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COUNTEREXAMPLES IN ROTUNDITY OF NORMS IN BANACH

SPACES

PETR HÁJEK AND ANDRÉS QUILIS

Abstract. We study several classical concepts in the topic of strict convexity of norms
in infinite dimensional Banach spaces. Specifically, and in descending order of strength,
we deal with Uniform Rotundity (UR), Weak Uniform Rotundity (WUR) and Uniform
Rotundity in Every Direction (URED). Our first three results show that we may distinguish
between all of these three properties in every Banach space where such renormings are
possible. Specifically, we show that in every infinite dimensional Banach space which
admits a WUR (resp. URED) renorming, we can find a norm with the same condition
and which moreover fails to be UR (resp. WUR). We prove that these norms can be
constructed to be Locally Uniformly Rotund (LUR) in Banach spaces admitting such
renormings. Additionally, we obtain that in every Banach space with a LUR norm we
can find a LUR renorming which is not URED. These results solve three open problems
posed by A.J. Guirao, V. Montesinos and V. Zizler. The norms we construct in this first
part are dense.

In the last part of this note, we solve a fourth question posed by the same three authors
by constructing a C

∞-smooth norm in c0 whose dual norm is not strictly convex.

1. Introduction

In this article, we obtain four main results related to convexity and smoothness of
renormings in infinite dimensional Banach spaces. These theorems answer four open
questions posed in the recently published monograph [GMZ22]. The first three results
deal with different strengthenings of strict convexity (or rotundity). In particular, we work
with the following classical concepts:

Definition 1.1. Let X be a Banach space and let ‖ · ‖ be a norm in X . Denote by B‖·‖

and S‖·‖ the unit ball of X and the unit sphere of X respectively in the norm ‖ · ‖.

- The norm ‖ · ‖ is uniformly rotund (UR) if for every pair of sequences {xn}n∈N and
{yn}n∈N in B‖·‖ such that

∥∥xn+yn
2

∥∥→ 1 we have that ‖yn − xn‖ → 0.
- The norm ‖ · ‖ is weakly uniformly rotund (WUR) if for every pair of sequences
{xn}n∈N and {yn}n∈N in B‖·‖ such that

∥∥xn+yn
2

∥∥ → 1 we have that yn − xn → 0 in
the weak topology of X .
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- The norm ‖ · ‖ is uniformly rotund in every direction (URED) if for every v ∈ S‖·‖

and every pair of sequences {xn}n∈N and {yn}n∈N in B‖·‖ such that yn−xn = λnv for

some λn ∈ N and every n ∈ N, and such that
∥∥xn+yn

2

∥∥→ 1, we have that λn → 0.
- The norm ‖ · ‖ is locally uniformly rotund (LUR) at a point x ∈ S‖·‖ if for every

sequence {yn}n∈N ∈ B‖·‖ such that
∥∥x+yn

2

∥∥→ 1 we have that ‖x− yn‖ → 0.

All four of these concepts have been studied extensively in the field of Renorming of
Banach spaces, producing numerous and deep results with equally important applications.
We refer to [DGZ93] or [GMZ22] for a comprehensive view of the topic.

It is direct from the definition that UR implies WUR, which in turn implies URED. It
is also well known that these concepts are distinct in general. For instance, it is a classical
result that a Banach space is superreflexive if and only if it admits a UR renorming (see
e.g.: Theorem IV.4.1 in [DGZ93]), while the class of Banach spaces admitting a WUR norm
is much larger, and for separable Banach spaces it is equivalent to having a separable dual
(see [Háj96]). All separable Banach spaces can be renormed with a URED norm ([Ziz71]).

In this note we show that we may differentiate between all of these notions in every
infinite dimensional Banach space in which such renormings are possible. Moreover, all
renormings we construct may be taken to be LUR if the Banach space we are dealing
with admits a norm with this property; which shows that the three uniform concepts are
different even in the presence of strong local convexity properties. Finally, we also prove
the density of this kind of norms.

Let us now state precisely the first three main results:

Theorem A. Let X be an infinite dimensional Banach space with an LUR norm. Then
there exists an equivalent norm in X which is LUR and fails to be URED. Moreover, the
class of norms with this property is dense.

Theorem B. Let X be an infinite dimensional Banach space with a URED norm. Then
there exists an equivalent norm in X which is URED and not WUR. If X admits a LUR
norm, then this norm can also be taken to be LUR. Moreover, the class of norms with this
property is dense.

Theorem C. Let X be an infinite dimensional superreflexive Banach space. Then there
exists an equivalent norm in X which is LUR and WUR but not UR. Moreover, the class
of norms with this property is dense.

As mentioned above, these three theorems answer three questions in [GMZ22], specifically
Questions 52.3.4, 52.3.7 and 52.3.1 respectively (page 500). Notice as well that, by duality,
Theorem C implies that in every superreflexive space we may approximate every norm by
a Fréchet smooth norm which is Uniformly Gâteaux but fails to be Uniformly Fréchet.
This answers Question 52.1.2.4 of [GMZ22] as well, which was already solved differently in
[Qui22] by constructing a Fréchet differentiable norm which fails to be Uniformly Gâteaux.

The renormings we construct to prove Theorems A, B and C come from a single method,
applied with varying parameters to obtain the desired properties in each situation. Intuitively,
the way we build these renormings is by defining first a countable family of norms with
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the following property: their unit sphere coincides with the original unit sphere except
in a particular slice, where the new sphere contains a strictly convex approximation of a
segment in a given direction, which may be different for each of the countably many norms.
By suitably combining the countable family of norms, we obtain a renorming which fails
to be UR, WUR or URED while satisfying a weaker rotundity condition, depending on
the choice of the directions in which the approximated segments appear. The idea of using
countably many norms which differ from the original norm only on a certain slice was
also used in [Qui22], where such a technique is applied to the construction of norms with
specific smoothness properties.

To finish the introduction, let us discuss the fourth and last of the main theorems of this
article, which we state now:

Theorem D. There exists a C∞-smooth norm on c0 such that the dual norm is not strictly
convex. Moreover, the norm ‖·‖∞ can be uniformly approximated on bounded sets by norms
with this property.

This result answers in particular part (i) of Question 139 in [GMZ16] (part (ii) was
already solved in [Qui22]), which is posed again as Question 52.1.4.6 in [GMZ22] (page
498). To put it in context, recall that by a classical Šmulyan result, a norm ‖ · ‖ in
any Banach space is Gâteaux differentiable as soon as the dual norm ‖ · ‖∗ is strictly
convex. It is known that the converse is not true in general: indeed, by a result of V.
Klee [Kle59] (Proposition 3.3), a Gâteaux differentiable norm with non strictly convex
dual can be constructed in every separable non-reflexive Banach space. For such spaces
which additionally have a separable dual (such as c0), this norm can be taken to be Fréchet
differentiable, as shown by A.J. Guirao, V. Montesinos and V. Zizler in [GMZ12]. Even
in reflexive spaces, where every Gâteaux differentiable norm does have a strictly convex
dual norm, a classical result from D. Yost in [Yos81] proves that we may construct Fréchet
differentiable norms whose dual norm is not LUR.

The construction of the norm in the proof of Theorem D is based around the C∞-smooth
approximation of certain n-dimensional polyhedra constructed inductively.

Let us now briefly discuss the structure of this article. In section 2 we set the notation
to be used throughout the rest of the note, and we recall some more definitions and
preliminary results. In section 3 we lay out the construction of the renormings in order to
prove Theorems A, B and C regarding rotundity. Finally, section 4 is dedicated to proving
Theorem D about a C∞-smooth norm in c0 with non strictly convex dual norm.

2. Notation and Preliminary results

We write B‖·‖ and S‖·‖ to denote the unit ball and the unit sphere of a Banach space
with respect to the norm ‖ · ‖.

We use the definitions of UR, WUR, URED and LUR given in the previous section.
Additionally, we say that a norm ‖ · ‖ in a Banach space X is strictly convex if whenever
x, y ∈ B‖·‖ with x 6= y we have that

∥∥x+y
2

∥∥ < 1.
Regarding smoothness, we will use the standard definitions of differentiability in Banach

spaces, which can be found, for instance, in [DGZ93].
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Given a Banach space X and a class of equivalent norms S defined on X , we say that
a norm ‖ · ‖ is uniformly approximated on uniform sets by norms in S if for every ε > 0
there exists a norm |||·||| ∈ S such that |||·||| ≤ ‖ · ‖ ≤ (1 + ε)|||·|||. If every norm in X can
be uniformly approximated on uniforms sets by norms in a class S, we say that the class
S is dense.

Following the notation of [GMZ22], given a norm ‖ · ‖ in a Banach space X and two
points x, y ∈ X , we define the expression

Q‖·‖(x, y) = 2‖x‖2 + 2‖y‖2 − ‖x+ y‖2 ≥ 0.

We will use the following remark with an elementary proof regarding this function:

Remark 2.1. Let X be a Banach space. For every n ∈ N, let ‖ · ‖n be an equivalent norm
on X , and let {xn}n∈N, {yn}n∈N ⊂ X be two sequences such that lim supn→∞ ‖xn‖n ≤ 1,
lim supn→∞ ‖yn‖n ≤ 1, and

∥∥xn+yn
2

∥∥
n
→ 1. Then Q‖·‖n(xn, yn) → 0.

As suggested by the previous remark, the function Q‖·‖ can be used to describe rotundity
qualities of the norm ‖ · ‖. In particular, we will use the following known characterizations:

Proposition 2.2. Let X be a Banach space. A norm ‖ · ‖ is UR if and only if for every
pair of sequences {xn}n∈N and {yn}n∈N in X such that Q‖·‖(xn, yn) → 0, we have that
‖xn − yn‖ → 0.

Proposition 2.3. Let X be a Banach space. A norm ‖ · ‖ is WUR if and only if for
every pair of sequences {xn}n∈N and {yn}n∈N in X such that Q‖·‖(xn, yn) → 0, we have
that xn − yn → 0 in the weak topology of X.

Proposition 2.4. Let X be a Banach space. A norm ‖ · ‖ is URED if and only if for
every v ∈ X \ {0}, and every pair of sequences {xn}n∈N and {yn}n∈N in X such that
yn − xn ∈ span(v) and Q‖·‖(xn, yn) → 0, we have that ‖xn − yn‖ → 0.

Proposition 2.5. Let X be a Banach space. A norm ‖ · ‖ is LUR at a point x ∈ X
if and only if for every sequence {yn}n∈N in X such that Q‖·‖(x, yn) → 0 we have that
‖x− yn‖ → 0.

We refer to [GMZ22] again for a thorough study of this function and a comprehensive
list of characterizations of rotundity concepts it can be used for.

In section 3 we will define several renormings of the form (a1‖ · ‖
2
1 + a2‖ · ‖

2
2)

1/2
, where

‖ · ‖1, ‖ · ‖2 are two equivalent norms in a Banach space X , and a1, a2 are positive numbers.
These renormings are a well known technique to obtain rotund approximations of a given
norm. The key property they enjoy in this regard is the fact that

(1) Q
(a1‖·‖21+a2‖·‖22)

1/2(x, y) = a1Q‖·‖1(x, y) + a2Q‖·‖2(x, y),

which, together with the characterizations we allude to previously, shows that the renorming

(a1‖ · ‖
2
1 + a2‖ · ‖

2
2)

1/2
inherits the strongest rotundity conditions of both ‖ · ‖1 and ‖ · ‖2.

More precisely, with these observations we immediately obtain the following lemma:
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Lemma 2.6. Let X be a Banach space, let ‖ · ‖1 and ‖ · ‖2 be two equivalent norms on X,

and let a1, a2 > 0. If ‖ · ‖1 is UR (resp. WUR, URED, LUR), then (a1‖ · ‖
2
1 + a2‖ · ‖

2
2)

1/2

is UR (resp. WUR, URED, LUR).

Let us finish by stating another result which easily follows from the Propositions above
stated, and whose proof we also omit.

Lemma 2.7. Let X be a Banach space, let {‖ · ‖i}
n
i=1 be a finite sequence of equivalent

norms on X. If ‖ · ‖i is UR (resp. WUR, URED, LUR) for every i = 1, . . . , n, then the
equivalent norm maxi=1,...,n{‖ · ‖i} is UR (resp. WUR, URED, LUR).

Notice that in Lemma 2.6 we only need rotundity of one of the norms, while in Lemma
2.7 it is necessary that all norms share the same property.

3. Rotundity

This section is divided into three further subsections. In the first section we define a
norm in any Banach space which approximates a non strictly convex norm whose unit
sphere contains a specific segment. The approximation is done in such a way that the
resulting norm has the strongest rotundity qualities of the starting norm.

3.1. The norm |||·|||α,δ,C.

Let (X, ‖ · ‖) be a Banach space. Let 0 < δ < 1 small enough such that (1 − δ)4 > 1
2
, let

C ≥ 1 and let α = (x0, h0, f0, g0) be a 4-tuple of elements such that x0 ∈ S‖·‖, h0 ∈ X and
f0, g0 ∈ X∗ with 1 ≤ ‖h0‖, ‖g0‖

∗ ≤ C and ‖f0‖
∗ ≤ C satisfying

〈f0, h0〉 = 0, 〈g0, h0〉 = 1, 〈f0, x0〉 ≥ 1− δ.

Consider the linear projection Pα : X → ker(g0) given by Pαx = x − 〈g0, x〉h0, whose
norm is at most 1 + C2. Write ‖ · ‖g0 : ker(g0) → R

+ to denote the restriction of the norm
‖ · ‖ to the subspace ker(g0). Then B‖·‖g0

= B‖·‖ ∩ ker(g0).
Notice that for every x ∈ X , we have that 〈f, Pαx〉 = 〈f, x〉. Now, define the convex set:

B̂α,δ = Pα(B‖·‖) ∩ {Pαx ∈ ker(g0) : x ∈ X, |〈f0, Pαx〉| ≤ (1− δ)2}

= Pα(B‖·‖) ∩ {Pαx ∈ ker(g0) : x ∈ X, |〈f0, x〉| ≤ (1− δ)2}.

Write |||·|||B̂α,δ
: ker(g0) → R

+ to denote the Minkowski functional associated to B̂α,δ;

that is, the norm in ker(g0) whose unit ball is B̂α,δ. Using that 〈f0, h0〉 = 0, we obtain that

(1 − δ)2Pα(B‖·‖) ⊂ B̂α,δ. This implies on the one hand that (1 − δ)2|||Pαx|||B̂α,δ
≤ ‖x‖ for

all x ∈ X .
On the other hand, since (B‖·‖ ∩ ker(g0)) ⊂ Pα(B‖·‖), it also means that (1− δ)2B‖·‖g0

⊂

B̂α,δ. Hence, using also that B̂α,δ ⊂ (1 + C2)B‖·‖g0
, we obtain the inequality

(1− δ)2|||y|||B̂α,δ
≤ ‖y‖g0 ≤ (1 + C2)|||y|||B̂α,δ

for all y ∈ ker(g0).
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Now, fix εδ,C = 1−(1−δ)2

(1+C2)2
> 0. Then we have that

(2) (1 + εδ,C)
1/2(1− δ)|||y|||B̂α,δ

≤
(
(1− δ)2|||y|||2B̂α,δ

+ εδ,C‖y‖
2
g0

)1/2
≤ |||y|||B̂α,δ

for every y ∈ ker(g0).
Finally, we define the norm:

(3) |||x|||α,δ,C = max

{
‖x‖,

(
(1− δ)2|||Pαx|||

2
B̂α,δ

+ εδ,C‖Pαx‖
2
g0

)1/2}
, for all x ∈ X.

Using equation (2) and the fact that (1 − δ)2|||Pαx|||B̂α,δ
≤ ‖x‖ for all x ∈ X , we observe

that this norm satisfies ‖ · ‖ ≤ |||·|||α,δ,C ≤ 1
(1−δ)2

‖ · ‖.

Geometrically, the unit ball of |||·|||α,δ,C is the intersection of the original ball B‖·‖ with

the cylinder generated by the unit ball of the norm ((1− δ)2|||·|||2B̂α,δ
+ εδ,C‖ · ‖

2)1/2 (defined

in ker(g0)) in the direction of h0.
Let us collect some properties of the norm |||·|||α,δ,C which are easily shown.

Lemma 3.1. Let X be a Banach space, and let δ, C, and α be as above. The norm |||·|||α,δ,C
satisfies:

(a) If λ0 =
1

|||x0|||α,δ,C
, we have that (1− δ)2 ≤ λ0 ≤

1
(1+εδ,C )1/2

, where εδ,C = 1−(1−δ)2

(1+C2)2
> 0.

(b) The unit sphere S|||·|||α,δ,C
contains the segment

[
λ0x0 −

(1−λ0)
C

h0, λ0x0 +
(1−λ0)
C

h0

]

where λ0 =
1

|||x0|||α,δ,C
.

(c) |||x|||α,δ,C = ‖x‖ for all x ∈ X with |〈f0, x〉| ≤ (1− δ)2‖x‖.

Proof. To obtain part (a), first notice that |||x0|||α,δ,C ≤ 1
(1−δ)2

and thus λ0 ≥ (1 − δ)2.

On the other hand, since 〈f0, Pαx0〉 ≥ 1 − δ, we have by definition of |||·|||B̂α,δ
that

|||(1− δ)Pαx0|||B̂α,δ
≥ 1. Then, we can apply equation (2) to obtain that λ0 ≤

1
(1+εδ,C )1/2

.

For item (b), fix µ ∈
[
− (1−λ0)

C
, (1−λ0)

C

]
. Since 〈f0, h0〉 = 0, we have that Pα(λ0x0) =

Pα(λ0x0 + µh0). Moreover, the point λ0x0 + µh0 belongs to the unit ball B‖·‖. It follows
now from the definition of |||·|||α,δ,C that |||λ0x0 + µh0|||α,δ,C = |||λ0x0|||α,δ,C = 1.

We only need to check the equality in part (c) for points in the unit sphere S‖·‖. For
every x ∈ X with ‖x‖ = 1 we have that |||x|||α,δ,C ≥ 1. If moreover |〈f0, x〉| ≤ (1− δ)2, the

point Pαx belongs to B̂α,δ, and thus by equation (2) it is clear that |||x|||α,δ,C = 1. �

The norm |||·|||Ω.

In this subsection we use countably many of the previous norms to define the renormings
to prove the main theorems of the section. We will define it abstractly using a tuple
Ω = (δ, C, {αn}n∈N, {ηn}n∈N), where 0 < δ < 1 with (1− δ)4 > 1

2
, the constant C is bigger

than 1, the set αn = (xn, hn, fn, gn) is a 4-tuple with xn ∈ S‖·‖, hn ∈ X and fn, gn ∈ X∗
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with 1 ≤ ‖hn‖, ‖gn‖
∗ ≤ C and ‖fn‖

∗ ≤ C, such that

〈fn, hn〉 = 0, 〈gn, hn〉 = 1, 〈fn, xn〉 ≥ 1− δ

for every n ∈ N, and {ηn}n∈N is a decreasing sequence of strictly positive numbers converging
to 0. Moreover, we also suppose that |〈fm, xn〉| < 2(1− δ)4 − 1 for every m 6= n ∈ N, and
that for every x ∈ X \ {0} there exists an open neighbourhood Ux of x and nx ∈ N such
that |〈fn, z〉| ≤ (1− δ)2‖z‖ for all z ∈ Ux and n ≥ nx.

Fix n ∈ N, and define |||·|||αn,δ,C
to be the equivalent norm in X we discussed in the

previous subsection.

Put τn = (1+ηn)2−1
(1+ηn)2

, and set

(4) |||x|||n =

(
1

(1 + ηn)2
|||x|||2αn,δ,C

+ τn‖x‖
2

)1/2

, for all x ∈ X.

This is an equivalent norm in X , satisfying

(5)
1

1 + ηn
|||·|||αn,δ,C

≤ |||·|||n ≤ |||·|||αn,δ,C
.

Moreover, by Lemma 2.6, if the norm ‖ · ‖ is UR (resp. WUR, URED, LUR), then |||·|||n is
also UR (resp. WUR, URED, LUR).

The final renorming we will need is defined as follows:

(6) |||x|||Ω = max{‖x‖,max
n∈N

|||x|||n} for all x ∈ X.

Clearly |||0|||Ω = 0. Recall that given a point x ∈ X\{0}, we have that |〈fn, z〉| ≤ (1−δ)2‖z‖
for all z ∈ Ux and all n ≥ nx. Then, item (c) in Lemma 3.1 applied to each |||·|||αn,δ,C

for n ≥

nx implies that |||z|||n ≤ ‖z‖ for all z in the open neighbourhood Ux of x. This means that
|||·|||Ω coincides with the finite intersection of norms given by max{‖ · ‖,maxi=1,...,nx |||·|||i}
in an open neighbourhood of x. Therefore, |||·|||Ω is well defined, and if ‖ · ‖ is LUR, then
each |||·|||n and thus |||·|||Ω is LUR as well by Lemma 2.7. It is also straightforward to obtain
that ‖ · ‖ ≤ |||·|||Ω ≤ 1

(1−δ)2
‖ · ‖.

Although the specific properties of the norm |||·|||Ω depend on the choice of the sequence
{αn}n∈N and the qualities of the original norm in the space X , we can prove in general a
statement showing that |||·|||Ω fails to be uniformly rotund using segments in the directions
of the sequence {hn}n∈N:

Lemma 3.2. Let (X, ‖ · ‖) be a Banach space, and let Ω be as above. Put λn = 1
|||xn|||αn,δ,C

for every n ∈ N. Then, for every sequence {zn}n∈N such that

zn ∈

[
λnxn −

(1− λn)

C
hn, λnxn +

(1− λn)

C
hn

]

for all n ∈ N, we have that |||zn|||Ω → 1.

Proof. Fix n ∈ N. Using (b) in Lemma 3.1 and the definition of |||·|||n above, we have that
1

1+ηn
≤ |||zn|||n ≤ 1. Hence, we obtain that |||zn|||Ω ≥ 1

1+ηn
. Since ηn → 0 and ‖zn‖ ≤ 1, the

result will follow if we show that |||zn|||m ≤ 1 for all m 6= n.
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Fixm 6= n. Observe that λn ≥ (1−δ)2 by (a) in Lemma 3.1, and thus ‖zn‖ ≥ 2(1−δ)2−1.
Then, using that |〈fm, xn〉| < 2(1− δ)4 − 1 and λn ≤ 1 we obtain:

|〈fm, zn〉| ≤ |〈fm, λnxn〉|+ |〈fm, λnxn − zn〉|

≤ 2(1− δ)4 − (1− δ)2 ≤ (1− δ)2‖zn‖.

Therefore, by (c) in Lemma 3.1, it holds that |||zn|||αm,δ,C
= ‖zn‖ ≤ 1, from which it follows

that |||zn|||m ≤ 1, and the proof is finished. �

Proofs of the Main Theorems of Section 3. Each of the three main theorems of the
section will be proven using a different tuple Ω to define the desired renorming. To aid in
the definition of these elements, we use a general result of Banach spaces. The following
lemma is a standard result with a short proof that we include for completeness. This is
also used and proven in [Qui22] (Claim 1).

Lemma 3.3. Let (X, ‖ · ‖) be an infinite dimensional Banach space, and let {εn}n∈N be
a decreasing sequence of positive numbers. Then there exist a sequence {yn}n∈N in S‖·‖

and a weak∗ null sequence {ϕn}n∈N in S‖·‖∗ such that 〈ϕn, yn〉 = 1 for all n ∈ N, and
|〈ϕm, yn〉| < εmin{m,n} for all m 6= n ∈ N.

Proof. Let {ϕn}n∈N be a weak∗ null sequence in S‖·‖∗ , which exists by Josefson−Nissenzweig’s
Theorem. We will inductively define a subsequence {ϕnk

}k∈N and a sequence {yk}k∈N in
S‖·‖ such that

(i) 〈ϕnk
, yk〉 ≥ 1− 2−k,

(ii) |〈ϕnj
, yi〉| < εnj

/2 for all i, j ≤ k with i < j,
(iii) 〈ϕni

, yj〉 = 0 for all i, j ≤ k with i < j.

Put n1 = 1 and choose y1 ∈ S‖·‖ with 〈ϕ1, y1〉 ≥ 1/2, and suppose we have defined the first
k terms of the two sequences.

For each i ≤ k, define the linear projection Pi : X → span{yi} given by Pix =
〈ϕni ,x〉

〈ϕni,yi〉
yi.

Setting T1 = P1 we may define inductively the linear projection Ti+1 : X → span{y1, . . . , yi+1}
by Ti+1 = Ti +Pi+1 ◦ (I − Ti) for all 1 ≤ i ≤ k− 1 (we need to use that (iii) holds to show
that this map is a linear projection). It can be shown as well that 〈ϕni

, (I − Tk)x〉 = 0 for
all i ≤ k and all x ∈ X .

We claim that there exists nk+1 ∈ N which can be taken to be arbitrarily large such that

supx∈S‖·‖
〈ϕnk+1

, (I − Tk)x〉 ≥ 1− 2−(k+1).

Indeed, otherwise, choosing a sequence {xn}n∈N in B‖·‖ such that 〈ϕn, xn〉 ≥ 1 − 2−(k+2)

we would obtain another bounded sequence {Tkxn}n∈N in the finite dimensional space
span{y1, . . . , yk} such that 〈ϕn, Tkxn〉 ≥ 2−(k+2) holds for infinitely many n ∈ N. Using the
relative compactness of such a subsequence we arrive at a contradiction with the fact that
{ϕn}n∈N is weak∗ null.

We may take nk+1 large enough such that |〈ϕnk+1
, yi〉| < εnk+1

/2 for all i ≤ k. Now,

choose yk+1 ∈ S‖·‖ satisfying 〈ϕnk+1
, yk+1〉 ≥ 1 − 2−(k+1) and 〈ϕni

, yk+1〉 = 0 for all i ≤ k.
This finishes the induction.
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We can now apply Bishop−Phelps−Bollobás’ Theorem (as stated in e.g.: Page 376 in
[Fab+11]) to the sequences {ϕnk

}k∈N and {yk}k∈N to obtain the desired result. �

We proceed to the proof of the main theorems of the section:
The proof of Theorem A is the most straightforward of the three. We will construct a

tuple Ω of the above form such that the sequence {hn}n∈N is actually constantly equal to
a fixed vector h0, which will be the direction in which the norm |||·|||Ω fails to be Uniformly
Rotund, and thus failing to be URED. As we have seen, the choice of the tuple Ω and the
definition of |||·|||Ω ensures that local properties are kept, and thus LUR is preserved.

Proof of Theorem A. Let X be an infinite dimensional Banach space and let ‖·‖ be a LUR
norm on X . Let 0 < δ < 1 such that (1− δ)4 > 1

2
.

Using Lemma 3.3, we can find a sequence {yn}n∈N in S‖·‖ and a weak∗ null sequence

{ϕn}n∈N in S‖·‖∗ such that 〈ϕn, yn〉 = 1 for all n ∈ N, and |〈ϕm, yn〉| < min
{

2(1−δ)4−1
2

, δ
}

for all m 6= n ∈ N.
Putting hn = y1 and gn = ϕ1 for all n ∈ N, and setting xn = yn+1 and fn = ϕn+1 −

〈ϕn+1, y1〉ϕ1 for all n ∈ N, we have that xn, hn ∈ S‖·‖ and fn, gn ∈ S‖·‖∗ . Moreover, we
obtain that

〈fn, hn〉 = 0, 〈gn, hn〉 = 1, 〈fn, xn〉 ≥ 1− δ

with |〈fm, xn〉| < 2(1− δ)4 − 1 for every m 6= n ∈ N. Since the sequence {fn}n∈N is weak∗

null, we have that for every x ∈ X \ {0} there exists an open neighbourhood Ux of x and
nx ∈ N such that |〈fn, z〉| ≤ (1− δ)2‖z‖ for all z ∈ Ux and all n ≥ nx.

Therefore, setting αn = (xn, hn, fn, gn) for every n ∈ N and Ω = (δ, C, {αn}n∈N, {2
−n}n∈N)

with C = 1 + δ we are able to define the norms |||·|||αn,δ,C
and |||·|||n for every n ∈ N, and

the norm |||·|||Ω in (X, ‖ · ‖) as in equations (3),(4) and (6). Then we have that

‖ · ‖ ≤ |||·|||Ω ≤
1

(1− δ)2
‖ · ‖.

Since δ can be taken to be arbitrarily small and LUR norms are dense in X , we obtain
that every norm in X can be approximated uniformly on bounded sets by norms of this
form.

As we mentioned after the definition of |||·|||Ω, if ‖ · ‖ is LUR, then so is |||·|||Ω, and thus
it only remains to show that this last norm is not URED to finish the proof. Indeed, using
Lemma 3.2 we have that setting λn = 1

|||xn|||αn,δ,C
and

an = λnxn −
(1− λn)

1 + δ
y1

bn = λnxn +
(1− λn)

1 + δ
y1,

the sequences {‖an‖Ω}n∈N, {‖bn‖Ω}n∈N and
{∣∣∣∣∣∣an+bn

2

∣∣∣∣∣∣
Ω

}
n∈N

converge to 1, while bn−an =

2 (1−λn)
1+δ

y1. By (i) in Lemma 3.1, we have that λn ≤ 1
(1+εδ,1)1/2

< 1 for all n ∈ N, and thus
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we conclude that |||·|||Ω is not Uniformly Rotund in the direction of y1, and hence fails to
be URED.

�

For the proof of Theorem B, we will need a sequence of directions {hn}n∈N which is not
weakly null but which forms a uniformly separated set. In this way, using again Lemma
3.3, the resulting norm |||·|||Ω will not be WUR, though it will still be URED as we are
going to show.

Proof of Theorem B. Let X be an infinite dimensional Banach space, and suppose X
admits a URED and LUR norm ‖ · ‖. Let 0 < δ < 1 such that (1− δ)4 > 1

2
.

Fix v0 ∈ S‖·‖ and ψ0 ∈ S‖·‖∗ such that 〈ψ0, v0〉 = 1. We define the projection P0 : X →
ker(ψ0) given by P0x = x − 〈ψ0, x〉v0. If we consider the infinite dimensional subspace
(ker(ψ0), ‖ · ‖) with the norm inherited from (X, ‖ · ‖), the projection P0 has norm at most
2.

We can apply Lemma 3.3 to obtain a sequence {yn}n∈N in S(ker(ψ0),‖·‖) and a weak∗ null
sequence {ϕn}n∈N in S(ker(ψ0)∗,‖·‖∗), such that 〈ϕn, yn〉 = 1 for all n ∈ N and |〈ϕm, yn〉| <

min
{

2(1−δ)4−1
2

, δ
}
for all m 6= n ∈ N.

Now, we define for every n ∈ N the following vectors and functionals:

xn = y2n ∈ S‖·‖,

hn = y2n+1 + v0 ∈ X,

fn = (ϕ2n − 〈ϕ2n, y2n+1〉ϕ2n+1) ◦ P0 ∈ X∗,

gn = ϕ2n+1 ◦ P0 ∈ X∗,

which satisfy that 1 ≤ ‖hn‖, ‖gn‖
∗ ≤ 2 and ‖fn‖

∗ ≤ 2(1 + δ). We also have that

〈fn, hn〉 = 0, 〈gn, hn〉 = 1, 〈fn, xn〉 ≥ 1− δ

for every n ∈ N, while for every m 6= n ∈ N it holds that 〈fm, xn〉 < 2(1 − δ)4 − 1.
Importantly, the sequences {fn}n∈N and {gn}n∈N are still weak∗ null in X∗, and thus in
particular for every x ∈ X \ {0} there exists an open neighbourhood Ux of x and nx ∈ N

such that |〈fn, z〉| ≤ (1− δ)2‖z‖ for all z ∈ Ux and all n ≥ nx. Finally, notice as well that
the sequence {hn}n∈N is not weakly null, since 〈hn, ψ0〉 = 1 for all n ∈ N.

We set now Ω = (δ, C, {αn}n∈N, {2
−n}n∈N), where C = 2(1 + δ) and αn = (xn, hn, fn, gn)

for all n ∈ N. We can define the norms |||·|||αn,δ,C
and |||·|||n for every n ∈ N as in equations

(3),(4), as well as the final renorming |||·|||Ω as in equation (6). The density of norms of
this form follows as in the previous theorem.

As discussed in the definition of these norms, we have that |||·|||n is URED and LUR for
every n ∈ N, and |||·|||Ω is LUR.

Similarly to the proof of Theorem A, we define λn = 1
|||x|||αn,δ,C

and the pair an = λnxn +
1−λn
2(1+δ)

hn and bn = λnxn −
1−λn
2(1+δ)

hn, which show in combination with Lemma 3.2 and (i) in

Lemma 3.1 that |||·|||Ω is not WUR, since {|||an|||Ω}n∈N, {|||bn|||Ω}n∈N and
{∣∣∣∣∣∣an+bn

2

∣∣∣∣∣∣
Ω

}
n∈N

all converge to 1 but {bn − an}n∈N is not a weakly null sequence.
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It only remains to show that |||·|||Ω is URED. Fix h ∈ S‖·‖ and consider two sequences
{ck}n∈N and {dk}n∈N in S|||·|||

Ω
with dk−ck = ξkh for some ξk ∈ R for all k ∈ N and such that∣∣∣∣∣∣ ck+dk

2

∣∣∣∣∣∣
Ω
→ 1. Notice that the sequence {ξk}k∈N is bounded. Suppose by contradiction

that {ξk}k∈N does not converge to 0. Then, by passing to a subsequence, we may assume
that there exists ε0 > 0 such that |ξk| ≥ ε0 for all k ∈ N.

Define |||·|||Ωn
= maxm≤n{‖·‖, |||·|||m} for all n ∈ N, which is an equivalent URED norm in

X by Lemma 2.7. Suppose first that there exists n0 ∈ N such that
∣∣∣∣∣∣ ck+dk

2

∣∣∣∣∣∣
Ω
=
∣∣∣∣∣∣ ck+dk

2

∣∣∣∣∣∣
Ωn0

for all k ∈ N. Then, since |||ck|||Ωn0
, |||dk|||Ωn0

≤ 1 for all k ∈ N and |||·|||Ωn0
is URED, this

already leads to the desired contradiction.
Hence, by passing to a subsequence again, we may suppose that

∣∣∣∣∣∣ ck+dk
2

∣∣∣∣∣∣
Ω
>
∥∥ ck+dk

2

∥∥
for every k ∈ N, and that there exists a sequence {nk}k∈N of natural numbers with nk → ∞
and such that

∣∣∣∣∣∣ ck+dk
2

∣∣∣∣∣∣
Ω
=
∣∣∣∣∣∣ ck+dk

2

∣∣∣∣∣∣
nk

for all k ∈ N. Equation (5) shows that for all k ∈ N

we have ∣∣∣∣
∣∣∣∣
∣∣∣∣
ck + dk

2

∣∣∣∣
∣∣∣∣
∣∣∣∣
nk

≤

∣∣∣∣
∣∣∣∣
∣∣∣∣
ck + dk

2

∣∣∣∣
∣∣∣∣
∣∣∣∣
αnk

,δ,C

≤
1

1 + 2−nk

∣∣∣∣
∣∣∣∣
∣∣∣∣
ck + dk

2

∣∣∣∣
∣∣∣∣
∣∣∣∣
nk

.

Now, since 2−nk → 0, with the definition of |||·|||αnk
,δ,C (see equation (3)) and noting that∣∣∣∣∣∣ ck+dk

2

∣∣∣∣∣∣
αnk

,δ,C
>
∥∥ ck+dk

2

∥∥ for all k ∈ N, we deduce that

(7)

(
(1− δ)2

∣∣∣∣
∣∣∣∣
∣∣∣∣Pαnk

(
ck + dk

2

)∣∣∣∣
∣∣∣∣
∣∣∣∣
2

B̂αnk
,δ

+ εδ,C

∥∥∥∥Pαnk

(
ck + dk

2

)∥∥∥∥
2
)1/2

−→ 1,

where Pαnk
is the projection from X onto ker(gnk

) given by Pαnk
x = x − 〈gnk

, x〉hnk
, and

εδ,C = 1−(1−δ)2

(1+C2)2
> 0. Note that, importantly, the constant εδ,C does not depend on k ∈ N.

For every k ∈ N, the point ck is in S|||·|||
Ω
, so we obtain that |||ck|||αnk

,δ,C ≤ 1
1+2−nk

, which

implies that lim supk→∞ |||ck|||αnk
,δ,C ≤ 1. Similarly we obtain that lim supk→∞ |||dk|||αnk

,δ,C ≤

1. Therefore, we have that

lim sup
k→∞

(
(1− δ)2

∣∣∣∣∣∣Pαnk
ck
∣∣∣∣∣∣2
B̂αnk

,δ
+ εδ,C

∥∥Pαnk
ck
∥∥2
)1/2

≤ 1, and

lim sup
k→∞

(
(1− δ)2

∣∣∣∣∣∣Pαnk
dk
∣∣∣∣∣∣2
B̂αnk

,δ
+ εδ,C

∥∥Pαnk
dk
∥∥2
)1/2

≤ 1

Hence, using also equation (7), we can apply Remark 2.1 and equation (1), together with
the non-negativity of the function Q‖·‖ to obtain that Q‖·‖(Pαnk

ck, Pαnk
dk) → 0. Define

vk = ξk〈gnk
, h〉hnk

∈ X for every k ∈ N. Then {vk}k∈N converges to 0 in norm because
{ξk}k∈N is bounded and {gnk

}k∈N is weak∗ null. Therefore Q‖·‖(Pαnk
ck, Pαnk

dk + vk) → 0
and moreover Pαnk

dk + vk − Pαnk
ck = ξkh for all k ∈ N. Since ‖ · ‖ is URED, we apply

Proposition 2.4 and conclude that {ξk}k∈N converges to 0. This leads to a contradiction
and the proof is finished.

�
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Finally, in the superreflexive case, the set {hn}n∈N of directions in which we approximate
the segments in the sphere will consist of a weakly null sequence. We will then obtain
WUR without UR similarly as in the previous proof. Note however that, as we will see,
the additional requirement that {hn}n∈N is weakly null impedes us to easily ensure that
the sequence of orthogonal functionals {fn}n∈N is weak∗ null as well. This property was
crucial in both previous proofs in order to show that |||·|||Ω is well defined. To solve this,
we will employ a simple geometric argument which is possible due to the existence of a
uniformly rotund norm.

In a Banach space X , given a closed and convex set C ⊂ X , a functional f ∈ X∗, and
r > 0, we define the set S(C, f, ε) = {x ∈ C : 〈f, x〉 > r}. Sets of this form are called slices
of C. Recall that a norm ‖ · ‖ in a Banach space is uniformly rotund if and only if for
every ε > 0 there exists δ > 0 such that for every f ∈ S‖·‖∗ , the slice S(B‖·‖, f, 1 − δ) has
diameter less than ε.

Proof of Theorem C. Let X be an infinite dimensional superreflexive Banach space with a
UR norm ‖ · ‖, and let 0 < δ < 1 such that (1 − δ)4 > 1

2
. Additionally, using that ‖ · ‖ is

UR, we may take δ small enough such that the diameter of the slice S(B‖·‖, f, (1− δ)3) is
less than 1

4
for all f ∈ X∗ with ‖f‖∗ ≤ 2.

Using reflexivity, we may apply Lemma 3.3 to (X∗, ‖ · ‖∗) to obtain a sequence {yn}n∈N
in S‖·‖∗ and a weakly null sequence {ϕn}n∈N in S‖·‖ such that 〈yn, ϕn〉 = 1 for all n ∈ N

and 〈ym, ϕn〉 < min
{

2(1−δ)4−1
2

, δ
}
for all m 6= n ∈ N. Fix n ∈ N and define

xn = ϕ2n ∈ S‖·‖,

hn = ϕ2n+1 ∈ S‖·‖,

fn = y2n − 〈y2n, ϕ2n+1〉y2n+1 ∈ X∗,

gn = y2n+1 ∈ S‖·‖∗ .

It holds that ‖fn‖
∗ ≤ 1 + δ and

〈fn, hn〉 = 0, 〈gn, hn〉 = 1, 〈fn, xn〉 ≥ 1− δ.

Notice as well that the sequence {hn}n∈N is weakly null. Additionally, for m 6= n ∈ N we
have that 〈fm, xn〉 < 2(1− δ)4 − 1.

Set αn = (xn, hn, fn, gn) for every n ∈ N and Ω = (δ, C, {αn}n∈N, {2
−n}n∈N) with C =

1 + δ. In order to define the norm |||·|||Ω properly, it only remains to show that for every
x ∈ X \ {0} there exists an open neighbourhood Ux of x and nx ∈ N such that |〈fn, z〉| ≤
(1 − δ)2‖z‖ for all z ∈ Ux and all n ≥ nx. We will show that for any x ∈ S‖·‖ there exists
at most one n ∈ N such that |〈fn, x〉| > (1 − δ)3, which by homogeneity and by the fact
that (1− δ)3 < (1− δ)2, implies the condition we need.

Indeed, suppose there existed such x ∈ S‖·‖ and m 6= n ∈ N such that |〈fm, x〉| > (1−δ)3

and |〈fn, x〉| > (1 − δ)3. We assume that 〈fj , x〉 > 0 for j ∈ {m,n}, since the other
possibilities are proven similarly. Then x belongs to both slices S(B‖·‖, fm, (1 − δ)3) and
S(B‖·‖, fn, (1−δ)

3), which have diameter 1/4 by choice of δ. Since the point xj also belongs
to the slice S(B‖·‖, fj , (1− δ)

3) for both j ∈ {m,n}, we obtain using the triangle inequality
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that ‖xm − xn‖ ≤ 1
2
. However, considering the functional y2n ∈ S‖·‖∗ we get:

‖xn − xm‖ ≥ |〈y2n, xn〉| − |〈y2n, xm〉| > 1− δ >
1

2
,

a contradiction.
Hence, we can define the norm |||·|||Ω as in equation (6), which is LUR. We also consider

the norms |||·|||αn,δ,C
and |||·|||n for every n ∈ N as in equations (3),(4). Recall that |||·|||n is

UR for all n ∈ N. The rest of the proof is very similar to the one of the previous theorem.
Indeed, to show that |||·|||Ω is not UR, it is enough to consider for every n ∈ N the points

an = λnxn +
1−λn
2(1+δ)

hn and bn = λnxn −
1−λn
2(1+δ)

hn with λn = 1
|||xn|||αn,δ,C

, and apply Lemma 3.2

to the resulting sequences.
Finally, we prove that |||·|||Ω is WUR. Let {ck}k∈N and {dk}k∈N be two sequences in

S|||·|||
Ω
such that

∣∣∣∣∣∣ ck+dk
2

∣∣∣∣∣∣
Ω
→ 1. Suppose for the sake of contradiction that {dk − ck}k∈N

is not weakly null, and, by passing to a subsequence, fix f0 ∈ X∗ and ε0 > 0 such that
|〈f0, dk − ck〉| > ε0 for all k ∈ N.

Define for every n ∈ N the norm |||·|||Ωn
= max{‖ · ‖, |||·|||n}, which is UR by Lemma 2.7.

In particular, it is WUR. If there existed n0 ∈ N such that
∣∣∣∣∣∣ ck+dk

2

∣∣∣∣∣∣
Ω
=
∣∣∣∣∣∣ ck+dk

2

∣∣∣∣∣∣
Ωn0

for

all k ∈ N, we would reach a contradiction immediately.
Hence, passing to a further subsequence, we assume that there exists a sequence {nk}k∈N

of natural numbers with nk → ∞ such that
∣∣∣∣∣∣ ck+dk

2

∣∣∣∣∣∣
Ω

=
∣∣∣∣∣∣ ck+dk

2

∣∣∣∣∣∣
nk

>
∥∥ ck+dk

2

∥∥ for

all k ∈ N. Reasoning exactly as in the proof of the previous theorem, we obtain that
Q‖·‖(Pαnk

ck, Pαnk
dk) → 0, where Pαnk

: X → ker(gnk
) is the linear projection given by

Pαnk
x = x− 〈gnk

, x〉hnk
. Since ‖ · ‖ is UR, Proposition 2.2 shows that {Pαnk

(dk − ck)}k∈N
converges to 0 in norm. Then, since

dk − ck = Pαnk
(dk − ck) + 〈gnk

, dk − ck〉hnk

for all k ∈ N, and the sequence {hnk
}k∈N is weakly null, we obtain that {dk − ck}k∈N is

weakly null as well. This leads to the contradiction we sought.
As in the previous theorems, by taking δ as small as necessary, it is clear that every

norm can be uniformly approximated on bounded sets by norms with this properties. �

4. C∞-smooth norm in c0 with non-strictly convex dual norm

In the final section of this note, we prove the last of the main theorems by constructing
a C∞-smooth norm in c0 whose dual norm is not strictly convex. The process we employ
consists in considering first a non-smooth norm in c0 whose dual norm is not strictly convex,
and which can be constructed inductively through its finite-dimensional sections. These
finite-dimensional sections of the non-smooth ball are n-dimensional polyhedra, which we
can approximate by C∞-smooth unit balls in ℓn∞. We then use these increasingly better
C∞-smooth approximations to recreate the inductive definition of the original norm with
non strictly convex dual norm while preserving C∞-smoothness.
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Note that every equivalent norm in the finite-dimensional space ℓn∞ can be uniformly
approximated by a C∞-smooth norm. This is a standard result, which is discussed and
improved in [DFH98].

Proof of Theorem D. We divide the proof into three parts for the convenience of the reader.

1.- Set up and construction of finite-dimensional polyhedra

Let {en}n∈N be the canonical basis of c0, and let Pn : c0 → ℓn∞ = span{ej : 1 ≤ j ≤ n}
be the linear projection given by Pn(xj)

∞
j=1 = (xj)

n
j=1 for all (xj)

∞
j=1 ∈ c0 and all n ∈ N.

Consider 0 < δ < 1, and consider a sequence {εn}n∈N of strictly positive numbers with
ε1 = 1 and such that

∑∞
n=1 εn ≤ 1

δ
. Set cn =

∑
j≤n εj, and choose

wn ∈

(
1,

1− δcn−1

1− δcn−1 − δεn

)
and hn =

wnδ

wn − 1
,

for every n ≥ 2, where we select wn such that
∞∏

n=2

wn <∞ and

∞∑

n=2

1

hn
<∞.

Consider as well a sequence {ηn}n≥2 of strictly positive numbers such that

(1 + ηn)
2

(
1

wn
+

δ

2hn

)
≤ 1 and (1 + ηn)

2

(
hn+1 − 1

hn+1 − δ

)
≤ 1

for every n ≥ 2. We may assume as well that
∏∞

n=2(1 + ηn)
2 ≤ 1

δ
, and that δ

2
≤ 1

1+ηn
for

all n ≥ 2.
Define |||·|||∞,1 : R → R

+ by |||x|||∞,1 = |x| for all x ∈ R.

Inductively, we define for each n ≥ 2 the norms |||·|||1,n : ℓ
n
∞ → R

+ and |||·|||∞,n : ℓ
n
∞ → R

+

by

|||x|||1,n =
1

wn
|||Pn−1x|||∞,n−1 +

1

hn
|xn|, for every x ∈ ℓn∞,

and

|||x|||∞,n = max
{
|||x|||1,n, |||Pn−1x|||∞,n−1, |xn|

}
, for every x ∈ ℓn∞.

Note that ‖x‖∞ ≤ |||x|||∞,n for all x ∈ ℓn∞ and all n ∈ N. Moreover, it also holds that

|||x|||∞,n ≤ cn‖x‖∞ for all n ∈ N and x ∈ ℓn∞. Indeed, this is trivially true for n = 1, and
assuming it holds for n− 1 with n ≥ 2 we obtain that for any x ∈ ℓn∞:

|||x|||∞,n ≤ max

{(
cn−1

wn
+

1

hn

)
‖x‖∞, cn−1‖x‖∞, ‖x‖∞

}

= max

{(
cn−1

wn
+
wn − 1

wnδ

)
‖x‖∞, cn−1‖x‖∞

}

≤ max {(cn−1 + εn) ‖x‖∞, cn−1‖x‖∞} = cn‖x‖∞.

For the last inequality, we use that −(1− δcn−1) ≤ −wn(1− δcn−1− δεn) due to the choice
of wn.
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(0, h2)

(w2, 0)

Figure 1. The dark grey region shows the unit ball of |||·|||∞,2. The light

gray region is the unit ball of the norm |||·|||1,2.

Geometrically, the unit ball of |||·|||∞,n is an n-dimensional polyhedron contained in the

unit ball of ℓn∞. Figure 1 shows the unit ball of |||·|||∞,2 and the geometric implications of
the choice of w2 and h2 with respect to δ.

2.- Smooth approximations and definition of the final renorming

Next, for every n ≥ 2, we may approximate the norm |||·|||1,n by a C∞-smooth norm

|||·|||ηn : ℓ
n
∞ → R

+ such that

|||·|||1,n ≤ |||·|||ηn ≤ (1 + ηn)|||·|||1,n.

By induction, we will define norms |||·|||n : ℓ
n
∞ → R

+ with the following properties for
every n ∈ N:

(i) |||·|||n is a C∞-smooth norm in ℓn∞.
(ii) If n ≥ 2, for all x ∈ ℓn∞:

|||x|||n ≤ (1 + ηn)max
{
|||x|||ηn , |||Pn−1x|||n−1, |xn|

}
≤

n∏

j=2

(1 + ηj)
2|||x|||∞,n,

and

|||x|||n ≥ max
{
|||x|||ηn , |||Pn−1x|||n−1, |xn|

}
≥ |||x|||∞,n,

for all 1 ≤ j ≤ n.
(iii) If n ≥ 2, for all x ∈ ℓn∞, if |xn| ≤

δ
2
‖x‖∞, then |||x|||n = |||Pn−1x|||n−1.

Setting |||·|||1 = |||·|||∞,1 = | · |, the previous conditions are satisfied trivially for n = 1.

Suppose that |||·|||n−1 : ℓ
n−1
∞ → R

+ has been defined with the desired properties for a fixed
n ≥ 2.
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Now, let φn : R → R
+ be a real valued, C∞-smooth and convex function such that

φn(t) = 0 for all t ∈
[
0, 1

1+ηn

]
, φn(1) = 1, and φn(t) > 1 for all t ∈ (1,+∞). The map

νn : ℓ
n
∞ → R

+ given by

νn(x) = φn(|||x|||ηn) + φn
(
|||Pn−1x|||n−1

)
+ φn (|xn|)

is a C∞-smooth function such that the set Bn = {x ∈ ℓn∞ : νn(x) ≤ 1} is bounded in ℓn∞.
Hence, by Corollary 1.1.23 in [Rus18], the set Bn is the unit ball of a C∞-smooth norm
|||·|||n : ℓ

n
∞ → R

+. Notice that, given x ∈ ℓn∞, |||x|||n = 1 if and only if νn(x) = 1. Let us
show that properties (ii) and (iii) are satisfied by this norm.

We prove that (ii) holds for x ∈ ℓn∞ with |||x|||n = 1. For the first part, notice that if
νn(x) = 1, then one of φn(|||x|||ηn), φn

(
|||Pn−1x|||n−1

)
or φn (|xn|) must be strictly positive.

The first inequality now follows since φn vanishes in the interval
[
0, 1

1+ηn

]
.

The second inequality of the first statement holds simply by definition of |||·|||∞,n if n = 2;
while if n > 2 we also need to use the inductive hypothesis.

For the second statement, observe that if νn(x) = 1, then

max
{
φn(|||x|||ηn), φn

(
|||Pn−1x|||n−1

)
, φn (|xn|)

}
≤ 1,

from which the first inequality follows since φn(t) > 1 for all t ∈ (1,+∞). The second
inequality is a simple application of the inductive hypothesis if n > 2. Note that the case
n = 2 should be argued separately, when the conclusion holds by the definitions of both
|||·|||∞,2 and |||·|||η2 , and the fact that |||·|||1 = |||·|||∞,1.

Before proving that (iii) holds as well, notice that since ‖ · ‖∞ ≤ |||·|||∞,n, the last

inequality of condition (ii) implies in particular that ‖x‖∞ ≤ |||x|||n for every x ∈ ℓn∞.
Now, to prove property (iii) we may fix x ∈ ℓn∞ with |xn| ≤ δ‖x‖∞ and assume that

|||x|||n = 1. By the previous observation, we have that ‖x‖∞ ≤ 1, and thus |xn| ≤
δ
2
. Since

δ
2
≤ 1

1+ηn
, we obtain directly that φn (|xn|) = 0.

We have as well that |||Pn−1x|||∞,n−1 ≤ 1 by the last part of the already proven property

(ii), and thus we get the following estimate:

|||x|||ηn ≤ (1 + ηn)|||x|||1,n = (1 + ηn)

(
|||Pn−1x|||∞,n−1

wn
+

|xn|

hn

)

≤ (1 + ηn)

(
1

wn
+

δ

2hn

)
=

1

1 + ηn
,

since we have chosen ηn such that the last inequality holds. Hence, we also get that
φn(|||x|||ηn) = 0. Since νn(x) = 1, we necessarily have that φn

(
|||Pn−1x|||n−1

)
= 1, and by

convexity of φn we obtain that |||Pn−1x|||n−1 = 1, which proves (iii).
Once the induction is finished, we define the final renorming |||·||| : c0 → R

+ by

|||x||| = sup
n∈N

{|||Pnx|||n}
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for all x ∈ c0. Property (ii) in the induction and the fact that ‖ · ‖∞ ≤ |||·|||∞,n ≤ 1
δ
‖ · ‖∞

for all n ∈ N show that

‖ · ‖∞ ≤ |||·||| ≤
1

δ2
‖ · ‖∞.

Using property (iii) we also have that given x0 ∈ c0 with x0 6= 0, there exists an open
neighbourhood U of x0 and n0 ∈ N such that |||x||| = |||Pn0

x|||n0
for all x ∈ U . This implies

that the norm is LFC and C∞-smooth.

3.- Non-strictly convex dual ball

It only remains to prove that the dual norm of |||·||| is not strictly convex. Define

f =

(
∞∏

j>1

1

wj
,
1

h2

∞∏

j>2

1

wj
, . . . ,

1

hn

∞∏

j>n

1

wj
, . . .

)
∈ ℓ1

g =

(
0,

∞∏

j>2

1

wj
,
1

h3

∞∏

j>3

1

wj
, . . . ,

1

hn

∞∏

j>n

1

wj
, . . .

)
∈ ℓ1.

We will show that the segment [f, g] is contained in the sphere S|||·|||∗ .
Given x ∈ c0, using the fact that |||P1x|||∞,1 = |x1| and the definition of |||·|||∞,n, it is

straightforward to show inductively that

n∏

j>1

1

wj
|x1|+

n∑

i=2

1

hi

n∏

j>i

1

wj
|xi| ≤ |||Pnx|||∞,n

for all n ≥ 2. Since wn > 1 for all n ≥ 2 and |||Pnx|||∞,n ≤ |||x||| for all n ∈ N, we obtain
that

∞∏

j>1

1

wj
|x1|+

∞∑

i=2

1

hi

∞∏

j>i

1

wj
|xi| ≤ |||x|||.

This shows that |〈f, x〉| ≤ |||x||| and |〈g, x〉| ≤ |||x|||, which implies that |||f |||∗ ≤ 1 and
|||g|||∗ ≤ 1.

Consider now for every n ≥ 2 the point zn ∈ c0 given by

zn =

(
n∏

j>1

hj − 1

hj − δ
, . . . ,

n∏

j>n−1

hj − 1

hj − δ
, 1, 0, . . .

)
∈ span{e1, . . . , en}.

Setting z1 = e1, we have that Pn−1zn = hn−1
hn−δ

Pn−1zn−1 for all n ≥ 2. We start by showing

inductively that |||Pnzn|||∞,n = |||Pnzn|||1,n = 1. Indeed, this is trivially true for n = 1, and
given n ≥ 2 and assuming it holds for n− 1 we obtain that

|||Pnzn|||1,n =
1

wn
|||Pn−1zn|||∞,n−1 +

1

hn
|zn|

=
1

wn

hn − 1

hn − δ
+

1

hn
= 1.
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Now the conclusion follows by definition of |||·|||∞,n and a further application of the inductive
hypothesis.

Thanks to the previous fact, and again inductively, we can show that |||zn||| ≤ (1 + ηn)
2

for all n ≥ 2. In order to do this, notice that if |||zn−1||| ≤ (1+ ηn−1)
2 for some n > 2, using

that (1 + ηn−1)
2
(
hn−1
hn−δ

)
≤ 1 and property (ii) of the definition of |||·|||n, we get that

|||zn||| = |||Pnzn|||n = (1 + ηn)max
{
|||Pnzn|||ηn , |||Pn−1zn|||, |zn|

}

≤ (1 + ηn)max

{
(1 + ηn)|||Pnzn|||1,n, (1 + ηn−1)

2

(
hn − 1

hn − δ

)}
= (1 + ηn)

2.

Finally, we show that 〈f, zn〉 = 〈g, zn〉 =
∏∞

j>n
1
wj

for n ≥ 2. We start by showing the base

case n = 2. For the functional g, the equality is straightforward from the definition. For
f , simply observe that:

〈f, z2〉 =
h2 − 1

h2 − δ

∏

j>1

1

wj
+

1

h2

∏

j>2

1

wj

=
∏

j>2

1

wj

(
h2 − 1

h2 − δ

1

w2
+

1

h2

)
=
∏

j>2

1

wj
.

Assume now the conclusion holds for n − 1 for some n > 2. Then, for ϕ ∈ {f, g}, and
writing ϕ|n = (ϕi)

n
i=1 ∈ (ℓn∞)∗ to denote the projection of ϕ onto its first n coordinates, we

obtain:

〈ϕ, zn〉 = 〈ϕ|n, Pnzn〉 = 〈ϕ|(n−1), Pn−1zn〉+
1

hn

∞∏

j>n

1

wj

=
hn − 1

hn − δ
〈ϕ|(n−1), Pn−1zn−1〉+

1

hn

∞∏

j>n

1

wj

=
∞∏

j>n

1

wj

(
hn − 1

hn − δ

1

wn
+

1

hn

)
=

∞∏

j>n

1

wj
.

This implies that
〈
f+g
2
, zn
〉
=
∏∞

j>n
1
wj

as well. Since we have found a sequence {zn}n∈N ⊂ c0

such that |||zn||| → 1 and
〈
f+g
2
, zn
〉
→ 1, we get that

∣∣∣∣∣∣f+g
2

∣∣∣∣∣∣∗ ≥ 1. This finishes the proof,

as we have shown already that the norm of f and g, and hence the norm of f+g
2
, is less

than 1. �
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