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Abstract—As the supply chain of electronic circuits grows
more complex, with parts coming from different suppliers
scattered across the globe, counterfeit integrated circuits (ICs)
are becoming a serious challenge which calls for immediate
solutions. Counterfeiting includes re-labeling legitimate chips or
illegitimately replicating chips and deceptively selling them as
made by the legitimate manufacturer, or simply selling fake
chips. Counterfeiting also includes providing defective parts or
simply previously used parts recycled from scrapped assemblies.
Obviously, there is a multitude of legal and financial implications
involved in such activities and even if these devices initially work,
they may have reduced lifetime and may pose reliability risks.
In this tutorial, we provide a comprehensive review of existing
techniques which seek to prevent and/or detect counterfeit
integrated circuits. Various approaches are discussed and an
advanced machine learning-based method employing parametric
measurements is described in detail.

I. INTRODUCTION

Contemporary advancements in Very Large Scale Integra-

tion (VLSI) have been accompanied by increasing variation

in the performances of fabricated chips and concerns about

correctness of their operation. Indeed, failures can occur at

any stage of the lifetime of an IC. In production, devices can

fail due to design weaknesses, excessive process variations,

local spot defects, or due to defects which are not detected by

the production tests and manifest themselves later in the field

of operation. These early life failures are caused by extrinsic

process defects and they are known as infant mortality. On

the other hand, ICs can also fail during their lifetime due to

aging, wear-and-tear, harsh environments, overuse, etc. These

failures occur when a material or component exceeds its

fundamental capability, and are known as intrinsic reliability

failure mechanisms. Depending on the end-user application,

ICs may go through burn-in tests, where they are exercised

sufficiently long in stress conditions, in order to avoid early

in-use system failures. Once the reliability issues of an IC are

properly addressed, it can be shipped to the customers with

predictable lifetime.
However, as the IC supply chain has become globalized and

complex, additional sources of failure have started to become

a concern. Specifically, trustworthiness of IC suppliers is much

harder to assess, hence reliability of the provided parts is

dubious. Indeed, ICs provided by the untrustworthy suppliers

could be intentionally re-labeled, illegitimately replicated, or

recycled from used or defective circuit boards. Even if these

ICs initially work, they may have reduced lifetime and pose

reliability risks. This problem is known as IC counterfeiting.
IC counterfeits have turned up in many industrial sectors,

including computers, telecommunications, automotive elec-

tronics, and even military systems [1], [2]. The consequences

can obviously be dramatic when critical systems start failing

due to the use of counterfeit or lower quality components.

According to [3], legitimate electronics companies miss out

on about $100 billion of global revenue every year because of

counterfeiting. Indeed, the hi-tech industry is heavily impacted

by the counterfeiting activity. According to [4], around 1%

of the semiconductor sales is estimated to be counterfeited

units. The tools and technologies utilized by counterfeiting

groups have become extremely sophisticated and well financed

[5]. In turn, this also calls for more sophisticated methods

to detect counterfeit electronic parts that enter the market.

Counterfeit parts can be broadly defined in two categories

[6]: 1) new parts that are misrepresented and 2) old parts that

are sold as new. The first category involves activities that re-

label legitimate chips at a higher grade than that offered by

the original part manufacturer, in order to sell them at higher

prices, or activities that illegitimately replicate chips and

deceptively sell them as made by the legitimate manufacturer.

The second category involves providing and selling defective

parts scrapped by the original part manufacture, or previously

used parts recycled from scrapped assemblies.

In this tutorial, we first review existing techniques which

prevent and/or detect counterfeit electronic devices. Various

approaches, from basic visual inspection, to more sophisticated

methods involving hardware intrinsic security mechanisms

and IC metering techniques for counterfeit IC detection are

reviewed in Section II. Then, in Section III, we present

a machine learning-based method for detecting counterfeit

ICs based on parametric measurements which are typically

taken for the purpose of Early Failure Rate (EFR) analysis.

In Section IV, we demonstrate this methodology on silicon

measurements form an industrial case study and in Section V

we draw conclusions.

II. PREVIOUS WORK ON COUNTERFEIT DETECTION

Several practices have been developed to identify counterfeit

devices to date. Perhaps the most straightforward method is

visual inspection. This method consists of observing texture,

indents, labels, part codes, or even gross defects in the IC

with a microscope, in order to identify counterfeit ones [7].

Hardware metering [8] attempts to uniquely tag each chip

produced from a certain design by active or passive methods to

facilitate tracing the chips. Similarly, part authentication tools

[9] consist of providing an encrypted number for each device

by an RFID tag in production. However, reverse engineering

tools have become very advanced and allow an attacker to

Lecture 3.4

978-1-4799-0859-2/13/$31.00 c©2013 IEEE

INTERNATIONAL TEST CONFERENCE 1



No  

Yes 

Parametric test 

measurement vector mi 

 mi ∈ A ? 

Set of devices under 

process variations 

M = { m1, m2,…, mn} 

𝑓(m’) =1 ?  

             Trustworthy provider

   Decision function training 

using one-class classifier : f(m) 

 

Brand new device

Fail

Pass

Counterfeit 

   device

                 (a)                   (b)  

             Unknown provider

      Parametric test

measurement vector m’

Fig. 1. Proposed flow for counterfeit IC identification: (a) training of the
one-class classifier and (b) identification of devices from unknown provider.

read the stored encrypted number. To overcome this chal-

lenge, Hardware Intrinsic Security (HIS) has been proposed

as a mechanism that can provide security based on inherent

properties of an electronic device [10]. Physical Unclonable

Functions (PUFs) [11], for example, belong to the category of

such HIS mechanisms. PUFs aim to measure the responses of

hardware to certain given inputs, which depend on the unique

physical properties of the device, since process variations

affect each device in a unique and unclonable fashion.

All of the aforementioned methods solve the problem of

authentication, which aims at detecting the first category of

counterfeit devices, namely misrepresented new parts. How-

ever, counterfeit devices belonging to the second category, i.e.,

old parts which are sold as new, are genuine from that point

of view and may pass such methods. Nevertheless, they still

pose reliability risks due to their aged nature.

Various on-chip aging sensors have been proposed in an

effort to detect recycled counterfeit devices [12]–[15]. Of

course, on-chip sensors require extra design effort, test con-

sideration, and come with area/power overhead. In [16], a

statistical approach is used to distinguish recycled counter-

feit ICs by training a one-class classifier using only brand

new devices. Instead of implementing on-chip sensors, the

measurements used to build the classifier are typical test

results from production EFR analysis required to release most

products, thus no additional costs in terms of design, test and

area/power overhead are incurred to perform identification, and

the method is demonstrated on actual IC measurements. A

similar study can be found in [17], where a method based on

principal component analysis and convex hull classification,

akin to the delay fingerprinting method introduced in [18], is

used to detect counterfeit devices using synthetic data.

III. PROPOSED APPROACH

A. Counterfeit IC identification flow

Figure 1 shows a high level description of the proposed

method for identifying the counterfeit ICs. The first step

involves collection of a set of parametric measurements,

which can be taken from trustworthy provider across devices

subject to process variations for the purpose of counterfeit IC

authentication. Formally, let

mi = [m1,m2, · · · ,md] (1)

denote the parametric test measurement vector of the i-th

device, where d denotes the dimension of the considered

measurement vector. Only devices which contain no defect

or excessive process variations are used to train the one-class

classifier. Let the set

M = {m1,m2, . . . ,mn} (2)

denote the devices used to train the classifier, where n is

the number of considered devices under process variations. It

should be noted that the value of n is not prohibitive, typically

several hundred devices are sufficient to train the classifier, and

the training is a one-time effort.

With our approach, only brand new devices are used to

train the classifier, i.e., no prior information of counterfeit

IC behavior is needed. For this purpose, we use a one-class

Support Vector Machine (SVM) in order to allocate a decision

function f , where f(m) = 1 when the device is considered

to belong to the group used to train the classifier, i.e., it is

considered to be brand new and f(m) = −1 when the device

is considered to be counterfeit. More details of the one-class

SVM are given in section III-B.

Once the classifier is trained, we can readily use it to

identify devices from unknown providers, given the pattern

m′, as shown on the right-hand side of Figure 1.

B. One-class SVM

Support Vector Machines (SVMs) were originally designed

to solve binary classification problem, in which the SVM is

trained with samples of two classes and maps a new sample to

one of the two classes in the feature space. In [19], a one-class

SVM is presented using kernels to compute inner products

in feature space to the domain of unsupervised learning.

Formally, we consider the training data

m1,m2, . . . ,mn ∈ O (3)

where n is the number of brand new devices under process

variations used to train the SVM, and O is the original input

space. Let Φ be a feature map O 7→ F , that is, a map into an

inner product feature space F such that a simple separation

boundary can be drawn in F to separate training samples

and other samples from a foreign distribution. The separation

boundary can be considered as a d′-dimensional sphere with

radius R and center point c, as shown on the right side of

Figure 2, where d′ is the dimension of the transformed feature

space F .

Then one-class SVM training is equivalent to solve the

following optimization problem:
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Fig. 2. One-class SVM.

minimize
R∈ℜ,ξ∈ℜn,c∈F

R2 +
1

νn

∑

i

ξi

subject to |Φ(mi)− c|2 ≤ R2 + ξi,

ξi ≥ 0 for i ∈ {1, . . . , n}

(4)

where the slack variables ξi are penalization parameters in the

objective function, ν is a characterization parameter which

can be tuned during the training of the SVM, and c can be

considered as the center point of the sphere [19]. The goal of

the training is to develop an algorithm that returns a function

f that takes the value +1 in a small region capturing most of

the training data points and −1 elsewhere.

For a new point m′, the value f(m′) is determined by

evaluating if the point is inside or outside the separation sphere

in the feature space:

f(m′) = sgn(R2 − |Φ(m′)− c|2) (5)

Here, we use the convention that sgn(z) = 1 for z ≥ 0 and -1

otherwise.

C. Group classification

Our objective is to identify a set of counterfeit ICs that

a malicious supplier provided to the electronic supply chain.

Thus, it is worthwhile to generalize the individual decision

function f(m′) in (5) to a group decision function f(M ′),
where M ′ denotes a set of devices under authentication:

M ′ = {m1,m2, . . . ,mn′} (6)

where n′ is the number of devices under authentication. In

this work, we derive the group decision function f(M ′) by

applying a voting technique. In particular, let I1 denote the

individual classification indicator where I1 = 1 when the in-

dividual device is classified as brand new, i.e., f(m′) = 1 and

I1 = −1 when it is classified as counterfeit, i.e., f(m′) = −1.

Then the group decision function f(M ′) can be computed as

f(M ′) = sgn(

n′∑

i=1

Ii
1
) (7)

where Ii
1

denotes the individual classification indicator for i-th

device under authentication. As before, f(M ′) = 1 indicates

t = t
0

t = t
1

t = t
4

Principal component 1
Principal component 2

Principal component 3

Fig. 3. Projection of the first three principal components of devices at t =
t0, t1, t4, shown by the squares, solid circles and plus signs, respectively.

the group under authentication is brand new, and f(M ′) = −1
indicates the group is counterfeit. This approach is inspired by

the well-known “one-against-one” voting strategy when the

SVM is used to solve multi-class classification problems.

IV. CASE STUDY

Our case study is a DSP device with 49 parametric test

measurements performed for 313 devices randomly chosen

from different lots, i.e. , m = [m1, . . . ,m49]. The same devices

are then passed through burn-in test, in which high voltage and

temperature are applied to accelerate the aging mechanisms.

It should be stressed that unlike previous methods that aim

to detect counterfeit devices by on-chip aging sensors [12]–

[15], the proposed approach uses measurements taken from

typical production EFR evaluations required to release most

products. Thus, no additional costs are incurred to perform

identification. During the burn-in test, devices are re-tested

with the same measurements m at 5 different time points: t

= t0, . . . , t4, with exact hours omitted here due to industrial

confidentiality reasons. Time points are approximately log

time based since aging degradations such as NBTI exhibit

logarithmic dependency on time. The measurements taken

from time point t = t0 are considered from brand new devices

to train the classifier, and devices at t 6= t0 are considered as

counterfeit IC patterns to be identified.

We have performed a Principal Component Analysis (PCA)

in order to map the original 49 measurements onto vectors

in a lower dimensional space with cardinality d′ < 49. We

maintained the structure of the data while keeping only 9

principal components, i.e. d′ = 9. Figure 3 shows the projection

of devices at t = t0, t1, t4, onto the first three principal

components, shown by the squares, solid circles and plus

signs, respectively. Performance degradation caused by aging

mechanisms is accelerated during the burn-in test and it can

be readily observed in Figure 3.

We have generated the following data sets to train and

validate the one-class SVM:

• The set St contains 157 devices randomly chosen from

the 313 devices at t = t0. St is used to train the classifier.

• The set Sv contains 5 subsets {Sv0, . . . , Sv4}, corre-

sponding to 313-157=156 other devices at t = t0, . . . , t4,
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TABLE I
CLASSIFICATION RATE AT DIFFERENT TIME POINTS.

Group \ t0 t1 t2 t3 t4
Validation

size
156 100% 100% 100% 100% 100%
80 100% 100% 100% 100% 100%
20 100% 96.2% 99.4% 100% 100%
10 100% 95.6% 98.4% 100% 100%
1 82.2% 69.2% 75.5% 87.6% 92.2%

respectively. Thus, Sv contains 156 × 5 = 780 devices

and is used to validate the classifier.

The second line of Table I shows the classification rate com-

puted using the group decision function defined in (7) for all

subsets of Sv: {Sv0, . . . , Sv4}, where 100% denotes a correct

classification and 0% denotes an erroneous classification. It

can be observed from the second line of Table I that all subsets

of Sv are correctly classified with a 100% classification rate.

We generate the following data sets to evaluate the classi-

fication capability with reduced validation size:

Step 1 s (s <156) samples are randomly chosen from each

of the validation subsets Svi, i = 0, . . . , 4 and let I2
denote the classification accuracy indicator such that

I2 = 1 when the classification is correct and I2 = 0
when the classification is erroneous.

Step 2 The step1 is repeated r times in order to consider

random effects. The classification accuracy indicator

function for the j-th time is denoted by I
j
2
.

Step 3 The final classification rate for each of the reduced

validation subset Svi, i = 0, . . . , 4 is computed as

Cvi =

r∑

k=1

Ik
2

(8)

The 3rd to 6th lines in Table I show the classification

results computed by (8) when the validation size s = 80, 20,

10,1, respectively, and r = 10. Based on the classification

rate shown in Table I, our observations are the following:

1) Between t = t0 and t 6= t0, the burn-in impact is very

pronounced and distinguishable from the process variations

impact. We are able to train the classifier to correctly assign

a group of devices under authentication to the class t = t0
or to t 6= t0. 2) Misclassification is very low, even with a

validation group of as small as 10 devices. However, we cannot

distinguish individual devices (see the last line of Table I). In

other words, if we have a batch of devices and we know that all

of them are either brand new or counterfeit, we can correctly

identify them as a group, even if only devices at t = t0 are

used for training.

V. CONCLUSION

In this tutorial, we provided a comprehensive review of

existing techniques which prevent and/or detect counterfeit

electronic devices. Various approaches, from basic visual

inspection to more sophisticated methods based on machine-

learning are discussed. We also introduced a low-cost ap-

proach to identifying recycled counterfeit devices by training

a one-class classifier using only brand-new devices. The mea-

surements used to train the classifier are typical tests from

production Early Failure Rate analysis, which is required to

release most products; thus, no additional cost in terms of

design, test and area/power overhead is incurred. Experimental

results with actual IC measurements show an excellent ability

in identifying counterfeit parts, namely used ICs sold as new.
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