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Our contribution -

'This unbiased estimator has issues:

A learning principle — Counterfactual Risk - Unbounded variance (think p; ~ 0). RepCount
Minimization — and an efficient algorithm — - Degenerate minimizer (think &; > 0).
Policy Optimizer for Exponential Models — for

this learning setting [1]. Our solution is to

. L . « Non-convex objective, but good local optima.
« Importance sampling introduces variance.

« Even with poor hy, POEM achieves good loss.

« Sweet spot for stochasticity of Ay.
« MAP predictions from POEM work well.
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« use counterfactual risk estimators to fix bias,
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» regularize the variance,
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dom Fields (CRFs), and trains using logged ban-
dit feedback, without any supervised labels.

fixes the first two issues. For the variance issue, we POEM 471 | 5.02 | 276.13 | 120.09
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