Counterexamples in Probabilistic Model Checking

Tingting Har-? and Joost-Pieter Kato&A

! Software Modelling and Verification, RWTH Aachen, Germany
2 Formal Methods and Tools, University of Twente, The Netiaals
Email: {tingting.han, katoep@cs.rwth-aachen.de

Abstract. This paper considers algorithms for counterexample géoar#or
(bounded) probabilistic reachability properties in fydlpbabilistic systems. Find-
ing the strongest evidence (i.e, the most probable pathating a (bounded)
until-formula is shown to be reducible to a single-souraapfleonstrained) short-
est path problem. Counterexamples of smallest size that@sty deviating from
the required probability bound can be computed by adoppagtiglly new hop-
constrained} shortest paths algorithms that dynamically deterniine

1 Introduction

A major strength of model checking is the possibility to gete counterexamples in
case a property is violated. The shape of a counterexampénds on the checked for-
mula and the used temporal logic. For logics such as LTL el paths through the
model suffice. The violation of linear-time safety propestis indicated by finite path
fragments that end in a “bad” state. Liveness propertiesead, require infinite paths
ending in a cyclic behavior indicating that something “gbwdll never happen. LTL
model checkers usually incorporate breadth-first seagbridhms to generatshort-
estcounterexamples, i.e., paths of minimal length. For brargztime logics such as
CTL, paths may act as counterexample for a subclass of waileiquantified formu-
lae, ACTLNLTL, to be exact. To cover a broader spectrum of formulae,gho more
advanced structures such as trees of paths [11], proottiketerexamples [18] (for
ACTL\LTL) or annotated paths [26] (for ECTL) are used.

Counterexamples are of utmost importance in model checKirgg, and for all,
they provide diagnostic feedback even in cases where ontggrfent of the entire
model can be searched. They constitute the key to successstriaction-refinement
techniques [10], and are at the core of obtaining feasitlledules in e.g., timed model
checking [8]. As a result, advanced counterexample ganearahd analysis techniques
have intensively been investigated, see e.g., [21,7,13].

This paper considers the generation of counterexamplesiapilistic model check-
ing. Probabilistic model checking is a technique to verijstem models in which
transitions are equipped with random information. Popuatadels are discrete- and
continuous-time Markov chains (DTMCs and CTMCs, respetyiy and variants thereof
which exhibit nondeterminism. Efficient model-checkingaithms for these models
have been developed, have been implemented in a varietyftafase tools, and have
been applied to case studies from various application aeeagng from randomized
distributed algorithms, computer systems and securityopads to biological systems

and quantum computing. The crux of probabilistic model &agis to appropriately
combine techniques from numerical mathematics and opeatiesearch with stan-
dard reachability analysis. In this way, properties suctites(maximal) probability to
reach a set of goal states by avoiding certain states is atOr@scan be automatically
checked up to a user-defined precision. Markovian modelgdsing millions of states
can be checked rather fast.

In probabilistic model checking, however, counterexanggleeration is almost not
developed; notable exception is the recent heuristic beglgorithm for CTMCs and
DTMCs [3,4] that works under the assumption that the modehlsown. Instead, we
consider a setting in which it has already been establidh&idat certain state refutes
a given property. This paper considers algorithms and cexitglresults for the gen-
eration of counterexamples in probabilistic model chegkirhe considered setting is
probabilistic CTL [19] for discrete-time Markov chains (MCs), a model in which all
transitions are equipped with a probability. In this setitypically there is no single
path but rather aetof paths that indicates why a given property is refuted. Weceo-
trate on properties of the forf,, (6U<"¥) wherep is a probability and: a (possibly
infinite) bound on the maximal allowed number of steps befeaehing a goal (i.e., a
¥-) state. In case staterefutes this formula, the probability of all pathsdrsatisfying
PUS"T exceed®. We consider two problems that are aimed to provide usefd-di
nostic feedback for this violation: generating strongestiences and smallest, most
indicative counterexamples.

Strongest evidencese the most probable paths that satiéty<"¥. They “con-
tribute” mostly to the property refutation and are thus eteé to be informative. For
unbounded until (i.e 43=00), determining strongest evidences is shown to be equivalen
to a standard single-source shortest path (SP) problenasienhds bounded, we obtain
a special case of the (resource) constrained shortest@&t) (problem [2] that can be
solved inO(hm) wherem is the number of transitions in the DTMC. Alternatively, the
Viterbi algorithm can be used for boundkdielding the same time complexity.

Evidently, strongest evidences may not suffice as true eoexamples, as their
probability mass lies (far) below. As a next step, therefore, we consider the problem
of determining most probable subtrees (rooted)aSimilar to the notion of shortest
counterexample in LTL model checking, we consider treesnudllest siz¢éhat exceed
the probability boung. Additionally, such trees, of sizk, say, are required tmaxi-
mally exceed the lower bound, i.e., no subtrees should exist@bsimost that exceed
pto alarger extent. The problem of generating ssiallest, most indicative counterex-
amplescan be casted askashortest paths problem. For unbounded-until formulag (i.e
h=c0), it is shown that the generation of such smallest countamgates can be found
in pseudo-polynomial time by adoptirigshortest paths algorithms [15,24] that com-
putek on the fly. For bounded until-formulae, we propose an algoribased on the
recursive enumeration algorithm of Jiménez and Marzd|. [PBe time complexity of
this adapted algorithm i© (hm+hklog(%)), wheren is the number of states in the
DTMC.

Finally, we show how the algorithms f@t<,,(®U<"¥) can be exploited for gener-
ating strongest evidences and counterexamples for lowardson probabilities, i.e.,
P p(PUShD).

2 Preliminaries

DTMCs. Let AP denote a fixed, finite set of atomic propositions ranged ower b
a,b,c,.... A (labelled)discrete-time Markov chai(DTMC) is a Kripke structure in
which all transitions are equipped with discrete prob#bsisuch that the sum of out-
going transitions of each state equals one. Formally, DTME (S, P, L) whereS is

a finite set of state®? : S x S — [0, 1] is a stochastic matrix, anfl : S — 247 is a
labelling function which assigns to each state S the setl(s) of atomic propositions
that are valid ins. A states in D is called absorbing iP(s, s) = 1. W.l.0o.g. we assume
a DTMC to have a unique initial state.

Definition 1 (Paths).LetD = (S, P, L) be a DTMC.

— An infinite patho in D is an infinite sequencey-s;-ss- ... of states such that
P(si,si41) > 0forall i > 0.
— Afinite pathin D is a finite prefix of an infinite path.

For states and finite pathc = sg-s1- ... s, with P(s,,s) > 0, leto-s denote
the path obtained by extendingby s. Let |o| denote the length of the path i.e.,
[s0:S1°...v8n| = m, |so] = 0 and|o| = oo for infinite 0. For0 < i < |o], ofi] = s;
denotes théi+1)-st state ins. Path(s) denotes the set of all infinite paths that start in
states andPath,, (s) denotes the set of all finite paths of

A DTMC D enriched with an initial state, induces a probability space. The un-
derlyingo-algebra from the basic cylinder is induced by the finite patiarting insg.
The probability measure Er(briefly Pr) induced by(D, s;) is the uniqgue measure on
this o-algebra where:

Pr{o € Path(sg) | so-s1-...sp, is a prefix ofe} = H P(si, Sit1)-

0<i<n

basic cylinder of the finite pathy-s;-... s,

Example 1. Fig. 1 illustrates a sim-
~a g6 ﬁl\{a} 1 {0} ple DTMC with initial states. AP =
{a,b} and L is given through the sub-
sets ofA P labelling the states a5(s) =
0.7 L(s;) = {a},forl < i < 2; L(ty) =
L(t2) = {b} and L(u) = 0. t2 is an
0 absorbing stater; = s-u-so-t1-to iS a

: 52 : finite path with Pfo1} = 0.1 x 0.7 x
/ H{"} 0.5 x 0.7 and|o1| = 4, 01[3] = t.

) 0.2 1 o2 = s-(s2-t1)“ is an infinite path.
Fig. 1. An example DTMC

0.3

PCTL. Probabilistic computation tree logic (PCTL) [19] is a probestic extension of
CTL in which state-formulae are interpreted over states@T&C and path-formulae
are interpreted over paths in a DTMC. The syntax of PCTL io#Hews:

Gu=tt]|a|-D|DAD| Pap(d)

wherep € [0,1] is a probability,< € {<,<,>,>} and¢ is a path formula defined
according to the following grammar:

¢ == USSP | DWS'D.

whereh € NU{oo}. The path formul@l/<"¥ asserts that is satisfied within tran-
sitions and that all preceding states sat&f{rorh=occ such path-formulae are standard
(unbounded) until-formulae, whereas in other cases, thesbounded until-formulae.
Wsh is the weak counterpart 8f<" which does not requir# to eventually become
true. For the sake of simplicity, we do not consider the ropérator. The temporal
operators><" andJ<" are obtained as follows:

Pap(OSP) = Pap, (tUS" @) and P, (OS"P) = Pg,, (PWS"F).

Note that ff= —tt. Some example formulae afe(5(al{b) asserting that the proba-
bility of reaching ab-state via aru-path is at mos%, andP- 001 (¢ S*error) stating
that the probability for a system error to occur witlsit steps exceeds001. Dually,
P<o.990((1S*0—error) states that the probability for no error in the négtsteps is at
most 0.999.

SemanticsLet DTMC D = (5, P, L). The semantics of PCTL is defined by a satisfac-
tion relation, denote@-, which is characterized as the least relation over thesstatg
(paths inD, respectively) and the state formulae (path formulae3fétig:

skEtt iff true sEa iff aeL(s) skE-2 iff not(skE)
sEPAY iff sEQ®ands =¥ s = Pap(e) iff Prob(s,¢) <p

Let Path(s, ¢) denote the set of infinite paths that start in staééd satisfyy. Formally,
Path(s,) = {0 € Path(s) | o = ¢}. Here,Prob(s,¢) = Pr{o | o € Path(s,$)}
denotes the probability dPath(s, ¢). Let o be an infinite path irD. The semantics of
PCTL path formulae is defined as:

o E®US'T iff 3i < hsuchthav[i] =¥ andvj:0 < j <i.(o]j] E ©).
o = WS iff eithero = SUS"P oroi] | ¢ forall i < h.

For finite patho, = is defined in a similar way by changing the rangeidb ¢ <
min{h, |o|}. Let Paths, (s, ¢) denote the set of finite paths startingsithat fulfill ¢.

The until and weak until operators are closely related. Tdliews from the follow-
ing equations. For any stateand all PCTL-formula@ and¥ we have:

Psp(WSM) = Py (& A ~OWUSH (=D A\ —T))
Psp(PUS"T) = Pey (8 A -T)YWS" (= A —T))
For the rest of the paper, we explore counterexamples fol.HG@Mmulae of the form

P<p(PUShW). In Section 7, we will show how to generate counterexamaiefofmu-
lae of the fornPs,(dUSW).

3 Strongest evidences and counterexamples

Let us first consider what a counterexample in our settingadigtis. To that end, con-
sider the formulaP<,(¢), where we denote = SUS "W (h € {00} U N) for the rest
of the paper. It follows directly from the semantics that:

sE P<p(g) iff not (Prob(s,¢) <p) iff Pr{o|o e Paths,¢)} > p.

So, P<,(¢) is refuted by states whenever the total probability mass of gHpaths

that start ins exceed9. This indicates that a counterexample g, (¢) is in general

a setof paths starting irs and satisfyingp. As ¢ is an until-formula whose validity
(regardless of the value &j) can be witnessed by finite state sequenfieite paths do

suffice in counterexamples. A counterexample is definedksvs:

Definition 2 (Counterexample).A counterexampléor P, (¢) in states is a setC' of
finite paths such that' C Pathg,, (s, ¢) andPr(C) > p.

A counterexample for stateis thus a set of finite paths that all startinWe will not
dwell further upon how to represent this set, being it a fitrite (or dag) rooted at or

a bounded regular expression (over states), and assunamthbstract representation as
a set suffices. Note that the measurability of counterexasiplensured by the fact that
they just consist of finite paths; hence(®j is well-defined. LeC X, (s, ¢) denote the
set of all counterexamples f@¢,,(¢) in states. ForC € CX,(s, ¢) andC’s superset
C’: C C C' C Pathg, (s, ¢), it follows thatC’ € CX,(s, ¢), since P(C’) > Pr(C) >

p. That is to say, any extension of a counterexandpleith paths inPathy,, (s, ¢) is a
counterexample.

Definition 3 (Minimal counterexample).C' € C X, (s, ¢) is aminimal counterexam-
pleif |C| < |C'|, foranyC’ € CX,(s, ¢).

Note that what we define as being minimal differs from minityad.r.t. C. As a coun-
terexample should excegda maximally probable-path is a strong evidence for the
violation of P¢,(¢). For minimal counterexamples such maximally probablepatk
essential.

Definition 4 (Strongest evidence)A strongest evidender violating P« (¢) in state
sis afinite pathr € Pathg,, (s, ¢) suchthaPr{c} > Pr{c’} foranys’ € Pathg, (s, ¢).

Dually, a strongest evidence for violatifigx,(¢) is a strongest witness for fulfilling
P=p(¢). Evidently, a strongest evidence does not need to be a cewataple as its
probability mass may be (far) belgw

As in conventional model checking, we are not interestedeinegating arbitrary
counterexamples, but those that are easy to comprehengravide a clear evidence
of the refutation of the formula. So, akin to shortest cotatamples for linear-time
logics, we consider the notion of a smallest, most indieatteunterexample. Such
counterexamples are required to be succinct, i.e., miniatl@wing easier analysis of
the cause of refutation, and most distinctive, i.e., thesbpbility should mostly exceed
p among all minimal counterexamples.

Definition 5 (Smallest counterexample)C' € CX, (s, ¢) is asmallest (most indica-
tive) counterexampl# it is minimal andPr(C') > Pr(C’) for any minimal counterex-
ampleC’ € CX,(s, ¢).

The intuition is that a smallest counterexample is mosthjiatang from the required
probability bound given that it has the smallest number d¢figalhus, there does not
exist an equally sized counterexample that deviates moma it Strongest evidences,
minimal counterexamples or smallest counterexamples moglyenunique, as paths may
have equal probability. As a result, not every strongestenie is contained in a mini-
mal (or smallest) counterexample. Whereas minimal coertenples may not contain
any strongest evidence, any smallest counterexampleinerdé least one strongest
evidence. Using some standard mathematical results wenobta

Lemma 1. A smallest counterexample for~ P, (¢) is finite.

Remark 1 (Finiteness)or until path formulae, smallest counterexamples areyawa
finite sets of paths if we considapn-strictupper-bounds on the probability, i.e., proba-
bility bounds of the formx p. In case of strict upper-bounds of the foxrp, finiteness
of counterexamples is no longer guaranteed'dsr which P{C') equalsp is a small-
est counterexample, but may contain infinitely many patbs.istance, consider the
following DTMC:

1
(D
1 {a

The violation of P-4 (<{a) in states can only be shown by an infinite set of paths, viz.
all paths that traverse the self-loop at stat@bitrarily often.

Example 2.Consider the DTMC in Fig. 1, for which violatesP, (al/b). Evidences
are, amongst others; = s-s1-t1, 09 = $-81-82-t1, 03 = §-So-t1, 04 = $-S1-So-t9, and

o5 = s-So-t3. Their respective probabilities are 0.2, 0.2, 0.15, 0.12 @09. Pathsg
ando, are strongest evidences. The 6gt= {o1,...,05} with Pr(C;) = 0.76 is a
counterexample, but not a minimal one, as the removal fréheer, or o also yields

a counterexampl&’y = {01, 02,04} is a minimal but not a smallest counterexample,
asCy = {o1,09,03} is minimal too with P(C3) = 0.56 > 0.52 = Pr(C3). Cs is a
smallest counterexample.

In the remainder of the paper, we consider the strongeseereé& problem (SE),
that for a given state with s = P<,(¢), determines the strongest evidence for this
violation. Subsequently, we consider the correspondirgjlest counterexample prob-
lem (SC). For both cases, we distinguish between until-tdae for whichh=o00 (un-
bounded until) and € N (bounded until) as distinctive algorithms are used for¢hes
cases.

4 From a DTMC to a weighted digraph

Prior to finding strongest evidences or smallest countengkas, we modify the DTMC
and turn itinto a weighted digraph. L8&{®) = {s € S | s = ¢} for any®. Due to the
bottom-up traversal of the model-checking algorithm over formulag = dUSM,
we may assume th&a{®) andSaf{¥) are known.

Step 1: Adapting the DTMCFirst, we make all states in the DTMD = (S, P, L)
that neither satisfgp nor¥ absorbing. Then we add an extra stase that all outgoing
transitions from a/-state are replaced by a transitiont twith probability1. Statet can
thus only be reached via®-state. The obtained DTMQ®’ = (S’,P’, L) has state
spaceS U {t} fort ¢ S. The stochastic matril’ is defined as follows:

P'(s,s) =1andP’(s,s’) =0fors’ # s if s ¢ Safd) U Saf¥)ors=t
P'(s,t) =1andP’(s,s") = 0fors’ #1t if s € Safv)
P'(s,s') = P(s,s') for s’ € SandP’(s,t) = 0 otherwise.

L'(s) = L(s) fors € SandL’'(t) = {at;}, whereat, ¢ L(s') foranys’ € S, i.e,,
aty uniquely identifies being at stateRemark that all thé—-® A —¥)-states could be
collapsed into a single state, but this is not further exgaldrere. The time complexity
of this transformation i€ (n) wheren = |S|. Itis evident that the validity ofi/ <"

is not affected by this amendment of the DTMC. By constructany finite pathr-t
in D’ satisfies(® v ¥)UUS"F1at, and has the formg-...-s;-s;+1-t wheres; = & for
0<j<i<h, st = @ the prefixo (in D) satisfieshl/S"¥ whereo’ ando are
equally probable.

Step 2: Conversion into a weighted digrapis a second preprocessing step, the
DTMC obtained in the first phase is transformed into a weiglligraph. Recall that a
weighted digraphis atuptg = (V, E, w) whereV is a finite set of verticedy C VxV

is a set of edges, and : E — R is a weighted function.

Definition 6 (Weighted digraph of a DTMC). For DTMCD = (S, P, L), the weighted
digraphGp = (V, E,w) where:

V=S8 and (v,0)e€E iff P(v,v)>0 and w(v,v')=log(P(v,v")71).

Note thatw(s, s’) € [0,00) if P(s,s’) > 0. Thus, we indeed obtain a non-negatively
weighted digraph. Note that this transformation can be dod®m), wherem = |P|,
i.e., the number of non-zero element$in

Apatho fromstotin G is asequence = vy-v;-....v; € V1, wherevy = s,v; =t
and(v;, vi+1) € E, for 0 < i < |o|. As for paths in DTMCs|o| denotes the length of
o. Thedistanceof finite pathe = vg-v:-...-v; in graphgG is d(o) = -Z;Ol w(vi, Vit1).
Due to the fact that multiplication of probabilities it corresponds to addition of
weights inGp, and that weights are based on taking the logarithm of thipnazal
of the transition probabilities i?, distances irg and path-probabilities in DTM®
are related as follows:

Lemma 2. Leto ando’ be finite paths in DTM@ and its graphGp. Then:
Pr{c’'} > Po} iff d(o") <d(o).

The correspondence between path probabilities in the DTRICdistances in its
weighted digraph as laid down in the following lemma, cdngtis the basis for the
remaining algorithms in this paper.

Lemma 3. For any patho froms tot¢in DTMCD, k > 0, andh € NU {cc}: o isa
k-th most probable path of at mosthops inD iff o is a k-th shortest path of at moét
hops inGp.

5 Finding strongest evidences

Unbounded until. Based on the results of Lemma 3 whére- 1 andh = oo, we
consider the well-known shortest path problem. Recalt that

Definition 7 (SP problem).Given a weighted digrapfi = (V, E, w) ands, ¢t € V, the
shortest patliSP) problem is to determine a pagtfrom s to ¢ such thatd(c) < d(o”)
for any patho’ fromstotin G.

From Lemma 3 together with the transformation of a DTMC inteedghted digraph, it
follows that there is a polynomial reduction from the SE peoffor unbounded until
to the SP problem. As the SP problem is known to be in PTIM®B|ios:

Theorem 1. The SE problem for unbounded until is in PTIME.

Various efficient algorithms [14,9,12] exist for the SP desh, e.g., when using Di-
jkstra’s algorithm, the SE problem for unbounded until cansblved in timeD(m +
nlogn) if appropriate data structures such as Fibonacci heapsate u

Bounded until. Lemma 3 fork = 1 andh € N suggests to consider the hop-constrained
SP problem.

Definition 8 (HSP problem). Given a weighted digrapg = (V, £, w), s,t € V and
h € N, thehop-constrained S@HSP) problem is to determine a paitin G fromstot
with |o| < h such thatd(o) < d(o”) for any patho’ from s to ¢ with |o’| < h.

The HSP problem is a special case of the constrained shqadst(CSP) problem
[25,2], where the only constraint is the hop count.

Definition 9 (CSP problem).Given a weighted digrap§ = (V, E, w), s,t € V and
resource constrainta’, for 1 < i < c. Edgee € E usesr(e) > 0 units of resource.
The(resource) constrained shortest pptbblem (CSP) is to determine a shortest path
oingfromstotsuchthaty . ri(e) <X forl<i<ec

The CSP problem is NP-complete, even for a single resoumtsticont [2]. However, if
each edge uses a constant unit of that resource (such agtetntt), the CSP problem
can be solved in polynomial time, cf. [17], problem [ND30hus:

Theorem 2. The SE problem for bounded until is in PTIME.

For h > n—1, it is possible to use Dijkstra’s SP algorithm (as for unbaech until),
as a shortest path does not contain cycles. # n—1, however, Dijkstra’s algorithm
does not guarantee to obtain a shortest path of at mbeps. We, therefore, adopt the
Bellman-Ford (BF) algorithm [9,12] which fits well to our fgriem as it proceeds by
increasing hop count. It can be readily modified to generatkaatest path within a
given hop count. In the sequel of the paper, this algorithgeiseralized for computing
smallest counterexamples. The BF-algorithm is based on af secursive equations;

we extend these with the hop countForv € V, let m, (s, v) denote the shortest path
from s to v of at mosth hops (if it exists). Then:

s if v=sandh >0; (la)
mh(s,v) =4¢ L if v#£sandh=0; (1b)
argmin, {d(mn_1(s,u) - v) | (u,v) € E} if v # sandh > 0. (l¢)

where_ L denotes nonexistence of such a path. The last clause diates, (s, v) con-
sists of the shortest path(s predecessar, i.e.,m,_1 (s, u), extended with edgg:, v).
Note thatmin, {d(m,—1(s,u) - v) | (u,v) € E} is the distance of the shortest path; by
means ofirg, the path is obtained. It follows (cf. [22]) that equatidm)~(1c) charac-
terizes the shortest path fronto v in at mosth hops, and can be solved in tirG&hm).

As h < n—1, this is indeed in PTIME. Recall that fér > n—1, Dijkstra’s algorithm
has a favorable time complexity.

Exploiting the Viterbi algorithm.An alternative to using the BF algorithm is to adopt
the Viterbi algorithm[16,27]. In fact, to apply this algorithm the transformatimto

a weighted digraph is not needed. The Viterbi algorithm isymaghic programming
algorithm for finding the most likely sequence of hiddenesidi.e., a finite path) that
result in a sequence of observed events (a trace), esyeicidie context of hidden
Markov models. LeD be a DTMC that is obtained after the first step described in Sec
tion 4, and suppose thdlt(s) contains the set of atomic propositions that are valid in
s and all subformulae of the formula under consideration téNtbat these labels are
known due to the recursive descent nature of the PCTL modsdkihg algorithm.)
Let ¢tr(o) denote the projection of a path= sy-s1-...-s, onits trace, i.e4r(o) =
L(s0)-L(s1)-...-L(sy). o]; denotes the prefix of pathtruncated at length(thus end-
ing in s;), formally, o|; = o[0]-0[1]-...-o[i]. Thus,tr(o|;) = L(so)-L(s1)-...-L(s;).

~|; denotes the prefix of tracewith length:. Let p(v, 7, v) denote the probability of
the most probable path|, whose trace equails|; and reaches state p(~, 7, v) can be
formally defined as follows:

i—1
p(ri,v) = max [P(s;,s541) - Lo(s0),
tr(oli)=n:

J=
wherel, (s;) is the characteristic function ef i.e.,1,(s;) returns 1, ifs; = v, and O
otherwise. The Viterbi algorithm provides an algorithrmodugion to compute (v, ¢, v):

1 if s=wvandi =0;
p(v,i,v) =< 0 if s # vandi = 0;
maxyes p(7v,%— 1,u) - P(u,v) otherwise.

By computingp(®"V¥, h, s3,), the Viterbi algorithm determines the most probable
h-hop pathr = s-s1-...-s;, that generates the trage= L'(so)L'(s1)...L' (s,) = &"W¥
with length(h+1). Here,L'(s) = L(s) N {®,¥}, i.e., L’ is the labelling restricted to
the subformula@ and¥. For our SE problem for bounded until, the trace of the most
probable hop-constrained path frono ¢ is among{¥at;, ®¥ at, ..., ®"Wat,}. The

self-loop at vertex with probability one ensures that all these paths have tehgtl
while not changing their probabilities. For instance, th¢hpwith trace®*¥ at; can be
extended so that the trace beconfé® at,"*1—*, wherei < h. Since the DTMC is
already transformed as in Step 1, we can obtain the most pi@path ford/<"¥ by
computingp((®V¥Vat)"*+1at,, h+1,t) using the Viterbi algorithm. The time com-
plexity is O(hm), as for the BF algorithm.

6 Finding smallest counterexamples

Recall that a smallest (most indicative) counterexampéensinimal counterexample,
whose probability—among all minimal counterexamples—iales maximally from
the required probability bound. In this section, we invgetie algorithms and com-
plexity bounds for computing such smallest counterexamptest observe that any
smallest counterexample that contains, B@aths, contains thle most probable paths.
This follows from the fact that any nohmost probable path can be exchanged with a
more probable path, without changing the size of the coargample, but by increasing
its probability.

Unbounded until. Lemma 3 is applicable here fér> 1 andh = co. This suggests to
consider the: shortest paths problem.

Definition 10 (KSP problem). Given a weighted digrapty = (V, E,w), s,t € V,
and k € N, the k£ shortest pathg¢KSP) problem is to find distinct shortest paths
betweers andt in G, if such paths exist.

Theorem 3. The SC problem for unbounded until is a KSP problem.

Proof. We prove that a smallest counterexample of gizeontainsk most probable
paths. It is proven by contradiction. Lét be a smallest counterexample férwith
|C| = k, and assumé€ does not contain the most probable paths satisfyirng Then
there is a patlr ¢ C satisfying¢ such that Pfo} > Pr{c’} for somes’ € C. Let
C’" = C\{c'} U{oc}. ThenC’ is a counterexample fap, |C| = |C’| and P(C) >
Pr(C"). This contradictg” being a smallest counterexample. O

The question remains how to obtain Various algorithms for the KSP problem
requirek to be known a priori. This is inapplicable in our setting, he humber of
paths in a smallest counterexample is implicitly providgdte probability bound in
the PCTL-formula and is not known in advance. We thereforesicter algorithms that
allow to determinek on the fly, i.e., that can halt at ariyand resume if necessary.
A good candidate is Eppstein’s algorithm [15]. Althoughsthigorithm has the best
known asymptotic time complexity, vizD(m-+nlogn+k), in practice the recursive
enumeration algorithm (REA) by Jiménez and Marzal [20}pils. This algorithm has
atime complexity inO(m+kn log ™) and is based on a generalization of the recursive
equations for the BF-algorithm. Besides, it is readily adbfe to the case for bounded
h, as we demonstrate below. Note that the time complexityl &hawn KSP algorithms
depends ok, and ast may be exponential, their complexitypseudo-polynomial

10

Bounded until. Similar to the bounded until case for strongest evidencesnow
consider the KSP problem where the path length is consttagfieemma 3 forh € N.

Definition 11 (HKSP problem). Given a weighted digrap = (V, E,w), s,t € V
and h, k € N, the hop-constrainedSP (HKSP) problem is to determirteshortest
paths each of length at mostbetweers andt.

Similar to Theorem 3 we obtain:
Theorem 4. The SC problem for bounded until is a HKSP problem.

To our knowledge, algorithms for the HKSP problem do nottexisorder to solve
the HKSP problem, we propose a new algorithm that is strobabed on Jiménez and
Marzal's REA algorithm [20]. The advantage of adapting #iligorithm is thatt can
be determined on the fly, an essential characteristic fosetiing. The algorithm is a
conservative extension of the REA algorithm.

Forv € V, let) (s,v) denote the:-th shortest path from to v of length at most
h (if it exists). As before, we usé to denote the non-existence of a path. We establish
the following equations:

s if k=1,v=sandh >0
mh(s,v) = L if (k>1,v=sh=0)or(v#sh=0)
argmin, {d(c) | o € Q¥ (s,v)} otherwise

whereQ? (s, v) is a set of candidate paths among whigi{s, v) is chosen. The candi-
date sets are defined by:

{W}lz—l(sau)'v | (uvv) € E}
fk=1lv#sork=2v=s
Qn(s,0) = < Q3" (s,0) = {mf_1 (s, u)v}) U {m; 5 (s,u)v} (3)
if £k > 1 andu, k" are the node and index,
such thatr} (s, v) = 7 (s,u)v

Pathmt +!(s,u)-v = L occurs wherQ¥ *!(s,u) = (. Note thatL-v = L for any
v € V.QF(s,v) = 0ifit only contains.L.

If k=1, the shortest path t@'s predecessar is extended with the edge to In the
latter clauser}_, (s, u) denotes the selecté#l—1)-st shortest path fromto u, where
u is the direct predecessor of Paths inQ% (s, v) for k > 1 are thus either candidate
paths fork—1 where the selected path is eliminated (first summand) ofkhel)-st
shortest path from to u extended with edgéu, v) (second summand). Note that for
the source state there is no need to defirg} (s, s) asw’ (s, s) is defined by equations
(2a) and(2b), which act as termination conditions. In a similar way a<2i@][it can be
proven that:

Lemma 4. The equation$2a)-(2c) and(3) characterize the hop-constrainédshort-
est paths froms to v in at mosth hops.

11

The adapted REAThe adapted REA for computing theshortest paths from to ¢
which each consist of at mokthops is sketched as follows. The algorithm is based on
the recursive equations given just above.

i Computer; (s, t) by the BF algorithm and sét:= 1.
k

ii Repeat untily ~ Pr{m} (s,)} > p:
=1

(@) Setk := k-+1 and computer’ (s, t) by invokingNextPatlfv, h, k).

Fork>1, and oncery. (s, v),..., 7 '(s,v) are availableNextPatlit, h, k) computesr} (s, v)
as follows:

1. If h<0, goto step 4.

2. If k=2, then seQ[v, h] := {m},_(s,u)v | (u,v) € E andnj(s,v) # 7h_1(s,u)-v}.

3. Letu andk’ be the node and index such that ! (s, v) = 7F_, (s, u)-v.
(a) If w’;/jll(s,u) has not yet been computed, invdkextPattiu, h—1, k'+1).
(b) If 7" *1(s, u) exists, then insert: %1 (s, u)-v in Q[v, A].

4. 1If Q[v, h] # 0, then select and delete a path with minimum weight fi@fn, 2] and assign
it to 75 (s, v), elserf (s,v) does not exist.

In the main program, first the shortest path frero ¢ is determined using, e.g.,
the BF-algorithm. The intermediate results are recordeen] thek shortest paths are
determined iteratively using the subroutMextPath The computation terminates when
the total probability mass of theshortest paths so far exceeds the bourigdecall that
p is the upper bound of the PCTL formula to be checked. Note @Hat /] in the
algorithm corresponds Q% (s, v), wherek is the parameter of the program. In steps 2
through 3, the se¥ (s, v) is determined from@ﬁj‘l(s, v) according to equation (3). In
the final stepsy (s, v) is selected fron@)% (s, v) according to equatiof2c).

To determine the computational complexity of the algoritlwe assume the can-
didate sets to be implemented by heaps (as in [20]).ATHeortest paths to a vertex
can be stored in a linked list, where each paflts, v) = ﬂ',’i/_l(s,u)m is compactly
represented by its length and a back pointerr,’fg1 (s,u). Using these data structures,
we obtain:

Theorem 5. The time complexity of the adapted REAJigvm + hklog(2)).
Note that the time complexity is pseudo-polynomial due ® diependence ok

which may be exponential in. As in our settingk is not known in advance, this can
not be reduced to a polynomial time complexity.

7 Lower bounds on probabilities

For the violation of PCTL formulae with lower bounds, i.€ = P, (SUS"W), the for-
mula and model will be changed so that the algorithms for figditrongest evidences
and smallest counterexamples for PCTL can be applied.

12

Unbounded until.For i = oo, we have:

Pop(PUE) = Pci_p (DA W)W (=D A—)) = Pcip((DA —0)Ulat, V aty)),
—— ——— ——
o+ U o+
whereat,, andat, are two new atomic propositions such thatsi}= at,, iff s | ¥*
(i) s E aty iff s € BwhereB is a bottom strongly connected component (BSCC) such
thatB C Sat(P*), or shortlys € Bg«. ABSCC B is a maximal strong component that
has no transitions that leave:

Algorithmically, the DTMC is first transformed such that@ile (—&* A —¥*)-states
are made absorbing. Note that once those states are red@chéd;* will never be
satisfied. As a second step, all thé-states are labelled withy,, and made absorbing.
Finally, all BSCCs are obtained and all stateBis. are labelled withut,. The obtained
DTMC now acts as the starting point for applying all the maaahsformations and
algorithms in Section 4-6 to generate a counterexampl@gqr_p(@*L{(atu \% atb)).

Bounded until. For h € N, identifying all states in BSC@g- is not sufficient, as a
path satisfying1<"®* may never reach such BSCC. Instead, we transform the DTMC
and use:
Pop(BUST) = Py (9 N —~F) U™ (at, V aty)),
N——
e

whereat, andat;, are new atomic propositions such tha, is labelled as before and
s' |= aty, iff there existss € Pathy, (s) such that[h] = s’ ando = OS¢,

Algorithmically, the(—~®* A—¥*)-states and’ *-states are made absorbing; besides,
all w*-states are labelled witht,,. As a second step, all thie -states that can be reached
in exactlyh hops are computed by e.g., a breadth first search (BFS) tlgorThe ob-
tained DTMC now acts as the starting point for applying all thodel transformations
and algorithms in Section 4-6 to generate a counterexaopiedf; (@*L{:h(atu Vv ath)).
Finite paths of exactly paths suffice to check the validity ef= COS"&*, thus®*U~"at),
(not &*US"aty,) is needed; besides the validity is unaffected if we chabig&”at,
into dU="at,, since allat, states are absorbing. Note that it is very easy to adapt the
strongest evidences and smallest counterexamples algarfori/<" to those foi/="
— only the termination conditions need a slight change. Tthe tomplexity remains
the same.

In the above explained way, counterexamples for (boundetil-formulae with
a lower bound on their probability are obtained by consitgfiormulae on slightly
adapted DTMCs with upper bounds on probabilities. Inteifiythe fact that refutes
P, (PUShT) is witnessed by showing that violating pathsscdre too probable, i.e.,
carry more probability mass thgn Alternatively, all paths starting ins that satisfy
PUST could be determined as this set of paths has a probabiliytthesp.

8 Conclusion

Summary of resultsie have investigated the computation of strongest evidefmeax-
imally probable paths) and smallest counterexamples forlLP@odel checking of

13

DTMCs. Relationships to various kinds of shortest path [mwois have been estab-
lished. Besides, it is shown that for the hop-constrainezhgiest evidence problem,
the Viterbi algorithm can be applied. Summarizing we haveaioled the following
connections and complexities:

counterexample shortest path algorithm time complexity
problem problem
SE (until) SP Dijkstra O(m + nlogn)
SE (bounded until) HSP BF/Viterbi O(hm)
SC (until) KSP Eppstein O(m +nlogn + k)
SC (bounded until) HKSP adapted REA O(hm + hklog(Z))

wheren andm are the number of states and transitioni the hop bound, anklis the
number of shortest paths.

Extensions.The results reported in this paper can be extended to (wedikformulae
with minimal or interval bounds on the number of allowed stdfor instance, strongest
evidences fow (£ ng(gzsu[h=h’lu7) with 0 < h < A’ can be obtained by appropriately
combining maximally probable paths frosmto states at distande from s, and from
those states t@-states. Similar reasoning applies to the SC problem. FOMOF
with rewards, it can be established that the SE problem faating reward- and hop-
bounded until-formulae boils down to solving a non-triviedtance of the CSP problem.
As this problem is NP-complete, efficient algorithms for firglcounterexamples for
PRCTL [5], a reward extension to PCTL, will be hard to obtain.

Further research. Topics for further research are: succinct representatmhvésual-
ization of counterexamples, experimental research of tbpgsed algorithms in prob-
abilistic model checking and considering loopless patés ésg., [23]).

Related work.The SE problem for timed reachability in CTMCs is considaref8].
Whereas we consider the generation of strongest evidemmesaproperty violation
has been established, [3] assumes the CTMC to be unknownSEhgroblem for
CTMCs is mapped onto an SE problem on (uniformised) DTMCd,lauristic search
algorithms (Z) are employed to determine the evidences. The approacitiicted
to bounded until and due to the use of heuristics, time coxitjge are hard to obtain.
In our view, the main advantage of our approach is the sydtemiaaracterization of
generating counterexamples in terms of shortest path @moblRecently, [4] general-
izes the heuristic approach to obtain failure subgraphs,dounterexamples. To our
knowledge, smallest counterexamples have not been coediget.

Acknowledgement.Christel Baier and David N. Jansen are kindly acknowledgethieir useful
remarks on the paper. This research has been financiallpgegdy the NWO project QUPES
and by 973 and 863 Program of China (2002CB3120022005AAd1,321004AA112090,
2005AA113030) and NSFC (60233010, 60273034, 60403014).

14

References

1.

2.

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.
22.

23.

24.

25.

26.

27.

A.V. Aho, J.E. Hopcroft and J.D. Ullmann. The design andlgsis of computer algorithms.
Addison-Wesley, 1974.

R.K. Ahuja, T.L. Magnanti and J.B. Orlifetwork Flows: Theory, Algorithms and Applica-
tions Prentice Hall, Inc., 1993.

. H. Aljazzar, H. Hermanns and S. Leue. Counterexampletsnfi@d probabilistic reachability.

FORMATS 2005, LNCS 3829: 177-195, 2005.

. H. Aljazzar and S. Leue. Extended directed search forghitibtic timed reachability. FOR-

MATS 2006, LNCS 4202: 33-51, 2006.

. S. Andova, H. Hermanns and J.-P. Katoen. Discrete-timands model-checked. FOR-

MATS 2003, LNCS 2791: 88-104, 2003.

. C. Baier, J.-P. Katoen, H. Hermanns and V. Wolf. Compeagdiranching-time semantics for

Markov chainsinf. Comput200(2): 149-214 (2005).

. T.Ball, M. Naik and S. K. Rajamani. From symptom to causealizing errors in counterex-

ample traces. POPL: 97-105, 2003.

. G. Behrmann, K. G. Larsen and J. |. Rasmussen. Optimalatihg using priced timed

automataACM SIGMETRICS Perf. Ev. Revi@&(4): 34-40 (2005).

. R. Bellman. On a routing probler@uarterly of Appl. Math.16(1): 87-90 (1958).
. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith: Ceterample-guided abstraction

refinement. CAV, LNCS 1855: 154-169, 2000.

E.M. Clarke, S. Jha, Y. Lu and H. Veith. Tree-like couasamples in model checking. LICS:
19-29 (2002).

T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stiitroduction to Algorithms2001.
Section 24.1: The Bellman-Ford algorithm, pp.588-592.

L. de Alfaro, T.A. Henzinger and F. Mang. Detecting esrbefore reaching them. CAV,
LNCS 2725: 186-201, 2000.

E.W. Dijkstra. A note on two problems in connection witlaghs.Num. Math, 1:395-412
(1959).

D. Eppstein. Finding thie shortest pathsSIAM J. Comput28(2): 652-673 (1998).

G.D. Forney. The Viterbi algorithn®roc. of the IEEE51(3): 268-278 (1973).

M.R. Garey and D.S. Johnsd@omputers and Intractability, A Guide to the Theory of NP-
Completenes$-reeman, San Francisco, 1979.

A. Gurfinkel and M. Chechik. Proof-like counter-exanspl€ACAS, LNCS 2619: 160-175,
2003.

H. Hansson and B. Jonsson. A logic for reasoning abow &nd reliability.Formal Asp.
Comput.6(5): 512-535 (1994).

V.M. Jiménez and A. Marzal. Computing th€ shortest paths: A new algorithm and an
experimental comparison. WAE 1999, LNCS 1668: 15-29, 1999.

H. Jin, K. Ravi and F. Somenzi. Fate and free will in erracésSTTT6(2): 102-116 (2004).
E.L. LawlerCombinatorial Optimization: Networks and Matroid4olt, Reinhart, and Win-
ston, 1976.

E.Q.V. Martins and M.M.B. Pascoal. A new implementatiéiYen’s ranking loopless paths
algorithm.40OR1(2): 121-133 (2003).

E.Q.V. Martins, M.M.B. Pascoal and J.L.E. Dos Santosii@®n algorithms for ranking
shortest pathdnt. J. Found. Comput. Scl0(3): 247-262 (1999).

K. Mehlhorn and M. Ziegelmann. Resource constrainedtasiopaths. ESA 2000, LNCS
1879: 326-337, 2000.

S. Shoham and O. Grumberg. A game-based framework for@Uhterexamples and 3-
valued abstraction-refinement. CAV, LNCS 2725: 275-28D320

A.J. Viterbi. Error bounds for convolutional codes anchaymptotically optimum decoding
algorithm.IEEE Trans. on Inf. Theor$3(2):260-269, 1967.

15

