
The massive amount of security data that
network sensors and host-based applica-

tions generate can quickly overwhelm the operators
charged with defending the network. Often, operators
overlook important details and it’s difficult to gain a
coherent picture of network health and security status
by manually traversing textual logs, using command-
line analysis scripts or traditional graphing and chart-
ing techniques. In many instances, this flood of data

will actually reduce the overall level
of security by consuming operators’
available time or misdirecting their
efforts. In extreme circumstances,
the operators will become desensi-
tized and ignore security warnings
altogether, effectively negating the
value of their security systems.

We address this problem by care-
fully crafting graphical systems
designed to present the data in
insightful ways that tap into the
high-bandwidth visual recognition
capability of human operators. We
began our work by surveying profes-
sional security operators to deter-
mine the limits of today’s best
systems and identify high payoff tar-
gets for improvement. Using these

requirements to drive our designs, we created two com-
plementary security visualization systems. The first sys-
tem, intrusion detection system (IDS) RainStorm (see
Figure 1), provides high-level overviews of intrusion-
detection alerts. The second system, Rumint, provides
detailed insights into packet-level network traffic. These
systems mirror two primary tasks of security analysts:
detect and respond to network intrusions (IDS Rain-
Storm) and perform rapid in-depth analysis of specific
intrusion events (Rumint).

We have deployed these systems in a variety of labo-
ratory and operational settings for a total of two years to

evaluate their effectiveness. During this period, we iter-
atively improved their designs and developed a gener-
al framework for designing such systems. In this article,
we provide multiple contributions: we present the
results of our survey of security professionals, the design
framework, lessons learned from the design of our sys-
tems as well as an evaluation of their effectiveness. Our
results indicate that both systems effectively present sig-
nificantly more information when compared to tradi-
tional textual approaches. We believe that the
interactive, graphical techniques that we present will
have broad applications in other domains seeking to
deal with information overload. This article is based on
a series of conference and workshop papers that
describe earlier versions of our work.1,2

Evaluating current best practices
Information overload is an everyday occurrence for

security analysts. While there is a tremendous amount
of work on information overload by the psychology
research community, little has been done that directly
examines the real-world needs of security professionals
and network administrators. We believe this specificity
is critical to developing effective solutions. 

As an example, consider the day-to-day operation of
the Georgia Institute of Technology’s campus network. At
this institution, the total campus population is approxi-
mately 15,000 undergraduate and graduate students
and approximately 5,000 staff and faculty. There are 69
individual departments spread over the campus with
between 30,000 to 35,000 networked computers opera-
tional at any given time. The total number of IP address-
es allocated to Georgia Tech is equivalent to 2.5 class B
networks or 163,840 addresses. The network connection
from the campus to the Internet has an average through-
put of 600 megabits per second. On average, the network
processes more than 4 terabytes of data each day. 

Georgia Tech’s Office of Information Technology man-
ages the security, health, and welfare of the campus net-
work. Staffed by a handful of network analysts and
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security experts, OIT’s main concern is, by necessity,
determining the location of only the highest priority secu-
rity alerts and effectively allocating their limited human
resources to resolve the problems. Unfortunately, the
intrusion-detection sensors deployed across campus gen-
erate an average of 50,000 alarms per day. To prioritize
these alarms, OIT analysts typically resort to only high-
level statistics, such as the number of alarms, alarm sever-
ity, and the time of day of each alarm. Intrusion-detection
tools come with limited visual components, which have
proved problematic to calibrate. As a result, browsing
through textual alarm files and processing via command-
line scripts are usually the methods used to cope with the
overwhelming volume of data. Currently, alert prioriti-
zation consumes the majority of the analyst’s time, leav-
ing little time for analysis and response.

Surveying the limits of current tools
The problem is larger than just the Georgia Tech cam-

pus. As part of our research, we surveyed 39 profession-
al security analysts working in industry and graduate
students specializing in information security. Our survey
studied the limits of two widely used open source tools:
Snort, an IDS, and Ethereal, a protocol and packet analy-
sis tool.

Our results indicated that the majority of the survey
participants start to become overwhelmed when the
number of intrusion-detection alerts reaches only tens
of alerts per hour. Similarly, in packet analysis, overload
occurred when faced with only hundreds to thousands
of packets. Participants were explicitly asked to describe
when they, as humans, became overloaded and not to
respond based on the resource limitations of their given
hardware platforms. Information-security students had
a lower capability to cope with alerts, reaching overload
at an average of 30 alerts per hour. Professional securi-
ty analysts could handle more alerts than students, but
most still faced overload at an average of 230 alerts per
hour. The situation is similar for packet analysis. Infor-
mation-security students felt that Ethereal became dif-
ficult to use when the number of packets exceeded
approximately 500 packets. Professional security ana-
lysts handled a larger number of packets without over-
load, but most respondents from this group felt that
Ethereal became difficult to use when faced with data
sets exceeding 6,600 packets. 

Causes of overload
To clarify why overload occurred, we asked study par-

ticipants to elaborate on the causes. Comments collect-
ed from the survey instrument were free form, but by
clustering responses the following trends emerged. 

For those who had used Snort (15 participants), 40
percent found analysis and ease of use difficult, partic-
ularly the graphical front ends available for the tool.
Sixty percent were concerned that intrusion-detection
signatures were easy to bypass and difficult to tune effec-
tively for a given network. Of these, 56 percent felt that
an attacker could easily bypass existing signatures and
44 percent found it difficult to effectively tune the intru-
sion-detection system to minimize false alarms and
missed attacks.

For those who had used Ethereal (27 participants),
59 percent indicated problems with the ability to see the
big picture in the data due to overwhelming detail.
Forty-four percent stated that the textual representa-
tion of the data was not up to the task and that the GUI
became unmanageable when working with large data
sets. Eighteen percent found the filtering capability dif-
ficult to learn and use.

How our systems address overload
The two systems we present in this article directly

address the majority of these issues. Note, we do not
address the users’ stated problems associated with
Snort’s signature matching and tuning. We believe this
issue is more an artifact of the underlying signature-
based intrusion-detection model. While resolving the
shortcomings of signature-matching, intrusion-detec-
tion systems is an important area for future research,
we focus instead on addressing information overload.
Therefore, our systems address the remaining issues for
both Ethereal and Snort and seek to improve existing
best practices by providing insightful high-level
overviews and detail on demand to support analysis of
intrusion alarms and network packets. While we believe
our systems are addressing real-world needs when com-
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pared to today’s best-in-class operational systems, they
also advance the state of the art when compared to the
research literature.

Several tools have been developed to visualize and
process Snort IDS alarm log files. One is SnortView3

where a matrix view shows IP address connections over
time. This tool is successful in combining multiple para-
meters, visually representing them to assist analysts in
finding anomalous behavior. However, the amount of
information shown is limited to a subset of IP address
ranges, time (4 hours), and number of attacks. We
describe other related tools such as SnortSnarf, ACID,
and RazorBack elsewhere.1 These tools suffer from sim-
ilar limitations as well as a heavier reliance on text-based
presentation of information. Real attacks will generate
many alarms,4 rapidly filling logs with redundant infor-
mation, until stopped. This fact, together with the aver-
age amount of unique alarms generated, can cause
information overload and possibly hide the most signif-
icant attacks. To address the problem of oppressively
large alert logs, IDS RainStorm provides security ana-
lysts and network administrators with an informative,
information-rich display and a convenient interface for
monitoring network security alarms. What differenti-
ates our IDS RainStorm from the other tools is that it
represents 2.5 class B IP address spaces (65,532 hosts ×
2.5 = 163,830 total) on one display. Mapping alarms to
pixels encodes a large amount of alarm data into one
screen for a full 24-hour period.

In the research domain, several innovative approach-
es have sought to overcome the problem of analyst over-
load by visualizing network packets. Current research
systems employ scatterplots, parallel coordinate plots,
line segments, glyphs, maps, graphs, and similar high-
level techniques. Unfortunately, the great majority of
these systems depend heavily on a small subset of pack-
et-header fields, such as source and destination network
addresses and ports, but neglect lesser used fields and the
application layer payload. In the current security envi-
ronment, a large percentage of malicious activity occurs
using the less common header fields and in the applica-
tion layer. As a result, such systems are effectively blind
to these classes of attack. To address these issues, Rumint

extends several best practice visualization tech-
niques by incorporating 19 header fields, an inter-
active personal video recorder metaphor, and a
binary rainfall visualization that allows compari-
son of 600 to 1,000 or more payloads at one time.
Our results indicate that the Rumint system pre-
sents, in a usable and effective manner, significant-
ly more information than traditional hexadecimal
representations.

Design framework for security
visualization systems

We propose a framework for the design of secu-
rity visualization systems (see Figure 2). While 
system frameworks are difficult to validate cate-
gorically, our proposal emerged from several years
of research. During this period, we iteratively
designed and implemented six security visualiza-
tion systems and conducted an extensive survey of

commercial, open source, and research systems. From
this review, we noted distinct similarities in the architec-
ture and processing pipelines of many systems, but were
unable to find an underlying framework in the literature
to inform our designs. We also noted that several systems
advanced valuable, but rarely seen, components that we
believe other researchers should consider. Finally, we
received feedback from users on several key areas that
were lacking from any of today’s systems. By merging
insights from all of these sources, we have attempted to
create a comprehensive framework. 

We believe that by better defining the components
and processing sequence of security visualization sys-
tems, other designers will be able to design and con-
struct effective systems more rapidly. In addition, closely
examining each individual component in isolation gives
us great potential for future work and optimization. We
also believe that the lessons learned, which are embed-
ded in the framework, will assist researchers working
in other domains, particularly those constructing inter-
active information visualization systems. Note, not all
components of the framework must be implemented for
a successful system, but we believe designers should, at
least, consider each stage.

Inputs
Possible inputs to the system might take many forms

across a broad spectrum of data quality, from un-
processed data to highly refined semantic information.
For example, Snort performs signature matching against
network traffic to provide specific alert information. Ethe-
real collects only raw capture data from network pack-
ets. Sources might include flows from security sensors,
firewalls, IDSs, network servers, host-based security sub-
systems, and honeynets. (Honeynets are computers
placed on a network, but have no legitimate use, there-
fore all activity is suspect.) Inputs are not constrained to
these, typically passive, traditional sources. Additional
semantic information might be infused into the visual-
ization system by including active collection flows such
as those provided by the nmap network mapping tool as
well as more specialized tools, such as the p0f passive
operating system fingerprinting tool. Most implemented
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systems use single streams of security flows; effective inte-
gration of multiple streams to support improved correla-
tion remains an open problem. Timeliness of the data will
range from real-time, near-real-time, and historical infor-
mation. It might be collected directly by the visualization
system, receive from external devices, or pulled from
intermediate databases.

Preprocessing and prefiltering
The data and information flows the system receives

might or might not be in a format compatible with the
system. In many instances they will need to be parsed
and relevant information will need to be extracted. Ethe-
real does this comprehensively through the use of dis-
sectors for 706 different protocols. Prefiltering lets users
select only the desired subset of records or fields to
progress further up the processing pipeline in an effort
to conserve system resources. Ethereal implements this
capability through the use of a capture filtering language.  

System storage
After preprocessing and prefilter-

ing, the data might be buffered. The
buffer typically consists of a RAM
cache and might include additional
storage on disk for large data
streams. Ethereal behaves in this
manner. Such storage is optional
and might be bypassed in instances
where interactivity is at a minimum
and state is not required.

Postfiltering and encoding
Filtering and encoding are logi-

cally intertwined. Before being
passed to the graphics engine and
subsequent visualization, users
make choices based on what infor-
mation they would like to view and how to display it.
Ethereal uses a display filter language to filter data in
the buffer and provides a coloring capability to encode
additional information in the display.

Graphics engine and visualizations
The graphics engine receives the remaining compo-

nents of the data flows as well as encoding instructions
and passes the information to the visualization displays.
The visualizations display the information using a vari-
ety of information visualization techniques and might
include any number of semantic windows on the data.
Typically these visualizations are graphical in nature,
but might exploit other senses such as sound and touch.
Ethereal provides a three-pane multiple coordinated
display that includes an interactive textual list, tree-
based protocol decodes, and the raw hex/ASCII repre-
sentation of the selected packet. In the future, the
graphics engine and visualization windows might
include ties to machine-processing modules to direct
and conserve human attention.

Logging and reporting
Visual logging and reporting are relatively unexplored

aspects of security visualization systems, but our inter-
views with security analysts indicated that they are quite
important, particularly the reporting task, for commu-
nicating results to other analysts, end users, customers,
and managers. Visual logging of security data includes
automatically storing images and video clips of visual-
ization activity in lieu of storing the underlying raw
source data. Visual reporting exploits the strengths of
visualization systems by allowing the analyst to work
through slices of network traffic and, once an area of
interest is determined, allows easy construction of a
summary report that might include marked-up images,
video clips, filtering parameters, and analyst comments.
Ethereal incorporates neither of these capabilities.

IDS RainStorm
IDS RainStorm presents alarm data in an overview

where system administrators can get a general sense of
network activity and easily detect anomalies. Zooming

and drilling down for details can be
performed at the user’s discretion.
After using IDS RainStorm to rapid-
ly identify events of interest, system
administrators can then examine the
associated network packets using
Rumint for more detailed analysis.

StealthWatch IDS alert flows
Lancope’s StealthWatch anomaly-

based IDS system is one of the securi-
ty appliances used to secure the
Georgia Tech campus (see http://
www.lancope.com/products/). It
monitors flow activity and bandwidth
usage to detect anomalous behavior.
To test our system, we used Stealth-
Watch IDS alarm logs generated from
Internet traffic on the perimeter of the

Georgia Tech network. IDS RainStorm can be used for
other IDS system alarm logs as well. StealthWatch gener-
ates an average of 7,000 alarms in one day. 

The StealthWatch IDS contains two alarm parame-
ters and 33 alarm types that we use in our visualization
tool. After the system generates an alarm, it records a
Unix time stamp. Finally, the tool uses the associated
victim IP address and any external IP source address
provided by StealthWatch.

Visualization system
IDS RainStorm provides a main view that presents an

overall representation of the entire Georgia Tech IP
range and a zoom view that provides more information
on a user-selected range of IP addresses. We designed
the overall view to convey enough information for an
administrator to see network activity that needs imme-
diate attention. Once alerted to patterns of suspicious
network activity, administrators can retrieve specific
details of particular alarms using the zoom view. 

Visual representation and main view. Each of
the views follows a general visualization technique
developed to address this problem, as Figure 1 shows.
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The visualization uses a set of rectangular regions that
represent (top to bottom) the set of contiguous IP
addresses, where 20 addresses are allocated to a row of
pixels. Each column’s horizontal width represents 24
hours of network activity. Individual colored dots in a
row (IP addresses) represent total alarms for those 20
addresses at a particular point in time (horizontal posi-
tion). The alarm with the highest severity out of the 20
addresses will appear onscreen. In addition, the user
has the option of configuring StealthWatch to correlate
a series of low-priority events into a single higher prior-
ity alarm to reduce visual clutter. Color represents alarm
severity where red is high concern, yellow is medium
concern, and green is low concern.  

The parameter with the largest range of values, there-
fore the largest scaling problem, is the 2.5 class B IP
addresses. Because users need a way see an overview of
all addresses without cluttering the view, we applied a
method used in the Tarantula5 and SeeSoft tools6 for
representing large source-code files. Each represents a
source line as a line of pixels, and then simply wraps
around to the next column to continue the sequence of
source lines. Scaling time is a less taxing problem
because its range is variable. We use 24 hours for the
range shown in detail in Figure 1 since alarm logs are
generated every 24 hours by default. Scaling 24 hours
onto the total width of a typical screen resolution divid-
ed by the number of y-axes worked well without highly
cluttered pixels in the main view. Each pixel on the x-
axis represents 20 minutes, and each pixel on the mul-
tiple y-axes represents approximately 20 IP addresses.

Zoom view. As a user moves the mouse across the
overview, a red box highlights the current cursor posi-
tion as illustrated in Figure 1. This red box is an IP range
selector and prints the IP address in the top position.
When a user clicks on the overview, a secondary screen
appears in a separate window with an enlarged view of
the portion enclosed by the red box. Labels are on the
top horizontal axis to represent time within 24 hours.
IDS RainStorm represents alarms as larger glyphs, as
Figure 3 shows.

The extra space in the zoom view provides other infor-
mation such as additional detail for each alarm and
external IP address connections. In Figure 3, external
connections appear with lines pointing to the affected
internal IP address. We implemented an additional
zoom function, based on time and local IP, that users
can double click the mouse to pull up within the zoom
view. Within this same window, the system redraws the
layout (see Figure 4). Zooming is helpful in reducing
overlap when more than one alarm occurs for an IP
address at the same time, and for addresses that appear
close together. 

Glossing. Glossing occurs when a user moves the
mouse cursor over an icon or particular text and the pro-
gram presents additional information. In the zoom view,
when a user mouses over a particular alarm glyph, a
pop-up gloss appears that gives the alarm type, time,
source, and destination IP address. Also, mousing over
an external IP creates a gloss, highlights the respective
address, and triggers the plotting of a line that connects
the external IP address to the alarm glyph on the graph.
This is useful when multiple external IP addresses over-
lap in the same area on the left axis, making it difficult
to read. Figure 4 shows an example of this method. 

Filtering. In both the overview and zoom views, the
user might filter on alarm severity, choosing to show
only the critical alarms (red), medium-concern alarms
(yellow), or the low-concern alarms (green), as shown
in Figure 4. This capability can help the user focus on
particular alarms for further analysis and to sort through
multiple alarms that appear at the same time for a given
set of IP addresses. 
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Example usage scenarios
Certain attacks, like botnet and worm activity, can

target a network across the logical IP space from one or
a range of source IP addresses. When this happens, the
attack is not as obvious to the network adminstrator
until an abundance of alarms are generated (which hap-
pens when many machines have been targeted) or the
effects of the attack become more dominant across the
network //Okay?//. A useful activity is to pan through
the graph by clicking the mouse and dragging the IP
range selector, or red box, through the overview. The
resulting motion appears in the zoom view (see Figure
4a). Time is constant while the internal IP addresses on
the left vertical axis change sequentially. The external
IP addresses on the right axis maintain the same 232-bit
mapping but as the user scrolls in the main view, the
external IP addresses appear (and disappear) based on
alarm activity associated with the changing/moving
internal IP addresses. This activity allows traversal
through the range of IP addresses to find detailed pat-
terns. The external IP addresses remain constant
through the panning, and this helps determine whether
there is some address or range of addresses trying to
attack the network. 

A cluster of red alarms in region 2 of Figure 5 (next
page) is easily visible in the midst of more common
medium priority alarms in the Georgia Tech campus
dorm IP space (region 1 in Figure 5). Here, one IP
address was a source for StealthWatch’s Watch Port
Active alarms (which indicate that a port on the user-
defined watch list has become active) from many exter-
nal IPs as Figure 4 shows. The figure also highlights a
close-up of this activity showing the 3:00 p.m. to 6:00
p.m. time range (see Figure 4b). The infected host
demonstrated characteristic communication to a wide
range of IP addresses as the line of glyphs and array of
line segments connecting to external IP addresses. 

On the same day there is another cluster of red alarms
(region 3, Figure 5). These alarms are Watch Host Active
(indicates that a host on a user-specified watch list has
become active). Some of these external hosts have made
connections to other hosts on the local network previ-
ously and had bots installed on them, which is why they
were placed on the list. These bots were more active
around midnight, and in the figure we can see similar
activity around midnight. The next day, for the same IPs,
you can see almost the same time pattern of activity. Fig-
ure 3 shows the zooms for each consecutive day. We can
conclude that these IP addresses have become infected
with a bot, which has a specific time pattern of activity.  

These examples show how analysis is improved for
reoccurring alarms—due to general dorm activity—and
for alarms that were triggered due to anomalous behav-
ior (botnet and worm case). The visualization enhances
the analysts’ view of the logs and lets them more easily
notice activity that machines cannot. Other monitoring
tools can optionally be recoded or recalibrated accord-
ing to insights gained from human observation.
Nonetheless, the tool is only as good as the data it
receives; therefore, some problems can be difficult to
find especially when false alarms are part of the data.
The underlying IDS system generates this alarm data

and, unfortunately, even today’s best systems are prone
to some degree of false alarms and are unable to detect
all classes of anomalous activity. IDS RainStorm imple-
ments general techniques for displaying whatever
alarms are generated by any IDS. 

These visual images can give a system administrator
a frame of reference of what a usual day looks like. If
any day deviates from this image, then the system
administrator might need to investigate further to find
out whether the change is anomalous. Comparing a new
view to a normal day’s image is a much faster process
than trying to do the same with text logs (the image of
a day can be saved for later reference). This capability is
quite significant given the amount of traffic that a large
campus or enterprise generates. This type of analysis
also shows the advantage a human has over machine-
learning algorithms used to find anomalous activity. 
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Results
When we demonstrated a prototype version of IDS

RainStorm to system administrators, they uniformly
gave positive feedback and clearly indicated that they
needed help with the log analysis task. Some of the sug-
gestions they made were the following: 

■ Remap the two axes so that the entire internal IP
address range is on the left and a small set of suspi-
cious external IPs are on the right. 

■ Combine alert outputs from the other IDS systems
used in the tool to compare each system’s output and
help rule out false alarms.

In the case of remapping the two axes, for example, if
a worm is targeting a network and the IPs affected are
spread across the IP space of the network, then it is dif-
ficult to correlate the behavior. A subset of these exter-
nal IPs that connect to the local network can be plotted
on the right parallel axis and the entire local IP space
condensed on the left axis. This will help to see what
hosts are triggering alarms due to activity of the exter-
nal IP address.

Currently, IDS RainStorm is useful for visualizing IDS
alarms on a large network, observing time patterns,

knowing locations (local and external IPs),
and severity. Our analysis of the require-
ments and tasks of Georgia Tech’s network
system administrators identified that these
capabilities would be helpful. The tool
presently can be used for forensic analysis,
but we also would like to implement real-
time analysis for live monitoring of the net-
work. We also wish to explore how well the
tool will scale if the amount of alarms were
to multiply. We need additional testing in
this area, and we predict that more user
interaction as well as enhanced filtering and
improved querying capabilities will be
required to compensate for the increased
number of alarms.

For the tool to be used on the network,
system administrators will have to learn
how to use it, how to interpret the display,
and what the visual patterns mean. People
are generally good at these tasks and we are
optimistic that system administrators will
grasp these concepts quickly.

Rumint
The primary design goal of Rumint is let-

ting users view a large number of network
packets in a way that supports rapid com-
parison, deep and broad semantic under-
standing, and highly efficient analysis. We
also aimed to allow intuitive interaction to
remove noise and highlight packets of inter-
est. We purposely designed Rumint to com-
plement higher level systems such as IDS
RainStorm. IDS RainStorm excels at iden-
tification of events of interest, but lacks
comprehensive tools for analyzing the

underlying network packets that caused the event. We
created Rumint to fill this gap.

Rumint consists of the following seven visualizations
(in addition to personal video recorder interface), each
designed to provide different semantic windows on net-
work traffic:

■ scrolling text display,
■ parallel coordinate plot display,
■ glyph-based animation display,
■ thumbnail toolbar,
■ binary rainfall visualization,
■ byte frequency display, and
■ detail display.

The scrolling text display presents network packets,
one per horizontal row, in a user selectable encoding
(ASCII, hexadecimal, and decimal). It includes a strings
command, adopted from the Unix environment, that
will filter based on packet contents and display only
sequences of characters from the printable ASCII range
(for example, strings of three to nine characters).

The parallel coordinate-plot display visualization uses
the parallel coordinate-plot technique to display scaled
values from packet header fields (see Figure 6a). Cur-
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5 Overview of alarms on 27 April 2005. (Two regions are artificially identified in green
and magnified for easier viewing.) Region 1 shows activity in a subset of campus dorm IP
addresses. Region 2 outlines a cluster of activity for a machine in the dorm. Region 3
shows a cluster of activity occurring over a small range of IP addresses for the entire day.



rently, the display supports 19 header fields, up to 19
vertical axes, and 19! combinations of headers.

The glyph-based display combines three display
panes to animate any two attributes (header fields) of
network traffic (see Figure 6b). The center pane is a two-
axis parallel coordinate plot and the side panes contain
glyphs that move off the screen as the network traffic is
processed.

The thumbnail toolbar provides a real-time overview
of each visualization window in a thumbnail-size display
(see Figure 6c). Doubling as a menu, users may bring up
the full size window by clicking on a thumbnail.

The binary rainfall visualization displays packet con-
tents, one per line (see Figure 7a on next page). It has
three primary views that map packet contents to display
pixels. The byte frequency visualization displays the
presence and frequency of bytes within each packet (see
Figure 7b on next page). A detail window (not shown)
displays the selected packet’s contents in a traditional
hex/ASCII format. 

From the near infinite space of possible visualization
techniques, we chose these seven based on intuition and
feedback from security analysts. During the design
process we explored approximately 15 other visualiza-
tions, but these were ultimately discarded because they
did not effectively address user needs. We believe these
seven visualizations represent a solid set of techniques
that we can refine to increase their utility. 

The personal video recorder interface is the center of
the Rumint application (see Figure 6d). Packets are cap-
tured live from the network or loaded from capture files
and stored in an internal cache. This interface allows
playback of these packets for viewing in any of the visu-
alization windows. This approach extends the videocas-
sette recorder (VCR) metaphor suggested by Erbacher.7

In addition, the personal video recorder-based system
design scales well. It’s a straightforward matter to add
new visualizations in a short time period.

Binary rainfall visualization
The binary rainfall visualization (see Figure 7a) was

inspired by the classic waterfall display used for spec-
trum analysis but instead plots packets, one per hori-
zontal line, in time-sequence order. Three graphical
views plot pixels in direct correspondence to the binary
data’s structure. These views include plotting each bit
of binary data as a monochrome pixel, each byte of bina-
ry data as a 256-level gray-scale pixel, and each three
bytes of binary data as a 24-bit RGB pixel. The primary
benefit of this visualization is its ability to rapidly com-
pare up to 1,000 packets. Textual approaches, such as
those found in Ethereal, are limited to about 40 packets
per screen. Other benefits include the ability to compare
packet lengths, identify identical values between pack-
ets, and support signature development for network-
based malicious software.

Byte frequency visualization
The byte frequency visualization (see Figure 7b)

employs a similar approach by plotting one packet per
horizontal line. There are 256 positions along the hori-
zontal axis which correspond to the presence or absence
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6 Overview of the Rumint packet visualization system. Each win-
dow provides specialized insight into network traffic and can be
used alone or in combination. (a) Parallel coordinate-plot display,
(b) glyph-based animation display, (c) thumbnail toolbar, and 
(d) personal video recorder interface.



of byte values (0–255) in the given packet. Pixels are
colored based on the frequency with which the corre-
sponding byte appears relative to each packet. The pixel
might be illuminated as a single color if one or more of
a given byte is present (byte presence mode) or encod-
ed with color based on the frequency (byte frequency
mode). The user uses the drop down menu at the bottom
of the window to change modes. The key strength of this
visualization is its ability to facilitate rapid comparison
of packet structure and contents including such appli-
cations as detecting the use of encryption, fingerprint-
ing executable files, detection of ASCII text, and analysis
of polymorphic network worms.

Results
We have deployed the Rumint system globally in oper-

ational, laboratory, and training environments. Users
report significantly improved analysis on data sets of up
to 100,000 packets. We have engaged several hundred
users directly through focus groups, interviews, and
demonstrations. Through this interaction we found
overwhelming support for the personal video recorder
metaphor. We also found that our user base liked the
notion of visually examining large slices of network traf-
fic and then using Ethereal to examine a small number
of identified packets. This complementary approach
exploits the strengths of both systems. 

Visualization provides big picture context and helps
direct the analyst to areas of interest. Ethereal excels at
protocol dissection and analysis of a small number of
packets. The end result is a significant gain in analyst
performance far exceeding the current limitations of
6,631 packets, as found in our study of analysts, using
Ethereal alone. Beyond the current ceiling of 100,000
packets, the system depends on machine-processing
technologies to help identify interesting groups of pack-

ets to pass to the visualization system. As an interim
measure, we have examined data sets that have limit-
ed amounts of legitimate traffic: honeynets, capture-
the-flag exercises (competitive events where multiple
teams attempt to attack other teams’ computers while
defending their own), and botnets. We plan to explore
such automated support for the system in future work. 

Rumint suffers from several other limitations. The most
significant is its lack of advanced filtering capabilities. We
believe this to be a tractable problem, which we can read-
ily address by incorporating appropriate elements of
Ethereal’s display filtering language in the future. Rumint
also suffers from problems in the areas of scaling and
labeling. These areas are more problematic as no clear-
cut solutions exist. We project that both will be improved
by enhanced filtering, but plan to explore best-practices
research from the general information visualization and
interface design research literature.

Conclusions
Information visualization of security-related data

bears great promise in making our personal computers,
servers, and networks more secure. Such work is both an
art and a science requiring expertise from the comput-
er graphics, information visualization, interface design,
and security communities to turn the raw security data
into insightful and actionable information and knowl-
edge. There is no shortage of raw data—in fact there is
far more than can be analyzed by today’s best tools.
Humans often cope with this torrent of data by using
crude statistical techniques, textual displays, and out-
dated graphical techniques and by ignoring large por-
tions of the data. We believe that security visualization,
at its best, is both compelling as a video game and sev-
eral orders of magnitude more effective than the tools
we employ today. In this article, we moved toward this
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Transmission Control Protocol
User Datagram Protocol  
Internet Control Message Protocol

7 (a) Binary rainfall illuminating pixels in a one-to-one correspondence to packet bits
and (b) byte frequency visualizations illuminating pixels along one of 256 vertical
columns corresponding to the presence of byte values. Each visualization displays one
packet per horizontal row. 



goal by exploring the design, implementation, and eval-
uation of two complementary systems springing from
immediate, high-priority security needs and developed
by an interdisciplinary team of researchers. By bringing
together diverse ideas and expertise we directly
addressed significant problems facing the people who
defend our information technology resources. ■
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Honeynet Case Study
Operationally, we used the Rumint system to

monitor Georgia Institute of Technology
honeynet traffic for 12 months, from 1 July 2004
to 30 June 2005. In a typical usage scenario,
users loaded data sets of interest and iteratively
adjusted the menu parameters to focus on areas
of interest. For example, a user examining a
honeynet data set wished to filter as much
Internet background radiation1 as possible.
Being familiar with Pang’s observation that a
portion of User Datagram Protocol traffic is
caused by messenger spam, the user wished to
perform the following actions: constrain the
visualization to display only UDP traffic from
common messenger ports, confirm that the
traffic was indeed messenger spam, and filter
those packets from the larger data set. The user
first viewed the entire data set and noted that a
portion of the traffic contained groups of nearly
identical packets (see Figure 7a in the main
article) with a high percentage of bytes in the
printable ASCII range (see Figure 7b). Using the
scrolling text display, the user confirmed the
traffic as messenger spam and created a filter for
use with future data sets.
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