
Chapter 7

COUNTERING HOSTILE FORENSIC
TECHNIQUES

Scott Piper, Mark Davis and Sujeet Shenoi

Abstract Digital forensic investigations can be subverted by hostile forensic tech

niques and tools. This paper examines various hostile forensic tech

niques, including the exploitation of vulnerabilities in standard forensic

procedures and denial of service attacks on forensic tools during imaging

and analysis. Several techniques for concealing evidence within file sys

tems and external to file systems are highlighted. In addition, strategies

for countering hostile forensic techniques and tools are discussed.

Keywords: Hostile forensics, subversion, denial of service, evidence concealment

1. Introduction

The emerging discipline of digital forensics brings advanced scientific

and engineering techniques to bear on the tasks of detecting, recovering

and analyzing electronic evidence [12, 14J . However, certain elements

of the hacker community are engaged in developing "ant i-forensic" or

"host ile forensic" techniques and tools to subvert digital forensic inves

tigations [8, 13, 15J . Efforts have been undertaken to exploit flaws in

digital forensic techniques and tools. The holy grail of these efforts
is to find an exploit , e.g., a buffer overflow, that would result in the

execution of malicious code in forensic tools used by law enforcement

agencies. Such an exploit could make the tools unable to display certain

data, make them delete evidence, or simply prevent them from operat

ing. Fortunately, such an exploit has not yet been created, but hostile

forensic techniques and tools abound [8, 13, 15] .

Some hostile forensic techniques hinder investigations by hiding evi

dence, destroying evidence or by ensuring that little or no evidence is

created. Others exploit vulnerabilities in forensic procedures and tools

Please lise thefollowingfo rmat when citing this chapter:

Piper. S., Davis , M.. Shenoi , S . 2006 in International Federation for Information Processing , Volume 222. Advances in

Digital Forensics II. eds. Olivier, M., Shenoi, S., (Boston: Springer), pp. 79-90.

80 ADVANCES IN DIGITAL FORENSICS II

Figure 1. Result of a denial of service attack on EnCase v4.15.

to prevent evidence from being discovered. More insidious are hostile

techniques that perpetrate denial of service attacks on forensic tools to

prevent them from imaging media or analyzing evidence.

Nothing can be done when no digital evidence is created. When digital

evidence is destroyed, not much can be done to recover it without the use

of specialized equipment. However, if evidence does exist on a computer

system or network, it can be found and analyzed, even when hostile

forensic techniques have been employed.

This paper discusses the state of the art in hostile forensics and

presents strategies for countering hostile forensic techniques and tools.

The next section focuses on techniques for subverting investigations and

perpetrating denial of service attacks on forensic tools. Following this,

techniques for concealing evidence within file systems are discussed. Fi

nally, strategies for hiding data in devices that are not normally seized

and in devices that are not easily imaged are evaluated.

2. Subversion and Denial of Service

Investigations cannot proceed if the forensic tools themselves are in

capable of detecting, recovering or analyzing evidence from computer

systems . One hostile forensic strategy is to exploit a vulnerability in

a forensic technique or procedure to prevent the discovery of evidence.

Another is to launch a denial of service attack on a forensic tool during

imaging or analysis to simply prevent it from operating properly.

Many file systems permit the creation of arbitrarily deep directory

structures. However, EnCase v4.15 is not designed to traverse a directory

tree more than 253 directories deep. When an investigator attempts to

use EnCase v4.15 to examine such a directory tree, the tool exhibits a

fatal error (Figure 1).

Piper, Davis (3 Shenoi 81

This section discusses techniques for defeating forensic procedures and

tools. These techniques, involving the manipulation of timestamps, in

sertion of compression bombs, and use of sparse files and magic numbers,

are described along with strategies for countering them.

2.1 Timestamps

A computer incident, e.g., a network intrusion, occurs within some

period of time. Forensic investigators focus the majority of their efforts

on discovering what happened during that time frame. The analysis

typically involves reviewing the modification, access and creation (MAC)

times of files to determine what data may have been accessed during the

intrusion. Many forensic tools provide functionality for filtering files

that meet the temporal criteria pertaining to an incident. Malicious

individuals have attempted to subvert investigations by changing the

timestamps associated with incriminating files.

The Linux touch command can be used to change file timestamps to

the current time, and to reset MAC times to arbitrary values. Several

utilities (e.g., fileTweak) are available for changing timestamps on Linux,

FAT and NTFS file systems. The Metasploit Project [13], which pro

duced a framework for developing exploit code, created the Timestomp

utility that targets NTFS files. In addition to MAC times, NTFS files

have an "entry modified" time. Timestomp is the first tool that permits

the modification of all four timestamps associated with NTFS files [13J .

File timestamps cannot be trusted. This fact should be taken into

account when filtering files during the examination of evidence recovered

from a computer system or network. Other evidence, such as access

logs, should be considered when searching for files that are relevant to

an incident.

2.2 Compression Bombs

A compression bomb is a file that expands massively when it is un

compressed, causing the system to crash [2J. For example, the 42.zip

[1J compression bomb is a mere 42KB. When uncompressed completely,

it expands to an astounding 4.5PB (Petabytes).

The technique for creating a compression bomb is relatively simple.

First, a large file containing zeroes is compressed (Figure 2). Multiple

copies of this compressed file are combined into a new file, which is

compressed. Copies of the new compressed file are then made, and the

copies are compressed again into a single file. This procedure is repeated

to produce a small - but extremely potent - compression bomb.

82 ADVANCES IN DIGITAL FORENSICS II

O.dll (4.0GB)

Figure 2. Uncompressed version of the 42 .zip compression bomb.

Compression bombs were originally used to disable anti-virus filters.

Typically, an attacker would email a compression bomb to a targeted

computer system. The anti-virus software on the email server would

attempt to scan the compression bomb for viruses by uncompressing

it. In the process, the anti-virus software would exhaust its memory

resources and crash, exposing an open portal for the attacker to send the

real virus. Similarly, an individual wishing to disrupt an investigation

might store several compression bombs on a hard drive or other computer

media, causing digital forensic tools to crash.

The commonly used digital forensic tools react differently to compres

sion bombs. The Forensic Toolkit (FTK) (v1.42 build 03.12.05) freezes

and becomes unusable when it attempts to acquire the image of a drive

containing a compression bomb. EnCase (v4.15) is able to acquire an

image, but it freezes when it burrows too deep into the compression tree.

ILook (v7.0.35), on the other hand, is unable to traverse more then one

compression level; therefore, a file that is compressed two or more times

is inaccessible to ILook.

Once a compression bomb has been identified, it can be ignored for

the purpose of gathering evidence. High compression ratios are achieved

by compressing files composed entirely of zeroes. Consequently, it is

unlikely that useful data is stored within a compression bomb.

2.3 Sparse Files

Sparse files are an obscure feature of Ext2/Ext3 and other file systems

(e.g., NTFS) [5]. These files allow data to be written to any location

within the file. A sparse file has few data items, and the locations that

do not hold data are assigned zero values. It is inefficient to have many

blocks on a disk that contain identical data values, especially when the

values are all zeroes. Consequently, sparse files map all blocks with zero

values to a single block on the disk (e.g., Block 0 for Ext2/Ext3).

Piper, Davis fj Shenoi

Hard Drive

83

Normal File

r------:"'1
I Physical Size: 1K I

LL£.g~a!....S!:.e~8~ I

Figure 3. Comparison of normal file and sparse file storage.

Figure 3 shows how normal and sparse files are stored in a file system

with 1K blocks. Pointers a through 6 of the sparse file (corresponding

to blocks with zero values) point to the same block. Consequently, while

the logical size of the sparse file is 8K, its physical size is only 1K.

echo "This is a 1GB file" I dd of=sparse .txt bs=1K seek=1048576

0+1 records in

0+1 records out

II Now show the file

Is sparse. txt

-rw-r--r-- 1 root

du sparse. txt -h

4 .0K sparse. txt

sizes; logical. then physical

root 1.0G Jun 3 16:19 sparse. txt

Figure 4. Sparse file creation procedure.

Figure 4 presents a Linux console procedure for creating a 1GB sparse

file on an Ext2 formatted floppy disk. A 1TB sparse file can also be cre
ated on a floppy disk. However, when formatting the disk, it is necessary

to set the number of inodes to a value greater than the default value.

Digital forensic tools react to sparse files in unpredictable ways de

pending on the size of the file. FTK breaks a 1GB sparse file into smaller

files; all the contents are stored in the last file, which may be viewed us

ing FTK. On the other hand, while FTK will show that a 1TB sparse file

exists, it cannot display its contents. EnCase crashes when used to view

a 1GB sparse file. Like FTK, EnCase will show that a 1TB sparse file
exists, but it cannot display its contents . Regardless of its size, ILook
will show that a sparse file exists but it cannot display its contents.

84 ADVANCESIN DIGITAL FORENSICS II

Note that a sparse file may contain important evidence anywhere

within the file, not just at the end. Therefore, after determining that

a sparse file exists, an investigator must review a hex dump of the file

system to analyze the file.

2.4 Magic Numbers

Every file system has a signature, called a "magic number," that al

lows the operating system to determine its format [5] . The Ext2/Ext3

file system has a 2-byte magic number of 53 EFj FAT has a magic num

ber of 55 AA. File systems continue to function normally even when the

magic number is corrupted. However, most software, including digital

forensic tools, cannot determine the correct file system, which prevents

them from functioning properly. For example, a forensic tool would not

be able to parse the data structures in an imaged file, although it would

still permit hex dumps of the image.

The magic number on an Ext2 formatted floppy disk can be overwrit

ten by issuing the Linux command:

dd if=/dev/zero of=/dev/fdO bs=1 count=2 seek=10BO.

If the magic number (or the beginning) of a partition is overwritten, it

is first necessary to determine the file system. Next, the magic number
in the image must be corrected to permit analysis using forensic tools.

A related denial of service attack involves overwriting a partition table

so that forensic tools cannot determine where partitions begin and end.
The tools assume that the entire drive is one giant partition and do not

parse the real partitions correctly. The Linux utility gpart [3] can be

used to reconstruct the partition table in such a situation.

3. Data Concealment within File Systems

This section describes how secret information may be hidden within

file systems to evade detection by traditional digital forensic tools. Three

data hiding techniques, involving alternate data streams, file slack space

and reserved locations of filesystems, are discussed along with strategies

for detecting and recovering hidden data.

3.1 Alternate Data Streams

Microsoft Windows is commonly installed on a hard disk using the
NTFS file system. NTFS provides more functionality than FAT, which
was used in earlier versions of Windows. Alternate data streams, one of

the new features of NTFS , can be used to conceal data [12] .

Piper, Davis £3 Shenoi 85

NTFS files are interpreted by the operating system as streams of data

associated with a filename. Typically, files only have one stream of

data, but additional data streams may be added to store information

about the file, e.g., summary information about the file, keywords and

comments. Within the Windows XP GUI, an alternate data stream can

be created or viewed by right-clicking on a file, selecting Properties

and then selecting the Summary tab.

C:\>echo hello world> file. txt

C:\>echo this data is hidden> file.txt :secret

C:\>more < file .txt

hello world

C:\>more < file .txt :secret

this data i s hidden

Figure 5. Alternate data stream creation procedure.

The DOS command prompt can also be used to create alternate data

streams. Alternate data streams are created in the same way as normal

files, but the file is referenced using the file name and the alternate data

stream name separated by a colon.

Figure 5 shows the procedure for creating a file with contents hello

world. An alternate data stream called secret is associated with the

file; this alternate data stream contains this data is hidden. Figure

5 also shows that when file contents are displayed, only the data associ

ated with the default stream (hello world) appears. The alternate data

stream is displayed using the command: more < file. txt :secret.

This demonstrates that the contents of the alternate data stream are

distinct from the default stream.

Alternate data streams are useful for concealing data because the

Windows operating system lacks the functionality to access them. In

deed, Windows ignores alternate data streams when reporting file sizes

and free space on a disk. For example, the file file. txt, which contains

both hello world and this data is hidden, is listed as being only

14 bytes. Alternate data streams are not listed when viewing directory

listings or browsing folders using Windows Explorer. In fact, the only

way to discover an alternate data stream is to use third-party software,

e.g., Streams [19] .

Even more astonishing is the fact that, in Windows, the only way to

delete an alternate data stream is to delete the entire file. Since alternate

data streams can be associated with files as well as directories (including

the root directory), the removal of an alternate data stream is somewhat

Real Data

86 ADVANCES IN DIGITAL FORENSICS II

Siack Space Data

~ _------A~_-- __r--- ____

Figure 6. Hidden data in file slack space.

problematic. The Streams utility [19J can be used to selectively delete

alternate data streams.

Until a few years ago, data concealed using alternate data streams

could be discovered only by string searches and hex dump analyses.

Most forensic tools are now able to detect the presence of alternate data

streams.

3.2 Slack Space

Most file systems divide their partitions into blocks of equal size. In

stead of allocating just enough bytes to store a particular file, complete

blocks are reserved for the file. For example, on a file system with 512

byte blocks, a 14-byte file takes up 512 bytes of storage, and a 526-byte

file uses 1024 bytes. Thus, files can grow within their allocated blocks;

when they outgrow them, additional blocks can be allocated from else

where on the disk. Slack space is the unused space within a block [5, 12J.

File slack space is not overwritten unless the size of the file increases.

If the file shrinks, old data residing in the slack space could be retained

indefinitely.

Data may be hidden in slack space (Figure 6), for example, by using

the bmap tool that was originally created to read slack space. Many files,

especially those associated with the operating system and applications,

are updated rarely, if ever. The slack space of these files is a good place

to hide data. Most forensic tools can be used to examine slack space,

but investigators must know which files are most appropriate for hiding

data and search their slack space for concealed evidence.

3.3 Reserved Locations

File systems have reserved locations that are used to support upgrades

and new features . Since the reserved locations are unused until a file

system is updated, data written to these locations neither overwrites
useful data nor affects system operation.

The reserved locations of the Ext2/Ext3 file systems can be identified

by reviewing Linux kernel source code in ./include/linux/ext2--fs.h.

Figure 7 shows the source code for one of the structures in the Ext2 file

Piper, Davis fj Shenoi 87

struct ext2_group_desc

{

}j

__u32

__u32
__u32

__ui6

__ui6

__ui6

__ui6

__u32

bg_block_bitmapj

bg_inode_bitmap;

bg_inode_table;

bg_free_blocks_count;

bg_free_inodes_count;

bg_used_dirs_countj

bg_pad j

bg_reserved[3];

/* Blocks bitmap block */

/* Inodes bitmap block */
/* Inodes table block */

/* Free blocks count ~ /

/* Free inodes count */
/* Directories count */

Figure 7. Source code for the group descriptor.

system. A total of 14 bytes of data can be hidden within this structure,

2 bytes in bg.pad and 12 bytes in the bg-reserved variable.

The Data Mule FS tool [8J was designed to hide data in Ext2/Ext3 file

systems. This tool breaks up a large file into small fragments , which are

stored in reserved locations throughout a file system. To counter this

tool, we developed the rfinder utility [17J that detects and extracts

hidden data in Ext2/Ext3 file systems in a forensically sound manner.

4. Data Concealment outside File Systems

Standard forensic procedures involve seizing and imaging storage me

dia. Individuals seeking to conceal evidence may hide data in devices

that are not normally seized or in devices that are not easily imaged.

This section describes how data may be concealed within random access

memory, obscure hard drive locations and BIOS chips. Also, techniques

for detecting and recovering hidden data are discussed.

4.1 Random Access Memory

The question of whether or not a running computer should be turned

off upon seizure is a subject of debate [12, 14J. One side recommends

pulling out the power cord. Another side, concerned that this procedure

may damage the drive or stop the machine from completing a write oper

ation, insists that the machine be shut down properly using the operating

system. Yet another side, recognizing that valuable data might be lost

during machine shutdown, recommends that information pertaining to

open ports, running processes, etc. be collected while the machine is

running. Each procedure has its advantages and disadvantages. How

ever, the third procedure is based on an important observation - some
key evidence may not be stored on disk.

88 ADVANCES IN DIGITAL FORENSICS II

To reduce the amount of evidence potentially recoverable from a hard

drive, a malicious individual might attempt to perform most, if not all,

actions in memory. A remote user could use a root kit that remains

persistent in memory, and attach to a currently running process or use

common utilities already on the machine to perform actions. Individuals

desiring to minimize evidence of their actions on a local machine could

use Knoppix [11] or other CD-bootable operating systems that do not

require a hard drive or other permanent memory storage. The Tinfoil

Hat Linux operating system is designed to leave no evidence pertaining

to user actions: it encrypts all data written to persistent memory.

4.2 Hard Drives

A hard drive has more memory than is accessible by imaging the

drive. For example, the Host Protected Area or ATA-Protected Area at

the end of a hard drive cannot be read from or written to using standard

operating system calls because the drive reports that it is smaller than its

true capacity [5]. Forensic examiners should be aware that important
evidence might be concealed in these locations. While standard tools

(FTK, EnCase and ILook) cannot access this evidence, special tools,

e.g., X-Ways Replica [20] , are capable of detecting and recovering the

hidden data.

SMART technology [16], another obscure hard drive feature, could be
used by a remote hacker to determine if a victim machine has been the
subject of an investigation. This technology, which is used to monitor
the health of hard drives, provides information about how long a drive

has been in operation. Suppose a hacker loses a connection to a vic

tim computer for a period of time. Upon regaining the connection, the

hacker could determine that the length of time that the drive has been
in operation does not match the time elapsed since it was mounted . The

hacker might infer that .drive was imaged, and then attempt to subvert

the investigation by wiping incriminating evidence on other computers.

4.3 BIOS Chips

Every computer and embedded device has a Basic Input/Output Sys

tem (BIOS) chip, which is required to boot the system. A BIOS chip

typically has 128K to 512K of flash memory that holds code and data.

However, the chip may contain between 25K to lOOK of unused space

that can be used to store data without affecting the operation of the
BIOS. This unused space has been exploited by virus writers and com
puter game enthusiasts. Malicious individuals can also use this space to

hide incriminating evidence [6, 7].

Piper, Davis (3 Shenoi 89

Uniflash [18J, a BIOS flashing utility, can be used to read and write

data to a BIOS chip. Data may be written to BIOS free space and certain

regions of BIOS modules (e.g., those containing error messages) without

corrupting the BIOS [6, 7J. Alternatively, the entire BIOS memory may

be overwritten, which, of course, renders the BIOS chip unusable [6, 7J .

In this case, however, a BIOS Savior device [10] is required to boot the

computer. This device provides a backup BIOS chip and a hardware

switch that enables the user to select whether the computer will use the

backup chip or the original BIOS chip for the booting process.

Forensic investigators must be aware that data may be hidden on a

BIOS chip. They should check for utilities (e.g., Uniflash) and tools

(e.g., BIOS Savior) that enable BIOS chips to be modified. It may also

be necessary to conduct a forensic examination of the BIOS chip itself.

Certain segments of BIOS memory can be viewed using the Windows

debug command [6, 7] . The entire BIOS memory can be extracted us

ing special software (e.g., AwardMod [9]) and analyzed using standard

forensic tools (e.g., EnCase, FTK and ILook) [6, 7] .

5. Conclusions

As digital evidence becomes increasingly important in judicial pro

ceedings, it is logical to assume that malicious individuals will attempt

to subvert investigations by targeting vulnerabilities in digital forensic

procedures and tools. They will also endeavor to conceal incriminating

evidence in obscure regions of file systems, in devices that are not easily

imaged or in devices that are not normally seized.

This paper has two main contributions. The first is the description of

the state of the art in hostile forensic techniques and tools. The second,

and more important, contribution is the discussion of strategies for coun

tering hostile forensic techniques and tools. Of particular significance are

the strategies for combating subversion and denial of service attacks on

forensic tools, and techniques for detecting and extracting concealed ev

idence. This paper has been written to raise awareness about hostile

forensic techniques - and countermeasures - within the law enforcement

community. We hope it will stimulate efforts within the digital forensics

research and development community to ensure that all the evidence

wherever it may reside - is recoverable and presentable in court.

References

[IJ 42.zip (www.unforgettable.dk).

[2J AERAsec, Decompression bomb vulnerabilities (www.aerasec.de/

security/ advisories/decompression-bomb-vulnerability.html) .

90 ADVANCES IN DIGITAL FORENSICS II

[3J M. Brzitwa, gpart (www.stud.uni-hannover.dejuserj76201jgpart).

[4] R. Card, Cross-referencing Linux (lxr.linux.nojsourcejincludejlin

uxjext2_fs.h?v=2.6.1O).

[5] B. Carrier, File System Forensic Analysis, Addison-Wesley, Craw

fordsville, Indiana, 2005.

[6] P. Gershteyn, M. Davis, G. Manes and S. Shenoi, Extracting con

cealed data from BIOS chips, in Advances in Digital Forensics, M.

Pollitt and S. Shenoi (Eds.), Springer, New York, pp. 217-230, 2005.

[7] P. Gershteyn, M. Davis and S. Shenoi, Forensic Analysis of BIOS

chips, in Advances in Digital Forensics II, M. Olivier and S. Shenoi

(Eds.), Springer, New York, pp. 301-314, 2006.

[8] The grugq, The art of defiling, presented at the Hack in the Box

Conference (packetstormsecurity.nljhitb04jhitb04-grugq.pdf), Oc

tober 8, 2004.

[9] J. Hill, AwardMod (sourceforge.netjprojectsjawardmod), 2002.

[10] lOSS, RDI BIOS Savior (www.ioss.com.tw), 2000.

[11] Knoppix (www.knoppix.org).

[12] W. Kruse and J. Heiser, Computer Forensics: Incident Response

Essentials, Addison-Wesley, Boston, Massachusetts, 2002.

[13] V. Liu, Metasploit Project (www.metasploit.comjprojectsjantifor

ensics).

[14] K. Mandia and C. Prosise, Incident Response and Computer Foren

sics, McGraw-HilljOsborne, Emeryville, California, 2003.

[15] S. McClure, J. Scambray and G. Kurtz, Hacking Exposed: Network

Security Secrets and Solutions, McGraw-HilljOsborne, Emeryville,

California, 2001.

[16] S. McLeod, Smart anti-forensics (www.forensicfocus.comjindex.php

?name=Content&pid=53) .

[17] S. Piper, M. Davis, G. Manes and S. Shenoi, Detecting misuse in

reserved portions of Ext2j3 file systems, in Advances in Digital

Forensics, M. Pollitt and S. Shenoi (Eds.), Springer, New York,

pp. 245-256, 2005.

[18] Rainbow Software, Uniflash (www.uniflash.org), 2005.

[19] M. Russinovich, Streams (www.sysinternals.com/Utilities/Streams

.html), 2005.

[20] X-Ways Software Technology, X-Ways Replica: DOS disk cloning

and imaging tool (www.x-ways.netjreplica.html) .

	Chapter 7 COUNTERING HOSTILE FORENSIC TECHNIQUES
	1. Introduction
	2. Subversion and Denial of Service
	2.1 Timestamps
	2.2 Compression Bombs
	2.3 Sparse Files
	2.4 Magic Numbers

	3. Data Concealment within File Systems
	3.1 Alternate Data Streams
	3.2 Slack Space
	3.3 Reserved Locations

	4. Data Concealment outside File Systems
	4.1 Random Access Memory
	4.2 Hard Drives
	4.3 BIOS Chips

	5. Conclusions
	References

