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Counterparty Risk and the Pricing
of Defaultable Securities

ROBERT A. JARROW and FAN YU*

ABSTRACT

Motivated by recent financial crises in East Asia and the United States where the
downfall of a small number of firms had an economy-wide impact, this paper gen-
eralizes existing reduced-form models to include default intensities dependent on
the default of a counterparty. In this model, firms have correlated defaults due not
only to an exposure to common risk factors, but also to firm-specific risks that are
termed “counterparty risks.” Numerical examples illustrate the effect of counter-
party risk on the pricing of defaultable bonds and credit derivatives such as de-
fault swaps.

IT HAS BEEN WELL DOCUMENTED in Moody’s reports on historical default rates of
corporate bond issuers that the number of defaults, the number of credit
rating downgrades, and credit spreads are all strongly correlated with the
business cycle. This has motivated reduced-form models such as Duffie and
Singleton (1999) and Lando (1994, 1998), which assume that the intensity of
default is a stochastic process that derives its randomness from a set of state
variables such as the short-term interest rate. This approach has the con-
venient features that conditioning on the state variables, defaults become
independent events, and default correlation arises due to the common influ-
ence of these state variables. On the other hand, a default intensity that
depends linearly on a set of smoothly varying macroeconomic variables is
unlikely to account for the clustering of defaults around an economic reces-
sion. This is evident from a casual inspection of the exhibits in the latest
Moody’s report (see Keenan (2000)). Within the usual affine framework, one
can model the state variables as jump diffusions (see Duffie, Pan, and Single-
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ton (2000)). But presently there is no evidence whether the magnitude of
jumps needed to justify the clustering of defaults is consistent with well-
defined, observable macroeconomic variables.!

This paper complements the current literature on default risk modeling by
introducing the concept of counterparty risk. In our model, each firm has a
unique (firm-specific) counterparty structure that arises from its relation
with other firms in the economy. Counterparty risk is the risk that the de-
fault of a firm’s counterparty might affect its own default probability. This
approach has two benefits. First, to the extent that the public is aware of the
counterparty relations, the prices of marketed securities will reflect the mar-
ket’s assessment of the importance of counterparty risk. Relying on the no-
tion of market efficiency, our model allows the extraction of this information,
which is potentially important for the pricing of defaultable bonds and credit
derivatives, as we demonstrate below. Second, the additional default corre-
lation introduced by counterparty relations makes it straightforward to ac-
count for the observed clustering of defaults. For instance, a group of firms
can be so highly interdependent that a single default can trigger a cascade
of defaults. Because the likelihood of default is higher for all firms during a
recession, this cascading effect is much more likely to be observed then. This
has important implications for the management of credit risk portfolios, where
default correlation needs to be explicitly modeled.

Our concept of counterparty risk has been motivated by a series of recent
events in which firm-specific risks figure prominently. Several such exam-
ples are given below:

e The South Korean banking crisis was commonly attributed to nonper-
forming loans made to a handful of chaebols (industrial conglomerates).

¢ Long Term Capital Management’s potential default had implications for
the likelihood of default of other major investment banks. This was the
given reason for the rescue effort led by the Federal Reserve Bank of
New York in September 1998.

e Bankers Trust revealed its $350 million position in Russian assets on
August 31, 1998. A month later, Standard and Poor’s downgraded its
senior debt.

¢ Goldman Sachs committed $2 billion in bridge loan to United Pan-
Europe Communications on March 22, 2000. Two months later, UPC’s
stock price was down 69 percent and Goldman Sachs was unable to find
a buyer for this loan.

¢ First Boston extended a $457 million bridge loan to the purchaser of
Ohio Mattress in 1989. It ended up owning Ohio Mattress and could not
recover its loan. This resulted in a takeover by Credit Suisse.

1 As Duffee (1999) points out, the empirical test of these reduced-form models is still in its
infancy. However, this body of literature has been growing rapidly. For example, see Duffee
(1999), Hund (1999), Keswani (1999), Taurén (1999), and Zhang (1999). None of these studies
address the issue of default correlation, however.
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While there are numerous stories like these in the financial press, a com-
mon thread is that a firm will face significant counterparty risk when its
portfolio is concentrated in just a few positions. As these positions change,
often unexpectedly, the firm is likely to run into financial difficulties. The
rational anticipation of these future events implies that there should be a
response in the term structure of credit spreads today. It is this discernible
shift that reveals the relevant information. In this context, traditional struc-
tural or reduced-form approaches are inadequate because they ignore this
firm-specific source of risk.

The concept of counterparty risk, however, is not limited to the portfolio
perspective. With the adoption of just-in-time manufacturing processes, firms
are increasingly reliant on the smooth operation of other firms upstream,
and a broken link is likely to have an impact on a firm’s likelihood of bank-
ruptcy. A case in point is the heavy loss suffered by GM when its Delphi
plant went on strike in 1998. Our model can capture this sort of industrial
organization interdependencies in default intensities. Similarly, in the study
of mortgage prepayment behavior, one could specify an empirical prepay-
ment function that incorporates not only macroeconomic factors such as in-
terest rates, but also regional demographic and economic variables that could
affect prepayment. For example, the default of a key local industry could
increase the likelihood of prepayment in the related locality as unemployed
workers relocate to find new opportunities. These are but a few of the po-
tential applications of our framework.

The modeling of counterparty risk is achieved through an extension of the
existing reduced-form models.2 In our model, the intensity of default is in-
fluenced not only by a set of economy-wide state variables, but also by a
collection of counterparty-specific jump terms capturing interfirm linkages.
This setup allows us to maintain the simplicity of a reduced-form model
while incorporating firm-specific information provided by the market.? In
the limit as firms hold well-diversified credit risk portfolios, the counter-
party risk part of their default intensities will disappear and our model
reduces to a standard one.

We start Section I by assuming the existence of a collection of doubly
stochastic Poisson processes representing default. The default intensities could
potentially depend on the status of all the other firms in the economy. Within
this general framework, we provide a pricing formula for defaultable bonds
that generalizes a key result in Lando (1994, 1998). In Section II, we discuss
the subtleties involved in the simultaneous construction of several default

2 Examples of reduced-form models of default risk are Lando (1994, 1998), Jarrow and Turn-
bull (1995), Jarrow, Lando and Turnbull (1997), Madan and Unal (1998), and Duffie and Single-
ton (1999). A comprehensive survey of the literature can be found in Jeanblanc and Rutkowski
(1999).

3 A consideration for counterparty risk should also be possible within structural models such
as Black and Scholes (1973), Merton (1974), and Longstaff and Schwartz (1995). One would
simply model the counterparty relation as the holding of a compound option. Indeed, such an
analysis can be implemented using the method of Delianedis and Geske (1998).
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processes. Through a simple example, we show that the complexity of the
model explodes whenever there exist “loops” in the counterparty structure.
We then place a further restriction on the model to simplify subsequent
exposition. In Sections IIT and IV, we explore the implication of counterparty
risk on bond pricing through several examples. These include simple ones
where default is independent of the default-free term structure, and more
realistic ones where the default intensity depends linearly on a Gaussian
spot rate. In Section V, we extend our model to the pricing of credit deriv-
atives, focusing on default swaps and the importance of default correlation
in pricing a default swap. We conclude with Section VI. All proofs and some
detailed derivations are contained in the Appendices.

I. The Model

Our model generalizes Lando (1994, 1998) to include counterparty default
risk. Lando’s reduced-form model allows for dependency between credit and
market risk through the use of a doubly stochastic Poisson process (also
called a “Cox process”). In a Cox process, the intensity of default, which
measures the likelihood of default per unit time, is itself a stochastic process
that depends on a set of economy-wide state variables. Lando models these
state variables as continuously varying diffusion processes. Our innovation
is the inclusion of jump processes in this set of state variables, thereby cap-
turing the interdependence among several default processes. Because of this
feature, the construction of the default processes becomes recursive, since a
complete default history of all other interdependent firms is needed to con-
struct the default process for a given firm. This added complexity is fully
analyzed below.

As the primary goal of this section is to extend Lando’s defaultable bond
pricing formula to include interdependent default risk, we initially assume
the existence of these default processes and defer their construction to Sec-
tion II. In the following, we outline the three ingredients of our model: the
default process, the recovery mechanism, and the pricing formula.

A. Default Process

Let the uncertainty in the economy be described by the filtered probability
space (QO,F,{F},,P), where F = F,. and P is an equivalent martingale
measure under which discounted bond prices are martingales. We assume
the existence and uniqueness of P, so that bond markets are complete and
priced by arbitrage,* as shown in discrete time by Harrison and Kreps (1979)

4 For a set of conditions leading to the existence and uniqueness of the equivalent martin-
gale measure when bond prices are driven by diffusions as well as a finite number of jump
processes, see Jarrow and Madan (1995).
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and in continuous time by Harrison and Pliska (1981). Subsequent specifi-
cations of the model are all under the equivalent martingale measure P.

On this probability space there is an R¢-valued process X,, which repre-
sents d economy-wide state variables. There are also I point processes, N°,
i = 1,...,1, initialized at 0. These represent the default processes of the I
firms in the economy such that the default of the ith firm occurs when N
jumps from 0 to 1. The properties satisfied by these point processes will be
specified shortly.

The filtration is generated collectively by the information contained in the
state variables and the default processes:?

Fo= FEVEN v M
where
FX=0X,,0=s=t)and F=c(N!,0=s=1¢) (2)

are the filtrations generated by X, and N/, respectively.
Define a new filtration G; as follows. First, we let the filtration generated
by the default processes of all firms other than that of the ith be denoted by

Fi=Flv...vEIVvFEV...vEL 3)
Then, let
Gi = Fiv Fit v Fri. @)

Since i is the trivial o-field, G¢ = F#& v F7+. We note that G¢ contains
complete information on the state variables and the default processes of all
firms other than that of the ith, all the way up to time 7T'".

Conditioning upon G¢ is equivalent to conditioning upon the state of the
macro economy and the default status of all the remaining firms. In a world
that evolves according to the filtration G/, it is possible to select, at time 0,
a complete history of a process A}, nonnegative, Gi-measurable and satisfy-
ing [ \ids < oo, P-a.s. for all ¢ € [0,T"], so that an inhomogeneous Poisson
process N’ can be defined, using the realized history of the process A. as its
intensity function. This will be the point process governing default for firm
I, since it has an intensity process that depends on state variables as well as
the default status of all the other firms. This two-step randomization pro-
cedure, in fact, provides the intuition behind a formal definition of a doubly
stochastic Poisson process in Brémaud (1981).

5 The symbol F v G represents the smallest o-field containing both F and G.
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Let 7° denote the first jump time of N . Then the conditional and uncon-
ditional distributions of 7* are given by

P(r! >tgoi)=exp<— f(:)&;d:;), t€[0,T"] (5)

t
and  P(ri>1t) =Eexp<—f Aids), te[0,T*]. (6)
0

This completes our specification of the default process.

We note that the computation of bond prices with counterparty risk gen-
erally requires the joint distribution of several first jump times. Due to the
presence of counterparty risk, these first jump times may no longer be as-
sumed independent conditional on the complete history of the state vari-
ables. We again defer the discussion to Section II.

B. Recovery Rate

The second ingredient in the modeling of defaultable bonds is the recovery
rate. Our specification of the recovery rate is as follows.

Let p(¢,T) denote the time-¢ price of a default-free zero-coupon bond that
pays one dollar at time 7 where 0 =<t =< T < T*. Let v'(¢,T) denote the time-t
price of a zero-coupon bond maturing at time 7, issued by firm i where i =
1,..,1. These corporate bonds are subject to default. When firm i defaults, a
unit of its bond will pay an exogenously specified constant fraction 6° € [0,1)
of a dollar at maturity, so that the value of the bond after default is given by
8" times the price of a default-free bond.® This is the “recovery of Treasury”
assumption in Jarrow and Turnbull (1995) and Jarrow, Lando, and Turnbull
(1997).

An alternative to the above is the “recovery of market value” where a
fraction of predefault market value is recovered immediately upon default.
However, with this alternative assumption, only the loss rate A(1 — §) can
be recovered from zero-coupon bond prices.” To estimate the default inten-
sity and the recovery rate simultaneously, one would have to resort to
either the prices of credit derivatives, as suggested by Duffie and Singleton
(1999), or the prices of equity or equity options, as suggested by Jarrow
(1999).

8 The recovery rate & could in general be an F,-adapted stochastic process. This allows re-
covery to vary with the business cycle and the status of counterparties. The assumption of a
constant recovery rate facilitates the derivation of a simple pricing formula.

7 Using this recovery assumption, Duffie and Singleton (1999) show that the defaultable
bond price can be expressed as the discounted expected value of a sure dollar, where the dis-
count factor is the spot rate plus the loss rate.
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C. Pricing

We now derive a pricing formula for defaultable bonds. First, let r, denote
the spot rate process adapted to 7X.8 The spot rate process could come from
any arbitrage-free default-free term structure model, such as Heath, Jarrow,
and Morton (1992, HJM hereafter).

Since P is an equivalent martingale measure, the money market account
and bond prices are given by

B(t) = exp(fotrsds>, (7

T)=E (—B(t)> 8
p(t’ )_ t B(T) ’ ( )
i By
and v'(t,T) = Et<m (0" 1pizry + 1{75>T})>, 9)

where E,(-) denotes the expectation conditional on time-¢ information Z,.
The following proposition expresses equation (9) in terms of the default
intensity.

ProrosiTioN 1: The defaultable bond price is given by

T
vi(t,’m=aip<t,T>+1{Tf>t}<1—6i>Etexp<— f (rs+Az>ds), T=t (10)
t

Proof: This is an extension of Lando (1994, Proposition 3.3.1). Details are
in Appendix A.

Equation (10) is very intuitive. It states that the risky bond’s price can be
divided into two components. The first component is the recovery rate &°
that is received for sure, discounted to time ¢. The second component is the
residual 1 — 8¢ in the event of no default, also discounted to time ¢. The
second term reflects the default risk since it is discounted with an adjusted
spot rate. Pricing under the equivalent martingale measure thus depends
critically on the evaluation of the expectation in equation (10).

II. Construction of Default Processes

The previous section assumes the existence of a collection of doubly sto-
chastic Poisson processes, whose intensities satisfy a special measurability
condition. Using this and only this knowledge, the distribution of the first

8 The spot rate process is defined by r, = —lim,_,, + dlogp(¢,T)/9T.
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jump times can be derived. The bond price of a firm whose default proba-
bility is affected only by macroeconomic conditions and not by the default of
other firms can be easily calculated using equation (10). For a firm, A, whose
default probability is strongly affected by the default of firm B, the calcula-
tion of its bond price entails knowing the distribution of the default time for
B. However, if B holds a significant amount of debt issued by A, the distri-
bution of the default time for B would then depend on that of A. In general,
whenever such a relationship forms a loop, the calculation of bond prices is
a difficult task. In the following, we first use a simple example to illustrate
the complexity involved when looping default is introduced into the model.
We then impose a restriction on the structure of our model in order to elim-
inate looping default.

A. Looping Default

Consider the case where each firm holds the other firm’s debt, so that
when A defaults, B’s default probability will jump, and vice versa. Specifi-
cally, the default intensities can be described by

X =ag +agly=,n, (11)
and AP =b; + byl .4y, (12)

where aq,a5,b,, and b, are positive constants.

The pricing of these bonds requires knowledge of the distribution of the
first jump times 7* and 2. However, these distributions are defined recur-
sively through each other and can be obtained explicitly only in special cases.
In a full-fledged model of looping default among three firms, the calculation
of bond prices would require joint distributions of pairs of default times, and
among four firms, triples of default times, and so forth. Working out these
distributions is more difficult, and it is why only two firms are used in this
illustration.

Let F(t) = P(+* = t) and G(¢t) = P(rZ = t) be the marginal distribution
functions for 74 and 7. By equations (6) and (11),

t
P(r4 >¢)= Eexp(-J (@, +ay 1{s>TB})ds>
0

t t
= Eexp(—f (a; +ay)ds +f as 1{S<73}ds> (13)
0 0

=e 7(a1+a2)tE e% min(rB,t)‘

Hence

t %)
1—F(t) = e (@tazt <f dsg(s)e®2*® +f dsg(s)e%t), (14)
0 t
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where g(s) = dG(s)/ds. Multiplying both sides by e®17?2)! we obtain
t
el@tat(1 — F(t)) = f dsg(s)e®® +e'(1 — G(t)). (15)
0

Differentiating the above, we arrive at an ordinary differential equation for
F in terms of G and a similar equation for G in terms of F:

(@1 tag)(1—F)—f=aze “'(1-G), (16)
and  (by+by)(1 - G) —g = bye 01%(1 - F), (17)

where f(t) = dF(t)/dt.

In general, equations (16) and (17) must be solved with numerical methods.
But when the firms have identical default intensities, they can be solved
analytically. Let a; = b; = a and ay, = by, = b; then F' = G and they are
given by

F(t) — 1 _ e—(a+b)t+(b/a)(1—ef‘"). (18)

Once the distribution functions are derived, bond prices are calculated using
numerical integration.

Equation (18) shows how counterparty risk (b > 0) increases the proba-
bility of default prior to time ¢ in contrast to the no counterparty risk case
(b = 0). The change is generally nonlinear as illustrated here.

B. Primary-Secondary Framework

Although looping default generates an interesting complexity in our model,
it is unlikely to occur in practical applications of our model. In a typical
application one considers the default probability of a commercial bank. If
bank A holds a significant amount of production firm B’s debt, it is unlikely
that B is also holding bank A’s debt or equity, let alone amounts large enough
to influence B’s default probability. Thus we impose the following restriction.

AssuMPTION 1: Let I be the set of firms in the economy. A subset S, C I con-
tains primary firms whose default intensities depend only on FX. Its comple-
ment, Sy C I, contains secondary firms whose default intensities depend only
on FX and the status of the primary firms.

This assumption splits firms into one of two mutually exclusive types:
primary firms and secondary firms. Primary firms’ default processes only
depend on macrovariables. Secondary firms’ default processes depend on mac-
rovariables and the default processes of the primary firms.
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This assumption makes it easy to construct the doubly stochastic Poisson
processes used in Section I. To achieve this, consider the state variables X,
that describe the evolution of the default-free term structure. For instance,
X, could be the independent Brownian motions generating the HJM model.
One could also add to X, additional factors thought to be important deter-
minants of the default process, such as GNP indices.

The probability space on which X, is defined is then enlarged to accom-
modate a set of independent unit exponential random variables, which are
also independent of X,. If we call these variables {E’,1 =i = S;},° then the
default times of the set of S; primary firms can be defined as

t
Tizinf{t:f Aisdsin}, 1=:=8,, (19)
0

where the intensity AL is adapted to F*. Since E’ is independent of X,, the
distribution of 7* is given by

t
P(Ti>t|.7-'T)§)=exp<—f /\isds>, te[0,T"]. (20)
0

Then, for each i, define N} = 1;,i=y as firm i’s default process and F=
o(N!,0 = s = t) as the information set generated by the default process of
firm i. This first step of our construction is directly from Lando (1994).

In the second step, we construct the secondary default processes. We en-
large the probability space further by introducing another set of indepen-
dent unit exponential random variables, which are independent of both X,
and {7’,1 =i = S,}. If we call them {E/,S, + 1 =j = I}, then the default
times of the set of Sy secondary firms can be similarly defined as

t
rf=inf{t:f/\gdszEj}, S;+1l=j=1I, (21)
0

where the intensity A/ is adapted to X v E' v --. v 51, Since E7 is inde-
pendent of both X, and the set of primary default times, the distribution of
7/ is given by

t
Pt/ > t|F~v Fhov - vfs*l) =exp<—f /\édS), te[0,T]. (22)
0

9 When it does not cause any ambiguities, we use the name of a set to refer to the number
of elements in it. This use should be clear from its context. Furthermore, without loss of gen-
erality, the set of firms is reordered so that the first S; firms are primary firms and the next
S, firms are secondary.
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For secondary firms, we assume that their default intensities have the
following form:

S
M=al,+ > aldyery, S1+1=j=L (23)
k=1

We assume that firm j holds only the assets of primary firms, and that aj,
is adapted to FX for all k. Depending upon the sign of aj;, the default of
firm % increases (aj ; > 0) the probability that firm j defaults or decreases
(aj,, < 0) it.1° This is not the most general form of secondary firm default
intensity. In particular, it can be made more general by including inter-
actions among the indicator functions. Its linear form could also be generalized.

Under the above assumption, the joint distribution of primary default times
conditional on the history of the state variables, which is required in order
to calculate secondary bond prices, simply becomes the product of the con-
ditional distribution of the individual primary default times. This is a result
of the definition of a primary firm. Without the primary—secondary struc-
ture, the point processes governing default are defined recursively (through
their intensities) and there is no simple procedure for either their construc-
tion or the derivation of the joint distribution of the first jump times.

II1. Bond Pricing When Default Is Independent
of the Default-free Term Structure

In this and the next section, we use the primary—secondary framework
developed in Section II to study examples of bond pricing in which explicit
pricing formulas can be derived. The examples, although simple, capture the
qualitative impact of counterparty risk on default and the pricing of bonds.
In this section, we assume that the point processes governing default are
independent of the risk-free spot interest rate. We also assume that the
risk-free spot rate is the only state variable, and as such, default is not
influenced by any state variables. These simplifying assumptions allow the
effects of counterparty risk to be studied separately from those of interest
rate risk, and therefore provide a good starting point for the analysis.

A. Single Counterparty

The simplest and perhaps most relevant case in which counterparty risk
occurs is where one firm’s position in another firm constitutes a significant
fraction of its total assets.

19 Some of the coefficients will be zero since firm j does not necessarily hold all primary
assets. We also note that the coefficients must collectively satisfy a set of regularity conditions
resulting from two requirements mentioned in Section I.A. First, the intensity must be strictly
positive. Second, the expected number of jumps must not diverge within finite intervals. In the
interest of brevity, we will not present the regularity conditions here.
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Consider firms A and B. Assume that the spot interest rate process r, is
the result of an arbitrage-free default-free term structure model. Let firm A
represent the primary firm and B the secondary firm. Let the recovery rates
be 84 and 82, respectively. Since no state variable influences default, let A’s
intensity of default be A4 = @ > 0. Assume that B’s intensity of default
depends on whether A has defaulted in the past, perhaps because B holds a
significant amount of A’s liabilities in its portfolio. Specifically, let

/\lt} = bl + 1{t27A}b2’ (24)

where b; > 0 and b, could be any value that preserves the positiveness of
the intensity.

There are zero-coupon bonds issued by A and B. The time-t prices of zero-
coupon bonds maturing at 7'< T'* are given by the following proposition.

ProrosiTioN 2: The time-t prices of zero-coupon bonds issued by A and B with
maturity T are

vA(t,T)
= =8+ (1 - 6% 1 an e @Y 25
& T) ( ) {rA>1)€ (25)
and
bye ~@HNT=0) _ gp=(bytby)(T—1)
VB, T) _ | 8%+ (1= 8%)1my r— if by # a
ptT)
8B+ (1-68)15-y(a(T —t) + 1)e oD ifb, =a
(26)
if firm A has not defaulted by time ¢, and
vB(¢,T)
——= =88+ (1-88)1 8o GtOIT0 27
. T) ( ) {rB>¢)€ (27)

if firm A has defaulted by time t.

11 As discussed earlier, an alternative interpretation of (24) is in terms of product market
interaction—think of A as a supplier of B (if b, > 0). The default of A will then disrupt the
production process of B, reducing its profitability and possibly causing default to occur sooner.
Firm A is treated as a primary firm, perhaps because it supplies many firms, and is therefore
insulated from the default of any of its counterparties.



Counterparty Risk and the Pricing of Defaultable Securities 1777

Proof: See Appendix B.

To see the effect of counterparty risk on firm B’s bond prices, we focus
on the yield spread as a function of maturity. In a continuous-time context,
the yield spread between defaultable bond v and default-free bond p is
defined as

fT) = — 1 1 v(t,T)

(28)

To further simplify the matter, we assume that the recovery rate is zero.
Viewed in this light, the yield spread on firm B’s bond is simply B’s mar-
tingale default probability averaged over the time interval T' — £.12 In the
absence of counterparty risk, b, is equal to 0, and the yield spread is a
constant b, that does not depend on maturity. When b, > 0, firm B’s default
is “accelerated” by firm A’s default, and its yield spread exhibits an increas-
ing pattern. The opposite, a “deceleration,” holds when b, < 0, so that the
yield spread on B-bond is a decreasing function of maturity. For a set of
reasonable parameters, these effects are illustrated in Figure 1. It is inter-
esting to note that, although completely different by source, these effects are
graphically analogous to the credit spread curves in Jarrow et al. (1997,
Figure 2) when there is the possibility of credit downgrade or upgrade.

B. Multiple Counterparties

The monotonic relation between yield spread and maturity exhibited in
Figure 1 suggests that perhaps more interesting shapes can be attained when
counterparty risk is not limited to a single party. An example with two coun-
terparties is given below.

12 Using the pricing formula (10), the zero recovery assumption and the independence as-
sumption that is valid in this section imply that

T
v(t,T)=p,T)E, exp<*J )\sds>

=pt,T)P(r>T).

Hence

1 v(t,T) 1
n =— InP(r>T)
T—-¢t p@T) T—t

=—T1_tln(1—P(7-ST))

1
~—Pr=T
7L =T)

when the default probability is reasonably small.
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Figure 1. Term structure of yield spreads of the secondary firm B. This figure illustrates
the term structure of yield spreads of a secondary firm with different exposures to a single
counterparty. The default intensity of the secondary firm B is given in equation (24) where b, =
0.01 and b, can take on various values in the diagram. The primary counterparty, firm A, is
assumed to have a constant default intensity of ¢ = 0.01.

Consider firms A, B, and C. As in the last section, we assume that the spot
interest rate is given by the process r,, recovery rates are constants, 54, 88,
8¢, respectively, and furthermore, that no state variables influence default.

Let A and B be primary firms and C be a secondary firm. The default
intensities of A and B are A? = a and A? = b, respectively. The default in-
tensity of C is

)\? = Co + 1{tZTA}Cl + 1{tZTB}02 + 1{t2'rA,t27'B}CS’ (29)

where ¢y, > 0, ¢c; > 0 and ¢, < 0. The interpretation of equation (29) is that
firm C holds a portfolio that contains a significant amount of long positions
of A-bonds and short positions of B-bonds. Thus C’s default probability in-
creases in the event A defaults and decreases in the event B defaults. Here
we allow an interaction term, so that equation (29) is a generalization of the
formulation in equation (23).

The pricing of the primary A- and B-bonds is given by (25) in Sec-
tion III.A. To price C-bonds, we assume that N* and N2 are conditionally
independent. This assumption says that each primary firm’s default is sys-
tematically influenced only by economy-wide state variables, that is, the
residual default risk is idiosyncratic once the systematic part of default has
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Figure 2. Term structure of yield spreads of the secondary firm C. This figure illustrates
the term structure of yield spreads of a secondary firm with two counterparties. The default
intensity of the secondary firm C is given in equation (29) where ¢, = 0.05, ¢; = 0.1, ¢, = —0.02,
and c¢; = 0. The primary counterparties are firm A and firm B with constant default intensities
a = 0.01 and b = 0.04, respectively.

been removed. It is consistent with the primary—secondary construction in
Section II.B. Since the intensities are constants, this is equivalent to assum-
ing unconditional independence between N and NZ.

If it is assumed that neither firm A nor firm B has defaulted before time
t, the price of a C-bond is given by

vC(t,T)

T
20T =84+ (1-86%1,c-yE, exp <_£ Afds>, (30)

where

T
E,exp <— J /\SdS) =e *CO(T*t)Et e T acyy—eo (M=) 1 popy—ca(T—r4vP) 1 a  mory
¢

(31)

The expectation in the above expression can be calculated, albeit rather te-
diously. For details, see Appendix D.

Again assuming zero recovery rates, for a set of reasonable parameters,
the yield spread on C-bonds is plotted as a function of maturity in Figure 2.
It is possible for the function to be hump-shaped. This is due to the fact that



1780 The Journal of Finance

the “acceleration” from the long position dominates the “deceleration” from the
short position early on, but the default probability of the short party grows at
a faster rate, and prevails when the maturity becomes sufficiently long.

IV. Bond Pricing When Default Is Correlated
with the Default-free Term Structure

In this section we allow the default process to depend upon the spot rate
of interest and consider random spot rates that follow a Gaussian process.
Specifically, we use the extended Vasicek model:

dr(t) = a(F(t) —r(t))dt + o, dW(t), (32)

where W(¢) is a Wiener process under the equivalent martingale measure P,
and 7(¢) is a deterministic function chosen to fit an initial term structure,
with a and o, constants. Therefore, a one-factor model for the default-free
term structure is used, where the factor is the spot rate.

Given that one may reasonably expect an interaction between credit risk
and market interest rates, the introduction of a nontrivial default-free term
structure into our model may enhance our ability to identify the effect of
counterparty risk embedded in bond prices. In the following, we again con-
sider the pricing of defaultable bonds issued by two firms, one primary and
one secondary, that are related by the simplest counterparty structure.

A. Primary Bonds

Suppose that firm A is a primary firm whose default is independent of the
default risk of other firms, but is otherwise dependent on the prevailing
short-term interest rate in the economy. This is perhaps because a large
portion of firm A’s cash outflow is needed to service its debt. To model this,
we assume a linear relation below:13

M=+ Xr, (33)

Assuming a zero recovery rate and no default before ¢, the price of A-
bond is

T
vA4(¢t,T) = E, exp(—f (ro + A?)ds)
‘ . (34)
— exp(= M=) = U+ Mo (@A),

13 Depending on the signs of the coefficients, some values of the short rate will imply a
negative intensity. One can get around this by assuming that X4 = max(A§ + A4r,,0), but this
complicates the subsequent algebra. Longstaff and Schwartz (1995) argue that negative inter-
est rates are unlikely for realistic parameters of the Vasicek model. We adopt a similar argu-
ment here.
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where u, 7 and o/r are the mean and variance of [ tT r,du defined in Appen-
dix C. Then the yield spread is

2
gy T
T—t¢t’

My, 1
y(@&,T) = M+ M t_Tt —/\q‘<1+—/\f;> (35)

T 2

which depends on the time-¢ spot rate through its linear relation with u, 7.
One can show that u, 1 is related to r(¢) by

1-— e*a(T*t)
Per = " r(t) +A@,T), (36)

where A(¢,T) is a function that does not depend on the spot rate (see Ap-
pendix E for its derivation). Hence, when A4 is positive, a higher spot rate
will lead to a higher yield spread. The finding by Duffee (1998) that yield
spreads on noncallable corporate bonds are negatively related to three-
month Treasury yields suggests that A4 should be negative. This observation
has also been predicted by the theoretical model of Longstaff and Schwartz
(1995).14 However, Duffee’s (1998) finding applies only to portfolios of non-
callable corporate bonds formed by their credit ratings. Whether this finding
holds for individual bonds in general is still an open question that awaits
empirical studies.!®

To see how a spot rate dependent intensity changes the term structure of
credit spreads, we rewrite equation (35) using equation (C12) from Appen-
dix C:

Inp@,T) 1 oz
t,T) =Xy — X ———— — = M(Q + ) —.
y(&,T) 0 LI 9 1 ( I)T—t

(37)
Using parameters of the extended Vasicek model estimated from U.S. data,
the third term is an order of magnitude less than the second term for
maturities up to 30 years (Appendix C shows that ¢%;/(T — ¢) is an in-
creasing function of maturity). Ignoring the third term for the moment, the
above equation suggests that the shape of the credit spread curve is deter-
mined by the contemporaneous default-free term structure, since the sec-
ond term is simply A4 multiplying the yield on a default-free zero-coupon
bond with identical maturity. When the default-free term structure is up-
ward sloping, a positive A4 implies an upward sloping credit spread curve.

14 The level of default boundary is assumed to be a constant in their model. However, a more
careful treatment should allow it to migrate upward when interest rates increase, reflecting the
increase of debt burden. This effect can dominate the increase of drift of the risk-neutral firm
value process, causing default probability to increase instead.

15 Some of Duffee’s (1998) empirical results on portfolios have been confirmed at the indi-
vidual bond level by Collin-Dufresne, Goldstein, and Martin (1999).
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Since the expectations hypothesis holds in our risk-neutral world, an up-
ward sloping default-free term structure indicates that future spot rate
would increase, and so would the credit spread.

In models where the interaction between credit and market risk is ig-
nored, such as the rating-based Markov model of Jarrow et al. (1997),
investment-grade issuers usually have upward sloping credit spread curves,
while speculative-grade issuers have downward sloping credit spread curves.
Here we show that there is an additional dimension to this problem when
economy-wide risk factors influence the likelihood of default.

We illustrate these points with Figure 3. With the exception of Panel A
where the default-free term structure is flat, it is clear that the term struc-
ture of credit spreads is determined by the shape of the default-free term
structure in conjunction with the coefficient 4.

B. Secondary Bonds

Suppose that firm B is a secondary firm whose default risk depends on the
prevailing interest rate in the economy as well as the default risk of firm A.
We assume that

=25+ ABr, +c 1y yay, (38)

A more general formulation would require that the default of firm A could
also cause a shift in the slope of the intensity function. We only illustrate the
simpler case.

Assuming a zero recovery rate and no default before ¢, the price of a B-bond
is (assuming that firm A has not defaulted before ¢):

T
vB(t,T) = E, exp<—J (ry + A’f)ds)

=E,exp(-Ag(T —¢) — 1+ AD)R, 7 — (T — 7*) 1,42y (39)

= E (exp(=A§(T — ¢) = (1 + X§)R, ) E,(e " ewr=n | F v Ff.)),
where R, ; = ftTrudu. The last step above uses the law of iterated condi-
tional expectations.

From equation (5) we recall that the conditional distribution of primary
default time 74 is

P(t4 > s|F v Ff) = exp(—f 4 du> =e MEO-ME. se[t,T*]. (40)
t
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Let V denote the conditional expectation embedded in equation (39); we can
then proceed to evaluate it as follows:

T 0
V = <f +f >e_C(T_S)1{s<T}d(1 — e_)l‘?)(s—t)—/\?Rz,s)
t T

r (41)
— e—c(T—t) <1 + Cf e—(/\‘3—c)(s—t)—/‘m‘?RLS d8>
t
Hence
T
vB(t,T) - E, <e (/\)g+c)(Tt)(1+)\Lf)RtyT<1 + Cf o~ (M-0)s—t)-MR,, ds))
¢
— e7(A§+c)(Tft)7(1+/\€),LLT+(1+/\§)20-3T/2 (42)
T
X (1 +cf ds.e(/\‘gc)(st)AAI,u,tYSJr()‘Al)201?5/2+)\‘?(1+/\’13)p(t,s,T))’
¢
where
p(t,S,T) = covt(Rt,T>Rt,s)
T s
= covt<f dW(u)b(u,T),f dW(u)b(u,s)> (43)
¢ ¢

a',zf dub(u,T)b(u,s),
t

due to the independent increment property of the Wiener process.
The evaluation of equation (42) involves an interchange of the expectation
and the integral, and also uses the following formula:

Eexp(A + B) = exp (E(A) + E(B) + % (var(A) + 2cov(A,B) + Var(B))>, (44)

where A and B are normal random variables. Equation (42) is useful in
numerical procedures designed to calculate model parameters from market
prices.

If the default probability of the secondary firm depends on the default
processes of two or more primary firms, we assume that the default pro-
cesses of the primaries are independent conditional on the path of the spot
rate. The embedded conditional expectation in equation (39) then becomes a
product of terms similar to that contained in equation (41). The expectation
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Figure 4. Term structure of yield spreads of the secondary firm B when default is
correlated with the spot interest rate. The default-free term structure is constructed from
Treasury coupon strips on 02/28/97. The default intensity of the primary firm A is given in
equation (33) where 4 = 0.01 and A4 = 0. The default intensity of the secondary firm B is given
in equation (38) where A = 0.01, A% = 0.1, and the level of counterparty risk ¢ can be —0.05,
0, or 0.1.

and multiple integrals can then be interchanged and evaluated. Again, it
should be emphasized that this is based on the primary—secondary firm meth-
odology adopted in Section II.B.

Equation (42) is complicated and does not permit a direct computation of
the yield spread as in the previous section. Moreover, the level of the yield
spread also depends on the shape of a contemporaneous default-free term
structure. However, we expect the patterns exhibited in Figure 1 to persist.
Namely, the default risk from the long (short) position causes yield spread to
widen (narrow) over time.

Figure 4 not only confirms this conjecture, but it also shows how infor-
mation about counterparty risk can be empirically extracted. The effect of
counterparty risk results in a “twist” of the term structure of credit spreads
for a primary firm (see Panel D of Figure 3), which is essentially the re-
scaled default-free term structure. Indeed, any deviation of the credit spread
curve from the shape of the default-free term structure will be interpreted
as counterparty risk by the estimation procedure. This limitation is due to
the use of a simplistic one-factor term structure model and our specification
of the default process as depending only on the contemporaneous level of the
spot rate. It is easy to extend our model to a multifactor setting where other
macroeconomic factors can also influence default. For example, a similar
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framework that relies on purely statistical factors is used in Duffee’s (1999)
modeling of corporate bond yield spreads.

V. Credit Derivatives

An investigation of counterparty risk is incomplete without studying its
impact on the pricing of credit derivatives. Credit derivatives are securities
whose payoffs depend on the value of credit-sensitive assets. Depending on
the specifics of the derivative instrument, credit risk can enter in a variety
of ways. In the case of an over-the-counter options contract, credit sensitivity
could be associated with the underlying asset on which the contract is writ-
ten, or it could be associated with the writer of the contract.l® In the case of
an interest rate swap, credit risk is two-sided, since both parties in the swap
can default.’” In the case of a default swap, the default risk of the two coun-
terparties and the reference asset must be considered simultaneously.

Despite these complexities, the pricing of credit derivatives is easily han-
dled by the martingale pricing technique. In the rest of this section we focus
on default swaps. When it comes to pricing default swaps, it seems that
practitioners are most concerned with the default correlation between the
swap seller and the reference asset. Intuitively, when this correlation is pos-
itive and large, the buyer’s fixed rate payment must be smaller than when
the correlation is absent. A failure to consider this will result in an overpay-
ment on the part of the insured. The writings in the popular press clearly
reflect the need among practitioners to have a unified framework for the
pricing of default swaps—specifically, one that takes proper care of default
correlations.!® The primary—secondary framework developed in this paper
can do just that, by considering possible counterparty relations between the
default swap seller and the reference asset. In the following subsections, we
first derive a general pricing formula and then use a numerical example to
illustrate the role of default correlation.

A. Default Swaps

In a default swap (sometimes also called a credit swap), party A holds
bonds with some long maturity 7,. These bonds are issued by a reference
party R that is subject to default. To hedge this risk, party A agrees to make
a stream of payments to party B at a fixed rate (again called the “swap
rate”) from ¢ = 0 to Ty < T, in exchange for B’s promise to compensate A for
its loss up to a certain amount in the event of R’s default. B’s payment is

16 When the writer is subject to default, the options contract is said to be “vulnerable.” For
the literature on pricing vulnerable options, see Jarrow and Turnbull (1995).

17 For reduced-form models on two-sided default risk applied to swaps, see Duffie and Huang
(1996) and Jarrow and Turnbull (1997).

18 For example, see the recent article in the Economist (Is there money in misfortune, 1998)
on the proliferation of default swaps in Japan and the lack of accurate pricing methodologies
therein.
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contingent on some kind of credit event occurring to R, such as a missed
interest payment or a credit downgrade, and is payable at the expiration of
the default swap. Not only can the reference asset default, but the two coun-
terparties, A and B, can default as well. Thus the pricing of a default swap,
or the determination of the swap rate, has to take into account the credit
risk from all three sources.

To simplify the calculation, we assume that each party is obligated to pay
until its own default, regardless of whether the other party has defaulted or
not.’® Moreover, assume that all relevant recovery rates are zero. Let the
default times of A, B, and R be denoted by 74, 72, and 7%, and the default
intensities A%, AB, and A®. Let the swap rate needed to fully insure one
dollar of reference asset from time 0 to 7}, be denoted by c. The market value
of A’s fixed rate payment at time 0 is

T, s T
E(f exp(—f rudu>cl{TA>s}ds> = cf v2(0,s) ds. (45)
0 0 0

The time-0 market value of B’s promised payment in the event of R’s de-

fault is
Ty
E <1{7’R<T1} exp <_ f r, du) 1{TB>T1}> . (46)
0

Therefore the swap rate is

Tl
E <1{TR<T1}9XP<_IO ’”udu> 1{TB>T1}>

c= T . (47)
f v4(0,s) ds
0

Further simplification of equation (47) is possible within the primary—
secondary framework. For instance, assuming that the reference asset is
primary (hence A¥ is adapted to %) and party B is secondary, the above can
be simplified by conditioning on the complete history of the state variables
and all primary default processes. This yields

T,

vB(O,Tl) - FE <exp<— (r, + /\f‘f) du) 1{7R>T1}>
0

(48)

c =

Tl
f v4(0,s) ds
0

19 Again, this may not be the case in some default swaps. Also, a default swap may stipulate
that B’s payment to A occur immediately after R’s default, rather than at the maturity of the
swap. Due to these simplifying assumptions, we call this an “idealized default swap.”
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B. An Example

Assume the following parameterization. Firm B’s default process is
AP = by + bylyerry, (49)

where b; = 0.01 and b, can be freely varying. As such, B is a secondary firm
whose default depends on the status of the reference asset R. The reference
asset R has a default process of

Af =d, (50)

where d = 0.01. For simplicity, we assume that the firm buying the default
swap on R, firm A, is default free. We also assume a constant interest rate
of r = 0.05.

With these parameters, it is shown (in Appendix F) that equation (48)
implies the following default swap rate:

rd (e~ Gt DTy — o =(br+b)Tyy

(by —d)(e™ = 1)

c =

(51)

This correct swap rate is shown in Panel A of Figure 5 as a function of the
maturity of the swap for different values of b,. A successively higher b,
indicates an increasing default correlation between the swap seller, B, and
the reference asset R. As b, becomes very large, we expect the fair swap rate
to drop to zero since the default swap is ineffective.

In practice, it is possible for a financial institution to have the right mar-
ginal distributions to price all of its assets correctly, and yet end up with the
wrong evaluation of its credit exposure.2° For instance, firm A could esti-
mate a model such as equation (49) correctly based on the prices of securi-
ties issued by firm B. However, if it ignores the fact that the jump term in
equation (49) is caused by the reference asset R, it will still misprice its
default swap. In effect, firm B is being treated as a secondary firm whose
default depends on an unidentified counterparty whose default is indepen-
dent of the reference asset. In this case one can show (also in Appendix F)
that the default swap rate is

r(l - e_dTl)(bze_(b1+d)T1 — de_(b1+b2)T1)
€= T, . (52)
(by—d)(e™ — 1)

This swap rate as a function of maturity is shown in Panel B of Figure 5. A
comparison between the two panels shows that the default swap is severely
overpriced due to the ignored default correlation.

20 We thank the referee for mentioning this point.
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Figure 5. Term structure of default swap rates. The swap buyer, firm A, is assumed to be
default-free. The seller, firm B, has a one percent default probability per annum, which can
jump up by b, depending on the status of the reference asset. The reference asset R has a one
percent default probability per annum. Panel A assumes that the counterparty relation between
B and R is properly identified by A. Therefore the default swap rate is generated with equation
(51). In Panel B, firm A correctly estimates the intensity parameters for firm B but is not aware
of the counterparty relation between B and R. The default swap rate is therefore generated
with equation (52). The interest rate is assumed to be a constant five percent. The level of
counterparty risk, b,, varies in the diagram.
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VI. Conclusion

In this paper we present a reduced-form model that jointly describes de-
faultable bonds issued by many firms, where a counterparty relationship
among these firms could affect their default probabilities. This is a new
contribution to the literature. We provide examples with explicit bond pric-
ing formulas and show that market-wide risk factors and firm-specific counter-
party risks interact to generate a variety of shapes for the term structure of
credit spreads. We also show how credit derivatives are priced within such a
framework, and explain how mispricings are produced by models that ig-
nore counterparty relations.

The implications of this model can be empirically investigated. For in-
stance, in cases where the market perceives a counterparty relation, one can
estimate its impact on default using bond prices and see whether the said
effect exists. When this is confirmed, more elaborate bond pricing models
can be constructed, and their parameters can be implicitly estimated and
used to price credit derivatives. A candidate of this sort, based on the ex-
tended Vasicek model, can be found in Section IV of this paper.

Appendix A: Proof of Proposition 1

Proof: First it can be shown that

T
E(iory|G)) = 1iny exp(—f A d3>' (A1)
t
To show this, first note that

E(1{7i>T}|gf) =P(r' > T|g(§ v _7-7)

_, P(r' > T,N} = 0|G¢)
- PV = 01G5)

- P(r'>TI|G)
P> |G)

T .
exp<—f A ds)
0
t .
exp(—f AL ds)
0
T .
= 1;,i~4 €xp (—f A ds>.
t

= 1{7’

(A2)

= 1{T">t}
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which proves (Al). To show the pricing relation in the proposition, iterate
the expectation:

v'(t,T) = < @ (8" pizgy + 1 >T}))

B(T)
- E, <L(5l+(1—5i)1 i )>
B(T) {r'>T}
=E, <E (% (8" + (1~ Bl)1{7i>T})gtl>> (A3)

() T
=Et(B(T)<8‘+(1—8)1{T>t}exp< ft/\lsds>>>

T
=8'p(t,T) + 1,01 — 8')E, exp (—f (ro + /\is)ds>. Q.E.D.
t

Appendix B: Proof of Proposition 2

Proof: Because of the independence between default and the spot rate,
A-bond price is given by

T
vA@T) = 8%p(&,T) + (1 - 5A)1{TA>t}Et exp <_f (ry + a)d8>

t (B1)
=p@t,T)(8* + (1 — 64)1,a e “T70),

This proves equation (25).
B-bond price is (assuming 74 > ¢)

T
UB(taT) = aBp(t’T) + (1 - 6B)1{TB>t}Et exp <_f (rs + bl + 1{stA}bZ) ds>$
t

(B2)
or
B, T)
. T) =88+ (1-68)1,5.E, exp(=by(T — t) — by(T — 7*)1,4_p)). (B3)

Note that conditional on 7 > ¢, 74 has the following distribution:

P(t4 >35)=e 970, (B4)
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It is then sufficient to show the following calculation:
Et e*bQ(TffA)l‘,fAST} _ f ds ae 7a(sft)e7b2(Tfs)1{S£T}
t

T o)
— —a(s—t)—by(T—s) —a(s—t)
dsae + dsae
t T

at—b,T

= qe (e(b2fa)T _ e(b27a)t) + e*a(T*t)
b2 —Qa

(B5)
—a(T—t) _ , —by(T—t)
— a(e e ) 4 efa(Tft)
b2 —a

bze—a(T—t) — ae —by,(T—t)

bz_a

Implicitly assumed above is that b, # a. When b, = a, the following holds
instead:

E,e 2T acry = o(T — t)e T + ¢ =T = (q(T — ¢) + 1)e *T7,

(B6)

If firm A has already defaulted by time ¢ (r* = t), firm B’s default inten-
sity becomes b; + b, and similar to the calculation of A-bond price, B-bond
price is given by

vB(t,T) =p@t,T)(8% + (1 - 85)1 5. O2)T"0)  QED. (B7)

Appendix C: Specifying the Extended Vasicek Model
within the HJIM Framework

To fully utilize the tools developed for the HJM term structure model, we
specify a forward rate process that is consistent with the extended Vasicek
spot rate model.2! To do this, first solve equation (32) using methods de-
scribed in Duffie (1995, page 293). The solution to the stochastic differential
equation is

t t

ea(s—t)af(s) ds +f ea(s—t)o.r dW(S), (Cl)
0

r(t) = r(0)e +f

0

21 For a detailed analysis of the relation between the Vasicek model or the CIR model and
the HJM model, see Brenner and Jarrow (1993). The extended Vasicek model first appeared in
Hull and White (1990).
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where the volatility process is given by
ot,T)=e"" Ty . (C2)

Using the HJM drift restriction under the risk-neutral measure, the drift
process is related to the volatility by

T
a(t,T) = O'(t,T)f o(t,s)ds
t (C3)

2

Ir at=T)(] — gatt-T)y,
a

Using the time-0 forward rate curve, one can give an alternative expres-
sion for the spot rate:

t t

a(v,t)dv +f o(v,t)dW(v) (C4)

0

r(t) = £(0,¢) +f

0
2

O-r
2a?

=F(0,8) + —= (1 —e~9)2 + f tea@*t)ar dW(v). (C5)
0

Comparing equation (C1) with equation (C5), the following is derived:

t 2
f e“cVai(s)ds = £(0,£) — e U (0,0) + % (1-e )2 (C6)
0 a
Differentiating this with respect to ¢ yields
1 9f(0,¢ 2
Ft) = f0,0) + 20D @ ~(1—e20), ")
a Ot 2a

The requirement that the spot rate process be consistent with the time-0
forward rate curve thus uniquely determines 7(¢).

It is also possible to compute the integral of r(¢), which can then lead to
explicit formulas for the discount factor and default-free zero coupon bond
prices. To calculate ftTr(u) du, it would be more convenient to use time-¢
forward rates instead of time-0 forward rates in equation (C5). Using equa-
tion (C4) and the following:

t t

a(v,u)dv +f o(,u)dW(v), (C8)

0

ft,u) =70,u) +J

0
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we have

ftTr(u)du = LTf(t,u)du +£Tduftua(v,u)dv +£Tdu£u0(v,u)dw(v)

T T o2
= f f(t,ZL) du +f du —rz (]_ _ e*a(uft))2
¢ ¢ 2a

T T
+f dW(U)f o(v,u)du
(C9)
T T 2
= J; f(t,u)du +J; du % (1- e*a(Tfu))z

T g,
+J AW () = (1 - e~oT0))
t a

T T 2 T
=f f(t,u)du+J du b(u’2T) +f AW (w)b(w,T),

where b(u,T) = (0,/a)(1 — e “T~%). Thus its mean and variance are
T T T b(u,T)2
Mo = Etf r(u)du = ft,u)du +| du — (C10)
t t t

T T
and oy = vartf r(u)du :f b(u,T)?du. (C11)
t t

The default-free zero coupon bond price is then

T
p(t,T)=E, exp<—J r(u)du)

2
gy T
- exp(-m,T - 7) (C12)

T
= exp(—f f(t,u)du),

which merely asserts the definition of forward rates.
A result that would be useful in Section IV.A is that op/(T — ¢) is an
increasing function of 7" — ¢. This can be shown as follows:
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d (@?T)_ a(”t?T)
dT-t)\T—¢t) ot \T—¢

T
f (1—e “T¥)2 4y
Jd ¢

ot T —¢

(C13)

T
(1 —e @T=2(T —¢) —f (1—e “T7¥)2qy
t

— >0
(T —¢)? ’

since (1 — e *T"%)2 is decreasing in u.

Appendix D: Derivation of Equation (31)

Since N and N2 are independent, conditioning on 74 > ¢t and 7% > ¢, the
joint probability density of 7* and 7% is

P € (u,u +du), 78 € (v,v + dv)] = ae " *“ be °“ du dv. (D1)

The region of integration is then appropriately divided into five pieces. The
first piece is where t = A =T and 74 = 8 = T

T T
I = abf due —a(u—t) f dve 7b(uft)e —c1(T—u)—cy(T—v)—c5(T—v)
t u

T T
=ab e(a+b)t7(cl+c2+cg)Tf du e(clfa)uf dve(cz+c3fb)u
t u

D2
b (D2)

T
_ e(a+b)t—(cl+02+c3)Tf due(cl—a)u(e (coteg—b)T _ e(c2+c3—b)u)
cgtecg—b ¢

ab (e(a+b)(Tt) _ e*(b+cl)(T7t) e*(aer)(T*t) _ e(cl+02+(33)(Tt)>

cgtecg—b cL—a citecgtes—a—b

The fifth piece is where t = 72 = T'and 72 = 4 = T~

T T
V = ab f dU e —b(v—t) f du e 7a(u7t)e —c(T—u)—co(T—v)—c5(T—u)
t v

ab (e(a+b)(Tt) _ e*(a+cz)(T*t) e*(a+b)(T*t) _ e(c1+c2+c3)(Tt)>

cites—a co— b citegtes—a—b

(D3)
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The second piece is where t = 74 = T and 2 = T:

T oo
II = ab f due @t f dve 0@ e (T~
¢ T

(D4)
__¢@ (e @ O(T—t) _ g=(bre)(T=0)y
Cl —aQa
The third piece is where t = 72 <= T and 74 = T-
T oo
IIT = abf dve‘b("_”f due @ g c2(Tv)
bt T D5)
— (e " @+DNT=1) _ o —(ater)(T—1))
Cz - b
Finally the fourth piece is where 72 = T and * = T:
IV = abf duef“(”ft)f dve 791
T T (DG)

— o (atb)(T—1)

Adding up the pieces and by substitution, one obtains the price of C-bonds.
Note that if either firm A or B has defaulted before time ¢, then the pricing
formula will collapse to equation (26) in Section III.A. If both A and B have
defaulted before ¢, then C-bond will be priced like primary bonds. Further-
more, conditions need to be imposed on the default intensities to ensure that
none of the denominators in the above expressions is equal to zero. However,
it is reasonable to assume that primary firms’ default probabilities are much
smaller than those of secondary firms. This implies that ¢ and b are much
smaller than ¢, and ¢,, and that the denominators will never go to zero.

Appendix E: Derivation of Equation (36)

From equation (C1), one can solve for r(0):
t t
r(0) =r(t)e* —f e®ar(s)ds —f e, dW(s). (E1)
0 0
This can then be substituted into the following expression:

F(w) = r(0)e % + j €96 g (s) ds + f g dW(s), w1,
’ ’ (E2)



Counterparty Risk and the Pricing of Defaultable Securities 1797

to yield
r(u) = r(t)e®t +J e Wai(s)ds +f e Wy dW(s), u=t. (E3)
t t

Hence,

T T T/ ru
f r(u)du = r(t)f et gy +f <f e““’”af(s)ds) du
t t t t
T/ T
+f (f e Wy du) dW(s),
t s

where the last term results from an application of Fubini’s Theorem.
Therefore,

1 — -T2 T/ (u
por=————r(t)+ f ( f ea<s—u>af(s)ds> du, (E5)
a ¢ ¢

where the second term depends only on 7(s), which is determined by the
time-¢ forward rate curve. The dependence of u, 7 on r(¢) thus comes solely
from the first term in equation (E5).

(E4)

Appendix F. Derivation of Equations (51) and (52)
First, we compute v2(0,T}). This is given by the result in Proposition 2:

bze—(b1+cl)T1 _ de_(b1+b2)T1

vB(0,T,) = b e T, (F1)

We then calculate the second term in the numerator of equation (48). How-
ever, this is simply

Tl
E <exp<—f (r, + /\ﬁ)du) 1{7R>T1}>
0

= E(exp(—(r + b1)T; — bo(T; — TR)l{TRsTl}) 1{TR>T1}) (F2)
2
=P(r® > T))exp(—(r + b,)T})

= o (r+b)Ty, —dT,
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Combining the above results we obtain equation (51):

bye Bt DTy _ o= (b1+bn)Ty

-rT, _ e 7(r+b1)T1e —dT,

by —d ¢
c =
1
—(1—-e )
r (F3)
rd(e b1+ Ty g —(bi+by) Ty
T (A -
To obtain equation (52), we note that equation (48) becomes
T
vB(0,T)) — E (exp(—f (r, + )\ﬁ)du) 1{TY>T1}>
0
¢ = , (F4)

Tl
f v4(0,s) ds
0

where Y is the unidentified counterparty to firm B. However, since we as-
sume that the default of Y is independent of that of the reference asset R,
the above is

0P, T)A =P >Ty) 050,71 —e M)

T, T, (F5)
J v4(0,s)ds J v4(0,s)ds
0 0

Using previous results, equation (52) is easily obtained.

Note that the unidentified counterparty Y has the same default intensity
as that of the reference asset R. This is to be expected as we assume that
firm B’s bonds are priced correctly.
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