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Abstract. This paper considers algorithms for counterexample generation for
(bounded) probabilistic reachability properties in fullyprobabilistic systems. Find-
ing the strongest evidence (i.e, the most probable path) violating a (bounded)
until-formula is shown to be reducible to a single-source (hop-constrained) short-
est path problem. Counterexamples of smallest size that aremostly deviating from
the required probability bound can be computed by adopting (partially new hop-
constrained)k shortest paths algorithms that dynamically determinek.

1 Introduction

A major strength of model checking is the possibility to generate counterexamples in
case a property is violated. The shape of a counterexample depends on the checked for-
mula and the used temporal logic. For logics such as LTL, typically paths through the
model suffice. The violation of linear-time safety properties is indicated by finite path
fragments that end in a “bad” state. Liveness properties, instead, require infinite paths
ending in a cyclic behavior indicating that something “good” will never happen. LTL
model checkers usually incorporate breadth-first search algorithms to generateshort-
estcounterexamples, i.e., paths of minimal length. For branching-time logics such as
CTL, paths may act as counterexample for a subclass of universally quantified formu-
lae, ACTL∩LTL, to be exact. To cover a broader spectrum of formulae, though, more
advanced structures such as trees of paths [11], proof-likecounterexamples [18] (for
ACTL\LTL) or annotated paths [26] (for ECTL) are used.

Counterexamples are of utmost importance in model checking: first, and for all,
they provide diagnostic feedback even in cases where only a fragment of the entire
model can be searched. They constitute the key to successfulabstraction-refinement
techniques [10], and are at the core of obtaining feasible schedules in e.g., timed model
checking [8]. As a result, advanced counterexample generation and analysis techniques
have intensively been investigated, see e.g., [21,7,13].

This paper considers the generation of counterexamples in probabilistic model check-
ing. Probabilistic model checking is a technique to verify system models in which
transitions are equipped with random information. Popularmodels are discrete- and
continuous-time Markov chains (DTMCs and CTMCs, respectively), and variants thereof
which exhibit nondeterminism. Efficient model-checking algorithms for these models
have been developed, have been implemented in a variety of software tools, and have
been applied to case studies from various application areasranging from randomized
distributed algorithms, computer systems and security protocols to biological systems



and quantum computing. The crux of probabilistic model checking is to appropriately
combine techniques from numerical mathematics and operations research with stan-
dard reachability analysis. In this way, properties such as“the (maximal) probability to
reach a set of goal states by avoiding certain states is at most 0.6” can be automatically
checked up to a user-defined precision. Markovian models comprising millions of states
can be checked rather fast.

In probabilistic model checking, however, counterexamplegeneration is almost not
developed; notable exception is the recent heuristic search algorithm for CTMCs and
DTMCs [3,4] that works under the assumption that the model isunknown. Instead, we
consider a setting in which it has already been established that a certain state refutes
a given property. This paper considers algorithms and complexity results for the gen-
eration of counterexamples in probabilistic model checking. The considered setting is
probabilistic CTL [19] for discrete-time Markov chains (DTMCs), a model in which all
transitions are equipped with a probability. In this setting, typically there is no single
path but rather asetof paths that indicates why a given property is refuted. We concen-
trate on properties of the formP6p(ΦU6hΨ) wherep is a probability andh a (possibly
infinite) bound on the maximal allowed number of steps beforereaching a goal (i.e., a
Ψ -) state. In case states refutes this formula, the probability of all paths ins satisfying
ΦU6hΨ exceedsp. We consider two problems that are aimed to provide useful diag-
nostic feedback for this violation: generating strongest evidences and smallest, most
indicative counterexamples.

Strongest evidencesare the most probable paths that satisfyΦU6hΨ . They “con-
tribute” mostly to the property refutation and are thus expected to be informative. For
unbounded until (i.e.,h=∞), determining strongest evidences is shown to be equivalent
to a standard single-source shortest path (SP) problem; in caseh is bounded, we obtain
a special case of the (resource) constrained shortest path (CSP) problem [2] that can be
solved inO(hm) wherem is the number of transitions in the DTMC. Alternatively, the
Viterbi algorithm can be used for boundedh yielding the same time complexity.

Evidently, strongest evidences may not suffice as true counterexamples, as their
probability mass lies (far) belowp. As a next step, therefore, we consider the problem
of determining most probable subtrees (rooted ats). Similar to the notion of shortest
counterexample in LTL model checking, we consider trees ofsmallest sizethat exceed
the probability boundp. Additionally, such trees, of sizek, say, are required tomaxi-
mallyexceed the lower bound, i.e., no subtrees should exist of size at mostk that exceed
p to a larger extent. The problem of generating suchsmallest, most indicative counterex-
amplescan be casted as ak shortest paths problem. For unbounded-until formulae (i.e.,
h=∞), it is shown that the generation of such smallest counterexamples can be found
in pseudo-polynomial time by adoptingk shortest paths algorithms [15,24] that com-
putek on the fly. For bounded until-formulae, we propose an algorithm based on the
recursive enumeration algorithm of Jiménez and Marzal [20]. The time complexity of
this adapted algorithm isO(hm+hk log(m

n
)), wheren is the number of states in the

DTMC.

Finally, we show how the algorithms forP6p(ΦU6hΨ) can be exploited for gener-
ating strongest evidences and counterexamples for lower bounds on probabilities, i.e.,
P>p(ΦU6hΨ).
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2 Preliminaries

DTMCs. Let AP denote a fixed, finite set of atomic propositions ranged over by
a, b, c, . . . . A (labelled)discrete-time Markov chain(DTMC) is a Kripke structure in
which all transitions are equipped with discrete probabilities such that the sum of out-
going transitions of each state equals one. Formally, DTMCD = (S, P, L) whereS is
a finite set of states,P : S × S → [0, 1] is a stochastic matrix, andL : S → 2AP is a
labelling function which assigns to each states ∈ S the setL(s) of atomic propositions
that are valid ins. A states in D is called absorbing ifP(s, s) = 1. W.l.o.g. we assume
a DTMC to have a unique initial state.

Definition 1 (Paths).LetD = (S,P, L) be a DTMC.

– An infinite pathσ in D is an infinite sequences0·s1·s2· . . . of states such that
P(si, si+1) > 0 for all i > 0.

– A finite pathin D is a finite prefix of an infinite path.

For states and finite pathσ = s0·s1· . . . ·sn with P(sn, s) > 0, let σ·s denote
the path obtained by extendingσ by s. Let |σ| denote the length of the pathσ, i.e.,
|s0·s1·...·sn| = n, |s0| = 0 and |σ| = ∞ for infinite σ. For 0 6 i 6 |σ|, σ[i] = si

denotes the(i+1)-st state inσ. Path(s) denotes the set of all infinite paths that start in
states andPathfin(s) denotes the set of all finite paths ofs.

A DTMC D enriched with an initial states0 induces a probability space. The un-
derlyingσ-algebra from the basic cylinder is induced by the finite paths starting ins0.
The probability measure PrD

s0
(briefly Pr) induced by(D, s0) is the unique measure on

thisσ-algebra where:

Pr{σ ∈ Path(s0) | s0·s1·...·sn is a prefix ofσ
︸ ︷︷ ︸

basic cylinder of the finite paths0·s1·...·sn

} =
∏

06i<n

P(si, si+1).
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Fig. 1. An example DTMC

Example 1. Fig. 1 illustrates a sim-
ple DTMC with initial states. AP =
{a, b} and L is given through the sub-
sets ofAP labelling the states asL(s) =
L(si) = {a}, for 1 6 i 6 2; L(t1) =
L(t2) = {b} and L(u) = ∅. t2 is an
absorbing state.σ1 = s·u·s2·t1·t2 is a
finite path with Pr{σ1} = 0.1 × 0.7 ×
0.5 × 0.7 and |σ1| = 4, σ1[3] = t1.
σ2 = s·(s2·t1)

ω is an infinite path.

PCTL. Probabilistic computation tree logic (PCTL) [19] is a probabilistic extension of
CTL in which state-formulae are interpreted over states of aDTMC and path-formulae
are interpreted over paths in a DTMC. The syntax of PCTL is as follows:

Φ ::= tt | a | ¬Φ | Φ ∧ Φ | PEp(φ)
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wherep ∈ [0, 1] is a probability,E ∈ {<, 6, >, >} andφ is a path formula defined
according to the following grammar:

φ ::= ΦU6hΦ | ΦW6hΦ.

whereh ∈ N∪{∞}. The path formulaΦU6hΨ asserts thatΨ is satisfied withinh tran-
sitions and that all preceding states satisfyΦ. Forh=∞ such path-formulae are standard
(unbounded) until-formulae, whereas in other cases, theseare bounded until-formulae.
W6h is the weak counterpart ofU6h which does not requireΨ to eventually become
true. For the sake of simplicity, we do not consider the next-operator. The temporal
operators♦6h and�6h are obtained as follows:

PEp(♦
6hΦ) = PEp(tt U6h Φ) and PEp(�

6hΦ) = PEp(ΦW
6hff).

Note that ff= ¬tt. Some example formulae areP60.5(aUb) asserting that the proba-
bility of reaching ab-state via ana-path is at most12 , andP>0.001(♦650error) stating
that the probability for a system error to occur within50 steps exceeds0.001. Dually,
P60.999(�

650¬error) states that the probability for no error in the next50 steps is at
most 0.999.

Semantics.Let DTMCD = (S, P, L). The semantics of PCTL is defined by a satisfac-
tion relation, denoted|=, which is characterized as the least relation over the states inS
(paths inD, respectively) and the state formulae (path formulae) satisfying:

s |= tt iff true s |= a iff a ∈ L(s) s |= ¬Φ iff not (s |= Φ)
s |= Φ ∧ Ψ iff s |= Φ ands |= Ψ s |= PEp(φ) iff Prob(s, φ) E p

Let Path(s, φ) denote the set of infinite paths that start in states and satisfyφ. Formally,
Path(s, φ) = {σ ∈ Path(s) | σ |= φ}. Here,Prob(s, φ) = Pr{σ | σ ∈ Path(s, φ)}
denotes the probability ofPath(s, φ). Let σ be an infinite path inD. The semantics of
PCTL path formulae is defined as:

σ |= ΦU6hΨ iff ∃i 6 h such thatσ[i] |= Ψ and∀j : 0 6 j < i.(σ[j] |= Φ).

σ |= ΦW6hΨ iff either σ |= ΦU6hΨ or σ[i] |= Φ for all i 6 h.

For finite pathσ, |= is defined in a similar way by changing the range ofi to i 6

min{h, |σ|}. Let Pathfin(s, φ) denote the set of finite paths starting ins that fulfill φ.
The until and weak until operators are closely related. Thisfollows from the follow-

ing equations. For any states and all PCTL-formulaeΦ andΨ we have:

P>p(ΦW
6hΨ) ≡ P61−p((Φ ∧ ¬Ψ)U6h(¬Φ ∧ ¬Ψ))

P>p(ΦU
6hΨ) ≡ P61−p((Φ ∧ ¬Ψ)W6h(¬Φ ∧ ¬Ψ))

For the rest of the paper, we explore counterexamples for PCTL formulae of the form
P6p(ΦU6hΨ). In Section 7, we will show how to generate counterexamples for formu-
lae of the formP>p(ΦU6hΨ).
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3 Strongest evidences and counterexamples

Let us first consider what a counterexample in our setting actually is. To that end, con-
sider the formulaP6p(φ), where we denoteφ = ΦU6hΨ (h ∈ {∞} ∪ N) for the rest
of the paper. It follows directly from the semantics that:

s 2 P6p(φ) iff not (Prob(s, φ) 6 p) iff Pr{σ | σ ∈ Path(s, φ)} > p.

So,P6p(φ) is refuted by states whenever the total probability mass of allφ-paths
that start ins exceedsp. This indicates that a counterexample forP6p(φ) is in general
a setof paths starting ins and satisfyingφ. As φ is an until-formula whose validity
(regardless of the value ofh) can be witnessed by finite state sequences,finitepaths do
suffice in counterexamples. A counterexample is defined as follows:

Definition 2 (Counterexample).A counterexamplefor P6p(φ) in states is a setC of
finite paths such thatC ⊆ Pathfin(s, φ) andPr(C) > p.

A counterexample for states is thus a set of finite paths that all start ins. We will not
dwell further upon how to represent this set, being it a finitetree (or dag) rooted ats, or
a bounded regular expression (over states), and assume thatan abstract representation as
a set suffices. Note that the measurability of counterexamples is ensured by the fact that
they just consist of finite paths; hence, Pr(C) is well-defined. LetCXp(s, φ) denote the
set of all counterexamples forP6p(φ) in states. ForC ∈ CXp(s, φ) andC ’s superset
C′: C ⊆ C′ ⊆ Pathfin(s, φ), it follows thatC′ ∈ CXp(s, φ), since Pr(C′) > Pr(C) >
p. That is to say, any extension of a counterexampleC with paths inPathfin(s, φ) is a
counterexample.

Definition 3 (Minimal counterexample).C ∈ CXp(s, φ) is aminimal counterexam-
ple if |C| 6 |C′|, for anyC′ ∈ CXp(s, φ).

Note that what we define as being minimal differs from minimality w.r.t. ⊆. As a coun-
terexample should exceedp, a maximally probableφ-path is a strong evidence for the
violation ofP6p(φ). For minimal counterexamples such maximally probable paths are
essential.

Definition 4 (Strongest evidence).A strongest evidencefor violatingP6p(φ) in state
s is a finite pathσ ∈ Pathfin(s, φ) such thatPr{σ} > Pr{σ′} for anyσ′ ∈ Pathfin(s, φ).

Dually, a strongest evidence for violatingP6p(φ) is a strongest witness for fulfilling
P>p(φ). Evidently, a strongest evidence does not need to be a counterexample as its
probability mass may be (far) belowp.

As in conventional model checking, we are not interested in generating arbitrary
counterexamples, but those that are easy to comprehend, andprovide a clear evidence
of the refutation of the formula. So, akin to shortest counterexamples for linear-time
logics, we consider the notion of a smallest, most indicative counterexample. Such
counterexamples are required to be succinct, i.e., minimal, allowing easier analysis of
the cause of refutation, and most distinctive, i.e., their probability should mostly exceed
p among all minimal counterexamples.
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Definition 5 (Smallest counterexample).C ∈ CXp(s, φ) is a smallest (most indica-
tive) counterexampleif it is minimal andPr(C) > Pr(C′) for any minimal counterex-
ampleC′ ∈ CXp(s, φ).

The intuition is that a smallest counterexample is mostly deviating from the required
probability bound given that it has the smallest number of paths. Thus, there does not
exist an equally sized counterexample that deviates more fromp. Strongest evidences,
minimal counterexamples or smallest counterexamples may not be unique, as paths may
have equal probability. As a result, not every strongest evidence is contained in a mini-
mal (or smallest) counterexample. Whereas minimal counterexamples may not contain
any strongest evidence, any smallest counterexample contains at least one strongest
evidence. Using some standard mathematical results we obtain:

Lemma 1. A smallest counterexample fors 6|= P6p(φ) is finite.

Remark 1 (Finiteness).For until path formulae, smallest counterexamples are always
finitesets of paths if we considernon-strictupper-bounds on the probability, i.e., proba-
bility bounds of the form6 p. In case of strict upper-bounds of the form< p, finiteness
of counterexamples is no longer guaranteed asC for which Pr(C) equalsp is a small-
est counterexample, but may contain infinitely many paths. For instance, consider the
following DTMC:

s t
1
2

1
1
2

∅ {a}

The violation ofP<1(♦a) in states can only be shown by an infinite set of paths, viz.
all paths that traverse the self-loop at states arbitrarily often.

Example 2.Consider the DTMC in Fig. 1, for whichs violatesP6 1

2

(aUb). Evidences
are, amongst others,σ1 = s·s1·t1, σ2 = s·s1·s2·t1, σ3 = s·s2·t1, σ4 = s·s1·s2·t2, and
σ5 = s·s2·t2. Their respective probabilities are 0.2, 0.2, 0.15, 0.12 and 0.09. Pathsσ1

andσ2 are strongest evidences. The setC1 = {σ1, . . . , σ5} with Pr(C1) = 0.76 is a
counterexample, but not a minimal one, as the removal from eitherσ1 or σ2 also yields
a counterexample.C2 = {σ1, σ2, σ4} is a minimal but not a smallest counterexample,
asC3 = {σ1, σ2, σ3} is minimal too with Pr(C3) = 0.56 > 0.52 = Pr(C2). C3 is a
smallest counterexample.

In the remainder of the paper, we consider the strongest evidence problem (SE),
that for a given states with s 6|= P6p(φ), determines the strongest evidence for this
violation. Subsequently, we consider the corresponding smallest counterexample prob-
lem (SC). For both cases, we distinguish between until-formulae for whichh=∞ (un-
bounded until) andh ∈ N (bounded until) as distinctive algorithms are used for these
cases.

4 From a DTMC to a weighted digraph

Prior to finding strongest evidences or smallest counterexamples, we modify the DTMC
and turn it into a weighted digraph. LetSat(Φ) = {s ∈ S | s |= Φ} for anyΦ. Due to the
bottom-up traversal of the model-checking algorithm over the formulaφ = ΦU6hΨ ,
we may assume thatSat(Φ) andSat(Ψ) are known.
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Step 1: Adapting the DTMC.First, we make all states in the DTMCD = (S,P, L)
that neither satisfyΦ norΨ absorbing. Then we add an extra statet so that all outgoing
transitions from aΨ -state are replaced by a transition tot with probability1. Statet can
thus only be reached via aΨ -state. The obtained DTMCD′ = (S′,P′, L′) has state
spaceS ∪ {t} for t 6∈ S. The stochastic matrixP′ is defined as follows:

P
′(s, s) = 1 andP

′(s, s′) = 0 for s′ 6= s if s /∈ Sat(Φ) ∪ Sat(Ψ) or s = t
P

′(s, t) = 1 andP
′(s, s′) = 0 for s′ 6= t if s ∈ Sat(Ψ)

P
′(s, s′) = P(s, s′) for s′ ∈ S andP

′(s, t) = 0 otherwise.

L′(s) = L(s) for s ∈ S andL′(t) = {att}, whereatt /∈ L(s′) for anys′ ∈ S, i.e.,
at t uniquely identifies being at statet. Remark that all the(¬Φ ∧ ¬Ψ)-states could be
collapsed into a single state, but this is not further explored here. The time complexity
of this transformation isO(n) wheren = |S|. It is evident that the validity ofΦU6hΨ
is not affected by this amendment of the DTMC. By construction, any finite pathσ·t
in D′ satisfies(Φ ∨ Ψ)U6h+1at t and has the forms0·...·si·si+1·t wheresj |= Φ for
0 6 j 6 i < h, si+1 |= Φ; the prefixσ (in D) satisfiesΦU6hΨ whereσ′ andσ are
equally probable.

Step 2: Conversion into a weighted digraph.As a second preprocessing step, the
DTMC obtained in the first phase is transformed into a weighted digraph. Recall that a
weighted digraph is a tupleG = (V, E, w) whereV is a finite set of vertices,E ⊆ V ×V
is a set of edges, andw : E → R>0 is a weighted function.

Definition 6 (Weighted digraph of a DTMC). For DTMCD = (S,P, L), the weighted
digraphGD = (V, E, w) where:

V = S and (v, v′) ∈ E iff P(v, v′) > 0 and w(v, v′) = log(P(v, v′)−1).

Note thatw(s, s′) ∈ [0,∞) if P(s, s′) > 0. Thus, we indeed obtain a non-negatively
weighted digraph. Note that this transformation can be donein O(m), wherem = |P|,
i.e., the number of non-zero elements inP.

A pathσ froms to t in G is a sequenceσ = v0·v1·...·vj ∈ V +, wherev0 = s, vj = t
and(vi, vi+1) ∈ E, for 0 6 i < |σ|. As for paths in DTMCs,|σ| denotes the length of
σ. Thedistanceof finite pathσ = v0·v1·...·vj in graphG is d(σ) =

∑j−1
i=0 w(vi, vi+1).

Due to the fact that multiplication of probabilities inD corresponds to addition of
weights inGD, and that weights are based on taking the logarithm of the reciprocal
of the transition probabilities inD, distances inG and path-probabilities in DTMCD
are related as follows:

Lemma 2. Letσ andσ′ be finite paths in DTMCD and its graphGD. Then:

Pr{σ′} > Pr{σ} iff d(σ′) 6 d(σ).

The correspondence between path probabilities in the DTMC and distances in its
weighted digraph as laid down in the following lemma, constitutes the basis for the
remaining algorithms in this paper.

Lemma 3. For any pathσ from s to t in DTMCD, k > 0, andh ∈ N ∪ {∞}: σ is a
k-th most probable path of at mosth hops inD iff σ is ak-th shortest path of at mosth
hops inGD.
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5 Finding strongest evidences

Unbounded until. Based on the results of Lemma 3 wherek = 1 and h = ∞, we
consider the well-known shortest path problem. Recall that:

Definition 7 (SP problem).Given a weighted digraphG = (V, E, w) ands, t ∈ V , the
shortest path(SP) problem is to determine a pathσ from s to t such thatd(σ) 6 d(σ′)
for any pathσ′ from s to t in G.

From Lemma 3 together with the transformation of a DTMC into aweighted digraph, it
follows that there is a polynomial reduction from the SE problem for unbounded until
to the SP problem. As the SP problem is known to be in PTIME, it follows:

Theorem 1. The SE problem for unbounded until is in PTIME.

Various efficient algorithms [14,9,12] exist for the SP problem, e.g., when using Di-
jkstra’s algorithm, the SE problem for unbounded until can be solved in timeO(m +
n log n) if appropriate data structures such as Fibonacci heaps are used.

Bounded until.Lemma 3 fork = 1 andh ∈ N suggests to consider the hop-constrained
SP problem.

Definition 8 (HSP problem).Given a weighted digraphG = (V, E, w), s, t ∈ V and
h ∈ N, thehop-constrained SP(HSP) problem is to determine a pathσ in G from s to t
with |σ| 6 h such thatd(σ) 6 d(σ′) for any pathσ′ froms to t with |σ′| 6 h.

The HSP problem is a special case of the constrained shortestpath (CSP) problem
[25,2], where the only constraint is the hop count.

Definition 9 (CSP problem).Given a weighted digraphG = (V, E, w), s, t ∈ V and
resource constraintsλi, for 1 6 i 6 c. Edgee ∈ E usesri(e) > 0 units of resourcei.
The(resource) constrained shortest pathproblem (CSP) is to determine a shortest path
σ in G froms to t such that

∑

e∈σ ri(e) 6 λi for 1 6 i 6 c.

The CSP problem is NP-complete, even for a single resource constraint [2]. However, if
each edge uses a constant unit of that resource (such as the hop count), the CSP problem
can be solved in polynomial time, cf. [17], problem [ND30]. Thus:

Theorem 2. The SE problem for bounded until is in PTIME.

For h > n−1, it is possible to use Dijkstra’s SP algorithm (as for unbounded until),
as a shortest path does not contain cycles. Ifh < n−1, however, Dijkstra’s algorithm
does not guarantee to obtain a shortest path of at mosth hops. We, therefore, adopt the
Bellman-Ford (BF) algorithm [9,12] which fits well to our problem as it proceeds by
increasing hop count. It can be readily modified to generate ashortest path within a
given hop count. In the sequel of the paper, this algorithm isgeneralized for computing
smallest counterexamples. The BF-algorithm is based on a set of recursive equations;
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we extend these with the hop counth. Forv ∈ V , let πh(s, v) denote the shortest path
from s to v of at mosth hops (if it exists). Then:

πh(s, v) =







s if v = s andh > 0; (1a)
⊥ if v 6= s andh = 0; (1b)
argminu{d(πh−1(s, u) · v) | (u, v) ∈ E} if v 6= s andh > 0. (1c)

where⊥ denotes nonexistence of such a path. The last clause states thatπh(s, v) con-
sists of the shortest path tov’s predecessoru, i.e.,πh−1(s, u), extended with edge(u, v).
Note thatminu{d(πh−1(s, u) · v) | (u, v) ∈ E} is the distance of the shortest path; by
means ofarg, the path is obtained. It follows (cf. [22]) that equation(1a)∼(1c) charac-
terizes the shortest path froms to v in at mosth hops, and can be solved in timeO(hm).
As h < n−1, this is indeed in PTIME. Recall that forh > n−1, Dijkstra’s algorithm
has a favorable time complexity.

Exploiting the Viterbi algorithm.An alternative to using the BF algorithm is to adopt
the Viterbi algorithm [16,27]. In fact, to apply this algorithm the transformation into
a weighted digraph is not needed. The Viterbi algorithm is a dynamic programming
algorithm for finding the most likely sequence of hidden states (i.e., a finite path) that
result in a sequence of observed events (a trace), especially in the context of hidden
Markov models. LetD be a DTMC that is obtained after the first step described in Sec-
tion 4, and suppose thatL(s) contains the set of atomic propositions that are valid in
s and all subformulae of the formula under consideration. (Note that these labels are
known due to the recursive descent nature of the PCTL model checking algorithm.)
Let tr(σ) denote the projection of a pathσ = s0·s1· . . . ·sh on its trace, i.e.,tr(σ) =
L(s0)·L(s1)·...·L(sh). σ↓i denotes the prefix of pathσ truncated at lengthi (thus end-
ing in si), formally, σ↓i = σ[0]·σ[1]·...·σ[i]. Thus,tr(σ↓i) = L(s0)·L(s1)·...·L(si).
γ↓i denotes the prefix of traceγ with lengthi. Let ρ(γ, i, v) denote the probability of
the most probable pathσ↓i whose trace equalsγ↓i and reaches statev. ρ(γ, i, v) can be
formally defined as follows:

ρ(γ, i, v) = max
tr(σ↓i)=γi

i−1∏

j=0

P(sj , sj+1) · 1v(si),

where1v(si) is the characteristic function ofv, i.e.,1v(si) returns 1, ifsi = v, and 0
otherwise. The Viterbi algorithm provides an algorithmic solution to computeρ(γ, i, v):

ρ(γ, i, v) =







1 if s = v andi = 0;
0 if s 6= v andi = 0;
maxu∈S ρ(γ, i − 1, u) · P(u, v) otherwise.

By computingρ(ΦhΨ, h, sh), the Viterbi algorithm determines the most probable
h-hop pathσ = s0·s1·...·sh that generates the traceγ = L′(s0)L

′(s1)...L
′(sh) = ΦhΨ

with length(h+1). Here,L′(s) = L(s) ∩ {Φ, Ψ}, i.e.,L′ is the labelling restricted to
the subformulaeΦ andΨ . For our SE problem for bounded until, the trace of the most
probable hop-constrained path froms to t is among{Ψat t, ΦΨat t, ..., Φ

hΨatt}. The
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self-loop at vertext with probability one ensures that all these paths have length h+1
while not changing their probabilities. For instance, the path with traceΦiΨat t can be
extended so that the trace becomesΦiΨatt

h+1−i, wherei 6 h. Since the DTMC is
already transformed as in Step 1, we can obtain the most probable path forΦU6hΨ by
computingρ((Φ∨Ψ∨at t)

h+1att, h+1, t) using the Viterbi algorithm. The time com-
plexity isO(hm), as for the BF algorithm.

6 Finding smallest counterexamples

Recall that a smallest (most indicative) counterexample isa minimal counterexample,
whose probability—among all minimal counterexamples—deviates maximally from
the required probability bound. In this section, we investigate algorithms and com-
plexity bounds for computing such smallest counterexamples. First observe that any
smallest counterexample that contains, sayk paths, contains thek most probable paths.
This follows from the fact that any non-k most probable path can be exchanged with a
more probable path, without changing the size of the counterexample, but by increasing
its probability.

Unbounded until. Lemma 3 is applicable here fork > 1 andh = ∞. This suggests to
consider thek shortest paths problem.

Definition 10 (KSP problem). Given a weighted digraphG = (V, E, w), s, t ∈ V ,
and k ∈ N, the k shortest paths(KSP) problem is to findk distinct shortest paths
betweens andt in G, if such paths exist.

Theorem 3. The SC problem for unbounded until is a KSP problem.

Proof. We prove that a smallest counterexample of sizek, containsk most probable
paths. It is proven by contradiction. LetC be a smallest counterexample forφ with
|C| = k, and assumeC does not contain thek most probable paths satisfyingφ. Then
there is a pathσ /∈ C satisfyingφ such that Pr{σ} > Pr{σ′} for someσ′ ∈ C. Let
C′ = C \ {σ′} ∪ {σ}. ThenC′ is a counterexample forφ, |C| = |C′| and Pr(C) >
Pr(C′). This contradictsC being a smallest counterexample. ⊓⊔

The question remains how to obtaink. Various algorithms for the KSP problem
requirek to be known a priori. This is inapplicable in our setting, as the number of
paths in a smallest counterexample is implicitly provided by the probability bound in
the PCTL-formula and is not known in advance. We therefore consider algorithms that
allow to determinek on the fly, i.e., that can halt at anyk and resume if necessary.
A good candidate is Eppstein’s algorithm [15]. Although this algorithm has the best
known asymptotic time complexity, viz.O(m+n log n+k), in practice the recursive
enumeration algorithm (REA) by Jiménez and Marzal [20] prevails. This algorithm has
a time complexity inO(m+kn log m

n
) and is based on a generalization of the recursive

equations for the BF-algorithm. Besides, it is readily adaptable to the case for bounded
h, as we demonstrate below. Note that the time complexity of all known KSP algorithms
depends onk, and ask may be exponential, their complexity ispseudo-polynomial.
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Bounded until. Similar to the bounded until case for strongest evidences, we now
consider the KSP problem where the path length is constrained, cf. Lemma 3 forh ∈ N.

Definition 11 (HKSP problem). Given a weighted digraphG = (V, E, w), s, t ∈ V
and h, k ∈ N, the hop-constrainedKSP (HKSP) problem is to determinek shortest
paths each of length at mosth betweens andt.

Similar to Theorem 3 we obtain:

Theorem 4. The SC problem for bounded until is a HKSP problem.

To our knowledge, algorithms for the HKSP problem do not exist. In order to solve
the HKSP problem, we propose a new algorithm that is stronglybased on Jiménez and
Marzal’s REA algorithm [20]. The advantage of adapting thisalgorithm is thatk can
be determined on the fly, an essential characteristic for oursetting. The algorithm is a
conservative extension of the REA algorithm.

For v ∈ V , let πk
h(s, v) denote thek-th shortest path froms to v of length at most

h (if it exists). As before, we use⊥ to denote the non-existence of a path. We establish
the following equations:

πk
h(s, v) =







s if k = 1, v = s andh > 0 (2a)
⊥ if (k > 1, v = s, h = 0) or (v 6= s, h = 0) (2b)
argminσ{d(σ) | σ ∈ Qk

h(s, v)} otherwise (2c)

whereQk
h(s, v) is a set of candidate paths among whichπk

h(s, v) is chosen. The candi-
date sets are defined by:

Qk
h(s, v) =







{π1
h−1(s, u)·v | (u, v) ∈ E}

if k = 1, v 6= s or k = 2, v = s

(Qk−1
h (s, v) − {πk′

h−1(s, u)·v}) ∪ {πk′+1
h−1 (s, u)·v}

if k > 1 andu, k′ are the node and index,
such thatπk−1

h (s, v) = πk′

h−1(s, u)·v

(3)

Pathπk′+1
h−1 (s, u)·v = ⊥ occurs whenQk′+1

h−1 (s, u) = ∅. Note that⊥·v = ⊥ for any
v ∈ V . Qk

h(s, v) = ∅ if it only contains⊥.
If k=1, the shortest path tov′s predecessoru is extended with the edge tov. In the

latter clause,πk′

h−1(s, u) denotes the selected(k−1)-st shortest path froms to u, where
u is the direct predecessor ofv. Paths inQk

h(s, v) for k > 1 are thus either candidate
paths fork−1 where the selected path is eliminated (first summand) or the(k′+1)-st
shortest path froms to u extended with edge(u, v) (second summand). Note that for
the source states, there is no need to defineQk

h(s, s) asπk
h(s, s) is defined by equations

(2a) and(2b), which act as termination conditions. In a similar way as in [20] it can be
proven that:

Lemma 4. The equations(2a)-(2c) and(3) characterize the hop-constrainedk short-
est paths froms to v in at mosth hops.
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The adapted REA.The adapted REA for computing thek shortest paths froms to t
which each consist of at mosth hops is sketched as follows. The algorithm is based on
the recursive equations given just above.

i Computeπ1
h(s, t) by the BF algorithm and setk := 1.

ii Repeat until
kX

i=1

Pr{πi

h(s, t)} > p:

(a) Setk := k+1 and computeπk

h(s, t) by invokingNextPath(v, h, k).

For k>1, and onceπ1
h(s, v), . . . , πk−1

h
(s, v) are available,NextPath(t, h, k) computesπk

h(s, v)
as follows:

1. If h60, goto step 4.
2. If k=2, then setQ[v, h] := {π1

h−1(s, u)·v | (u, v) ∈ E andπ1
h(s, v) 6= π1

h−1(s, u)·v}.

3. Letu andk′ be the node and index such thatπk−1

h
(s, v) = πk

′

h−1(s, u)·v.

(a) If πk
′
+1

h−1
(s, u) has not yet been computed, invokeNextPath(u, h−1, k′+1).

(b) If πk
′
+1

h−1
(s, u) exists, then insertπk

′
+1

h−1
(s, u)·v in Q[v, h].

4. If Q[v, h] 6= ∅, then select and delete a path with minimum weight fromQ[v, h] and assign
it to πk

h(s, v), elseπk

h(s, v) does not exist.

In the main program, first the shortest path froms to t is determined using, e.g.,
the BF-algorithm. The intermediate results are recorded. Then, thek shortest paths are
determined iteratively using the subroutineNextPath. The computation terminates when
the total probability mass of thek shortest paths so far exceeds the boundp. Recall that
p is the upper bound of the PCTL formula to be checked. Note thatQ[v, h] in the
algorithm corresponds toQk

h(s, v), wherek is the parameter of the program. In steps 2
through 3, the setQk

h(s, v) is determined fromQk−1
h (s, v) according to equation (3). In

the final step,πk
h(s, v) is selected fromQk

h(s, v) according to equation(2c).
To determine the computational complexity of the algorithm, we assume the can-

didate sets to be implemented by heaps (as in [20]). Thek shortest paths to a vertexv
can be stored in a linked list, where each pathπk

h(s, v) = πk′

h−1(s, u)·v is compactly

represented by its length and a back pointer toπk′

h−1(s, u). Using these data structures,
we obtain:

Theorem 5. The time complexity of the adapted REA isO(hm + hk log(m
n

)).

Note that the time complexity is pseudo-polynomial due to the dependence onk
which may be exponential inn. As in our setting,k is not known in advance, this can
not be reduced to a polynomial time complexity.

7 Lower bounds on probabilities

For the violation of PCTL formulae with lower bounds, i.e.,s 6|= P>p(ΦU6hΨ), the for-
mula and model will be changed so that the algorithms for finding strongest evidences
and smallest counterexamples for PCTL can be applied.
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Unbounded until.Forh = ∞, we have:

P>p

(
ΦU Ψ

)
≡ P61−p

(
(Φ ∧ ¬Ψ)
︸ ︷︷ ︸

Φ∗

W (¬Φ ∧ ¬Ψ)
︸ ︷︷ ︸

Ψ∗

)
≡ P61−p

(
(Φ ∧ ¬Ψ)
︸ ︷︷ ︸

Φ∗

U(atu ∨ atb)
)
,

whereatu andatb are two new atomic propositions such that (i)s |= atu iff s |= Ψ∗

(ii) s |= atb iff s ∈ B whereB is a bottom strongly connected component (BSCC) such
thatB ⊆ Sat(Φ∗), or shortlys ∈ BΦ∗ . A BSCCB is a maximal strong component that
has no transitions that leaveB.

Algorithmically, the DTMC is first transformed such that allthe(¬Φ∗∧¬Ψ∗)-states
are made absorbing. Note that once those states are reached,Φ∗WΨ∗ will never be
satisfied. As a second step, all theΨ∗-states are labelled withatu and made absorbing.
Finally, all BSCCs are obtained and all states inBΦ∗ are labelled withatb. The obtained
DTMC now acts as the starting point for applying all the modeltransformations and
algorithms in Section 4-6 to generate a counterexample forP61−p

(
Φ∗U(atu ∨ atb)

)
.

Bounded until. For h ∈ N, identifying all states in BSCCBΦ∗ is not sufficient, as a
path satisfying�6hΦ∗ may never reach such BSCC. Instead, we transform the DTMC
and use:

P>p(ΦU
6hΨ) ≡ P61−p((Φ ∧ ¬Ψ)

︸ ︷︷ ︸

Φ∗

U=h(atu ∨ ath)),

whereatu andath are new atomic propositions such thatatu is labelled as before and
s′ |= ath iff there existsσ ∈ Pathfin(s) such thatσ[h] = s′ andσ |= �6hΦ∗.

Algorithmically, the(¬Φ∗∧¬Ψ∗)-states andΨ∗-states are made absorbing; besides,
all Ψ∗-states are labelled withatu. As a second step, all theΦ∗-states that can be reached
in exactlyh hops are computed by e.g., a breadth first search (BFS) algorithm. The ob-
tained DTMC now acts as the starting point for applying all the model transformations
and algorithms in Section 4-6 to generate a counterexample forP61−p

(
Φ∗U=h(atu ∨ ath)

)
.

Finite paths of exactlyh paths suffice to check the validity ofσ |= �6hΦ∗, thusΦ∗U=hath
(not Φ∗U6hath) is needed; besides the validity is unaffected if we changeΦU6hatu
into ΦU=hatu, since allatu states are absorbing. Note that it is very easy to adapt the
strongest evidences and smallest counterexamples algorithms forU6h to those forU=h

– only the termination conditions need a slight change. The time complexity remains
the same.

In the above explained way, counterexamples for (bounded) until-formulae with
a lower bound on their probability are obtained by considering formulae on slightly
adapted DTMCs with upper bounds on probabilities. Intuitively, the fact thats refutes
P>p(ΦU6hΨ) is witnessed by showing that violating paths ofs are too probable, i.e.,
carry more probability mass thanp. Alternatively,all paths starting ins that satisfy
ΦU6hΨ could be determined as this set of paths has a probability less thanp.

8 Conclusion

Summary of results.We have investigated the computation of strongest evidences (max-
imally probable paths) and smallest counterexamples for PCTL model checking of
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DTMCs. Relationships to various kinds of shortest path problems have been estab-
lished. Besides, it is shown that for the hop-constrained strongest evidence problem,
the Viterbi algorithm can be applied. Summarizing we have obtained the following
connections and complexities:

counterexample shortest path
problem problem

algorithm time complexity

SE (until) SP Dijkstra O(m + n log n)
SE (bounded until) HSP BF/Viterbi O(hm)

SC (until) KSP Eppstein O(m + n log n + k)
SC (bounded until) HKSP adapted REA O(hm + hk log(m

n
))

wheren andm are the number of states and transitions,h is the hop bound, andk is the
number of shortest paths.

Extensions.The results reported in this paper can be extended to (weak) until-formulae
with minimal or interval bounds on the number of allowed steps. For instance, strongest
evidences fors 6|= P6p(ΦU [h,h′]Ψ) with 0 < h 6 h′ can be obtained by appropriately
combining maximally probable paths froms to states at distanceh from s, and from
those states toΨ -states. Similar reasoning applies to the SC problem. For DTMCs
with rewards, it can be established that the SE problem for violating reward- and hop-
bounded until-formulae boils down to solving a non-trivialinstance of the CSP problem.
As this problem is NP-complete, efficient algorithms for finding counterexamples for
PRCTL [5], a reward extension to PCTL, will be hard to obtain.

Further research.Topics for further research are: succinct representation and visual-
ization of counterexamples, experimental research of the proposed algorithms in prob-
abilistic model checking and considering loopless paths (see e.g., [23]).

Related work.The SE problem for timed reachability in CTMCs is consideredin [3].
Whereas we consider the generation of strongest evidences once a property violation
has been established, [3] assumes the CTMC to be unknown. TheSE problem for
CTMCs is mapped onto an SE problem on (uniformised) DTMCs, and heuristic search
algorithms (Z∗) are employed to determine the evidences. The approach is restricted
to bounded until and due to the use of heuristics, time complexities are hard to obtain.
In our view, the main advantage of our approach is the systematic characterization of
generating counterexamples in terms of shortest path problems. Recently, [4] general-
izes the heuristic approach to obtain failure subgraphs, i.e., counterexamples. To our
knowledge, smallest counterexamples have not been considered yet.
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