Definea ya yu 1 aa

c u J log E exp u X s log E exp yu X y c yu q u XŽ . Ž . Ž .Ž .yu yu 1 a 1 a 1a a

s c u y u y c yu .Ž . Ž .a a
X XŽ . Ž .We have c u s c u y u , so u ' u q u solvesyu a ya a yaa

Xc u s ya.Ž .yu yaa

Cramer’s theorem gives´
1

y log P S F an ª yu a y c uŽ . Ž .yu n ya yu yaa an
s ya u q u y c u q c yu .Ž . Ž . Ž .a ya ya a

Ž .Recalling 17 , we get
1

y log E exp y u S y nc u ; S F yanŽ .Ž .Ž .a n a nn
ª yc u y c yu y a u q u y c u q c yuŽ . Ž . Ž . Ž . Ž .a a a ya ya a

s yc u y c u y a u q u .Ž . Ž . Ž .a ya a ya

w xAlso, we know from Theorem 2 of 9 that
1

y log E exp y u S y nc u ; S G an ª 2g .Ž .Ž .Ž .a n a n an
Ž . Ž .The result in iii now follows from 16 . I

Ž .PROOF OF PROPOSITION 2. Case i follows from writing

P T x - ` F P T x - ` F P T x - ` q P T x - `Ž . Ž . Ž . Ž .Ž .Ž . Ž . Ž .1 1 2

Ž . Ž .and invoking 12 . For ii , we write

exp yg S1 s exp yg S1 1 q exp yg S1 1Ž . Ž . Ž .1 T Ž x . 1 T Ž x . �T Ž x .F T Ž x .4 1 T Ž x . �T Ž x .- T Ž x .41 1 2 2 2 1

Ž .and argue that the second term is zero for large x. If ­ c g , 0 - 0, thenu 12

Ž . Ž .T x s ` for all sufficiently large x, P -a.s., whereas T x - ` for all x. If2 g , 0 11
Ž .­ c g , 0 s 0 thenu 12

T xŽ .2
18 ª `, P -a.s.Ž . g , 01T xŽ .1
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Ž .If ­ c g , 0 ) 0 thenu 12

w 1 xE X ­ c g , 0T x Ž .Ž . g , 0 u 12 1 119 ª s , P -a.s.Ž . g , 02 1w xT x ­ c g , 0E XŽ . Ž .1 u 1g , 0 21

�Ž . Ž . 4Convexity of c implies convexity of the set u, v : c u, v F 0 which further
Žimplies essentially by the supporting hyperplane theorem; see, e.g., the

w x.argument used for Theorem 2.3.7 of 7

20 u y g ­ c g , 0 q v y 0 ­ c g , 0 F 0.Ž . Ž . Ž . Ž . Ž .1 u 1 u 11 2

Ž . Ž .Applying this inequality at u, v s 0, g and rearranging terms we get2

­ c g , 0 gŽ .u 1 21 G ) 1.
­ c g , 0 gŽ .u 1 12

Ž . Ž . Ž . Ž .Thus, 18 and 19 imply that for all sufficiently large x, T x s T x and1
S1 y x has the same limit in distribution as S1 y x. That the overshootT Ž x . T Ž x .1

S1 y x converges in distribution follows from the renewal theorem throughT Ž x .1 w x w xthe analysis of ladder heights; for details see 4 , Theorem XII.5.3 or 31 ,
Corollary 8.33.

ˆŽ . Ž .For iii , observe that the variance of b x is bounded above by
Ž . Ž . Ž .exp y2g x q exp y2g x , recall that g - g and invoke i to conclude1 2 1 2

ˆŽ .that b x has bounded relative error. I

Ž .PROOF OF THEOREM 2. For i , choose m ) 0 arbitrarily large. Abbreviat-
ing E y y to E y, we haveu , u u1 2

1E exp y2g SŽ .g , 0 1 T Ž x .1

1s E exp yg S ; T x - `Ž .Ž .1 T Ž x .

1G E exp yg S ; T x - `Ž .Ž .1 T Ž x . 2

1 y 1 y 2
ys E exp yg S y u S y u SŽ .u 1 T Ž x . 1 T Ž x . 2 T Ž x .2 2

y 1 y 2
yG E exp y g q u S y u S ;Ž .Ž .u 1 1 T Ž x . 2 T Ž x .2 2

1T x F T x , S F ymxŽ . Ž .2 1 T Ž x .2

y y y 2
yG exp g q u m y u x E exp yu S y x ;Ž .Ž . Ž .ž /1 1 2 u 2 T Ž x .2

1T x F T x , S F ymx ,Ž . Ž .2 1 T Ž x .2

y w 1 xywhere the last inequality uses g q u ) 0. Since E X - 0 and1 1 u 1
w 2 x Ž . Ž .y yE X s 0, we have T x - T x s ` for all sufficiently large x, P -a.s.u 1 2 1 u

y1 1 Ž Ž . Ž . 1 .yAlso, x S ª y`, so P T x F T x , S F ymx ª 1. BecauseT Ž x . u 2 1 T Ž x .2 2

the overshoot S2 y x has a limiting distribution under P y,T Ž x . u2

y 2 1
y21 E exp yu S y x ; T x F T x , S F ymxŽ . Ž . Ž .Ž .ž /u 2 T Ž x . 2 1 T Ž x .2 2
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converges to a positive constant CX as x ª `. We have therefore shown that
w 2Ž .x X ŽwŽ y.E a x is bounded below by a quantity asymptotic to C exp g q uˆg , 0 1 11 x .m y u x . Since m may be chosen arbitrarily large, we conclude that2
w 2Ž .xE a x increases to infinity faster than any exponential.ˆg , 01

Ž . Ž . Ž .For cases ii and iii , recall that P T - ` s 1, writeg , 0 11

2 122 E a x s E exp y2g S ; T F TŽ . Ž .ˆ Ž .g , 0 g , 0 1 T 1 21 1 1

1q E exp y2g S ; T - TŽ .g , 0 1 T 2 11 2

and consider the two terms on the right separately. The argument used in
Ž .Proposition 2 i shows that

X123 E exp y2g S ; T F T ; C exp y2g xŽ . Ž .Ž .g , 0 1 T 1 2 1 11 1

for some constant CX . For the second term, we have1

1E exp y2g S ; T - TŽ .g , 0 1 T 2 11 2

1s E exp yg S ; T - T , T - `Ž .1 T 2 1 22

X1 1 2
Xs E exp yg S exp g S y u S ; T - T , T - `Ž . Ž .yg , u 1 T 1 T 2 T 2 1 21 2 2 2 2

24Ž .
X 2

Xs E exp yu S ; T - T , T - `Ž .yg , u 2 T 2 1 21 2 2

X X 2
Xs exp yu x E exp yu S y x ; T - T , T - ` .Ž . Ž .ž /2 yg , u 2 T 2 1 21 2 2

Ž . Ž . Ž X . w 2 xXIn both cases ii and iii , we have ­ c yg , u G 0; that is, E X G 0.u 1 2 yg , u2 1 2
Ž . Ž X . Ž X . ŽXIn case ii , we have ­ c yg , u ) ­ c yg , u so P T - T ,u 1 2 u 1 2 yg , u 2 12 1 1 2

.T - ` ª 1 and2

X 2
XE exp yu S y x ; T - T , T - `Ž .ž /yg , u 2 T 2 1 21 2 2

Ž . whas a limit in 0, 1 as x ª `. The details are the same as those leading to
Ž . x Ž . Ž . Ž .21 . The result in ii thus follows from 23 and 24 .

Ž . Ž X . Ž X . w 2 xXIn case iii , ­ c yg , u G ­ c yg , u ) 0, so E X G 0, andu 1 2 u 1 2 yg , u1 2 1 2

X X2 2
X XE exp yu S y x ; T - T , T - ` F E exp yu S y xŽ . Ž .ž / ž /yg , u 2 T 2 1 2 yg , u 2 T1 2 2 1 2 2

ª CX
2

X Ž . Ž .for some C in 0, 1 . Thus, the second term in 22 is bounded above by a2
X Ž X . Ž .quantity asymptotic to C exp yu x . To compare this with 23 , first note2 2

w Ž .xthat see 20

u q g ­ c yg , u X q v y u X ­ c yg , u X F 0Ž . Ž . Ž . Ž .1 u 1 2 2 u 1 21 2

Ž . Ž . Ž .if c u, v F 0. Now set u, v s g , 0 and rearrange terms to get1

­ c yg , u XŽ .u 1 21u G 2g G 2g .2 1 1­ c yg , uŽ .u 1 22

Ž . Ž .The first term in 22 therefore dominates and we get the conclusion in iii .
I
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