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Abstract

In this work, we develop a technique to pro-

duce counterfactual visual explanations. Given

a ‘query’ image I for which a vision system pre-

dicts class c, a counterfactual visual explanation

identifies how I could change such that the sys-

tem would output a different specified class c′. To

do this, we select a ‘distractor’ image I ′ that the

system predicts as class c′ and identify spatial re-

gions in I and I ′ such that replacing the identified

region in I with the identified region in I ′ would

push the system towards classifying I as c′. We

apply our approach to multiple image classifica-

tion datasets generating qualitative results show-

casing the interpretability and discriminativeness

of our counterfactual explanations. To explore the

effectiveness of our explanations in teaching hu-

mans, we present machine teaching experiments

for the task of fine-grained bird classification. We

find that users trained to distinguish bird species

fare better when given access to counterfactual

explanations in addition to training examples.

1. Introduction

When we ask for an explanation of a decision, either im-

plicitly or explicitly we do so expecting the answer to be

given with respect to likely alternatives or specific unse-

lected outcomes – “For situation X, why was the outcome Y

and not Z?” A common and useful technique for providing

such discriminative explanations is through counterfactuals

– i.e. describing what changes to the situation would have

resulted in arriving at the alternative decision – “If X was

X*, then the outcome would have been Z rather than Y.” As

computer vision systems achieve increasingly widespread

and consequential applications, the need to explain their

decisions in arbitrary circumstances is growing as well –

for example, questions of safety “Why did the self-driving

car misidentify the fire hydrant as a stop sign?” or fairness
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Figure 1. Our approach generates counterfactual visual explana-

tions for a query image I (left) – explaining why the example

image was classified as class c (Crested Auklet) rather than class c′

(Red Faced Cormorant) by finding a region in a distractor image

I ′ (right) and a region in the query I (highlighted in red boxes)

such that if the highlighted region in the left image looked like

the highlighted region in the right image, the resulting image I∗

would be classified more confidently as c′.

“Why did the traveler surveillance system select John Doe for

additional screening?” will need answers.

While deep learning models have shown unprecedented (and

occasionally super-human) capabilities in a range of com-

puter vision tasks (Deng et al., 2009; Huang et al., 2007),

they achieve this level of performance at the cost of becom-

ing increasingly inscrutable compared to simpler models.

However, understanding the decisions of these deep models

is important to guide practitioners to design better models,

evaluate fairness, establish appropriate trust in end-users,

and to enable machine-teaching for tasks where these mod-

els have eclipsed human performance.

As these systems are increasingly been deployed in real

world applications, interpretability of machine learning sys-

tems (particularly deep learning models) has become an

active area of research (Simonyan et al., 2013; Springen-

berg et al., 2015; Ribeiro et al., 2016; Adebayo et al., 2018;

Doshi-Velez & Kim, 2017). Many of these works have fo-

cused on identifying regions in an input image that most

contributed to the final model decision (Springenberg et al.,

2015; Ribeiro et al., 2016; Simonyan et al., 2013; Selvaraju

et al., 2017; Zhang et al., 2016) – i.e. producing explanations

via feature attribution. However, these approaches do not

consider alternative decisions or identify hypothetical adjust-

ments to the input which could result in different outcomes

– i.e. they are neither discriminative nor counterfactual.

In this work, we study how such counterfactual visual

explanations can be generated to explain the decisions of
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deep computer vision systems by identifying what and how

regions of an input image would need to change in order

for the system to produce a specified output. Consider the

example in Figure 1, a computer vision system identifies the

left bird as Crested Auklet. A standard feature attribution

explanation approach may identify the bird’s crown, slender

neck, or colored beak as important regions on this image.

However, when considering an alternative such as the Red

Faced Cormorant (shown right) many of these key regions

would be shared across both birds. In contrast, our approach

provides a counterfactual explanation by identifying the

beak region in both images – indicating that if the bird on

the left had a similar beak to that on the right, then the

system would have output Red Faced Cormorant.

More concretely, given a query image I for which the sys-

tem predicts class c, we would like to generate a faithful,

counterfactual explanation which identifies how I could

change such that the system would output a specified class

c′. To do this, we select a distractor image I ′ which the

system predicts as class c′ and identify spatial regions in I

and I ′ such that replacing the identified region in I with the

identified region in I ′ would push the system towards classi-

fying I as c′. We formalize this problem and present greedy

relaxations that sequentially execute such region edits.

We apply our approach to SHAPES (Andreas et al., 2016),

MNIST (LeCun et al., 1998), Omniglot (Lake et al., 2015)

and the Caltech-UCSD Birds (CUB) 2011 (Wah et al., 2011)

datasets generating qualitative results showcasing the in-

tepretability and discriminativeness of our counterfactual

explanations. Our design of SHAPES dataset also enables

us to quantitatively evaluate our generated explanations. The

simplistic nature of MNIST and Omniglot images allows us

to generate an imagination of how the query image would

“look” like if the discriminative region in the query image is

replaced by the discriminative region in the distractor image.

For CUB, we present an analysis of our counterfactual ex-

planations utilizing segmentation and keypoint annotations

present in the dataset which shows that our explanations

highlight discriminative parts of the birds.

In addition to being more discriminative and interpretable,

we think this explanation modality is also compelling from

a pedagogical perspective, an important and relatively less

studied application for interpretability. Good teachers ex-

plain why something is a particular object and why it’s not

some other object. Similarly, these counterfactual explana-

tions can be useful in the context of machine teaching, i.e.

AI teaching humans, especially for tasks where AI systems

outperform untrained humans.

We apply our approach to a fine-grained bird classification

task in which deep models perform significantly better than

untrained humans on the Caltech-UCSD Birds (CUB) 2011

dataset (Wah et al., 2011). We hypothesize that our counter-

factual visual explanations from a deep model trained for

this task can help in teaching humans where in the image

to look at (e.g. neck, beak, wings, etc. of the bird) in or-

der to identify the correct bird category. For example, for

the birds shown in Figure 1, most people not specifically

trained in bird recognition would not know the difference

between these two birds. But, given a counterfactual visual

explanation from our approach “If the highlighted region in

the left image looked like the highlighted region in the right

image, the left image would look more like a Red Faced

Cormorant”, an untrained human is more likely to learn the

differences between these two birds as compared to only

showing example images for both birds.

To explore the effectiveness of our explanations in teaching

humans the fine-grained differences between birds, we de-

signed a human study where we train and test humans for

this task of bird classification. Through our human studies,

we found that users trained to discern between bird species

fare better when given access to counterfactual explanations

in addition to training examples.

In summary, we make the following contributions: we

1. propose an approach to generate counterfactual visual

explanations, i.e. what region in the image made the

model predict class c instead of class c′?

2. show that our counterfactual explanations from deep

models can help in teaching humans via human studies.

2. Approach

In order to explain a query image I relative to a distractor

I ′ under some trained network, we seek to identify the key

discriminative regions in both the images such that replacing

these regions in I ′ with those in I would lead the network

to change its decision about the query to match that of the

distractor. In Section 2.1 we formalize this problem and then

present two greedy solutions: exhaustive search (Section

2.2) and a continuous relaxation (Section 2.3).

2.1. Minimum-Edit Counterfactual Problem

Consider a deep convolutional network taking as input an im-

age I ∈ I and predicting log-probability output logP (Y|I)
over the output space Y. For the sake of this discussion

and without loss of generality, we will consider a decom-

position of the network into two functional components – a

spatial feature extractor and a decision network – as shown

in Figure 3. First, f : I → R
h∗w×d maps the image to a

h × w × d dimensional spatial feature which we reshape

to a hw × d matrix, where h and w are the spatial dimen-

sions and d is the feature size (i.e. number of channels).

Second, g : R
hw×d → R

|Y| takes this feature and pre-

dicts log-probabilities over output classes Y. We can then

write the network as a whole as logP (Y|I) = g(f(I)).
For notational convenience, we let gc(f(I)) denote the log-

probability of class c for image I under this network.
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Figure 3. We decompose a CNN as a spatial feature extractor f(I)
and a decision network g(f(I)) as shown above.

Given a query image I for which the network predicts class

c, we would like to produce a counterfactual explanation

which identifies how I could change such that the network

would output a specified distractor class c′. However, the

space of possible changes to I is immense and directly

optimizing pixels in I to maximize logP (c′|I) is unlikely to

yield interpretable results (Tyka, 2015). Instead, we consider

changes towards a distractor image I ′ which the network

already predicts as class c′.

Given these two images, we would like to make a transfor-

mation T from I to I∗ = T (I, I ′) such that I∗ appears to

be an instance of class c′ to the trained model g(f(·)). One

natural way of perform this transformation is by replacing

regions in image I with regions in image I ′. However at

the extreme, we could simply set I∗ = I ′ and replace I

entirely. To avoid such trivial solutions while still providing

meaningful change, we would like to apply a minimality

constraint on the number of transferred regions. Hence, our

approach tries to find the minimum number of region re-

placements from I ′ to I to generate I∗ such that the trained

model classifies I∗ as an instance of class c′. We call this the

minimum-edit counterfactual problem. Rather than consid-

ering the actual image regions themselves, we consider the

spatial feature maps f(I), f(I ′) ∈ R
hw×d corresponding to

image regions.

We formalize this transformation as depicted in Figure 2.

Let P ∈ R
hw×hw be a permutation matrix that rearranges

the spatial cells of f(I ′) to align with spatial cells of f(I)
and let a ∈ R

hw be a binary vector indicating whether to

replace each spatial feature in image I with spatial features

from image I ′ (value of 1) or to preserve the features of I

(value of 0). We can then write the transformation from I to

I∗ in spatial feature space f(∗) as

f(I∗) = (1− a) ◦ f(I) + a ◦ Pf(I ′) (1)

where 1 is a vector of all ones and ◦ represents the

Hadamard product between a vector and a matrix obtained

by broadcasting the vector to match the matrix’s dimensions

and then taking the Hadamard product between the broad-

casted vector and the matrix. Note that as a is a binary

vector, minimizing its norm corresponds to minimizing the

number of edits from I ′ to I .

With this notation in hand, we can write the minimum-edit

counterfactual problem, i.e. minimizing the number of edits

to transform I to I∗ such that the predicted class for the

transformed image features f(I∗) as defined in Eq. 1 is the

distractor class c′, as the following:

minimize
P,a

||a||1

s.t. c′ = argmax g((1− a) ◦ f(I) + a ◦ Pf(I ′))

ai ∈ {0, 1} ∀i and P ∈ P
(2)

where P is the set of all hw×hw permutation matrices.

Given the resulting a and P , we can extract the set of pairs

of spatial cells involved in the edits as S = {(i, j, i′, j′)}) |
ai∗j = 1 ∧ Pi∗j,i′∗j′ = 1}.

After optimization, the resulting vector a provides the dis-

criminative attention map on image I indicating which spa-

tial cells in I were edited with features copied from I ′ and

Pi∗ , where i∗ = argmax
i

ai, provides the discriminative at-

tention map on the distractor image I ′ indicating which

source cells those features were taken from.

Solving this problem directly is quite challenging – requir-

ing identifying the minimum subset of hw ∗ hw possible

edits that changes the model’s decision. To put this in per-

spective, there are O((h ∗ w)2+k) such subsets of size k i.e.

k cells in I being replaced by k cells in I ′. Even for modest

feature sizes of h=w=16, this quickly scales over a million

candidates for k = 2.

Figure 2. To parameterize our counterfactual explanations, we define a transformation that replaces regions in the query image I with

those from a distractor I ′. Distractor image features f(I ′) are first rearranged with a permutation matrix P and then selectively replace

entries in f(I) according to a binary gating vector a. This allows arbitrary spatial cells in f(I ′) to replace arbitrary cells in f(I).
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Figure 4. In our exhaustive best-edit search, we check all pairs of

query-distractor spatial locations and select whichever pair maxi-

mizes the log probability of the distractor class c′.

In the following sections, we present two greedy sequential

relaxations – first, an exhaustive search approach keeping a

and P binary and second, a continuous relaxation of a and

P that replaces search with an optimization.

2.2. Greedy Sequential Exhaustive Search

Rather than solve Eq. 2, we consider greedily making edits

to I until the cumulative effect changes the model’s deci-

sion. That is to say, we sequentially find single edits that

maximizes the gain in output log-probability gc′(·) for c′.

We can write this best-edit sub-problem as

maximize
P,a

gc′((1− a) ◦ f(I) + a ◦ Pf(I ′))

s.t. ||a||1 = 1, ai ∈ {0, 1} ∀i

P ∈ P

(3)

where a is a binary vector and P is a permutation matrix

as before. Rather than minimizing ||a||1 as in Eq. 2, we

instead constrain it to be one-hot – indicating the edit in I

which maximizes the model log-probability gc′ .

One straight-forward approach to solving Eq. 3 is through

exhaustive search – that is to say, evaluating gc′ after re-

placing features for each of the h ∗ w × h ∗ w cells in f(I)
with those of each of the cells in f(I ′). As shown in Fig. 4,

one step of our exhaustive search approach consists of first

replacing the features in one spatial cell of f(I) by features

of one spatial cell in f(I ′), and then passing these modified

convolutional features through the the rest of the classifier

network g(.) to compute the log-probability of the distractor

class c′. We then repeat this procedure for all permutations

of cell locations in f(I) and f(I ′). The pair of cells that

result in the greatest log-probability for the distractor class

c′ are the most discriminative spatial cells in f(I) and f(I ′).

In order to approximately minimize the objective in Eq. 2

i.e. the number of edits, we run this search sequentially

multiple times (excluding previously selected edits) until

the predicted class changes from c to c′, i.e. gc′ > gc. We

outline this procedure in Algorithm 1.

This procedure requires evaluating g(·) O(h2w2k) times

where k is the average number of edits before the decision

Algorithm 1 Greedy Sequential Search

Data: query image I with class c, distractor I ′ with class c′

Result: list of edits S that change the model decision

S ← [ ] F ∗ ← f(I) F ′ ← f(I ′)

/* Until decision is changed to c′ */

while c′ 6= argmax g(F ∗) do

/* Find single best edit excluding

previously edited cells in S */

i, j′ ← BestEdit(F ∗, F ′, S)

/* Apply the edit and record it */

F ∗
i,∗ = F ′

j′,∗

S.append({i, j′})
end

changes. In the next subsection, we provide a continuous re-

laxation of the best-edit problem amicable to gradient based

solutions – resulting in fewer evaluation calls on average.

2.3. Continuous Relaxation

We formulate the best-edit problem defined in Eq. 3 as a

tractable optimization problem by relaxing the constraints.

First, we loosen the restriction that a be binary – allowing

it to instead be a point on the simplex (i.e. non-negative

and summing to one) corresponding to a distribution over

which cells in f(I) to edit. Second, we allow a similar

softening of the constraints on P , restricting it to be a right

stochastic matrix (i.e. non-negative with rows pi
T summing

to one) corresponding to distributions over cells in f(I ′) to

be copied from. We write this relaxed objective as:

maximize
P,a

gc′((1− a) ◦ f(I) + a ◦ Pf(I ′))

s.t. ||a||1 = 1, ai ≥ 0 ∀i

||pi||1 = 1 ∀i, Pi,j ≥ 0 ∀i, j

(4)

To always satisfy the constraints in Eq. 4, we reparameterize

a and P in terms of auxilliary variables α and M respec-

tively. Specifically, we define a=σ(α) and pT
i =σ(mi

T )
where σ(·) is the softmax function: ai =

eαi
∑

j
e
αj . In this

way, the non-negativity and unit norm constraints on a and

P are ensured while we are free to optimize α and M un-

constrained via gradient descent. We use gradient descent

with a learning rate of 0.3.

In this soft version, cells in f(I ′) can be copied to more

than one location or copied fractionally through non-binary

entries in P or a; however, by applying entropy losses on a

and rows of P (minimizing their entropy), we can recover a

nearly binary solution for a and the rows of P .

We apply this approach as the best-edit search procedure in

lieu of exhaustive search presented in Section 2.2 – itera-

tively selecting the best-edit until the decision changes.

To summarize our approach, we defined a formulation of
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minimum-edit counterfactual problem and introduced two

greedy sequential relaxations – an exhaustive search ap-

proach in Sec. 2.2 and a continuous relaxation in Sec. 2.3.

3. Related Work

Visual Explanations. Various feature attribution methods

have been proposed in the recent years which highlight “im-

portant” regions in the input image which led the model to

make its prediction. Many of these approaches are gradient

based (Simonyan et al., 2013; Springenberg et al., 2015; Sel-

varaju et al., 2017), using backpropagation-like techniques

and upsampling to generate visual explanations. Another

type of feature attribution methods are reference based ap-

proaches (Fong & Vedaldi, 2017; Dabkowski & Gal, 2017;

Zintgraf et al., 2017; Dhurandhar et al., 2018; Chang et al.,

2018), which focus on the change in classifier outputs with

respect to perturbed input images i.e. input images where

parts of the image have been masked and replaced with

various references such as mean pixel values, blurred im-

age regions, random noise, outputs of generative models,

etc. In similar spirit, a concurrent work Chang et al. (2018)

use a trained generative model to fill in the masked image

regions from the unmasked regions. More relevant to our

approach, Dhurandhar et al. (2018) find minimal regions in

the input image which should be necessarily present/absent

for a particular classification. But, all the above works focus

on generating visual explanations that highlight regions in

an image which made the model predict a class c. On the

other hand, we focus on a more specific task of generating

counterfactual visual explanations that highlight what and

how regions of an image would need to change in order

for the model to predict a distractor class c′ instead of the

predicted class c.

Counterfactual Explanations. To tackle a similar task as

ours, Hendricks et al. (2018) learn a model to generate

a counterfactual explanation for why a model predicted a

class c instead of class c′. But our approach is different from

theirs in 3 significant ways: 1) their explanation is in natural

language while our explanation is visual, 2) their approach

requires additional attribute annotations while ours doesn’t,

and 3) their explanation is the output of a separate learned

model (raising concerns regarding its faithfulness to the

target model’s prediction) while our explanation is directly

generated from the target model based on the receptive field

of the model’s neurons and, hence, is faithful by design.

Machine Teaching. Machine teaching (Zhu, 2015) works

have mainly focused on how to show examples to humans so

that they can learn a task better. Many of these approaches

focus on selecting or ordering examples to be shown to

humans in order to maximize their information gain. As

deep learning models achieve superhuman performance in

some tasks, it is natural to ask if they can in turn act as in-

structors to help improve human ability. To our knowledge,

only one other work (Mac Aodha et al., 2018) uses visual

explanations for machine teaching. They use saliency map

explanations generated from Zhou et al. (2016) along with

heuristics to select good examples to be shown to human

learners. To compare with an equivalent setting of this work

to ours, we ran a baseline human study with explanations

generated from GradCAM (Selvaraju et al., 2017), which

has been shown to generate more discriminative visual ex-

planations as compared to Zhou et al. (2016).

4. Experiments

We apply our approach on four different datasets – SHAPES

(Andreas et al., 2016) (in supplement due to space con-

straints), MNIST (LeCun et al., 1998), Omniglot (Lake

et al., 2015) and Caltech-UCSD Birds (CUB) 2011 Dataset

(Wah et al., 2011), and present results showcasing the in-

tepretability and discriminativeness of our counterfactual

explanations.

Common Experimental Settings In all our experiments,

we operate in output space of the last convolutional layer in

the CNN but our approach is equally applicable to the output

of any convolutional layer. Further, all qualitative results

shown are with the exhaustive search approach presented in

Section 2.2 as we are operating on relatively small images.

In our experiments on CUB (Sec. 4.3), we find the con-

tinuous relaxation presented in Sec. 2.3 achieves identical

solutions to exhaustive search for 79.98% of instances and

on average achieves distractor class probability that is 92%

of the optimal found via exhaustive search – suggesting its

usefulness for larger feature spaces.

4.1. MNIST

We begin in the simple setting of hand-written digit recog-

nition on the MNIST dataset (LeCun et al., 1998). This

setting allows us to explore our counterfactual approach in

a domain well-understood by humans.

We train a CNN model consisting of 2 convolutional layers

and 2 fully-connected layers on this dataset. This network

achieves 98.4% test accuracy – note this is well below state-

of-the-art but this is not important for our purposes. Under

this model, the size of spatial features is 4× 4× 20.

Qualitative Results. We examine counterfactual explana-

tions for randomly selected distractor class c′ and corre-

sponding image I ′. Sample results are shown in Fig. 5.

The first two columns show the query and distractor images

and highlight the best-edit regions. We produce this high-

light based on the receptive field of the convolutional feature

selected through our approach. The third column depicts a

composite image generated in pixel space by aligning and

superimposing the highlighted region centers We note that

our approach operates in the convolutional feature space

and we present this composite as visualization.
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Query	image Distractor	image Composite	image

Figure 5. Results on MNIST (LeCun et al., 1998) dataset. The first

two columns show the query and distractor images, each with their

identified discriminative region highlighted. The third column

shows composite images created by making the corresponding

replacement in pixel space.
Query	image Distractor	imageAfter	Edit	1 After	Edit	2 After	Edit	3

Figure 6. Examples of multiple edits on MNIST digits.

For the first example (first row), our approach finds that

that if the left side stroke (the highlighted region) in the dis-

tractor image (2nd column) replaced the highlighted region

(background) in the query image, the query image would be

more likely to belong to the distractor class ‘4’. As we can

see in the composite, the resulting digit does appear to be a

‘4’. As a reminder, the network was not trained to consider

such transformation, rather our approach is identifying the

key discriminative edits. In the third example, our approach

finds that if the upper curve of the ‘3’ in the query image

instead looked like the horizontal stroke of the ‘5’ in the

distractor image, the query image would be more likely to

belong to the distractor class ‘5’.

Quantitative Analysis. On average, it takes our approach

2.67 edits to change the model’s prediction from c to c′.

Examples with multiple (3) edits are shown in Fig. 6. As

edits are taken greedily, often the first edit makes the most

significant change (second row); however, for complex trans-

formation like 3 → 5 (top row) multiple edits are needed.

Our approach takes 15 µs per image on a Titan XP GPU.

4.2. Omniglot

We move on to the Omniglot dataset (Lake et al., 2015)

containing images of hand-written characters from 50 writ-

ing systems. Like MNIST, these images are composed of

Query	image Distractor	image Composite	image

Figure 7. Qualitative results on the Omniglot dataset.

simple pen strokes; however, most humans are not going

to a priori know the difference between characters. Hence,

Omniglot is an ideal “mid-way point” between our MNIST

and CUB experiments.

We experiment with the ‘Sanskrit’ writing system consist-

ing of 42 characters with 20 images each. We created a

random train/test split of 80/20% to train the classification

model. We use the same architecture as in the MNIST ex-

periments, resizing the Omniglot images to match. This

network achieves 66.8% test accuracy.

Qualitative Results. As before, we examine single-edit

counterfactual explanations for randomly selected distrac-

tors. Qualitative results are shown in Fig. 7. Our approach

finds appropriate counterfactual edits to shift the character

towards the distractor even given their complex shape.

Quantitative Analysis. On average, it takes our approach

1.46 edits to change the model’s prediction from c to c′.

Runtime is 9 µs per image on a Titan XP GPU.

4.3. Caltech-UCSD Birds (CUB)

Finally, we apply our approach to the Caltech-UCSD Birds

(CUB) 2011 dataset (Wah et al., 2011) consisting of 200

bird species. It is one of the most commonly used datasets

for fine-grained image classification and can be challenging

for non-expert humans. Consequentially, we use this dataset

for our machine teaching experiments.

We trained a VGG-16 (Simonyan & Zisserman, 2015) model

on this dataset, which achieves 79.4% test accuracy. The

size of this feature space is 7 x 7 x 512.

Given an image I with the predicted class c, we consider two

ways of choosing the distractor class c′ – random classes

different from c and nearest neighbor classes of c in terms

of average attribute annotations (provided with the dataset).

The latter helps us in creating pairs of images (I , I ′) which

are very similar looking to each other. We sample the dis-

tractor image I ′ with the predicted class c′ in two ways –
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Query	image Distractor	image Composite	image

Eared	Grebe Horned	Grebe

Olive	sided	Flycatcher Myrtle	Warbler

Blue	Grosbeak Indigo	Bunting

Northern	Fulmar Glaucous	winged	Gull

Anna	Hummingbird Ruby	throated	

Hummingbird

Figure 8. Qualitative results on CUB. Our counterfactual explana-

tion approach highlights important attributes in the birds such as

head plumage, yellow wing spots and texture on the wings.

random images and nearest neighbor images of I in terms

of keypoint locations of the bird (provided with the dataset).

The latter helps us in creating pairs of images (I , I ′) in

which the birds are in similar orientation to each other.

Qualitative Results. As before, single-edit qualitative re-

sults are shown in Fig. 8. The first three examples depict

success cases where our approach identifies important fea-

tures like head plumage, yellow wing spots, and wing col-

oration. In these cases, the simple composite visualization

is quite telling. However, the bottom two rows show less

interpretable results. In the fourth row, the query bird’s head

is replaced by the long legs of the distractor bird – perhaps

in an attempt to turn the bird shape around as shown in the

composite. The fifth row seems to correctly identify the

need to recolor the neck of the query bird; however, the

composite looks poor due to pose misalignment.

Our explanations can also be helpful in debugging a model’s

mistakes. Such examples are shown in Fig. 9. In the first ex-

ample, the query image is incorrectly classified as Bronzed

Query	image Distractor	image Composite	image

Bronzed	Cowbird Red	winged	Blackbird

Ringed	Kingfisher Green	Kingfisher

Figure 9. Qualitative results where the model’s predictions are

incorrect. Our counterfactual explanations with respect to the

correct class highlights important attributes of the correct class

which are not clearly visible in the query images such as red wing

spot and texture on the wings.

Cowbird instead of Red winged Blackbird probably because

the distinct feature of the correct class (a red spot on the

wing) is not clearly visible. When an explanation is gen-

erated with respect to an image of the correct class, our

approach copies over the red spot in order to increase the

score of the correct class. Similarly, in the second example,

our approach highlights the distinct texture on the wings

which is not clearly visible in the query image.

Quantitative Analysis. On average, it takes our approach

7.4 edits to change the model’s prediction from c to c′ if c′ is

a random distractor class while it takes on average 5.3 edits

if c′ is a nearest neighbor in terms of attributes. Runtimes

are 1.85 and 1.34 sec/image for random and NN distractor

classes respectively on a Titan XP GPU.

To check the degree of dependence of our explanations on

the choice of the distractor image, we compute “agreement”

in the most discriminative spatial cell locations i.e. outputs

of the best-edit subproblem in image I for different distrac-

tor images with the same predicted class c′. This agreement

is 78% (a high value) implying that our approach highlights

similar regions in image I for different choices of distractor

image I ′ from class c′. Similarly, we compute “agreement”

in the most discriminative spatial cell locations in image I

for different distractor classes c′. This agreement is 42% (a

low value) implying that our explanations on image I differ

based on the choice of the distractor class.

The CUB dataset also comes with dense annotations of bird

regions and parts which we use to further analyze our ap-

proach. First, we compute how often our discriminative

regions lie inside the bird segmentations and find that re-

gions in both the images lie inside the bird segmentation

97% of the times.

Further, we compute how often our discriminative regions

lie near the important keypoints of birds such as neck, crown,

wings, legs, etc. provided with the dataset. After running
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(a) Training Interface (b) Feedback (c) Testing Interface

Figure 10. Our machine teaching interface. During training phase

(shown in (a)), if the participants choose an incorrect class, they

are shown a feedback (shown in (b)) highlighting the fine-grained

differences between the two classes. At test time (shown in (c)),

they must classify the birds from memory.

our explanation procedure until the model decision changes,

we find they are near the keypoints of the bird 75% of the

times in the query image I and 80% of the times in the

distractor image I ′. Our discriminative regions also high-

light the same keypoint in both the birds 20% of the times.

This shows that our approach often replaces semantically

meaningful keypoints between birds – indicating that the

underlying CNN has likely picked up on these keypoints

without explicit supervision.

5. Machine Teaching

We apply our approach on CUB 2011 dataset (Wah et al.,

2011) to guide humans where to look to distinguish bird

categories. Towards this goal, we built a machine teaching

interface for human subjects shown in Figure 10.

Since it is a hard task for humans, the interface consists

of two phases– Training and Testing. In both the phases,

we show the subjects an image and 2 bird category options

denoted Alpha and Bravo, and ask them to assign the shown

bird images to one of these categories. During the Training

phase, each of the category option is accompanied by an

example image for subjects to compare against the presented

image. Our training interface is shown in Fig. 10a.

If they choose an incorrect category, we show them some

feedback. The feedback shows the discriminative attention

maps generated by our approach using an image of the

distractor class (Alpha if the correct class is Bravo and vice-

versa) closest to the query image in keypoint space as the

distractor image. The feedback in our interface is shown in

Fig. 10b.

After the training phase, we test the human subjects. During

the testing phase, they are shown an image and the bird

category options, but without the example images. As in

training, they have to select the option they think best fits

the query test image. No feedback is given during testing.

Our test interface is shown in Fig. 10c.

We compare this human study with two baselines which

only differ in terms of the feedback shown to human sub-

jects. In the first baseline case, the feedback only con-

veys the information that the subject chose the incorrect

category. In the second and harder baseline, in place of

our counterfactual explanations, the feedback shows a non-

counterfactual, feature-attribution explanation generated via

GradCAM (Selvaraju et al., 2017) highlighting the region

in the image most salient for the predicted category.

The studies were conducted in smaller sessions. Each ses-

sion consisted of teaching a participant 2 bird classes with

9 training and 5 test examples. We conducted all studies

with graduate students studying Machine Learning (ML) be-

cause of the level of difficulty of the task. Total 26 graduate

students participated, each participant (on average) worked

on 6.2 sessions and spent 3 min 52 sec per session.

The mean test accuracy with counterfactual explanations is

78.77%, with GradCAM explanations, it is 74.29% while

the mean test accuracy without any explanations is 71.09%.

We find that our approach is statistically significantly better

than the no-explanation baseline at a 87% confidence level,

and than the GradCam baseline at 51% – implying the need

for further study to assess if counterfactual explanations

improve machine teaching compared to feature attribution

approaches. To examine the effect of a participant’s familiar-

ity to ML on their performance, we conducted a small study

with 9 participants with no knowledge of ML, each working

on 5 sessions. The test accuracy is 61.7% without expla-

nations and 72.4% with our counterfactual explanations,

trends consistent with the previous human study. Overall,

this shows that counterfactual explanations from deep mod-

els can help teach humans by pointing them to appropriate

parts to identify the correct bird category.

6. Conclusion

In this work, we present an approach to generate counter-

factual visual explanations – answering the question “How

should the image I be different for the model to predict

class c’ instead?” We show our approach produces informa-

tive explanations for multiple datasets. Through a machine

teaching task on fine-grained bird classification, we show

that these explanations can provide guidance to humans to

help them perform better on this classification task.
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