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COUNTEREXAMPLES IN ROTUNDITY OF NORMS IN BANACH
SPACES

PETR HAJEK AND ANDRES QUILIS

ABSTRACT. We study several classical concepts in the topic of strict convexity of norms
in infinite dimensional Banach spaces. Specifically, and in descending order of strength,
we deal with Uniform Rotundity (UR), Weak Uniform Rotundity (WUR) and Uniform
Rotundity in Every Direction (URED). Our first three results show that we may distinguish
between all of these three properties in every Banach space where such renormings are
possible. Specifically, we show that in every infinite dimensional Banach space which
admits a WUR (resp. URED) renorming, we can find a norm with the same condition
and which moreover fails to be UR (resp. WUR). We prove that these norms can be
constructed to be Locally Uniformly Rotund (LUR) in Banach spaces admitting such
renormings. Additionally, we obtain that in every Banach space with a LUR norm we
can find a LUR renorming which is not URED. These results solve three open problems
posed by A.J. Guirao, V. Montesinos and V. Zizler. The norms we construct in this first
part are dense.

In the last part of this note, we solve a fourth question posed by the same three authors
by constructing a C'°*°-smooth norm in ¢y whose dual norm is not strictly convex.

1. INTRODUCTION

In this article, we obtain four main results related to convexity and smoothness of
renormings in infinite dimensional Banach spaces. These theorems answer four open
questions posed in the recently published monograph [GMZ22|. The first three results
deal with different strengthenings of strict convexity (or rotundity). In particular, we work
with the following classical concepts:

Definition 1.1. Let X be a Banach space and let || - || be a norm in X. Denote by By
and S| the unit ball of X and the unit sphere of X respectively in the norm || - ||.

- The norm || - || is uniformly rotund (UR) if for every pair of sequences {x, }nen and
{yn}nen in By such that || Z2F22|| — 1 we have that ||y, — z,|| — 0.
- The norm || - || is weakly uniformly rotund (WUR) if for every pair of sequences

{Zn}nen and {y,}nen in By such that H%H — 1 we have that y,, — z, — 0 in
the weak topology of X.
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- The norm || - || is uniformly rotund in every direction (URED) if for every v € S
and every pair of sequences {x, }nen and {y, }new in B such that y,, —z,, = A,v for
some A\, € N and every n € N, and such that H%H — 1, we have that A\, — 0.

- The norm || - || is locally uniformly rotund (LUR) at a point x € S| if for every
sequence {Yy, fnen € B such that H”%H — 1 we have that || — y,|| — 0.

All four of these concepts have been studied extensively in the field of Renorming of
Banach spaces, producing numerous and deep results with equally important applications.
We refer to [DGZ93] or [GMZ22] for a comprehensive view of the topic.

It is direct from the definition that UR implies WUR, which in turn implies URED. It
is also well known that these concepts are distinct in general. For instance, it is a classical
result that a Banach space is superreflexive if and only if it admits a UR renorming (see
e.g.: Theorem IV.4.1 in [DGZ93]), while the class of Banach spaces admitting a WUR norm
is much larger, and for separable Banach spaces it is equivalent to having a separable dual
(see [HAj96]). All separable Banach spaces can be renormed with a URED norm ([Ziz71)]).

In this note we show that we may differentiate between all of these notions in every
infinite dimensional Banach space in which such renormings are possible. Moreover, all
renormings we construct may be taken to be LUR if the Banach space we are dealing
with admits a norm with this property; which shows that the three uniform concepts are
different even in the presence of strong local convexity properties. Finally, we also prove
the density of this kind of norms.

Let us now state precisely the first three main results:

Theorem A. Let X be an infinite dimensional Banach space with an LUR norm. Then
there exists an equivalent norm in X which is LUR and fails to be URED. Moreover, the
class of norms with this property is dense.

Theorem B. Let X be an infinite dimensional Banach space with a URED norm. Then
there exists an equivalent norm in X which s URED and not WUR. If X admits a LUR
norm, then this norm can also be taken to be LUR. Moreover, the class of norms with this
property s dense.

Theorem C. Let X be an infinite dimensional superreflexive Banach space. Then there
exists an equivalent norm in X which is LUR and WUR but not UR. Moreover, the class
of norms with this property is dense.

As mentioned above, these three theorems answer three questions in |[GMZ22], specifically
Questions 52.3.4, 52.3.7 and 52.3.1 respectively (page 500). Notice as well that, by duality,
Theorem [C] implies that in every superreflexive space we may approximate every norm by
a Fréchet smooth norm which is Uniformly Gateaux but fails to be Uniformly Fréchet.
This answers Question 52.1.2.4 of |GMZ22] as well, which was already solved differently in
[Qui22] by constructing a Fréchet differentiable norm which fails to be Uniformly Gateaux.

The renormings we construct to prove Theorems [Al [Bl and [C] come from a single method,
applied with varying parameters to obtain the desired properties in each situation. Intuitively,
the way we build these renormings is by defining first a countable family of norms with
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the following property: their unit sphere coincides with the original unit sphere except
in a particular slice, where the new sphere contains a strictly convex approximation of a
segment in a given direction, which may be different for each of the countably many norms.
By suitably combining the countable family of norms, we obtain a renorming which fails
to be UR, WUR or URED while satisfying a weaker rotundity condition, depending on
the choice of the directions in which the approximated segments appear. The idea of using
countably many norms which differ from the original norm only on a certain slice was
also used in |[Qui22], where such a technique is applied to the construction of norms with
specific smoothness properties.

To finish the introduction, let us discuss the fourth and last of the main theorems of this
article, which we state now:

Theorem D. There exists a C*°-smooth norm on cy such that the dual norm is not strictly
convex. Moreover, the norm ||-||s can be uniformly approximated on bounded sets by norms
with this property.

This result answers in particular part (i) of Question 139 in |[GMZ16] (part (ii) was
already solved in [Qui22|), which is posed again as Question 52.1.4.6 in |[GMZ22] (page
498). To put it in context, recall that by a classical Smulyan result, a norm | - || in
any Banach space is Gateaux differentiable as soon as the dual norm || - ||* is strictly
convex. It is known that the converse is not true in general: indeed, by a result of V.
Klee [Kleh9] (Proposition 3.3), a Gateaux differentiable norm with non strictly convex
dual can be constructed in every separable non-reflexive Banach space. For such spaces
which additionally have a separable dual (such as ¢p), this norm can be taken to be Fréchet
differentiable, as shown by A.J. Guirao, V. Montesinos and V. Zizler in [GMZ12]. Even
in reflexive spaces, where every Gateaux differentiable norm does have a strictly convex
dual norm, a classical result from D. Yost in [Yos81] proves that we may construct Fréchet
differentiable norms whose dual norm is not LUR.

The construction of the norm in the proof of Theorem [Dlis based around the C'**°-smooth
approximation of certain n-dimensional polyhedra constructed inductively.

Let us now briefly discuss the structure of this article. In section 2 we set the notation
to be used throughout the rest of the note, and we recall some more definitions and
preliminary results. In section 3 we lay out the construction of the renormings in order to
prove Theorems [Al [Bl and [C] regarding rotundity. Finally, section 4 is dedicated to proving
Theorem [Dl about a C*°-smooth norm in ¢y with non strictly convex dual norm.

2. NOTATION AND PRELIMINARY RESULTS

We write B and S| to denote the unit ball and the unit sphere of a Banach space
with respect to the norm || - ||.

We use the definitions of UR, WUR, URED and LUR given in the previous section.
Additionally, we say that a norm || - || in a Banach space X is strictly convex if whenever
x,y € By with  # y we have that HIT”H < 1.

Regarding smoothness, we will use the standard definitions of differentiability in Banach
spaces, which can be found, for instance, in [DGZ93].
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Given a Banach space X and a class of equivalent norms S defined on X, we say that
a norm || - || is uniformly approximated on uniform sets by norms in § if for every € > 0
there exists a norm |||-|| € S such that [||-]| < |- || < (1 +¢)||-||. If every norm in X can
be uniformly approximated on uniforms sets by norms in a class S, we say that the class
S is dense.

Following the notation of [GMZ22], given a norm || - || in a Banach space X and two
points z,y € X, we define the expression

Qi y) = 2||z* + 2[|y[|* — [l + y[I* = 0.
We will use the following remark with an elementary proof regarding this function:

Remark 2.1. Let X be a Banach space. For every n € N| let || - ||,, be an equivalent norm
on X, and let {x, }nen, {Un}nen C X be two sequences such that limsup,, . ||Ta|ln < 1,
limsup,, .. |ynll» < 1, and H%Hn — 1. Then Q.j,, (%n, yn) — 0.

As suggested by the previous remark, the function Q). can be used to describe rotundity
qualities of the norm || - ||. In particular, we will use the following known characterizations:

Proposition 2.2. Let X be a Banach space. A norm || - || is UR if and only if for every
pair of sequences {Tytnen and {Yn}nen in X such that Q. (vn,yn) — 0, we have that
|20 — ynll — 0.

Proposition 2.3. Let X be a Banach space. A norm || - || is WUR if and only if for
every pair of sequences {Tn}nen and {Yntnen in X such that Q). (zn,yn) — 0, we have
that x,, — y, — 0 in the weak topology of X.

Proposition 2.4. Let X be a Banach space. A norm || - || is URED if and only if for
every v € X \ {0}, and every pair of sequences {x,}nen and {yn}tnen in X such that
Yn — T € span(v) and Q|.|(Tn, yn) — 0, we have that ||z, — y,| — 0.

Proposition 2.5. Let X be a Banach space. A norm || - || is LUR at a point x € X
if and only if for every sequence {yn}nen in X such that Q). (x,y,) — 0 we have that
| = yall = 0.

We refer to [GMZ22] again for a thorough study of this function and a comprehensive
list of characterizations of rotundity concepts it can be used for.

In section 3 we will define several renormings of the form (a1|| - |2 + as| - |2)"*, where
|- 1l1, |l - ||2 are two equivalent norms in a Banach space X, and a4, as are positive numbers.
These renormings are a well known technique to obtain rotund approximations of a given
norm. The key property they enjoy in this regard is the fact that

@) Qs 3ast )2 (B ¥) = A QU (2, 9) + 2@y, (7, ),
which, together with the characterizations we allude to previously, shows that the renorming
(ar]l - |13 + az]| - H%)l/2 inherits the strongest rotundity conditions of both || - ||y and || - ||z

More precisely, with these observations we immediately obtain the following lemma:
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Lemma 2.6. Let X be a Banach space, let || - ||1 and || - ||2 be two equivalent norms on X,

and let ay,ay > 0. If || - |1 is UR (resp. WUR, URED, LUR), then (a1|| - || + ao| - |2)"*
is UR (resp. WUR, URED, LUR).

Let us finish by stating another result which easily follows from the Propositions above
stated, and whose proof we also omit.

Lemma 2.7. Let X be a Banach space, let {|| - ||;}1-; be a finite sequence of equivalent
norms on X. If || - ||s is UR (resp. WUR, URED, LUR) for every i = 1,...,n, then the
equivalent norm max;—1._n{|| - ||:} is UR (resp. WUR, URED, LUR).

.....

Notice that in Lemma we only need rotundity of one of the norms, while in Lemma
.71t is necessary that all norms share the same property.

3. RoTUNDITY

This section is divided into three further subsections. In the first section we define a
norm in any Banach space which approximates a non strictly convex norm whose unit
sphere contains a specific segment. The approximation is done in such a way that the
resulting norm has the strongest rotundity qualities of the starting norm.

3.1. The norm |||, 5 c-

Let (X, || -||) be a Banach space. Let 0 < § < 1 small enough such that (1 —d)* > 1, let
C > 1 and let o = (o, ho, fo, go) be a 4-tuple of elements such that o € S|, ho € X and
fo, 90 € X* with 1 < ||ho||, |lgo]|* < C and || fo]|* < C satisfying

(fo, ho) = 0, (90, ho) = 1, (fo,w0) > 1—14.

Consider the linear projection P,: X — ker(go) given by P,x = x — (go, x)hg, whose
norm is at most 1 + C?. Write || - ||, : ker(go) — R to denote the restriction of the norm
| - || to the subspace ker(go). Then By, = By N ker(go).

Notice that for every x € X, we have that (f, P,x) = (f,z). Now, define the convex set:

Bos = Pa(Byy) N {Paz € ker(go): z € X, |{fo, Paz)] < (1 - 0)?}

= Po(By) N {Pat € ker(go): © € X, [{fo, z)| < (1—-10)%}.

Write [|-[|5_,: ker(go) — R™ to denote the Minkowski functional associated to gaﬁ;

that is, the norm in ker(gy) whose unit ball is Ea,(;. Using that (fo, ho) = 0, we obtain that
(1 —0)*P.(By) C LA?W;. This implies on the one hand that (1 — 5)2|||Pax|||]§a’6 < ||z for
all z € X.

On the other hand, since (By.| Nker(go)) C Pa(Bj.)), it also means that (1 —6)*By, C

B, 5. Hence, using also that E(M C(1+ Cz)BH,”gO, we obtain the inequality

(L =0)*lyllz, , < lylls < A1+ CH)yll5, ,

for all y € ker(go).
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1-(1-6)2

oo > 0. Then we have that

Now, fix g5 =

1/2
(2) (1+e50) 2 (1= 0)llyllz, , < ((1 =) llyll3, , +65,c||y||§0) <lvllz,,

for every y € ker(go).
Finally, we define the norm:

1/2
3) |||x|||a,5,c=max{||a:||,((1—6>2|||Pax|||%a,5+eavc||Pax||§o) } for all 2 € X.

Using equation (2]) and the fact that (1 — 5)2|||Pax|||§076 < ||z|| for all x € X, we observe
that this norm satisfies || - || <[l 5o < ﬁ” -

Geometrically, the unit ball of [|-||, 5~ is the intersection of the original ball By with
the cylinder generated by the unit ball of the norm ((1 — 5)2|H~|H%M + 5.0l [1?)? (defined

in ker(go)) in the direction of hy.
Let us collect some properties of the norm |||-[||, s~ which are easily shown.

Lemma 3.1. Let X be a Banach space, and let §, C, and o be as above. The norm |||, .o
satisfies:

(a) If Ao =
(b) The unit sphere Sy . contains the segment [)\oxo —

, we have that (1 —§)? < \g < 7z, where e5.c = (1110252 > 0.

1
|\|~’UO|\| 5,C — (I+es5.0)
(1_0)‘0)h0, NoZo + a C)\O)ho

where )\0 = mxoma sC

(c) Nzllosc = llzll for all x € X with [(fo, )| < (1= 6)*||]l.

Proof. To obtain part (a), first notice that [|zoll, 50 < 7= 6)2 and thus Ay > (1 — 0)2

On the other hand, since (fy, Paro) > 1 — ¢, we have by definition of |||z , that

(1 = d) Pazollz, , > 1. Then, we can apply equation (2)) to obtain that Ag < 1

(14e5,0)1/2"
For item (b), fix pu € [—%,(1_—0’\0)} Since (fo, ho) = 0, we have that P,(Aozo) =
P.(Xoxo + phe). Moreover, the point Aoz + pho belongs to the unit ball By . It follows
now from the definition of [|-|, 5~ that [[Xozo + pholl, 50 = Mool 450 = 1-

We only need to check the equality in part (c) for points in the unit sphere S).;. For
every z € X with |lz]| = 1 we have that ||z, s > 1. If moreover |{fy, )| < (1 —9)?, the

point P,x belongs to Ea,(;, and thus by equation (2)) it is clear that ||z, s = 1. O
The norm ||-|q-

In this subsection we use countably many of the previous norms to define the renormings
to prove the main theorems of the section. We will define it abstractly using a tuple
Q = (8,C, {an}nen, {Nn}nen), where 0 < § < 1 with (1 —§)* > L, the constant C is bigger
than 1, the set a;,, = (T, hn, fn, gn) is a 4-tuple with z,, € Sy, h, € X and f,, g, € X*
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with 1 < [|Aa]], lgnll* < C and || f,||* < C, such that
<fn7h'n> = 07 <gn7hn> = 17 <fn7xn> > 1—90

for every n € N, and {1, },en is a decreasing sequence of strictly positive numbers converging
to 0. Moreover, we also suppose that |(f,,, 2,)| < 2(1 — §)* — 1 for every m # n € N, and
that for every z € X \ {0} there exists an open neighbourhood U, of z and n, € N such
that |(fn,2)] < (1 —6)?%||z|| for all z € U, and n > n,.

Fix n € N, and define |||, ;o to be the equivalent norm in X we discussed in the
previous subsection.

Put 7, = %, and set

(1+nn)
1 , , 1/2
4 =|(—- " , for all x € X.
) el = (el e+ mlll?) . foralla
This is an equivalent norm in X, satisfying
1
(5) T nn|\|~|\lan,5,c < Il < M-l 5.0

Moreover, by Lemma [2.6] if the norm | - || is UR (resp. WUR, URED, LUR), then |||-||,, is
also UR (resp. WUR, URED, LUR).
The final renorming we will need is defined as follows:

(6) lllllq = max{[|z[|, max fl«]],} ~ for allz € X.

Clearly [|0]||, = 0. Recall that given a point z € X\ {0}, we have that [(f,, z)| < (1—-§)?|z||
for all 2 € U, and all n > n,. Then, item (c) in LemmaB.Tapplied to each |||, ;o forn >
n, implies that ||z|||,, < [/2]| for all z in the open neighbourhood U, of x. This means that
||l coincides with the finite intersection of norms given by max{|| - ||, max;—1__n, |||}
in an open neighbourhood of z. Therefore, |||y, is well defined, and if || - || is LUR, then
each [||-]|,, and thus [|-|||, is LUR as well by Lemma[27] It is also straightforward to obtain
that || < IFllg < szl - I

Although the specific properties of the norm |||-|||, depend on the choice of the sequence
{an }nen and the qualities of the original norm in the space X, we can prove in general a
statement showing that [||-|||, fails to be uniformly rotund using segments in the directions
of the sequence {h, }nen:
Lemma 3.2. Let (X, | -||) be a Banach space, and let 2 be as above. Put A, 1

= Tealla, 5.
for every n € N. Then, for every sequence {z,}nen Such that

Zn € | A, — hy,

for all n € N, we have that |||z,||q — 1.

Proof. Fix n € N. Using (b) in Lemma [3.T] and the definition of |||, above, we have that

1+1nn <|[znlll,, < 1. Hence, we obtain that ||z, ||, > ﬁ Since 1, — 0 and ||z,|| < 1, the

result will follow if we show that |||z,]|,, <1 for all m # n.
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Fix m # n. Observe that A\, > (1—0)? by (a) in Lemmal[B3.I] and thus ||z, || > 2(1—4)?—1.
Then, using that [{f,,, z,)| < 2(1 —§)* — 1 and A\, < 1 we obtain:
[(fins 20) ] < W Fms M) | + [ fons Ann — 2)
<2(1=0)" = (1=8)* < (1—08)"zl.

Therefore, by (c) in Lemma B.}, it holds that [[2,|,,, sc = llznll <1, from which it follows
that ||z,],, < 1, and the proof is finished. O

Proofs of the Main Theorems of Section 3. Each of the three main theorems of the
section will be proven using a different tuple €2 to define the desired renorming. To aid in
the definition of these elements, we use a general result of Banach spaces. The following
lemma is a standard result with a short proof that we include for completeness. This is
also used and proven in |Qui22] (Claim 1).

Lemma 3.3. Let (X, || -||) be an infinite dimensional Banach space, and let {e,}nen be
a decreasing sequence of positive numbers. Then there exist a sequence {yYn}tnen in S|
and a weak™ null sequence {@n}nen i Sy such that (Yn,yn) = 1 for all n € N, and

[(Pms Yn)| < Emin{mn} for all m #n € N.

Proof. Let {¢y, }nen be a weak® null sequence in S).-, which exists by Josefson—Nissenzweig’s
Theorem. We will inductively define a subsequence {y,, }ren and a sequence {y}ren in
S||.|| such that

(i) <Qpnk>yk> >1- 2_ka
(i) [{@n;> ¥i)| < €n;/2 for all i, j <k with i < j,
(ili) (pn,,yj) =0 for all 4, j <k with ¢ < j.
Put n; = 1 and choose y; € S| with (¢1,y1) > 1/2, and suppose we have defined the first

k terms of the two sequences.

(SDni ,T) )
(ni) I
Setting T} = P; we may define inductively the linear projection T;,1: X — span{yi,...,yis1}
by Tiy1 =T;+ Py1o (I —T;) for all 1 <i < k—1 (we need to use that (iii) holds to show
that this map is a linear projection). It can be shown as well that (¢,,, (I —T})z) = 0 for
all 7 < k and all x € X.

We claim that there exists ng,; € N which can be taken to be arbitrarily large such that

SUPzes. <(‘0"k+1’ (I —=Tp)z) > 1 - 9~ (k+1),

For each i < k, define the linear projection P;: X — span{y;} given by Px =

Indeed, otherwise, choosing a sequence {,}nen in By such that (pn,z,) > 1 — 27 *F2)
we would obtain another bounded sequence {Tjx,},en in the finite dimensional space
span{y1, ..., yx} such that (¢,, Tpz,) > 2~ #+2) holds for infinitely many n € N. Using the
relative compactness of such a subsequence we arrive at a contradiction with the fact that
{¢n }nen is weak* null.

We may take njy1 large enough such that [(¢n,,,,4i)| < €n,.,/2 for all i < k. Now,
choose yj11 € Sy satisfying (pn, s k1) > 1 — 27F and (pn,, yrs1) = 0 for all i < k.
This finishes the induction.
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We can now apply Bishop—Phelps—Bollobas’ Theorem (as stated in e.g.: Page 376 in
[Fab+11]) to the sequences {¢y, }ren and {yx ren to obtain the desired result. O

We proceed to the proof of the main theorems of the section:

The proof of Theorem [Alis the most straightforward of the three. We will construct a
tuple Q of the above form such that the sequence {h, },en is actually constantly equal to
a fixed vector hg, which will be the direction in which the norm |||-||, fails to be Uniformly
Rotund, and thus failing to be URED. As we have seen, the choice of the tuple €2 and the
definition of ||-||, ensures that local properties are kept, and thus LUR is preserved.

Proof of Theorem[4l. Let X be an infinite dimensional Banach space and let ||+ || be a LUR
norm on X. Let 0 < 6 < 1 such that (1 —§)* > 1.
Using Lemma B.3, we can find a sequence {y, }nen in S). and a weak* null sequence

{@n}nen in Sy = such that (@, y,) =1 for all n € N, and (¢, yn)| < min {2(1%)4_1,5}
for all m #n € N.
Putting h, = y; and g, = ¢; for all n € N, and setting x,, = y,+1 and f,, = @41 —

(Pnt1,y1)¢1 for all n € N, we have that x,,h, € S and f,,g, € S)-. Moreover, we
obtain that

<fn’h’"> = O’ <gn7hn> = 17 <fn7xn> Z 1-— 5

with [{fm,xn)| < 2(1 —0)* — 1 for every m # n € N. Since the sequence {f, }nen is weak*
null, we have that for every x € X \ {0} there exists an open neighbourhood U, of z and
n, € N such that |(f,, 2)| < (1 —§)?||z| for all z € U, and all n > n,.

Therefore, setting v, = (x,,, hn, [, gn) for every n € Nand Q = (9, C, {ay }nen, {27 bnen)
with C' =1+ d we are able to define the norms ||-[|,, s and [|-[[, for every n € N, and
the norm ||-||g in (X, || - ||) as in equations (3], ) and (@]). Then we have that

1
1< g < mll -

Since ¢ can be taken to be arbitrarily small and LUR norms are dense in X, we obtain
that every norm in X can be approximated uniformly on bounded sets by norms of this
form.

As we mentioned after the definition of ||-||q, if || - || is LUR, then so is [||-||l,, and thus
it only remains to show that this last norm is not URED to finish the proof. Indeed, using
Lemma we have that setting A\, = m and

(1 B >‘n>

n — )\n nT T 1 .
a r s U

(1 - )‘n)
bn = >\n nt+ ————Yi,
2 149 Y1

converge to 1, while b, —a,, =

an+bn
2

the sequences {||a,||a}nen, {||0nlla}nen and {H }Q}neN

2(11_4:\5n)y1’ By () in Lemma B}, we have that A, < W < 1 for all n € N, and thus
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we conclude that ||-||, is not Uniformly Rotund in the direction of y;, and hence fails to
be URED.
U

For the proof of Theorem [B] we will need a sequence of directions {h,, },en which is not
weakly null but which forms a uniformly separated set. In this way, using again Lemma
B3] the resulting norm [|-||, will not be WUR, though it will still be URED as we are
going to show.

Proof of Theorem[B. Let X be an infinite dimensional Banach space, and suppose X
admits a URED and LUR norm || - ||. Let 0 < § < 1 such that (1 —§)* > 1.

Fix vy € S). and 1)y € ).+ such that (¢)y,v9) = 1. We define the projection FPy: X —
ker(g) given by Pox = x — (o, z)vg. If we consider the infinite dimensional subspace
(ker(to), || - ||) with the norm inherited from (X, || - ||), the projection P, has norm at most
2.

We can apply Lemma [3.3] to obtain a sequence {yn }nen i S(ker(yo),| ) and a weak* null
sequence {@y fnen i Sgker(po)s,||+)> Such that (., y,) = 1 for all n € N and [(pm, yn)| <
min{z(l%yl_l,é} for all m #n € N.

Now, we define for every n € N the following vectors and functionals:

Tn = Yon € Sy
hy = Yoni1 + o € X,

Jn = (V2n — (P2n, Yons1)P2nt1) © By e X",
Gn = Pant1 0 P e X",

which satisfy that 1 < ||h,||, [lga]|* < 2 and || f.||* < 2(1 +9). We also have that

<.fn>hn> = O> <gn,hn> = 1, <fn,l'n> >1- )

for every n € N, while for every m # n € N it holds that (f,,,z,) < 2(1 — §)* — 1.
Importantly, the sequences {f,}nen and {g, }nen are still weak® null in X*, and thus in
particular for every x € X \ {0} there exists an open neighbourhood U, of x and n, € N
such that [{f,, z)| < (1 —6)?||z]| for all z € U, and all n > n,. Finally, notice as well that
the sequence {h,}nen is not weakly null, since (h,,, 1) = 1 for all n € N.

We set now Q = (0, C, {, tnen, {27 }nen), where C' = 2(1+6) and ay, = (20, An, fr, In)
for all n € N. We can define the norms |||, 5o and |[-[[,, for every n € N as in equations
@), ), as well as the final renorming ||-||,, as in equation (6). The density of norms of
this form follows as in the previous theorem.

As discussed in the definition of these norms, we have that [||-[||,, is URED and LUR for
every n € N, and |||, is LUR.

Similarly to the proof of Theorem [Al, we define A, = m and the pair a,, = \,z, +
21(;’:;) h, and b, = A\, — 21(I—ig)hn, which show in combination with Lemma and (7) in

Lemma 3] that [||-[||, is not WUR, since {|||an||g}tnen, {lonlllq}nen and {H‘%H‘Q}
all converge to 1 but {b, — a, }nen is not a weakly null sequence.

neN
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It only remains to show that [|-||,, is URED. Fix h € S| and consider two sequences
{ck fnen and {dy fnen in Sy, With dp —cp = b for some & € R for all k € N and such that
H‘%‘HQ — 1. Notice that the sequence {&}ren is bounded. Suppose by contradiction
that {&}ren does not converge to 0. Then, by passing to a subsequence, we may assume
that there exists 9 > 0 such that || > ¢¢ for all k € N.

Define ||-[|g, = maxy,<,{||- ||, [l-[l,,} for all n € N, which is an equivalent URED norm in
X by Lemma 2.7l Suppose first that there exists ny € N such that m %dk }HQ = H} %dk H}Qno

for all k € N. Then, since H|ck\|\9n0, H|dk\|\9n0 <1 for all k € N and |H|H9n0 is URED, this
already leads to the desired contradiction.

Hence, by passing to a subsequence again, we may suppose that }H }HQ > H@H
for every k € N, and that there exists a sequence {ny }ren of natural numbers with n; — oo
and such that m% = H}% H}nk for all £ € N. Equation () shows that for all £ € N
we have

cp+dg
2

llo

1
om0 L2

¢, + dy,
2

¢, + dp,
2

¢, + dy,
2

ng Nk

Now, since 27" — (, with the definition of ||||||ank s.c (see equation () and noting that
}H%H > H%H for all £ € N, we deduce that

o\ 1/2

) — 1,

P, (Ck—l-dk> P, (Ck—l-dk)
k 2 k 2

where F,, is the projection from X onto ker(g,,) given by P, = =2 — (gn,, ¥)hn,, and
1—(1-0)2

An ,6,C

2

+ &s5.c

Bﬂnk ,0

(7) ((1 —0)*

€50 = Tromr > 0. Note that, importantly, the constant €5 does not depend on £ € N.
. . . . 1 .
For every k € N, the point ¢ is in S),, so we obtain that H\ckmank s.0 < o> Which

g 8,0 S

implies that lim sup,_, . ||| cx| an 00 S L Similarly we obtain that lim sup,._. . |||dx

1. Therefore, we have that
1/2
lim sup <(1 — 5)2H‘Pankckm% ) + 50 HPankckHz) <1, and
Oénky

k—o00
1/2
dkHQ) <1

Hence, using also equation ([7), we can apply Remark 2T and equation (), together with
the non-negativity of the function Q. to obtain that Q. (Pa,, ¢k, Pa,, dx) — 0. Define
v = &k(gny, B)hn, € X for every k € N. Then {vy}ren converges to 0 in norm because
{& }ken is bounded and {g,, }ren is weak® null. Therefore Q”.”(Pank Cry Po,, di + vg) — 0
and moreover Py, di + v — Py, cx = &:h for all k € N. Since | - || is URED, we apply
Proposition 2.4 and conclude that {& }ren converges to 0. This leads to a contradiction
and the proof is finished.

lim sup <(1 - 5)2“‘Pankdkm2§ ,tesc | Pa
g

n
k
k—o00

O
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Finally, in the superreflexive case, the set {h, },en of directions in which we approximate
the segments in the sphere will consist of a weakly null sequence. We will then obtain
WUR without UR similarly as in the previous proof. Note however that, as we will see,
the additional requirement that {h,},en is weakly null impedes us to easily ensure that
the sequence of orthogonal functionals {f,}nen is weak™ null as well. This property was
crucial in both previous proofs in order to show that [||-|||, is well defined. To solve this,
we will employ a simple geometric argument which is possible due to the existence of a
uniformly rotund norm.

In a Banach space X, given a closed and convex set C' C X, a functional f € X*, and
r > 0, we define the set S(C, f,e) = {x € C: (f,z) > r}. Sets of this form are called slices
of C. Recall that a norm || - || in a Banach space is uniformly rotund if and only if for
every € > 0 there exists § > 0 such that for every f € S, the slice S(By., f,1 — ¢) has
diameter less than .

Proof of Theorem[d. Let X be an infinite dimensional superreflexive Banach space with a
UR norm || - ||, and let 0 < 6 < 1 such that (1 — §)* > 1. Additionally, using that || - || is
UR, we may take § small enough such that the diameter of the slice S(By., f, (1 —8)?) is
less than I for all f € X* with || f[|* < 2.

Using reflexivity, we may apply Lemma B3 to (X*, || - ||*) to obtain a sequence {yn }nen
in S|~ and a weakly null sequence {¢,}nen in Sj such that (y,,¢,) =1 for all n € N

and (Y, pn) < min {%,5} for all m # n € N. Fix n € N and define

Tn = Pon SRS
hn = Qant1 € S,
Jn = Yon — (Yon, P2n+1)Y2ns1 € X7,

In = Y2n+1 € Sy

It holds that ||f.||* <14 d and

Notice as well that the sequence {h,},en is weakly null. Additionally, for m # n € N we
have that (f,,x,) < 2(1 —§)* — 1.

Set oy, = (T, Py fr, gn) for every n € N and Q = (0, C, {an fnen, {27 fnen) with C =
1+ 4. In order to define the norm |||-[||, properly, it only remains to show that for every
x € X \ {0} there exists an open neighbourhood U, of « and n, € N such that |(f,, z)| <
(1 —0)?||z| for all z € U, and all n > n,. We will show that for any = € S there exists
at most one n € N such that |[{f,,z)| > (1 — J)*, which by homogeneity and by the fact
that (1 —§)® < (1 — §)?, implies the condition we need.

Indeed, suppose there existed such z € S| and m # n € N such that |(f,,, z)| > (1—4§)*
and [(f,,x)| > (1 —8)®>. We assume that (f;,z) > 0 for j € {m,n}, since the other
possibilities are proven similarly. Then z belongs to both slices S(B., fm, (1 — 0)*) and
S(By|, fn, (1—0)?), which have diameter 1/4 by choice of 6. Since the point x; also belongs
to the slice S(By, f;, (1 —6)?) for both j € {m, n}, we obtain using the triangle inequality
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that ||z, — z,| < 2. However, considering the functional ya, € S).- we get:

0 = 2l 2 K, 20} = [y 2] > 1= 8> 2,
a contradiction.

Hence, we can define the norm |-, as in equation (@), which is LUR. We also consider
the norms |[-[||, 5 and [[-]|, for every n € N as in equations (), ). Recall that [|-[|, is
UR for all n € N. The rest of the proof is very similar to the one of the previous theorem.

Indeed, to show that |-, is not UR, it is enough to consider for every n € N the points

_ 1=n _ 1=\ . _ 1
Qp = ApZy, + 59 h, and b, = A\, x, — mhn with A\, = Tl oo and apply Lemma [3.2]

to the resulting sequences.

Finally, we prove that |||, is WUR. Let {cx}ren and {dj}ren be two sequences in
S|y, such that H‘%‘ ‘Q — 1. Suppose for the sake of contradiction that {d, — cx}ren
is not weakly null, and, by passing to a subsequence, fix fy € X* and ¢y > 0 such that
|(fo, dx. — cx)| > o for all k € N.

Define for every n € N the norm |||-[|, = max{|| - ||, [[|-|ll,, }, which is UR by Lemma 2.7

In particular, it is WUR. If there existed ng € N such that H}% = H}%H

all £ € N, we would reach a contradiction immediately.

Hence, passing to a further subsequence, we assume that there exists a sequence {ny }ren
of natural numbers with n; — oo such that m%mg = }H%}an > H@H for
all £ € N. Reasoning exactly as in the proof of the previous theorem, we obtain that
Q)| (Pau, ks P, dx) — 0, where P, : X — ker(gy,,) is the linear projection given by
Py, ® =2 — (g, ©) hn,. Since || - || is UR, Proposition 2.2 shows that {F,, (di — cx)}ren
converges to 0 in norm. Then, since

for
Q”LO

llo

dy, — e, = Pank (di — c) + (Gny, Ak — i),

for all £ € N, and the sequence {h,, }ren is weakly null, we obtain that {dy — ¢ }ren is
weakly null as well. This leads to the contradiction we sought.

As in the previous theorems, by taking § as small as necessary, it is clear that every
norm can be uniformly approximated on bounded sets by norms with this properties. [

4. (°-SMOOTH NORM IN ¢ WITH NON-STRICTLY CONVEX DUAL NORM

In the final section of this note, we prove the last of the main theorems by constructing
a C"*°-smooth norm in ¢y whose dual norm is not strictly convex. The process we employ
consists in considering first a non-smooth norm in ¢y whose dual norm is not strictly convex,
and which can be constructed inductively through its finite-dimensional sections. These
finite-dimensional sections of the non-smooth ball are n-dimensional polyhedra, which we
can approximate by C'°°-smooth unit balls in 2. We then use these increasingly better
C*>-smooth approximations to recreate the inductive definition of the original norm with
non strictly convex dual norm while preserving C'*°-smoothness.
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Note that every equivalent norm in the finite-dimensional space ¢ can be uniformly
approximated by a C°°-smooth norm. This is a standard result, which is discussed and
improved in [DEH9g].

Proof of Theorem [D. We divide the proof into three parts for the convenience of the reader.
1.- Set up and construction of finite-dimensional polyhedra

Let {e, }nen be the canonical basis of ¢y, and let P,: ¢ — ¢2 = span{e;: 1 < j < n}
be the linear projection given by P, (7;)32, = ()}, for all (7;)%2, € ¢p and all n € N.
Consider 0 < 0 < 1, and consider a sequence {e,},en of strictly positive numbers with
g1 =1 and such that )" &, < %. Set ¢,, = Zj<n g, and choose

1-— 5Cn_1 u}n(S
1 =
wy, € ( Ry 5€n) and hy,

for every n > 2, where we select w,, such that

o o 1
H Wy, < 00 and Z h_n < 00.
n=2 n=2

Consider as well a sequence {1, },>2 of strictly positive numbers such that

1 ) Ppsr — 1
2 —+ ) < 2 (Mol 7 1)
(1+mn,) (wn + th) <1 and (1+mn,) <hn+1 — 5) <1

for every n > 2. We may assume as well that [[72,(1 +7,)? < %, and that g < ﬁ for
all n > 2.

Define |||l ,: R = R* by [[z]| ., = [z| for all z € R.

Inductively, we define for each n > 2 the norms [|-[|, ,,: €5, — R and |||l ,,: {5 — R
by

1 1
el = — 1 Pacslle s+ 5—lwal,  for every z € 2,
b} wn k) hn
and
el = mx { el s WVPrr 2l bl o for every o € 2.

Note that |[zfle < [[z|l,, for all z € £, and all n € N. Moreover, it also holds that
2/l < cnllz|loo for all n € N and x € £7,. Indeed, this is trivially true for n = 1, and
assuming it holds for n — 1 with n > 2 we obtain that for any = € ¢ :

Cn— 1
il < o (24 50 ) ol ol ol

max 4 (1 2 D) o ca 2]
= X o0y En— 00
Wy, wp0 !

< max {(cn-1 4 €n) [[#]loo, cn1l|#lloc} = enll#]|oc-

For the last inequality, we use that —(1 —dc,_1) < —w, (1 —d¢,—1 — de,,) due to the choice
of wy,.
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2(0:h2)
AN

N
So(w3,0)
7

FIGURE 1. The dark grey region shows the unit ball of [|-|| o The light
gray region is the unit ball of the norm [[|-[|, ,.

Geometrically, the unit ball of |||, is an n-dimensional polyhedron contained in the
unit ball of £7,. Figure [l shows the unit ball of [|-|| ., and the geometric implications of
the choice of wy and hy with respect to 9.

2.- Smooth approximations and definition of the final renorming

Next, for every n > 2, we may approximate the norm |[-[|,, by a C*-smooth norm
I-Ill,, = €5 — R such that

pn < (1)1l -
By induction, we will define norms ||-||,,: €% — R* with the following properties for
every n € N:

(i) [I/ll,, is a C*°-smooth norm in £ .
(ii) If n > 2, for all z € ¢7.:

llall,, < (14 ) max { il I1Pa-s2ll, .y, 2l b < L1+ )l

and

llzll,, = masx {lall,, . I Pas2ll, -1, 2l b = Nl o
forall 1 <j<n.
(il) If n > 2, for all @ € €2, if |2,| < $||2|w, then ||z, = || Puiz|l,_,
Setting [||l, = l[ll.;, = |- [, the previous conditions are satisfied trivially for n = 1.

Suppose that [||-]|,_;: ¢%" — R* has been defined with the desired properties for a fixed
n > 2.
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Now, let ¢,: R — RT be a real valued, C*°-smooth and convex function such that

¢On(t) = 0 for all t € [O, ﬁ}, ¢n(1) = 1, and ¢,(t) > 1 for all t € (1,400). The map

Vp: 0% — RT given by
va(z) = Gulll2ll,,) + én (1 Pa-rzll,—y) + dn (J2a])

is a C'*°-smooth function such that the set B, = {z € {2 : v,(z) < 1} is bounded in ¢2..
Hence, by Corollary 1.1.23 in [Rusl8], the set B, is the unit ball of a C*°-smooth norm
I, : €% — RT. Notice that, given z € ¢2, ||z||,, = 1 if and only if v,(x) = 1. Let us
show that properties (i) and (7ii) are satisfied by this norm.

We prove that (i¢) holds for # € ¢2, with |||, = 1. For the first part, notice that if
vn(x) = 1, then one of ¢, (|(|,.), ¢n (| Pu=1(l,,_;) or @n (|zx|) must be strictly positive.

1
’ 1+77n :

The second inequality of the first statement holds simply by definition of |||, if n = 2;
while if n > 2 we also need to use the inductive hypothesis.
For the second statement, observe that if v,(z) = 1, then

masx { dn(ll2ll, ), on (1Pas2ll, 1) én (foal)} < 1,

from which the first inequality follows since ¢,(t) > 1 for all ¢ € (1,+00). The second
inequality is a simple application of the inductive hypothesis if n > 2. Note that the case
n = 2 should be argued separately, when the conclusion holds by the definitions of both
e and [J-I,,, and the fact that [|-[l, = |-ll...

Before proving that (iii) holds as well, notice that since || - [lc < |[[-[ll,, the last
inequality of condition (i¢) implies in particular that ||z|/. < ||z, for every = € ¢Z..

Now, to prove property (iii) we may fix x € ¢ with |z,| < |||l and assume that
lz||,, = 1. By the previous observation, we have that ||z|| < 1, and thus |z,| < 2. Since
5 < %ﬁn, we obtain directly that ¢, (|z,|) = 0.

We have as well that || 7,1z, ,_, <1 by the last part of the already proven property

(1), and thus we get the following estimate:

The first inequality now follows since ¢,, vanishes in the interval [0

LU

ell,, < (14 mllal = (04 ) (2 -

§<1+nn)<i+ 5) !

w, 2h, - 1+mn,

since we have chosen 7, such that the last inequality holds. Hence, we also get that
on(lll[l,, ) = 0. Since v,(z) = 1, we necessarily have that ¢, (1 Po-12ll,,_,) = 1, and by
convexity of ¢,, we obtain that ||P,_1z|||,, , = 1, which proves (7).

Once the induction is finished, we define the final renorming |||-||: co — R™ by

izl = sup {[I| Zoz|l,,}
neN
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for all € ¢g. Property (ii) in the induction and the fact that || - ||oo < |||l
for all n € N show that

00,n —-5” HQJ

- Moo < Ml < 52|| [

Using property (7i7) we also have that given xy € ¢q with xy # 0, there exists an open
neighbourhood U of g and ng € N such that [|z[| = [[|[ P, z]|,,, for all z € U. This implies
that the norm is LFC and C'*°-smooth.

3.- Non-strictly convex dual ball

It only remains to prove that the dual norm of |||-||| is not strictly convex. Define
/- (H SIS | e
J>1 j>n
153 | g | e I
j>n
We will show that the segment [f, g] is contained in the sphere Sy.-.
Given = € co, using the fact that [|Piz||,, = 21| and the definition of |||, it is
straightforward to show inductively that
H —Iifll + Z H —|£Ez| < 1Pnlll oo
J>1 tog>i
for all n > 2. Since w,, > 1 for all n > 2 and || Pz, < [[z[| for all n € N, we obtain
that
H —|931| + Z H—|£L“z| < [l [l
J>1 tog>i

This shows that [(f,z)| < ||z|| and |{g,z)| < ||z|||, which implies that [|f]|* < 1 and
lgll" < 1.
Consider now for every n > 2 the point z, € ¢q given by

tohy—1 )
2Zn = , 0,... | €span{ey,...,e,}.
<j>lhj—5 h

i>n—1

Setting z; = ey, we have that P, 1z, = ﬁPn_lzn_l for all n > 2. We start by showing
inductively that || Pz, ,, = [|Paznll,,, = 1. Indeed, this is trivially true for n =1, and
given n > 2 and assuming it holds for n — 1 we obtain that

1 1
|HPnZn|H1,n = w—H\Pn—lan\oo,n_l + |zl
n

ho,
RN S
o Wphy—6  hy
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Now the conclusion follows by definition of |||-||| ., and a further application of the inductive
hypothesis. ’

Thanks to the previous fact, and again inductively, we can show that |||z, < (1 + 7,)?
for all n > 2. In order to do this, notice that if |||z,_1|| < (1+ 1,_1)? for some n > 2, using

that (1 +n,_1)> (2” 1) < 1 and property (ii) of the definition of [|-|]|,,, we get that
llznll = 11 Pazall, = (L4 ) masx {1 Pzl 1 Pacszall, 2]}

h, —1
< mmax {0+ )Rl 0 e (225 ) | = G

Finally, we show that (f, z,) = (g, z,) = H]>n o for n > 2. We start by showing the base
case n = 2. For the functional g, the equality is straightforward from the definition. For
f, simply observe that:

h2—
<f7z2 5ij th’LU_J
_H h2—11 FRARE TS
511]2 h2 ’ wj'

Assume now the conclusion holds for n — 1 for some n > 2. Then, for ¢ € {f, g}, and

writing ¢}, = (i), € (£%)* to denote the projection of ¢ onto its first n coordinates, we
obtain:

1 = 1
<S07 ZTL) = <S0|n7 PnZTL> = <@‘(n_1)7 Pn_12n> + h_ H -
n . 'lUj
>n

h, —1 L

=+ _6<S0|(n—1),Pn_1zn_l> I h_H =

’ nj>n J

_EL’UJQ (h —5wn n) j];!;w]

This implies that <f 19 zn> 1= jon w; 38 well. Since we have found a sequence {z, tneny C Co

such that [||z,]| — 1 and <fT, Zn " > 1. This finishes the proof,

as we have shown already that the norm of f and g, and hence the norm of f—;’g, is less
than 1. 0
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