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Counterexamples to the Kneser conjecture in dimension four 

MATTHIAS KRECK, WOLFGANG LOCK AND PETER TEICHNER 

Abstract. We construct a connected closed orientabte smooth four-manifold whose fundamental group 
is the free product of two non-trivial groups such that it is not homotopy equivalent to M 0 ~ M~ un- 
less M o or M~ is homeomorphic to S 4. Let N be the nucleus of the minimal elliptic Enrique surface 
V1(2,2 ) and put M =N•oNN. The fundamental group of M splits as 2~/2.7//2. We prove that 
M ~ k(S 2 • S 2) is diffeomorphic to M 0 # M Z for non-simply connected closed smooth four-manifolds 
M 0 and M1 if and only if k ~ 8. On the other hand we show that M is homeomorphic to Mo 4~ M1 for 
closed topological four-manifolds M 0 and M I with rt~ (M~) = Z/2. 

O. Introduction 

I f  M is a closed connected three-manifold and ~ : n l ( M ) - - * F o *  F1 is an 

i somorph ism then there are closed connected three-manifolds  Mo and M,  with 

Fi = n~(Mi) together  with a d i f feomorphism f :  M ~ Mo # MI inducing ~ on the 

fundamenta l  groups.  This  theorem is known as Kneser ' s  conjecture. I t  fails in 

d imension _>5 by results of  Cappel l  [1], [2]. Recently it has been shown tha t  

Kneser ' s  conjecture holds  in dimension four  stably, i.e. if  one allows addi t iona l  

connected sums with copies of  S 2 x S 2 [8], [11]. In this article we give counterexam- 

ples to  the unstable  version o f  Kneser ' s  conjecture in dimension four. The first 

example  does no t  split up to homotopy ,  the second splits topological ly  but  no t  

smoothly .  We prove in section 1 

T H E O R E M  0.1. For distinct prime numbers Po and pl there exists a connected 

closed smooth orientable four-manifoM M such that rt j(M) is (Z/po x g / p o ) ,  

(~-/Pl x ~-[Pl) and i f  M is homotopy equivalent to a connected sum M o ~- Ml ,  then M o 

or M 1 is homeomorphic to S 4. [] 

In section 2 we assign to a c losed or iented smooth  four -mani fo ld  M together  

with an i somorph ism ~ : ~ ( M )  --*Fo * Ft an invar iant  a (M,  ~) e 7//16 • ~/16, pro-  

vided tha t  its universal  covering is Spin. Namely ,  we split M as Mo u s  M~ 
according to cc Then S inherits  a Spin-structure f rom )14 and we define 

a(M,  ~) = (sign (Mo) --  R(S) ,  sign (M1) + R(S) )  for sign (Mi)  the signature and 
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R ( S )  the Rohlin invariant. This invariant depends only on the stable oriented 
diffeomorphism type of  M and we investigate its dependency on a. 

Let N be the nucleus of the minimal elliptic Enriques surface V~(2, 2) in the 
notation of G o m p f  [7]. Put M = N u ~ u N - .  The fundamental group of M is 
7//2,7//2. In section 3 we show using Freedman's  topological s-cobordism theorem 
in dimension four [6] and Donaldson's  result about definite intersection forms of 
smooth four-manifolds [4] and the invariant of section 2 

T H E O R E M  0.2. M is homeomorphic  to Mo # M~ f o r  two closed topological 

four-mani fo lds  Mo and M1 with nl (Mi)  = 7//2 but M # k ( S  2 x S z) is diffeomorphic to 

Mo # MI f o r  non-simply  connected closed smooth four-mani fo lds  Mo and  M1 i f  and 

only i f  k > 8. [] 

1. Examples not Spfitting Homotopically 

In this section we construct closed orientable four-manifolds whose fundamental 
group is a non-trivial free product and which are not homotopy equivalent to a 
non-trivial connected sum M o # MI (see Theorem 1.4). As a preliminary we need 
the following Lemma which is taken from [9, Theorem 3 on page 162] whose proof  
we enclose for the reader's convenience. 

L E M M A  1.3. Suppose that mi, ri, ni and q i f o r  i = O, 1 are integers satisfying 

r i > I, r'f  i - I = niqi, r i =- m o d n i ,  (mi,  ni)  ~ 1 (qo, ql)  = 1. 

Then the group 

n = (7//m o x Z/no) * (Z /ml  • 7//nl) 

has the presentat ion o f  deficiency - I 

n = (ao, bo, al, bl [ aom~ = 1, [ao, bo] =Oo'r~ 1 ,al" '  = 1 ,  

[a~, b,] = b? -~ ,  bg 0 = bT' ). 

P r o o f  Obviously it suffices to show that the relation bg o = 1 follows from the 
other relations. We start with proving inductively for k = 1, 2 . . . .  the relation 
a~b~ai -k = b~ -rk' for i = 0, 1. The induction step follows from the computation 

r- k 
aki + l bia ]-(k + 1) = aiaki bia ?k a ? | = aib~i~ a - i  = ( aibia ]- i )~ki = ( b i, )~i = b T~ + ~ 
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This implies for k = mi and i = 0.1 

(bT') q' =b~ 7 ' - '  = 1. 

Since bg ~  b7' holds we conclude 

( G o )  qo = ( G o )  q, = 1. 

Since qo and q~ are prime, we get bg~ 1. [] 

We mention that for distinct primes Po and pl one can find the numbers mi, ri, 
ni and qi as required in Theorem 1,4 so that it applies to ~z = (Z/po x 77/po), 
(7lip I x 7lips) [9, page 163]. 

THEOREM 1.4. Let M be the boundary of a regular neighborhood of an 
embedding into ~5 of a 2-dimensional CW-complex X which realizes a presentation of 

= (Z/mo • -~/no) * (Y_/m~ • ~-/nl) 

of defciency - 1. Then M is not homotopy equivalent to a connected sum Mo # M~ 
unless Mo or M1 is homeomorphic to S 4. [] 

For the proof we need the following well-known Lemma. 

LEMMA 1.5. Let M be a connected closed orientabte four-manifold with funda- 
mental group ~ and classifying map f : M--* BTt. Denote by bpOz; F) the p-th Betti 
number of BTt with coefficients in the field F. I f  f ,([M]) = 0 in H4(Bn; F), then 

2. (b20t; F) - b,(z;  F) + bo(n; F)) < z(M). 

Proof. Since the classifying map is 2-connected, the map fP:HP(BrG F)---, 
HP(M; F) is bijective for p = 0, 1 and injective for p = 2. Because of f ,([M]) = 0 its 
image for p = 2 is a totally isotropic subspace of HZ(M; F) with respect to the 
intersection form. If  we write the intersection form as an isomorphism 
b : H2(M; F) ---, H2(M; F)*, this is equivalent to the fact that composition i* o b o i 

for the inclusion i : i m  ( f z ) ._ ,H2(M;F)  is zero. Hence H2(M; F) contains a 

subspace which is isomorphic to the direct sum of two copies of H2(Brc; F). This 
shows bp(M; F) = bp(rr; F) forp  = 0, 1 and b2(M; F) > 2- b2(n; F). From Poincar6 

duality, z(M) = b2(M; F) - 2- b~ (M; F) + 2 �9 bo(M; F) and the claim follows. [] 

Now we are ready to prove Theorem 1.4. We first explain the construction of M 
which depends on the presentation of rr given in Lemma 1.3. Let X be a 
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2-dimensional CW-complex given by this presentation. Embed X into ~ and let M 
be the boundary of  a regular neighborhood N of  X. The resulting manifold M 
comes with a reference map f to Bz which induces an isomorphism on the 
fundamental groups. Obviously we have [M,f] = 0 in O4(Bn), a nullbordism is 
given by the regular neighborhood N. This implies f . ( [M])  = 0 in Ha(z; 2~). One 
easily checks x(M) = 2 �9 x(N) = 2 �9 x(X) = 4. 

Choose for i = 0, 1 a prime number Pi dividing both mi and ni. Let ~:r, be the 
field of Pi elements. One easily checks bk(7//p~; Dzp,) = 1 for k > 0  and l > 1 and 
computes using the K/inneth formula 

b2(7/lm i • Z/n i ;IFm) - b ,  (Z/m, x ~_/?l i ; ~-pi ) -~ bo(Z//m i • ~ l n  i ; [}:p,) : 2 .  

Assume that M is homotopy equivalent to M0 # M1. By Kurosh subgroup theorem 
[12, Theorem 1.10 on page 178]) (and possible renumbering Mo and M~) it suffices 
to treat the two cases where n~(Mi) = 7//mi x ~,/n~ for i = 0, 1 or where Mo is simply 
connected. In the first case we get z ( M i ) > 4  from Lemma 1.5 and hence 
Z(Mo # M~) _> 6. This contradicts z(M) = 4. In the second case we have n~ (Mr) = 
n~ (M) and again by Lemma 1.5 and the additivity of k-th Betti number bk(n; F) for 
k _> 1 under free products we conclude z(M~) > 4. This implies Z(Mo) <--2. Hence 
Mo is a homotopy sphere and by Freedman's result [5, Theorem 1.6, page 280] 
homeomorphic to S 4. This finishes the proof  of Theorem 1.4. 

2. A stable diffeomorphism invariant 

We introduce a stable diffeomorphism invariant for a connected closed oriented 
smooth four-manifold M whose universal covering possesses a Spin-structure 
together with an isomorphism ~ : nj (M) ~ F0 * FI. We will suppress base points in 
the context of  fundamental groups since all the group theoretic conditions we will 
give are invariant under inner automorphisms. Let K(Fo, 1)w[0, 1] u K ( F i ,  1) be 
obtained by the disjoint union of  the Eilenberg-MacLane spaces and [0, 1] by 
identifying {i} with the base point of K(Fi, 1) for i = 0, I. Choose a map 

:M-,K(Fo, 1) u[O, 1] wK(r,,  1), 

which is transversal to 1/2 ~ [0, 1] and up to homotopy determined by the property 
that it induces on the fundamental groups the isomorphism u up to inner automor- 
phisms if we identify the fundamental group of K(Fo, 1) u[0,  1] uK(F~, 1) for the 
base point 1/2 with Fo * F~ in the obvious way. We orient [0, 1] by the direction 
from 0 to 1. We get a trivialization of the normal bundle of 1/2 in [0, 1]. This 
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induces by transversality a trivialization of the normal bundle v(S, M) of S in M 
where S is the preimage of 1/2. In particular S splits M into the pieces Mo and M1, 
i.e. M = Mo Us M1 where Mo respectively M1 is mapped by 8 to K(Fo, 1) w[0, 1/2] 
respectively [1/2, 1] w K(FI, 1). The inclusion j : S  ~ M  induces the trivial map on 
the fundamental groups and lifts to a map f :  S ~ /Q.  The unique Spin-structure on 
~t  restricts to a Spin-structure on f* T~t = TS @ v(S, M). Since we have already 
fixed a trivialization of v(S, M), this induces a Spin-structure on S. Denote by 
R(S) ~ Z/16 the Rohlin invariant of the closed three-dimensional Spin-manifold S 
which is the signature modulo 16 of any smooth Spin-nullbordism of S. Our 
invariant is defined by 

DEFINITION 2.1. a(M, ~) = (sign (Mo) - R(S), sign (Ml) + R(S)) ~ 7//16 x 
Z/16. [] 

Next we show that this invariant is well-defined and examine its dependency on 
cc Recall that a finitely generated group F is called indecomposable if F is non-trivial 
and F - - - F ' ,  F" implies that F '  or F" is trivial. Finite non-trivial groups are 
obviously indecomposable. We want to show 

LEMMA 2.2. Let M and M' be connected closed oriented smooth four-manifolds, 
whose universal coverings possess Spin-structures, together with isomorphisms 
c t ' T r l ( M ) ~ F o , F  l and c t"r t~(M' )~F 'o ,F ' l .  Suppose F o, F~, F'o and F' 1 are 
indecomposable and not infinite cyclic. Assume that there is an oriented diffeomor- 
phism 

f : M ~ k (S  2 • S 2) ~ M' ~ k'(S z x $2). 

Then we get 

a(M, ~) = tr(M', ct'). 

where we may have to interchange the order of the summands 7//16 • 2v/16 in the case 
where F o and El are isomorphic. 

Proof. In the first step we show the existence of isomorphisms fl~ : F~ ~ F',. such 
that the composition ct' o f ,  o~-1 is (flo*fl~) up to inner automorphisms after 
possibly renumbering Fo and Fl. By Kurosh Subgroup Theorem [12, Theorem 1.10 
on page 178] and after possibly renumbering F0 and F1 the composition ~' o f ,  oct-1 
sends Fo respectively F~ to a conjugate of F~ respectively F'l. Hence there are 
isomorphisms fl~ : F~ --, F'~ and an automorphism e of Fo * F1 sending ~'o ~ Fo to ~o 
and 71~F1 to 67~6-1 for some 6 ~ F o , F ~  such that ~ ' o f ,  o~-I  is 
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e(fl0 * fl~) up to inner automorphisms. Without destroying this property one can 
change 6, fl0 and fl~ such that 6 is trivial or 6 begins with a non-trivial letter in F 1 
and ends with a non-trivial letter in F o. In the second case no element of  F~ can lie 
in the image of e and hence the surjectivity of e forces e to be the identity and the 
claim follows. 

In the next step we show that the choice of c~ does not matter. Suppose we have 
two choices of maps ~ and ~ ' : M  ~K(Fo, l ) u [ 0 ,  1] uK(F~, 1) which are transver- 
sal to 1/2. Let M = M~ us- M'I be the splitting induced by ~'. Since ~ and cV induce 
up to inner automorphisms the same homomorphism on the fundamental groups, 
they are homotopic. Hence there is a map h : M  x [0, 1] - ,K(Fo,  1)u[0 ,  1] u 
K(FI, 1) which is transversal to 1/2 and ho = ~ and h~ = ~'. As explained above h 
induces a splitting M x [0, 1] = W 0 Uz W~ and Z inherits a Spin structure (and in 
particular an orientation) from h. The orientation of M induces orientations on 
M x [0, 1], W0 and W~. We use the convention for an oriented manifold V with 
boundary c~V that 0V inherits the orientation determined by the decomposition 
TV[~v = T O V ~  v(~V, V) and the orientation on the normal bundle v(~V, V) given 
by the outward normal field. Notice that the orientations on S and Z coming from 
the Spin-structures as described above agree with the ones coming from S = OMo 
and Z --- 0 Wo and are the opposites of  the orientations coming from S = 3M~ and 
Z = ~ Wt. We claim that the orientation of S c a Z  agrees with the one coming from 
S = dMo. Namely, the decompositions TWolz = TZ | v(Z, Wo) and TZls = TS | 
v(S, Z)  induce a decomposition 

TWols = TS ~ v( S, Z) O) v( S, Mo). 

The orientation of S given by S c c3Z is compatible with this decomposition if one 
uses the outward normal fields on v(S, Z) and v(S, Mo). The decompositions 

TMols = T S a r ( S ,  Mo) and TW0[~to = TMo@v(Mo, Wo) yield 

TWo[s = TS ~) v(S, Mo) O) v(S, Z). 

The orientation of S given by S = OM0 is compatible with this decomposition if one 
uses the outward respectively inward normal field on v(S, Mo) respectively v(S, Z). 
O~ae treats the other component  S'  similarly and gets aZ = S I I ( S ' ) - .  This implies 

sign (Z)  = R(S) - R(S') ~ 7//16. 

The boundary of W o is Mo u Z u M ' o  and of Wl is Mi- u Z -  u M ] .  This shows 

- s i g n  (Mo) + sign (Z) + sign (M~) = 0 
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and 

- s i g n  (M~) - sign (Z) + sign (M'I) = 0. 

and hence 

(sign (M0) - R(S), sign (MI) + R(S)) 

= (sign (M~) - R(S'), sign (M'~) + R(S')) e 2~/16 x 7/[16. 

In the final step we can assume that f is an oriented diffeomorphism from M to 
M'. Choose base point preserving maps ~ : K ( F  i, 1)--,K(F~, 1) inducing fli on the 
fundamental groups for i = 0, 1. By our first step ~' is homotopic to the composi- 
tion 

f -1  ct ~o u id~ fil 
M' , M  ,x(r 'o ,  

Obviously the invariant for the splitting of M '  with respect to this composition is 
the same as the one for the splitting of M with respect to ~ and the claim fol- 
lows. [] 

3. Examples splitting topologically but not smoothly 

In this section we give an example which splits topologically but not smoothly. 
Let us recall from [7] that every minimal elliptic surface V,(pl,  P2 . . . . .  Pk) (whose 
elliptic fibration with base CP ~ has 6n cusp fibers and k multiple fibers with 
multiplicities Pi) can be decomposed as a union Nn(p~, P 2 , . . . ,  Pg) us  ~n  along the 
Seifert fibered homology three-sphere L'(2, 3, 6n - 1) which as the link of a singu- 
larity bounds the Milnor fiber q~, of  Sn. The piece N~(pl,p2 . . . . .  Pk) is called 
nucleus of  Vn(pl , p2 . . . . .  Pk ). 

T H E O R E M  3.1. Let N = N1(2, 2) be the nucleus of the Enriques surface 
V = V1 (2, 2). Put M = N u ~u N- .  

(1) M is homeomorphic to Mo #r M1 for two closed topological four-manifolds Mo 
and M1 with n l (Mi )=  Y_/2 for i = 0 ,  1. 

(2) M 41= k(S 2 • S 2) is diffeomorphic to Mo ~ MI for non-simply connected closed 
smooth four-manifolds Mo and Ml i f  and only if k >8. In fact, 
M ~ 8(S 2 • S 2) is diffeomorphic to V ~ V-.  

Proof. First recall from [7] that the nucleus of  a minimal elliptic surface is 
constructed by taking a regular neighborhood of one cusp fiber and a section of  the 
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elliptic fibration. This gives a four-manifold in the homotopy type of S 2 v S 2. Then 
one performs all the logarithmic transformations inside this neighborhood. The 
following properties of  N are easy consequences from this construction, for details 
see [7, Section 3]. We also remind the reader that the Enriques surface V has even 
intersection from E s @ H and its universal covering is the Kummer  surface which is 
Spin. 

(1) sign (N) = 0 and x(N) = 3. 
(2) The inclusion N ~ V induces an isomorphism on the fundamental groups 

and n~ (N) = Z/2. Since the Milnor fiber 4 ,  is simply connected this implies 
that X is hi-null in N, i.e. the inclusion of Z = S(2, 3, 5 ) =  dN into N 
induces the trivial map on the fundamental groups. 

(3) The intersection form of N is even and N is Spin. [] 

The first assertion of our theorem follows directly from the following lemma by 
setting X = X' = N. 

L E M M A  3.2. Let X and X' be two topological four-manifolds with the same 
boundary S,, a homology three-sphere. Assume that X is a hi-null in X and that X has 
a good fundamental group. Let C be a contractible four-manifoM with boundary X. 
Then there exists a homeomorphism 

X ~uz X' ~ (X u z  C) ~ (X' wz C). 

Proof. Recall that a good fundamental group is one for which the topological 
s-cobordism theorem holds. By [6] examples of good groups are poly-finite or 
-cyclic groups. Also, by [5, Theorem 1.4' on page 367] a manifold C as in the lemma 
exists. 

By taking the connected sum inside the contractible parts C, we obtain a 
homeomorphism 

(X u z  C) ~ (X' •z C) ~ (X •z (C ~ C)) uz  X'. 

Hence it suffices to show that X and (X Uz (C ~ C)) are homeomorphic relative 
boundary. By assumption, the topological s-cobordism theorem holds for this 
fundamental group and thus it remains to construct an s-cobordism between X and 
X~wz (C ~ C) relative boundary. 

Note that C uz  C is a simply connected closed topological four-manifold with 
the same integral homology as S 4 and hence by [5, Theorem 1.6 page 371] is 
homeomorphic to S 4. Let Co be a complement of the interior of  an embedded disk 
D 4 c int (C). Then we obtain a homeomorphism 

(C ~ C) wz • ~0,~) 2: x [0, 1] ~ Co uz  Co us3 • 3 x [0, 1] --, S 3 x SL 
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This gives an embedding j : X • [0, 1] --+0(S 3 x D2). Let f :  Z x [0, 1] --+X x [0, 1] 
be the inclusion. Define W by S 3 x D 2 w c X  x [0, 1], i.e. by the push out 

J 3 D 2 2: x [0, 1 ] ~ S  x 

:l 1 
x x [ 0 ,  11 - -  w 

We want  to show that  f : X x [0, 1] --+ W is a simple h o m o t o p y  equivalence. Since 
the simple h o m o t o p y  type of  W relative X x [0, 1] depends only on the homotopy  

class o f f  [3, 11.5.5] and X is 7rl-null in X, we can assume that  j factorizes as 

f, .f2 
f :  Z x [0, l] ~ Z ~ X  x [0, 1], 

where Z is obtained f rom X x [0, 1] by collapsing the 1-skeleton to a point. Define 
Y by the push out Y = S 3 • D 2 w:, Z. Then W is also the push out 

Z - - - - ,  Y 

X x [ 0 ,  1] , W 

The m a p  j :  Z--+ Y is a homology  equivalence as j :  X x [0, 1] -+ S 3 x D 2 is. Since Z 

and S 3 x D 2 are simply connected,  j -and  hence . /a re  simple h o m o t o p y  equivalences 

[3, 11.8.5. and 1.5.9]. This shows that  the inclusion of  X into W is simple h o m o t o p y  

equivalence. Similarly, one verifies that  the inclusion of  the other par t  
X Wz (C # C) of  the boundary  of  W into W is a homotopy  equivalence. Hence W 

is a s-cobordism.  This finishes the p roo f  of  the lemma and thus also of  the first 

assertion. 
Suppose that  f : M # k (S  2 • S 2) --) M o # Mt is a diffeomorphism for connected 

smooth  four-manifolds  Mo and M1 which are non-simply connected. By Kurosh  
Subgroup Theorem [12, Theorem 1.10 on page 178] n l ( M i ) = 7 ? / 2  for i = 0 ,  1. 

There is an obvious choice of  isomorphisms ~ :z~j(M)---)~_/2,7//2 and 

c~' : rq ( M  o # M~ ) --+ Z/2 �9 ~ / 2  such that  

a(M, 0~) = (sign (N) - R(X), sign ( N - )  + R(X)) = (8, 8) e 2~/16 x Z/16 

and 

a(Mo # M1, ct) = (sign (Mo), sign (M,) )  e 7//16 x 7//16. 
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F r o m  L e m m a  2.2 we get a(M, ~t) = a(Mo # M~, ~'). This shows for i = 0, 1 

Isign (Mi) l  > 8. 

The intersection form of  N is even and hence its signature is divisible by eight and 
its rank is even [13, Corol lary  1 on page 53]. Suppose that  b2(Mi) < 9. Then the 
rank of  the intersection form must  be eight and its signature must be + 8. Hence we 
can find an orientation such that  the intersection form on the smooth  oriented 
closed four-manifold  Mi is the definite fo rm Es. This is impossible by Dona ldson ' s  
result [4, Theorem 1 on page 397] that  a definite intersection form of  a smooth  
closed oriented 4-manifold is equivalent up to sign to the s tandard Euclidean form. 
Therefore  b2(Mi) > 10 for i = 0, 1. Since n l (Mi )  is finite, we conclude 

z(M~) = 2 + b2(M~) > 12. 

Since z (N)  = 3, we have z ( M )  = 6. Now we get 

6 + 2k = z ( M  4f- k (S  2 x $2)) = Z(Mo # Mz)  

= Z(Mo) + z (M,)  - 2 >  1 2 +  1 2 - 2  > 22 

and hence 

k > 8 .  

It remains to prove that  M # 8 ( $ 2 x  S 2) is a diffeomorphic to V #  V-.  Since 
M = N w z N - ,  V = N u z 4  and the connected sum of  V a n d  V- may be taken 
inside the Milnor  fibers 4, it suffices to show that  N # 8(S 2 x S 2) is diffeomorphic 

(relative boundary)  to N u~ (4  # 4 - ) .  Here we take the connected sum always in 
the interior of  the manifolds.  

It  was shown in [7, Fig. 27] (we are in the case n = 1) that  4 has a handle 
decomposi t ion with one 0-handle and eight 2-handles. Therefore,  inside 4 # 4 -  we 
find eight disjointly embedded 2-spheres with trivial normal  bundle. These are given 
by gluing together in pairs the cores of  corresponding 2-handles. It is easy to check 
that  after doing 2-surgeries on these eight 2-spheres, i.e. cutting out S 2 • D 2 and 
replacing it by D 3 x S l, one gets the product  a 4  x [0, 1] = Z x [0, 1]. 

Reversing this procedure,  we see that  one can do eight 1-surgeries on (the collar 
of)  N = N w~ (X x [0, 1]) to obtain N w~ (4  # 4 - ) .  We point  out  that  by [7, Fig. 
27] all framings for the 2-handles in 4 are even and thus N w~ ( 4  # 4 - )  has an 
even intersection form. 

Changing slightly our  point  o f  view, we see that  since all the surgered circles are 
nul lhomotopic  in N, each of  these l-surgeries has the effect o f  taking a connected 
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sum wi th  an  o r ien ted  SZ-bundle  ove r  S 2. But  the non t r iv i a l  bund le  c a n n o t  occur  

because  the  resul t ing  m a n i f o l d  m u s t  have  an even in te rsec t ion  fo rm.  H e n c e  we d o  

end up  wi th  N 4~ 8(S 2 • S 2) wh ich  finishes the p r o o f  o f  o u r  last  c l a im in T h e o r e m  

3.1. [] 
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