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Counterpropagating optical beams and solitons
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Physics of counterpropagating optical beams and spatial optical solitons is reviewed, inchiding the
formation of stationary siates and spatiotemporal instabilities. First, several models describing the
evolution and interactions between optical beams and spatial solilons are discussed, that propagate
in opposite directions in nonlinear inedia. It is shown that coherent collisions belween counterpropa-
gating beams give rise to an interesting {ocusing mechanism resulting from the interference between
Lthe beams, and that interactions between such bearns are insensilive io the relative phase belween
them. Second, recent experimental observations of the counterpropagation effects and instabilities
in waveguides and bulk geometries, as well as in one- and two-dimensional photonic lattices, are
discussed. A variety of diffevent generalizations of this concept are summarized, including the coun-
terpropagating beams of comnplex sirictures, such as multipole beams and optical vortices. as well
as the beams in different media, such as photorefractive materials and liquid crystals.

PACS numbers: 42.65.)x, 12.65.Tg, 42.65.5(, 42.70.Mp.

1. INTRODUCTION

Oue of the simplest processes in nonlinear (NL) opries
leading 1o a variety of complex NL physics phenomena is
the mutual interaction of two counterpropagating (CP)
optical beams in a NL medium, capable of nonlinearly
changing the refractive index of the medium. The under-
lying geometry is conceptnally very simple (see Fig. 1):
two beams enter a finite NL medinm from the opposite
sides and, when they overlap by their evanescent fields.
the beams start interacting via the mutual NL change
of the optical refractive index. A configuration of two
waves interacting in a NL material is one of the most fre-
quent ones in laser physics and wave mixing experiments.
Numerous concepts in NL optics, such as phase conjuga-
tion, Bragg reflection by volume gratings, wave-mixing
in photorefractives, cte.. are based on this simple geom-
etry. Nevertheless, this simnple geometry can give rise
to an extremely complicated and sometimes counterin-
tuitive dynamical behavior, including both mutoal beam
self-trapping and the formation of stationary states, as
well as complex spatiotemporal (ST) instabilities [1]. [t
is for these reasons that CP beam canfigurations have
achieved a paradigmatic role in NL physics of optical
systems.

Instabilities and chaos are typically expected to appear
in NL optical systems that feature conpling as well as
feedback as necessary imgredients. Therefore. CP waves
were first studied in more complex systems than the con-
figuration described above, foremost in NL optical res-
onators. CP beams in Fabry-Perot resonators have heen
studied by Ikeda et al. {2. 3). They demounstrated that
a ring resonator with Kerr nonlinearity undergoes a se-
ries of bifurcations. as the incident power is increased.
leading to chaos and “optical turbulence™. Similar ST
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FIG. t: General schematic of Lwo counterpropagating waves
interacting in a finite-length nonfinear medium.

instabilities were observed later in simpler configurations
with only a single sirror, known as the single feedback
systems, especially in the ones exhibiting saturable non-
linearities. such as atowmic vapors 4, 5, 6, 7], liquid crys-
tals [8], and photorefractive (PR) 1nedia [9]. For example,
instabilities in the polarizations of CP bheams were ob-
gerved in atomic sodium vapor [4, 5]. when for higher in-
tensities the polarization first varies periodicaily and then
the system dynamics becomes chaotic (see also Ref. [10]).
Silberberg and Bar Joseph 1] were the first to demon-
strate that even withont an external feedback, instabili-
ties and chaos can be observed in the simplest geometry
shown in Fig. 1. In their configuration, the origin of
instability was the combined action of gain due to four-
wave mixing and distributed feedback due to scattering
from the grating formed by the interference of the inci-
dent laser beams. This discovery opened the possibility
of considering CP beam configuration as a fundamen-
tal configuration to investigate NL physics phenomena
in optics.

Such a possibility was backed up by many subse-
quent ohservations, showing that when taking into ac-
count transverse extent of the interacting beams. an even
more complicated behavior can emerge, including oscil-



latory transverse instabilities [L1, 12] and pattern for-
mation [13. 14, 15) thai require neither cavity nor fi-
nite response time. Sometimes, these instabilities conld
he associated with interesting transverse structures. such
as polarization domain walls [LG, 17]. supported by the
mixing of two CP laser beams in a NL isotropic dielec-
tric medinm. Since transverse instabilities of CP opti-
cal beams lead to pattern generation, a naniral ¢uestion
arises in CP systens: which patterns may survive in this
geometry. Among the various pattern classes espacially
singulary structures and localized states gained interest.
owing to their strong NL nature most often associated
with subcriticial bifurcations [18].

In addition to these localized states or disstpative (cav-
ity) solitons. which are stabilized due to the common ac-
tion of gain. loss, nonlinearily and diffraction, the prop-
agation and self-action of a single beain in a NL medium
is also known to generate spatial solitons {19]. Therefore,
a natural extension was to study the propagation and in-
teraction of CP spatial solitons and their generalizations.
and to build a connection between these solitons and the
feedback or cavity solitons, thereby attenipting to answer
fundamental questions about the nature and relations of
propagating and dissipative solitons in media with NL
optical refractive index.

Collisions between solitons are perhaps the most fasci-
nating feature of solicon phenomena, because the inter-
acting self-trapped wave packets exhibit manv particle-
like features {20]. Solitons that propagate in the opposite
direction enable a natural mechanism of soliton collis-
sions. resulting from ihe strong interaction of the two
beams. The CP solitons interfere and give rise to an ef-
fective grating. For copropagating solitons, the grating is
periodic in the transverse direction, with a period much
greater than the optical wavelength; thus the interacting
solitons go through very few grating periods. For CP col-
lisions in contrast the grating is in the propagation direc-
tion, hence the interacting solitons go threugh many pe-
riods. Consequently. the interaction in the CP scheme is
strongly affected by the mutual Bragg scattering. More-
over, in the case of incoherent interacting heams, the CP
scheme also allows for strong interaction. due to cross-
coupling of the beams via the coinmon refractive index
structure that is not present in the copropagaling case.

Owing to these reasons, CP solitons assumed a
paradigmatic role in the physics of NL optics: mutual
self-trapping of two CP optical beams was shown Lo lead
to the formation of a novel type of vector (or bimodal)
solitons [21, 22|, for both coherent and incoherent in-
teractions. A more detailed analysiz (23] revealed that
these CP solitons may display a variety of instabilities,
accompanied by nontrivial temporal and spatial dynam-
ics, leading to many subsequent studies devoted to this
fitndamentally new subject.

This paper ahms to review the fundamental physics of
CP optical beams and spatial optical solitons, and their
paradigmatic vole in NL optics. including the whole range
of NL physics phenomena, from the formation of station-

ary states up to ST instabilities. It summarizes a number
of rceent important results for the evolution and nterac-
tion of optical beams and spatial solitons that propagate
in opposite directions, thereby emphasizing their general
importance for NL physics.

The paper is organized as follows. In Sec. 2 we
present the derivation of a one-dimensional (1D) model
for the beani propagation in a planar structure in PR
NL crystals, and then apply it to the analysis of inutual
self-trapping and modnulational instabilities (MIs) of CP
beams and spatial solitons. Section 3 is devoted to the
analysis of 2D models, where we discuss nontrivial rota-
tional beaun dynamics and the transverse pattern forma-
tion. In Sec. 4 we present the key experimental results
for both one- and two-dimensional geometries. The more
special case of solitons counterpropagating in optical lat-
tices is discussed in Sec. 5, where we summarize both
theoretical and experimental results. Section 6 is devoted
to the discussion of various generalizations of the coneept
of beam counterpropagation. including the counterprop-
agation of multipoles and vortex optical beams, as well
as the beam interaction in liquid crystals. Finally. Sec.
7 conclides the paper.

II. ONE-DIMENSIONAL SYSTEMS

A. Theoretical models and background

Early theoretical descriptions of CP self-trapped
beams, in one transverse dimeusion and steady-state,
were given in [22], where bimodal CP solitons in Kerr
niedia have been treated, and in [21], where collisions
of solitons propagating in opposite directions, in beth
Kerr and local PR media. have been addressed. Tollow-
ing a miore general exposition [23], we present here the
basic equations for the propagation and interactions of
CP bearns in saturable PR media. The temporal behav-
ior of CP self-trapped heams is included in the equations
by a time-relaxation procedure for the formation of space
charge field and refractive index modulation in the crys-
tal.

We consider two CP light beams in a PR. erystal, in the
paraxial approximation, under conditions suitable for Lthe
formation of screening solitons. The optical field is given
as the sum of CP waves F exp(tkz + fwt) + Bexp(—ikz-+
iwl), k& being the wave veclor in the medinm, F and B
are the slowly varving envelopes of the beams. The light
intensity I is measured in units of the background light
intensity, also necessary for the generation of solitons.
After averaging in time on ihe scale of the response time
o of the PR crystal, the total intensity is given by

1+ 1=+ L) {1l +¢elmexp(2kz) +cc]/2}, (1)

where fy = |F|? + |B|*, mn = 2FB* /(1 +- Iy) is the mod-
ulation depth, and c.c. stands for complex conjugation.



Here the parameter ¢ measures the degree of temporal
coherence of the beams relative to the crystal relaxation
time. For ¢ = 0, i.e., when the relative phase of the
beams varies much fasier than 7y, the beams are effec-
tively incoherent. In the opposite case ¢ = 1, the in-
tensity distribution contains an interference term that is
periodically modulated in the direction of propagation z,
chosen to be perpendicular to the ¢ axis of the crystal,
which is alse the x axis of the coordinate system. Beams
are polarized  the z direction, and the oxternal elec-
tric field E,. necessatry for the formation of self~trapped
beams, also points in the z direction. The clectric field
in the crystal eouples to the electrooptic tensor, giving
rise to a change in the index of refraction of the form
An = —n§r.s; /2. where ny is the unperturbed index.
re¢s s the effective component of the electro-optic ten-
sor. and £ is the 2 component of the total electric field.
It consists of the external field and the space charge field
E,. generated in the crystal, £ = E, + P..

The intepsity modunlates the space charge field. which
iz represented in the normalized form

1
Bw/E. = Ey+ 5 [£1 exp(2ikz) + c.c], (2)

where Ej is the homogeneous part of the x component of
the space charge field, and 5y (z, z) is the slowly varying
part of the space charge field, proportional to ¢. It is Ey
that screens the external field, and ) is the result of the
interference pattern along the ¢ direction.

In the isotropic approach, one assumes a local approx-
imation to the space charge field. and looks for a sohition
with the saturable nonlinearity £ = E./(1 -+ I). Substi-
tuting Eqs. (1) and (2) in this expression. and neglecting
higher harmonies and terms quadratic in . the steady-
state solutions By = —[y/(1+ 1) and B, = —em/(1-+1y)
are obtained. The temporal evolution of the space charge
field is introduced by assnming relaxation-type dynamics

1()

D, F 4 Efy = ——2 32
Tt Eg o T3, (3a)
ET
WE) + By = ~ . 3t
T E, 1 T+ 1, ( Y)

where the relaxation time of the crystal 7 is inversely
proportional o the total intensity © = 7, /(1 + I), i.e.,
the illuminated regions in the crystal react faster. The
assimied dynamies is that the space charge field builds
up towards the steady state, which depends on the light
distribution, which in turn is slaved to the slow change
of the space charge field. As it will be seen later, this
assnmiption does not preciude a more complicated dy-
namical behavior.

Selecting synchronous terms in the NL paraxial wave
equation, leads to the propagation equations in the (orm:

i, F + 82F =T {EyF + E\BJ2] , (da)
~i8. B+ 0*B =T|EyB + E]F/2] . (4b)

Counler-prapagaling soliton
Forward Backeand.

Forwarnd

Co-prapagating soliton
Cohecent (1)

treohensnt

Coherant {0)

FIG. 2: (a)-(¢) Coherent interactions between the CP (a),(¢)
forward and (b) backward solitons. (d)-(f ) Incoherent inter-
aclions hetween the CP (d).(f ) forward and (e) backward soli-
tons. For comparison, interactions between coherent in-phase
(g) and « outl of phase (h), and incoherent (i) copropagaling
solitons. The plots show intensities. The arrow indicates the
propagation direction of each beam. The propagation dis-
tance is 2.5 L. Adopted from [21].

where the parameter T’ = (lcn“:r(.))21'.,J»fEE is the dimen-
sionless coupling strength, and the scalling £ — /20,
== z/Lp. (F.B) — (F,B)exp(—iTz) is used. Here z,
is the typical beam waist and Lp = 2kz3 is the diffrac-
tion length. Propagation cquations are solved numer-
ically, concurrently with the temporal equations. The
numerteal procedure consists in solving Eqs. (3) for the
components of the space charge field. with the light fields
obtained at every step as guided modes of the indueed
common waveguide.

B. Counterpropagating solitons

We consider first the interactions in a configuration
where the two CP beams are launched parallel to each
other, but with a transverse spacing between them [21].
The parameters are chosen such that the formation of
spatial solitons is preferred. The coherent interaction
between these parallel CP beains is shown in Figs. 2(a)-
2(c). Figures 2(d)-2({) show an incoherent interaction be-
tween the same beams. For comparison, the same beams
in copropagating scheme are simulated in Figs. 2(g)-2(i).
Figure 2(g) [2(h)] shows a coherent interaction in which
the relative phase between the launched beams is 0 [#].
Figure 2(i) shows an incoherent interaction. Clearly, the
outcome of the interaction between the beams in the CP



FIG. 3.
bution; (b) right-propagating and (c) left-propagating beams.
Parameters: ¢ = 1. I" = 5, initial peak intensities |Fp|? =

Bidirectipnal waveguide. (a) Total inteunsity distri-

[Br]* = 1. The size of data windows is 10 beamn diameters
transversely by 2 diffraction lengths longitudinally. Reprinted

from {23].

schene is very different from the one in the copropagating
scheme. in both the eoherent and incoherent cases. First.
in the copropagating scheme. the muiual force between
the solitons is proportional (o the relative phase batween
them. hence the interaction can be attractive [Fig. 2(g))
or repulsive [Fig. 2(h)]. In contrast, in the CP case the
relative phasc oscillates on a scale much shorter than the
soliton period, thus the relative phase does not play any
role.

The second major differcnce berween the counter- and
copropagating cases has to do with the radiation. The co-
Lerent interaction in the CP scheme radiates [Figs. 2(a)
and 2(b)|. which again proves that this system is nonin-
tegrable. On the other hand. the incoherent interaction
between the CP solitons does not radiate much [Figs.
2(d)-2(f)]. Finally, one can see that a portion of the for-
ward beam couples into the region where the backward
beam is propagating. In the incoherent iiteraction, the

forward beam gradually tunnels into the backward soli-
ton regton, hence the forward intensity at the backward
soliton region increases monotonically [Fig. 2(f)]. This
behavior represents an example of directional coupling
or resonant. tunneling. For coherent interactions the dy-
namics are more complex. as the intensity cowupled from
the forward beam to the region "under™ the backward
beamn oxcillates [sce the sidebands in Fig. 2(c)], and, in
contradistincsion to the incoherent case. light does not
accumulate in the ”sidebands.”

Head-on collision of the heams with initial soliton pro-
files. after temporal relaxation to a steady state, results in
the formation of a CP soliton [23]. Shooting initial beams
with arbitrary parameters generally leads to the z depen-
dent or nonstationary character of the heam propagation.
In some domain of the initial parameters. for example
with the relative angle of beam scattering 8 close to 7 and
small initial transverse oflset, the time-relaxation proce-
dure converges to the stationary in time structures. which
areidentified as the steady-state self-trapped waveguides,
or as bent CP solitons. The formation of a single bidi-
rectional waveguide is shown in Fig. 3. Two coherent
Gaussian beams are launched at different lateral posi-
tions perpendicnlar to the crystal edges. 8 = 7. Both
beams diffract initially. until the space charge field is de-
veloped in tiine, to form the waveguide induced by the
total light intensity, Fig. 3{a). This induced waveguide
traps both beams, Figs. 3(b) and 3(c). When the initial
transverse separation is fonr or more beam diameters, the
beams hardly feel the presence of each other, and focus
into individual solitons. For the separation of two heam
diameters, the interaction is strong enough for the beams
to form a joint waveguiding structure, as is shown in Fig.

3.

C. Splitup transition

Consideration of a wider region of conirol parameters
leads to a more complex picture. To capture the tran-
sition fromm a CP soliton to a waveguide more clearly,
the head-on collision of two identical Gaussian beams
was considered in [24, 25]. In the absence of the other,
cach beam focuses inte a soliton. The situation when
they are both present. and when the coupling constant,
I' and the crystal length L are hoth varied, is displayed
in Fig. 4. It is seen that in the plane (L.[) of control
parameters there exisis a critical curve below which the
stable CP solitons exist (the first curve in Fig. 4). At
that critical curve a rew type of solution appears, after a
symmetry breaking transition. in which the two compo-
nents no longer overlap, but split and cross each other.
We term this phenomenon the splitup transition [23]. A
few examples are depicted in the insets in Fig. 4. As
the beams split, a portion of each beam remains guided
by the other, forming hidirectional wavegnides. Both the
solitons and the waveguides are sieady-state solutions.
As one moves away from the first critical curve. into the



FIG. 4: Critical curves in the parameter planc for the ex-
istence of stable CP solitons, bidirectiona! waveguides and
unstable sohutions. Below the first curve CP solitons exist,
between the cnrves bidirectional waveguides appear. Al aud
above the second curve unstable solutions emerge. Insets de-
pict typical beam intensity distributions in the (2, z) plane at
the points indicated. T'he points are numerically determined.
the curves are inverse power polynomial fits. Reprinted from
(25].

region of high couplings and long crystals, a new eritical
curve is approached, where the steady-state waveguides
loose stability. The second critical enrve is also drawn in
Fig. 4. and the isets to the curve show typical unsta-
ble beam profiles. The shape of these curves snggests an
inverse powser law dependence. and the theory confirms
such a dependence. At and beyond the second c¢ritical
curve, dynamical solutions emerge.

D. Anisetropic nonlocal theory

Anisotropic nonlocal theory of the space charge field.
indueced hy the coherent CP beams in biased PR crys-
tals, is more involved than the isotropic theory [26]. It
yields significantly different results from the isotropie lo-
cal model, especially when the crystal & axis is tilted with
respect to the direction of the propagation of the beams.
A more complete description of CP heams requires incln-
sion of both the drifi and the diffusion term.

In the anisotropic approximation. the NL refractive
index change dn? can be decomposed into the (orm:
dn® = &nf + on2 lexp(2ikz) + exp(~2ikz)]/2. The mod-
anlated (6n2,) and unmodulated (n3) parts are the func-
tions of the space charge feld and the nenzers eompo-
nents of the electro-optic tensor. The propagation equa-
tions of the beari envelopes in the paraxial approxima-
tion are now given by:

Lo

1, 1 .
10, F - ;(’)__fF = 6niF + gdnﬁ,B . (5a)
L., L,
~i0.B + =028 = 6n2B + =(6n2 ) F . (5b)
2 2

To see the propagation behavior that is a mixture of the
self-focusing and pattern formation, the counterpropa-
gation of two wider heams in an anisotropic nonlocal
medium is simulated in Fig. 5. I'igures 5(a) and 5(b)
show how the profiles of the beams change as they prop-
agate. Figure 5(c) shows the profile of the forward beam
as it leaves the crystal. It has split into three beams, rem-
iniscent of the breaking of a wniform beam into stripes
in the experiments on pattern formation in CP beams.
The solid line in Fig. 5(d) shows the backward beam
as it leaves the crystal. For comparison, the dashed line
shows what the beam would look like if the nonlinearity
were abseut. One can sec that or the onc hand the back-
ward bean gets amplified while propagating through the
crvstal: on the other hand the self-focusing effect of the
nonlinearity is also clearly visible. The effect of the self-
bending is weak, due to the short propagation distance.
However, its effects are clearly visible in the asymmetry
of the beam profile in Fig. 5(e).

E. Modulational instability

As mentioned, the configuration ol two waves inter-
acting in a NL material iz one of the most used in laser
physics and NL wave mixing experiments. Instabilities,
self-oscillations. and chaos, which are the fundamental
processes in NL optics, can be observed very often in
such systems. In [1] it was demonstrated, for the first
time. that self-osciliations and chaos can be obtained in
an optical system without any external feedback. Au-
thors have predicted that in the scalar approximation,
CP waves interacting in a NL Kerr medium character-
ized by a noninstantaneous response, can undergo oscil-
latory and chaotic temporal evolution, above a certain
inpot intensity threshold. When the vector nature of
light is inchided in the theoretical consideration [4], it
was found that the polarizations of CP light waves in an
isotropic Kerr medinm become temporally unstable, as
the total intensity exceeds a certain threshold. Periodic
and chaotic temporal behavior can occur in the ontpur
polarizations, as well as in the output intensities. Temn-
poral instabilities in the polarizations of CP laser beams
in atomic sodinm vapor werc investigated in [5]. For in-
tensities slightly above the instability threshoid, the po-
larizations fluctuate periodically. For higher intensities.
the flucinations become chaotic and the system evoives
on a strange attractor.

Continnous-wave and oscillatory transverse instabili-
ties were predicted for CP waves in Kerr media [11]; for
both the focusing and defocusing nonlinearities; neither
cavity nor finite response time were required. Temporal
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FIG. 5: Counterpropagation of two heams in a 1 mm long

crystal. The crystal is tilted by « = 10° with respect to the
propagation direction. (a) shows the evolution of the [orward
beam (propagating from bottom to top); (b) shows the back-
ward beam (propagating in the opposite direction). (c¢) shows
the profile of the {orward beam as it leaves the crystal. In (d)
the dashed line shows the backward beain leaving the crystal
after linear propagation, whereas the solid line shows it after
nonlinear propagation. Adopted from (24].

dynamics of the polarization state of CP waves in NL op-
tical fibers was studied in [16]. Tt was shown that in the
presence of uniforin twist, the dynamics may be reduced
to an integrable chiral field representation. Dynamical
instabilities ol CP beams in a NL two-level system were
investigated numerically in [10}. When the incident in-
tensities are increased. this system becomes unstable and
exhibits complex behavior, including quasi-periodic mo-
tion and chaos. In [17] the spatial polarization instability
of two intense CP laser beams in an isotropic NL diclee-
trie fiber was investigated experimentally. It was demon-
strated that the distribution of polarization states along
the fiber can be identified with a polarization domain
wall soliton.

Dynamiceal instabilities of CP self-trapped beams in
PR media were reviewed in {28]. A route to chaos is
described, including gplitup instability, period doubling
cascade, windows of intermittency, and fully developed
chaos (Fig. 6). An experimental method to stabilize
unstable CP solitons using photonic lattices is developed
by the same group: it is presented in the section dealing
with the solitons in optical lattices.

Craviatitn a ¥ HNE

ik,

FIG. 6: Bifurcation diagram, displaying transition to chaos
in a 1D mode! of CP self-trapped beams. Lnsets depict. char-
acteristic time depeundence of the beans along the diagram. at
one of the crystal faces. The steady beam (green) is the enter-
ing beam, the unsteady beam (red) is the exiting beam. One
can note steady-state CP soliton (upper left). single splitup
transition (lower left). donble splitup transition (upper mid-
dle), period four ascillation (lower right), and chaotic response
{upper right). Adopted from [28].

111. TWO-DIMENSIONAL SYSTEMS
A. Theoretical backgreund

Consideration of counterpropagation in two trangverse
dimensions in bulk media offers a more realistic and com-
plete picture. Theoretical descriptions of CP self-irapped
beams in 2D and time are provided in [25] and in [27].
The derivation of equations is similar to the 1D casc [see
Eqs. (1)-(4)], the major difference being the appearance
of the iransverse Laplacian Az, in 2D equations and
different boundary conditions. However, the differences
in physics and results are considerable. especially if one
takes into account the anisotropic nature of the PR effect
in 2D. We will confine our attention here to the isotropic
approximation of the system in 2D.

By assuming that the CP beams are incobherent(i.c.
£ = 0, making the £ term disappear), the propagation
equations are given by

i8.F + A, ,F = T'EgF . (6a)
~i0,8 4+ Ay yB = CEB | (6b)

and the temporal evalution of the systemn (or the time
dependence of £y) is determined by Eq. (3a).

The most important completely new effect in 2D. in the
form of dynamical spontaneous symmetry breaking. was
reported for ihe first time in [24], where the counterprop-
agation of two identical numerically calculated solitary
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FIG. 7:  CP fundamental beams for a medium of length
L = 0.68Lp displaying the splitnp transition. The left col-
umn shows the forward and the right column the backward
beam (the arrows indicate the direction of propagation). The
top row is a snapshot after ¢ = 257. Both beams propagate
through the medimn as solitons. At !t = 1507 {bottom row)
the beams no longer propagate as steady sclitons. but insteacl
deviate on their way through the crystal. Reprinted from [26].

beain profiles was investigaied. For a valne of I' = (4.
corresponding to a typical experimental situation, up to
the lengtly of the medimm of 0.65Lp no sign of instabil-
ity is observed; the heams propagate as a CP soliton.
However, at L = 0.68Lp lhe solitary solution becomes
unstable (Fig. 7). At # = 257 the beams still propa-
gate as solitons through their jointly induced wavegnide,
but the white noise inchided in the system excites an
eigenmode that grows in time. Ai ¢ = 1007 both beams
start to deviate inside the medium from the straight ini-
tial trajectories. Since the initial problem is rotationally
symmetric, the direction inte which the beams deviate
is random in (he isotropic approximation. The intensity
distribution at ¢ = 1507, presented in the hottom row
of Fig. 7, shows a steady state of the systewn. This is
an example of the splitup transition in 2D. The numeri-
cal results show that the length of the wedium and the
power of the beams play an important rele in the stabil-
ity of CP solitons: decreasing/increasing the length (or
the power) stabilizes/destabilizes the solitons.

These resitlts scem to contradict the results obtained
for the solitons in copropagating geometry. Two mutu-
ally incoherent solitons always attract each other. there-
fore one would expect that the two CP beams always
form a stable soliton. This is not the case. To find an
explanation of the mature and the cause of the trans-
verse splitup instability. the CP beams were considered
as particles whose motion along the z axis is subject to

the forces caused by the refractive index change in the
medinm. Because the medium is noninstantaneous, it
was assumed that the motion of the “center of mass™ of
the beams is determined by the light distribution a time
7 age. The second assumption was that the attractive
force acting on the center of mass of each beam is propor-
tional to the distance from the center of the waveguide
induced in the medium by the beams. A simple har-
monic oscillator-type theorv of beam displacement that
can account for the transverse shifts. derived in two in-
dependent ways, was presented in [24] and [27].

B. Pattern formation and linear stability analysis

When excited beyond certain instability thresholds,
very different physical svstems display similar self-
organized behavior that is described by the universal or-
der parameter equations. A cominon necessary ingredi-
emt is the MI of spatially uniform ground state, which
leads to the spontanecous formation of extenced periodic
spatial stinictures. These patterns often exhibit simple
goometric structure, such as rolls, rhombi, and hexagons.
Linear stability analysis (LSA) provides a threshold for
the static instability in such systems.

NL optical materials are well suited for the observation
of transverse MIs, especially in the CP geometry. The
first complete CP pattern formation considerations and
LSA in 2D was given in [29] for the counterpropagation
in a Kerr medinm (in 1D see [L1]). It was demonstrated
by a NL perturbation analysis that two very differont
pattern-forming modes coexist in this system. One is
a hexagon-forming mode, and is dominant in the sclf-
focusing media. The other is a roll-pattern mode. but
it was found that rolls are unstable. Instead. smqiare
patterns emerge, and secem to be dominant in the self-
defocusing media [29]. When the rwo beams are slightly
frequency-detuned [14f, counterpropagation in PR. two-
wave mixing also gives rise to the transverse MI. The
patterns that develop from the initial stage of MI are
found to be predominantly rolls. For induced slight mis-
alignment. full hexagonal patterns develop.

The described phenomena are much more dependent
on the geometry than on the particnlar form of the non-
linearity. We will present here only one recent result
concerning the transverse splitup instability of CP soli-
tons (see Fig. 7). Patterns developing in wider hyper-
Gaussian CP beains will be covered in Sec. 6. In the
standard MI theory one follows the dynamics of weak per-
turbation to a wave and looks for instances of expounential
growth of the perturbation. Such a growth promotes the
amplification of sidebands and leads to the appearance
of localized transverse structures. This approach is used
much in the theory of transverse optical patterns [15].
Heve however. the whole abject - a CP soliton - under-
goes a sudden trangverse shifi to a new position. Using
LSA, the splitup instability is explained as a first-order
phase transition, caused by the spontaneous symimetry



breaking., and the threshold curve is determined {30].

One should note that LSA is more properly applied
to very broad CP beams. ln the case of splitup insta-
bility, the stability analysis is applied to a low-aspect-
ratio geometlry, and we are aware of its limited validity.
1t is known in many sysiems with dissipative feedback
that the instability of sclitons and pattern forming sys-
tems follow different bifurcation routes. Here the insta-
hility of propagating solitons and the pattern formation
in wide CP beams (acddressed in Sec. 6) are approxi-
matelv treated by the same LSA and the same threshold
conditions. Qualitative agreement is found.

Oue starts at the steady state plane-wave solution of
the system of Eqgs. (3a) and (6):

E,(Z) — F“(U)C—V.I‘Enz‘ B()(Z) - B(,(L)BJTEO(:_L), (7)
where Ey = —1,/(1 4+ Iy) and Iy = |Fy[* + |By|*. The
primary threshold is determined by the linear instability
of the steady state plane-wave field amplitudes Fy(z) and
By(z), and the homogeneous part of the space charge field
Ey. To perform LSA. a change of variables is made:

F=F(1+f), B=By(1+b), E=FE)(l-+e), (8
along with the change in the boundary conditions f(0) =
L) = 0. Negleciing higher harmonics and terms
quadratic in the perturbations f. b and e, and follow-
ing the procedure described in Ref. [14]. the threshold
condition is obtained in a form:

G ¥y \ sin ¥, sin Y.
1 z) sin ¥, sin 2:0, 9)

l-l—cos\illcos\llg+(q,—2+w—] 3

where ¥, = k2L, U, = VE'L?2 — 4ATk2L2, k being the
transverse wavenumber. We chose |Fy|? = |Bp|?, so that
A = |Fp|?/(1 + 2|Fu|*)*. This equation has the same
form as the threshold condition in Ref. [29], except that
the form and the meaning of variables ', and ¥, is dif-
ferent.

For each value of A there are two values of |F|? (or
|BL|?) on the threshold enrves represented in Fig. 8.
For this reason we found it mere convenient to plot the
threshold inteusity as a function of the square of the
transverse wave vector {(Fig. 9); for each pair of valnes
of I and L then one obtains different threshold eurves.
Also provided in Fig. 9 are the arrows which depict how
much the CP solitons jump transversely in the & space
in numerical siimmdations; after a splitup transition. The
left end of an arrow points to the peak valne of k2 in the
steady state. the right end points to the maximuin value
of the total transient change in k2. The end points are
calculated by independent numerical runs of the full sim-
ulations. For the given control parameters (I' = 4 and
L = 5Lp) only single or double splitup transitions are
observed. It is seen that the arrows provide a qualitative

FIG. 8: Threshold curves obtained from Eq. (9). Reprinted
from [30).

I
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FIG. 9: Threshold intensity versus the square of the trans-
verse wave vectar k2. for I' = 4 and L = 5L5. Arrows cover
the regions of jump in &2 of the solitons in the inverse space,
obtained numerically. Reprinted from [30].

agreement with the form and the position of the lowest
branch of the threshold curve, which signifies the first
splitup transition.

IV. EXPERIMENTAL DEMONSTRATIONS
A. One-dimensional solitons

The frst experimental observation of spatial vector
solitons in the counterpropagation geometry and for co-
herent optical fields was reported by Cohen ef al. [31].
The experimental setup is shown in Fig. 10. An Ar™ laser
beam at 488 nmn is split equally into two beams, | and
2, that are focnsed to narrow stripes (15-mm FWHM)
on the opposite faces. A and B, of an SBN:60 crystal
(4.5 mm x 10 mm x 5 mm) in the eonfiguration used car-
lier for the generation of PR screening solitons |32]. Two
cameras image the two faces of the crystal. Iinportantly,
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FIG. 10: Experimental setup for the generation of CP soli-
tons [31).

the light gathered by each camera consists of hoth the
cransmitted beam and the back-refiected heam.

Figures 11{a,b) show the results of Ref. [31] for the
image and intensity profiles taken by camera A at the in-
pit face B and at the output face A, respectively, when
beam 1 is blocked and the nonlinearity is off. No soliton
is formed. When the two beamms propagate together with
the nonlinearity (with an external voltage of 900 V), the
beams mutually self-trap. as shown in (¢). The FWHM
of this combined beam is 15 pgm, equal to the FWHM of
each of the input beams at both surfaces. Thus the com-
bined wave. consisting of both CP beams, forms a vector
soliton at the specific value of the nonlinearity, deter-
mined by the applied field. the intensity ratio, and the
crystal parameters (refractive index and the electro-optic
coefficient). To exemplify the fact that the vector soli-
ton is formed by both CP components, Cohen et al. [31]
blocked beam | and ohserved the output of beain 2 with-
out changing the voltage.

Further experimental studies of collisions between PR.
spatial solitons propagating in the opposite directions,
performed by the same group [33], demonstrated that
each of the interacting solitons significantly affects the
self-bending of the other, exhibiting effective attraction
for onc beam and repulsion for the other. In particular,
Rotschild et al. [33] were able to switch between coherent
and incoherent interactions by introducing a piezoelec-
tric (PZ) mirror into the experimental setup, affecting
one of the optical paths. Importantly, by varying the
distance between the beams, the authors did not observe
noticeable changes during the coherent collision between
solitons. The coherent effects that occur during the colli-
sion arise from the interference between the beams, trans-
lated into a reflection grating. Rotschild et al. [33] tested
the presence of such a reflection grating when the soli-
tons are truly counterpropagating, by blocking one of the
beams. The existence of this grating proved the occur-
rence of a stable coherent interaction between the CP
beams. When the PZ mirror is vibrating, the grating
does not form; i.e., the soliton interaction is incoherent,
and no reflection is observed from the grating.

9

FIG. 11: Experiniental images and intensity profiles taken
by camera A (see Fig. 10). Intensitics of beam 2 in linear
medium for (a) the input and (b) the outpul surfaces of the
crystal when beam | is blocked (¢) Total intensity of the CP
vector solitons at the left face of the crystal. (d) Intensity at
the left surface when beam { is blocked and the nonlinearity
is on (adopted fromn Ref. [31]).

B. Seolitons in bulk media

The first experimental study of CP solitons in a bulk
medinm was condueted by Jander el al. [34]. who also
ohserved a dynamical instability in the interaction of CP
self-trapped beams in a PR medium, predicted earlier
in the theoretical modeling of the time-dependent heam
dynamics [23}. Jander ef al. [34] noticed that, while the
interaction of copropagating spatial optical solitons ex-
hibits only transient dynamies and eventually results in
a final steady state, the CP geometry demonstrates a
dynamical instability mediated by an intrinsic feedback.
Experimental observations were found to be in qualita-
tive agreement with the numerical simulations.

Jander et al. [34] studied the dynamics of mutually in-
coherent CP solitons in cerinm-doped strontium barium
niobate (Ce:SBN:60) crystal, using experimental setup
shown in Fig. 12. The crystal is biagsed by an external
de ficld along the transverse a divection, coinciding with
the crystallographic ¢ axis. Both beams are obtained
From a single laser source and rendered mutually inco-
herent by a mirror oscillating with a period significantly
shorter than the relaxation time constant of the PR ma-
terial. Propagating in different directions. both beams
individually self-focus, and the nonlinearity is adjusted
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FIG. 12: Experimental setup for the study of instabilities of
CP solitons {34]. Two beams are rendered mutually incoher-
ent with an oscillating PZ mirror and focused on the opposite
faces of a Ce:SBNGO crystal. Both crystal faces are imaged
onto 2 CCD camera. allowing for synchronous observation of
reflections of both the exit and input beams (Ms, mirrors;
Ls, lenses; PH. pinhale; PBS. polarizing beam splitter; BS,
beamn splitter). Insel: CI® solilon interaction in the numerical
model (see details in Ref. [34]).

ZMm

0 &80 120

180 240 300 350 420 tmeds

trensverse coordingts (X)) ranevesss conrdinate

180 240 300 360 420 imes

¢ 60 120

FIG. 13: Temporal plot of system dynamics. (a) Below
threshold (L1=5 mm). the resulting stable and stalionary
slate consists of two symmetrically overlapping solitons. (b)
Above threshold (L»=23 mm), irregular dynamics is ob-
served (34].

such that each of the beams individually forms a spatial
soliton. To demonstrate both above and below threshold
behavior with a single crystal sample, Jander ei al. [34]
utilized two medium lengths by rotating the crystal about
its ¢ axis, thus yielding ;=5 mm and L>=23 nun.
Initially, both beams are adjusted such that their in-
puts and outputs overlap on both ends of the crystal. if
propagating independeutly and in a steady state, includ-
ing the shift through the beam bending. This configura-

L0

tion was chosen to minimize the possible effects of heam
bending on the stability of a fully overlapping state in
the form of a CP vector soliton, shown in Fig. 13(a). For
comparison with the numerical simulations, experimen-
tal data are rechiced to one transverse dimension: The
images obtained on the exit faces of the crystal are pro-
jected onto the & axis. As thesc data are plorted over
time, one gers a representation of the dynamics of the
bean exiting the crystal face [as shown in Figs. 13(a.b)].
Changes parallel to the y axis are not represented. since
most of the observable dynamics is confined 1o the x axis,
owing to the significance of the ¢ axis for the PR effect.

For short propagation length (L;=5 mm), the ontput
beams on both crystal surfaces initially shift their po-
sitions, converging to an overlapping steady state. the
veclor soliton, see Fig. 13(a). In the case of a signifi-
cantly longer medium (L,=23 mm) the beams initially
sell-focus separately [Fig. 13(b)] and attract and over-
lap. However, this state is unstable and yields to irregu-
lar repetitions of repulsion and altraction. This process
dees not feature any visible periodicity and is observed
for time spans that are orders of magnitude longer than
the Lime constant of the system.

More detailed experimental and numerical studies by
Petrovié et al. [30] revealed that the CP incoherent beams
can form 2D spatial solitons, but they also exhibit an in-
teresting dynamical beliavior in both dimensions. Stable
solitons are readily observed over the 5 mm propagation
distance, with an applied ficld of 1.3 kV /e and the ini-
tial beam peak intensity of about twice the background
intensity. When the propagation distance is increased
from 5 mm to 23 mn, for identical other conditions.
a symmetry breaking transition from the stable over-
lapping CP solitons to unstable transversely displaced
solitons is observed. The beams still self-focus approx-
imately into solitons, but they do not overlap anymore
[Figs. 14(a,b)]. At the exit face most of the beam inten-
sity is expelled to a transversely shifted position (about
| beam width), while a fraction of the beam remains
guided by the other beam. This is another evidence of the
splitup transition. At higher applied fields (stronger non-
linearity) the beams stari to move. The motion is such
that the exiting bDeam rotates about or rapidly passes
through the input beam. or dances irregularly around.
No such long-lasting temporal chianges are observed in
the copropagation geometry. All these dynamical phases
can qualitatively be reproditced by nuomerical simulation,
as discussed above, in qualitative agreement with the ex-
perimental results.

The existence and stability of CP dipole-mode vee-
tor solitons in a PR medimin was studied experimentally
by Schréder et ol. {35], who also investigated the tran-
sient dynarmics. A dipole-mode vector soliton consists of
two mutnally ineoherent beams: an optical dipole and a
fundamental-mode beamn. The individually propagating
dipole does not form a spatial soliton, owing to repulsion
of the dipole components. However, if a fundamental-
mode beamn that is incoherent to the dipole is launched
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FIG. 14: Counterpropagating soliton after a splitup rransi-
tion: Forward propagating component in the steady state. (a)
Exit face of the crystal, experimental. (b) The corresponding
numetical simulation [30].

between the dipole components. they will be trapped by
means of incoherent atiraction.

Schréder e al. [35] have proven Lhe existence of a sta-
ble CP dipole-mode vector solicon in a PR crystal. This
vector soliton differs considerably in many aspects from
ils connterpart in the copropagating geometry. For ex-
ample. the time scale of the transienl dynamics is sig-
nificantly longer. During the formation the beams split,
and a trapped and an untrapped part of the dipole can
be observed experimentally [35].

V. SOLITONS IN OPTICAL LATTICES

Currently, we witness an explosion of interest in the
localized CP beams in plotonic crvstals and optically
induced photenic lattices [19]. Both 1D and 2D geome-
tries arc extensively studied in a number of recent pab-
licavions, and many aspects of counterpropagation are
addressed. An incomplete list includes Tammm oscilla-
tions and localized surface modes at the interface between
homogeneous medium and waveguide arrays; instabili-
ties and stabilization influence of optical lattices; soliton
propagation aided by reflection gratings: the hehavior of
CP vortices npon propagation in photonie lattices; Bloch
oscillations and Zener tunneling: the questions of angular
momentum transfer, conservation, and non-conservation
in such systems; éetc. In a few subsections, we will review
some of these aspects.

A. One-dimensional lattices

Interaction of CP discrete solitons in a nonlinear 1D
waveguide array was investigated experimentally and nu-
merically in [36]. Solitons of equal input powers were
lannched in the same channel. but propagating in the
opposite directions. Similar scenario to the CP soliton
propagation in bulk is observed. Tor small imput pow-
ers the interaction between solitons is weak. and almost
independent propagation in the same channel is seen.

L1

When the inpul power is increased, soliton instahility
sets in, and for a suffielently high value the spoutansous
symmetry breaking oceurs. resulting in a discrete lateral
displacement of the two solitens. A further increase in
power leads to the temporally irregnlar hehavior. with
fast sparial fluctuations as compared to the buildnp time.
Numerical modeling [36} corroborated the existence of
the three differcnt regimes: stable propagation of vector
solitons at low power, instability for intermediate power
levels. leading to a transverse shift of the two discrete
solitons, and an irregular dynamical hehavior of the two
beams at high input powers.

The existence of Tainm oscillations at the interface be-
tween a homaogeneons medium and a 1D NL wavegnide
array, with cither cubic or saturable, self-focusing or self-
defocusing nonlinearity, was demonstrared in [37]. Light
gers trapped in the vicinity of the edge of the array. ow-
ing to the interplay between repulsion at the edge and
Bragg reflection. Approximate analytical expressions for
the repulsive potential are given for different types of
nonlinearities. Tamm oscillations reduce to the surface
Bloch oscillations, when the repulsive potential is a lin-
early decreasing function of the distance from the edge
of the waveguide array.

The impact of an opticallv-induced photonic lattice
on the dynamics of CP solitons in a biased PR crystal,
as well as the stabilization of CP selitons by photonic
lattices, were studied in [38]. Numerical results there
demonstrate that an optically-induced lattice of an ap-
propriate period and strength can suppress or even com-
pleiely arrest the instability. It is found that CP soli-
tons lannched both on-site and off-site can be stabilized.
The rate of decrease of temporal dynamies of CP solitons
launched on-site strongly depends on the lattice strength
and its period. In the case of small periodicity and high
peak intensity of the lattice, spatiotemporal oscillations
are observed, with characteristics dissimilar fromn those
exliibited by CP solitons in bulk media. LExperimental
results [38] demonstrate that, in most cases, soliton dy-
namics, i.e. spatiotemporal oscillations, are suppressed
with the increasing sirength of the optical latrice. Also.
the decreasc in dynamics is noted experimentally for the
1D lattice whose periodicity is comparable to the heam
diameter.

B. Solitons aided by reflection gratings

The existence of linear 1D refleciion grating in a
NL optical medinm implies periodicity along the optical
propagation direction. In the presence of an intensity-
dependent nonlinearity, the interference between the two
CP beams produces a second longitudinal grating. Com-
bining these effects with the standard diffractive broad-
ening suppression. a twofold compensation mechanism
can arise, allowing for the CP soliton formation. Soli-
tons forming in a reflection grating in the presence
of I{err nonlinearity were investigated theoretically in



[39, 40. 41, 42, 43].

Bright and dark LD solitons counterpropagating along
the reflection graling were analytically investigated in
[39]. It was shown that, depending on the Bragg maich-
ing between the light and the Fourier component of the
grating, three different regimes of soliton existence arise.
In the firsi regime, when the deviation from exact Bragg
matching is small, both bright and dark solitons can ex-
ist. The other two regimes occur for greater deviations
from the exact Bragg matching. Deviations above Bragg
matching allow only bright, and deviations below Bragg
matching allow only dark solitons. In the two regimes the
solitons are insensitive to the mutual phase difference.

Transverse and soliton ingtabilities due to counterprop-
agation through a reflection grating in Ierr mmedia were
considered in [40]. It was shown that the presence of
the grating broadens and narrows the stability region of
plane waves in focusing and defocusing media, respec-
tively. Counterpropagation of spatial optical solitons in
a linear reflection grating. in the presence of a longitu-
dinally modulated Kerr nonlinearity, was investigated in
[41]. The existence of syminetric soliton pairs supported
by an effective Kerr-like nonlinearity is predicted ana-
lytically. In addition, two families of solitons are intro-
duced, in which the phase conjugation conpling exactly
halances the I err holographic focusing. Properties of a
general family of dark reflection solitons in defocusing
Kerr media were considered in [42]. Two families of soli-
tons counterpropagating along the grating direction in a
modulated Kerr medium (asynunetrical one-solitons and
coherent-incoherent two-solitons) were introduced in [43].

C. Two-dimensional lattices

Self-trapped CP beams in fixed optical photonic lal-
tices were for the first time investigated in {[44]. When
the propagation in photonic lattices is considered, the
propagation egquations are given by Eqs. (6) (assuming
Ey — E), and Eq. (8a) for the space charge field is inod-
ified, to include the transverse intensity distribntion of
the optically induced lattice array I,:

I+ 1,

L4 FE=—-—0« "
o L+T41,°

(10)

where [ = |F|? + |BJ? is the total beam intensity. Spon-
taneons svmmetry breaking of the head-on propagating
Gaussian beams is observed. as well as discrete diffrac-
tion and the fornation of discreie CP vector solitons. In
the case of launched vortices, beain filamentation is re-
ported, and subsequent pinning of filaments to the lattice
sites [44]. Dynamical properties of mutunally incoherent
self-trapped CP beams in optically induced photonic lat-
tices, for different incident beain structures and different
lattice configurations, were investigated numerically in a
number of papers {45, 46, 47. 48. 49, 50, 51].

{.  Launched vortices

Rotational properties of mutually incoherent self-
trapped vortex heams in optically induced fixed finite
photonic lattices with a central defect were considered
nmnerically in [45]. The defect is introdnced either by
omitting a lattice site in the center. or by defining a
specific defect function. An interesting example of ro-
tation of vortex filaments in the presence of a defect in
the triangular photounic lattice is presented in Fig. 15.
Although it looks as if the vortex filaments are rotating
only within the defect in the center of the lattice. they
also rotate away from the center, by tunneling hetween
the lattice sites. We call this tunneling the nonlocal ro-
tation. as opposed to the local rotation within the de-
fect. The tunneling rotation is correborated by the fact
that, for all the cases presenied in Fig. 15, the angn-
lar momentum of the vortex caleculated over the whole
lattice is considerably greater than the angular momen-
tum of the vortex calculated only over the central part
of the lattice. Nonlocal rotation in a periodic array, such
as the triangnlar/hexagonal photonic lattice, can exists
only for some values of the propagation distance L. Lat-
tice supports nonlacal rotation only for some valnes of
the propagation distance. with the ”period” eqnal to Lp
(Fig. 15). For the propagation cistances between these
vahies, chaotic behavior is observed, as well as the non-
propagating modes.

Rotating CP strictures in the non-pertodic but rota-
tionally symmetric circular photonic lattices were dis-
cussed also in [45]. Results for the head-on counterpropa-
galion of two centered vortices with the opposite topolog-
ical charges in a circular photonic lattice, with a negative
defect in the center, indicate rich dynamical hehavior as
a unction of the control parameters I' and L. For lower
values of I or L stable structures are seen, in the form of
well-preserved vortex core, centered at the defect, and fil-
aments focused onto the neighboring lattice sites. Above
this region stable rotating tripoles and quadrupoles ex-
ist. For higher values of the parameters irregular rotai-
ing structures and unstable structores (i.c. constantly
changing structures of unrecognizable shape) are identi-
fied. The rotating structures with flaments pinned to
the lattice sites can exist only in the presence of lattice
and have no analogs in the CP vortices propagating in
bulk media.

2. Gausstan beams

Time-dependent rotation of CP mutually incoherent
self-trapped Ganssian beams in periodic optically in-
duced fixed photonic lattices was investigated numeri-
cally in [46. 47]. In these papers lattice arrays with the
square or friangular arrangements of beams were eon-
sidered, with the central lattice beam absent. Head-on
CP Caussian beams were launched into the center of the
lattice, parallel to the latiice beams. For both photonic



FIG. 15: Local and nonlocal rotation of vortices in triangu-
lar lattice for various propagation distances. For propaga-
tion distances between these valnes chaatic behavior is ob-
served. Input vortices have the opposile topological charge
+1. Intensity distribution of the forward field at its out-
put face is presented for parameters: 1" = 17, laltice spacing
d = 28um, FWHNM of lattice beams 12.7pm. input FWHM
of vortices 26.2pm, maximum lattice imtensity 1, = bl4,
|Fo|> = |B.|* = 514. Reprinted from [45].

lattices the periodic rotation was found (see Fig. 16 for
triangular lattice) in a very narrow region of control pa-
rameters. Lach Ganssian beam collapses to a displaced
soliton-like beamn, and after transient dynamics srarts to
rotate indefinitely. Since for the parameters of sich sta-
ble periodic solutions there exist no stable sieady slates,
and since in oumerics Eq. (10) becomes equivalent to
the scalar nonlinear delay-differential equation, this phe-
nomenon is recognized as a supercritical Hop{ bifurca-
tion. The central parts of Ganssians rotate regularly in
the center of the lattice, owing to Lhe defect, and along
the whole crystal. Filaments away from the center rotate
with the same frequency about the symmetry axis of the
lattice, by tunneling between the lattice sites, hut only
close to the exiy face of the crystal.

Gaussian-induced rotating stnictures present soliton
solutions. because they preserve shape along the main
symmetry direction during the rotation. The physical
origin behind the nonlocal rotation is incoherent inter-
action and spontanecus symmetry breaking, while the
rotation is realized through the tunneling. Observed ro-
tating structures are stable iu the presence of up to 5%
noise added to the input beam intensity and phase. Spon-
tancous symmetry breaking via noise determines the di-
rection of rotation, hoth directions occurring with 50%
probability. TFer the same control parameters. CP Gaus-
sian beams show very irregular dynamical behavior in the
absence of lattice, bt very stable propagation is found
in the presence of lattices without defects.

3. Stable rotating solitons

For geometries and parameters which allow stable yo-
tation, the existence of solitonic 2D solitions was investi-
gated by considering Eqs. (6) and (10} in the steady state
46]. Duc to their symmetry, the above equations suggest
the existence of a lundaweutal 2D soliton solution of the

t=l23g t=128%% =130,

FIG. 16: Gaussian-induced rotation for the triangular pho-
tonic lattice: intensity distribution of hackward beam at its
exit face of the crystal, presented at different times. The
second row shows isosurface plots of a rotating structure at
characteristic times. Parameters: I” = 25, input FWHM of
CP Gaussian beams 1lpm. beam power 3.80. propagation

distance L = 2L, = Smm, inpnt beam intensity |Fp|> =
{B1]? = 11, lattice spacing d = 28pm, FWHNMI of laltice
beams (2.7um. and maximum lattice intensity fo = 2014.

Adopted from (46).
form:

F = u(z,y)cos(0)e”*. B =u(r.y)sin(d)e” 7= . (11)

where p is the propagation constant and 8 is an arbi-
trary projection angle. An appropriate choice for the CP
beams is 0 = 7/4: the same analysis can be applied to
the copropagating geometry, but with the choice ¢ = 0.
When this solution is substituted in Eqs. (6). they both
transform into one. degenerate equation:

2
pu o+ Aw - P'U.M—+[y =0. (12)
1k fu? + 1,

The soliton solutions of Eq. (12) can he found using the
modified Petviashvili iteration method. Because of the
CP geometry, these solitonic sohitions are stable only up
to some critical value of the propagation distance. Gans-
sian input beams and the same parameters as in the fitll
nimnerical simulations are used in search of the stable
soliton solutions. The propagation constant s is varied,
in order to find the beam power (P = [ [ |u[*dzdy) cor-
responding to the stable rotating structures. Figure 17
depicts the power diagran, together with the character-
istic soliton solutions for the case of triangular photonic
lattice; the filled circles represeut the characteristic types
of symmetric disercte soliton solutions. By increasing the
propagation constant p these solutions become more lo-
calized and asymmetric. Only for the beam powers cor-
responding to the less localized symmetric soliton solu-
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FIG. 17: Power diagram of soliton solntions for the triangular
photonic lattice. Various symbols indicate different kinds of
soliton galntions, characterized by the corresponding profiles.
Reprinted from [46).

tions, and for the lower values of x4, can one find Gaussian
induced rotation in numerical simulations.

4. Angulor momentum transfer

The transfer of orbital angular momentum (AM) from
vortex beams to an optically induced photonic lattice was
demonstrated numerically in [51]. An optically indnced
photonic lattice is, in fact, a complex propagating laser
beam. which means that the propagation equations for
the total system of interacting incoherent CP beams in
the computational domain should be of the form:

i0,F = ~AF + TEF. i0,G; = -AG; + TEG/, (13a)
i0,B = AB ~TEB, i8,Gy = AG;, - TEG,,(13b)

where Gy and G, are the envelopes of the forward and
backward propagating lattice beams, and I = |F|*+ |B|?
and I, = |G/|® + |Gy]* are the corresponding beam in-
tensities; the temporal evolution of the space charge field
is given by Eq. {10), as before.

Numerical results for the rransfer of AM in the inter-
acting CP heams are presented in Fig. 18. It was found
that the transfer of orbital AM is minimal in the inter-
acting CP lattices, and that the total AM - meaning the
sam L2(F)+ L2(G) 4+ Lz(B) + Lz(Gy) of all momenta
along the propagation z axis - is not conserved in this
case. More precisely, the difference of AM of CP beains
Lz(Fy+ Lz(Gy) — Lz(B) ~ Lz(G,) is conserved, whereas
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FIG. 18: Transfer of angular momentum in the interacting
CP beams. (a} Forward lattice at the input and output faces.
and the vortex at the output face. (b) Different normalized
angular momenta. Parameters: [ = 3, L = 25Lp = 10
mm, lattice spacing 28;1m, FWHM of input vortices 24.6pm,
FWHM of input lattice beams 9;4un, maximum input intensity
|F0|’2 = |1':?L|’2 = 54,4, and the maximum input lattice intensity

G522 = 0) = |Gh}*(z = L) = 20/4. Adopted from [51].

their sum is not. Even though any real optically induced
photonic lattice is an interacling beam, in a number of
papers it is treated approximately as a fixed lattice. In
was found in [31] that the transfer of orbital AM can be
substantial in the fixed periodic lattices. and that there
is always a considerahle loss of AM. Only in the fixed ra-
dially periodic lattices there is no problem with the con-
servation of AM of propagating light — it is a conserved
(uantity there.

Different behavior noted in the interacting and fixed
lattices can rizorously be explained [51]. By using the
standard definition for the z component of the orbital
AM, Lz(F) = ~ % [ [dadyF” (z.y)(z0y, ~ y8;)F(z.y) +
c.c., the derivative of the difference of AM for the as-
sumed CP geometry of propagation in the steady state
is given by:

QLx(F) _8L:(C;) OLz(B) 9L:(Cy)
oz dz Oz Oz




o 2x |F2 G 2 BQ a Ie, P
/ ndpf/ d@Ea(' "+ .r|9+| [+ 1Gsl*)
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M) 0

"oo 2
= / pde[ln(l + T+ Ig)wl-Ig] . (14)
Ja

where p and ¢ are the cylindrical coordinates. The differ-
ence of AM is conserved in the case of interacting CP lat-
tices, because the space charge field £ is then an explicit
function of I 4 I, the integration in ¢ is over a perfect
derivative, and the integral in Eq. (14) is 0. However,
for the fixed periodic lattices the terms invelving Gy and
Gy are absent, while E still contains I+ I, and the in-
tegration in Eq. (14) is not over a perfect derivative, so
the integral does not vanish. Therefore, the difference
in AM is then not conserved. (Note that for the fixed
radially periodic circular lattices the difference in AM is
conserved.) The same Eq. {14) proves the nonconser-
vation of the sum of AM in the general CP case: the
integral then contains the difference of intensities, while
E' still contains the sum, so it can not be equal to 0.

D. Experimental demonstrations

A simple realization of a periodic NL medium is the
one-dimensional system,. in which the NL arrays con-
sist of parallel, weakly coupled wavegnides. In these ar-
rays, discrete soliton interaction has heen investigated
for parallel beams, showing soliton attraction, repulsion,
oscillatory behavior of the two beams, and soliton fu-
sion [52, 53]. Similar to what has been observed for spa-
tial CP solilons in bulk media, both instabhility of the
interacting discrete solitons, leading Lo discrete spatial
shifts, and irregular dynainical behavior for high non-
linearities can he observed in photonic lattices. Experi-
mental results of Smirnov et al. [36] reveal the existence
of three regimes. namely. the stable propagation of vec-
tor solitons, an instability regime leading to discrete dis-
placements of solitons, and an irregular dynamics regime.

Figure 19 presents numerical caleulations which sumn-
marize these three regimes. For a small intensity ratio the
two solitons propagate stably with only weak interaction,
whereas for a higher ratio instability grows and the soli-
ton formation is partly snppressed. For even higher inten-
sitv ratio the two formed discrete solitons are displaced
by one channel to the lefi. If the intensity ratio is fur-
ther increased, no steady-state sohttion can be obtained
anymore: The output intensity on both faces starts to
fluctuate rapidly over recording times. similar to the re-
snlis described in Ref. [25]. In experiment. the interac-
tion of discrete CP solitons has been studied by Smirnov
et ab. [36] in LiNbOy; waveguide array. For small input
powers or intensity ratios, respectively, the interaction is
waak and almost independent propagation of the two dis-
crete solitons in the same channel is achieved. When the
input power (intensity ratio) is increased, soliton insta-
bility ocours, and for sufficiently high valnes spontaneous
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FLG. 19: Numerical simulation of the interaclion of discrete
CP solitons (left-hand side, heam 1: right-hand side, beam 2)
for three diferent intensily ratios [36].

synnnetry breaking with discrete lateral displacement of
the two solitons is ohserved.

These observations led to the extension of eflorts on
stabilization of CP solitons in 2D velume systems by the
use of 1D and 2D photonic lattices (Koke et al. [38]).
They investigated the dependence of the instability dy-
namics on the period and amplitnde of the lattice. and
presented experimental verification for the dyvnamic sta-
bilization of the bi-directional soliton states. Fig. 20
displays the arrest of instabilities of 2D CP solitons in
1D photonic latiice. 1t is evident that the ST oscillations
are suppressed by increasing the strength of the optical
lattice. This evolution is accompanied by an increased
trapping of light in the neighboring lattice sites, as ob-
served in the case of 1D CP solitons. In contrast to the
LD ease. an asymmetry of trapping in the lattice chan-
nels is due to the beam-bending effect. Owing to the
change in the refractive index, the self-bent soliton gets
partially reflected when it passes a lattice site. and the
reflected light travels along the waveguide written by the
lattice wave. Meorcover, the weaker oscillalions in the
y-direction are suppressed as the lattice peak intensity
is increased. It is worth noting that the experimental
stabilization of CP solitons has been achieved with lat-
tice strengths much lower than that found in numerical
simulations.

In experiments, Koke et al. [38] used a 2D square lat-
tice, optically-induced in a PR crystal. They varied the
lattice period and power. and monitored the positions of
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FIG. 20: Temporal evolution of the intensity distribution of
2D CP solitons in optical lattices, projected onto the z-axis
(parallel to the c-axis) for different lattice powers of (a) 250
W, (b)) 1.0 mW. (c) 1.5 mW, (d) 2.0 mW, aud (e} 2.5 mW.
The faint horizontal lines at x = 0 mark the retlected beam
at this erystal face, which acts as a reference. The results
for the other crystal face show a similar hehavior. Reprinted
from {38].

the beams at both faces of the crystal. The inpnts of the
forward and backward propagating beams in their exper-
iments have the size of 19 ym and 18 jian, respectively
[Fig. 21(b)]. In 10 mm long crystal this corresponds to
approximately 5 diffraction lengths of linear propagation.
Eor a sinall lattice period (3 pm) the potential induced
by the lattice was too weak to arrest the instability of
the CP beams. With the increased lattice period (of 6,
9, and 12 pm) the instability was practically removed for
a gertain range of lattice strength. The large lattice peri-
ods, however. strongly rechice the mobility of the beams,
as each beam can be fully trapped at a single lattice site.
Such trapping imposes a constraint on the formation of
bi-directional waveguides, which becomes sensitive on the
initial alignment of the beams. Thus, beams propagating
in different directions inside the erystal will not attract.
as their intensity overlap will he reduced by the trapping
on differeng lattice sites.

Without the lattice, both heams overlap weakly and
their individual propagation is strongly affected by the
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FIG. 21: Stabilization of the instability in two transverse di-
mensions: (a) two-dimensional square lattice of 6 jun period.
(b) Input intensity distribution for the forward (I') and the
backward () propagating beams, respectively. (c,d) Digi-
tally combined beain profiles at the lefl and right faces of the
crystal, when each soliton propagates independently. (e.f)
Stabilization by the lattice on both faces of the crystal, re-
spectively [38].

beam self-focusing and self-bending. At bias electric field
of 2 kV/em and at powers of 1 mW each beam forms a
spatial soliton, where the soliton size is equal to the input
beam size. In Fig. 21(c.d) we show the digitally combined
input and output of each beam. as they would propagate
without interaction inside the crystal. When both heams
co-propagate, they start to interact. After the initial
attraction, the beams exhibit oscillatory dynamies.

VI. GENERALIZATIONS

A. Localized multipole beams

Dynamical behavior of mutually inecoherent CP mul-
tipole vector solitons in an SBN:60Ce PR crystal was
investigated in [54]. The dipole-dipole interaction from
thal paper is reproduced in Fig. 22, In the case of dipole-
dipole CP solitons, two identical dipoles with the compo-
nents out of phase were connterpropagated head-on. The
dipoles were aligned perpendicular 1o the external field,
which points in the horizontal direction. A transverse
split-up oceurred. the direction of the split-up is prefer-
entially along the direction of the external field, and it
also depends on the added noise [Fig. 22(b)]. Only in the
case when some noise is added to one of the beams was it
possible to observe skewed split-ups. in better agreement.
with the experiment. For the case with no noise [Fig.
22(c)], in the beginning oscillations were noticed along
the y axis. and after a short time these oscillations were
damped. Compared to the single CP soliton cases, the
cases involving dipoles are more stable and the transient



FIG. 22: Dipole-dipole interaction. (a) Experiment: the for-
ward beam {upper) and backward beam (lower). at the exit
face of the crystal. The corresponding nnmerical simulations
of the backward heam: (b) with an extra noise of 5% added
to the input beam intensity, (¢} without noise. Parameters:
maximum input intensity |Fo|? = |B.|? = 1.314. I' = 7.17,
L = 5.75L)» = 23 mun, initial beam widths (FWHM) 20pn,
and the initial distance between the dipole partucrs 40pm.
Reprinted from [54).

dynamics last shorter.

The development of higher-order multipole structures
and patterns in CP beams in satnrable Kerr-like me-
din was investigated in [55]. A systemalic numerical
study was carried out, hy varying the width of beams.
The results of LSA, concerning the instability of plane
waves, were compared with the numerical results con-
cerning broad hyper-Gaussian beams (used as inputs in
simulations) whose width was varied. Qnalitative agrce-
ment was found, due to the similarity between the plane
wave and the flat-top hyper-Gaussian beam profile. We
should again stress the fact that the splitup transitions
do not appear to be of this common type of MI. The
solitons themselves conld he considered as related vo the
filaments of MI, and. as such, should be stable against
the same kind of MI. Nonetheless, it is still of interest
Lo explore the cross-over region by increasing the size
of the solitonic beams, until they display MI. A smooth
transition from the soliton splitup instabilities of narrow
beams to the pattern-forming Lransition of broad beams
is observed.

An interesting consequence of the finite size effects is
the appearance of the circular saw instability, presented
in Fig. 23. It appears in the form of circular saw-like ro-
tating blades, visible in an intermediate region of beam
widths, and it is caused by the MI at the edge of the
beam profile. It happens very close to the absolnte min-
inmm of the control parameter AI'L = 7/4 and is very
robust. The rotation of optical beams along the propaga-
tion direction in saturable I err-like media generally ap-
pears through a bifurcation in the spatial domain. Here
the hifurcation from hyper-Gaussian beams into rotating
structures is due (o a spatial symmetry breaking associ-
ated with a Hopf bifurcation in the time domain.

For a higher value of the control parameter ATL = 2,
where one canuot expect that LSA is applicable (see Fig.
8), a more complex behavior in the form of higher-order
niultipole structures was found (Fig. 24). For the nar-
row width of inecident beams, FWHM = 20um, a rotat-
ing displaced soliton was seen at the exiting faces of the

F1G. 23: Circular saw instability of the backward beam. pre-
sented in the direct and in the inverse space (the secord col-
umn), for AI'L = 0.8 (close to the absolute minimum of the
threshold curve). Transverse inteusity distribntions of the
backward beam at the exit face are presenied al different
Limes, for three valnes of FWHM, recorded at the left edge
of each of the rows. Cirenlar saw-like rotating blades be-
come visible in a region of FWHM, after a long transient
developnent. Parameters: |F(0)2 = |B(L)]* = 2, T = 6.68,
L = (.5Lp. The size of the transversc window in the direct
space is 400 x 400yom. Adopted from [55).
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FIG. 24: Diflerent dynamical multipole structures as the

FWHM of the hbackward beam is increased, presented at two
instances, for the control parameter AI'L = 2. The fig-
ure should be viewed as a two-cohin picture. Paramecters:
@) = |B(L)|> =8, T =109, L = 3Lp. The size of the
transverse window is 360 x 360um. Adopred from |35].

crvstal, after a split-up transition. At a larger width
(FWHM = 100pm) a hexagonal structure was observed
in Lthe beginning, which was followed by a regular rotation
of filaments. Since for the parameters of such stable peri-
odic solution there exist no stable steady state, and since
numerically Eq. (8a) is cquivalent to a scalar nonlin-
ear delay-differential equation, this phenomenon is recog-
nized as the supercritical Hopf bifurcation. For FWIHM
= 140pm, steady octagonal structure appeared. For the
next FWHM, afier a set of various regular patterns, ir-
regular structures took place. It should be mentioned
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FIG. 25: lso-surface plots of fwo CP vortices, with charges
+1. Upon collision the vortices break into thres beamlets,
which co-rotale continually in1 Lhe sense indicated by the ar-
rows. Adopted from [24)].

that all of these structires appear after a prolonged tem-
poral development. when the secondary instabilities set
in and the interaction of NL modes takes place.

B. Vortex beams

Colliding vortices with opposite topological charges
wore considered in {25]. In this case the beams break
up. generally into more than two filaments. In Fig.
25 the case of two CP counter-rotating vortices is dis-
played, which break into three beamlets with phase shifts
of 27 /3. After a while the beams form stable rotating
strictures that do not change in time. When viewed
in their exit faces, the beams form true rotating pro-
pellers. Such stable rotating state is interesting for devel-
oping transverse Mls over a fraction of diffitaction length,
even though it is generated in an isotropic model. Previ-
onsly observed isotropic vortex vector solitons, with co-
propagating componenis. tended to propagale for tens of
diffraction lengths before developing MIs.

Optical CP vortices in PR crvstals were investigated
nnmerically in [56]. A general conclusion of numerical
studies there was that the CP vortices in a PR medinm
cannot form stable CP vortex (i.e. ring-like) siructures,
propagating indefinitely. For smaller values of T' or the
propagation distance L stable CP vortices were observed.
Nevertheless. when they break, they form very differ-
ent stable filamented structures in propagating over fi-

18

A
© atamin s
F ) > aabie irgass
3% © bR GBS _
A QU i S ]
55 A GLEMELUTEEE W
QRGN
» BLalie Tpoak
o6 » roheting e
v  undahde
n
"
16 2
5
[1] 3 2 k] t L b
IFIG. 26: Typical behavior of CP vortices in the parameter

plane. The input vortices have the same topological charge
+1, and maximum input intensities [Fp|? = |B.|? = 3. Insets
list the possible outcomes from vortex collisions. Reprinted
from [56].

nite distances, corresponding to typical PR. erysial thick-
nesses, whicli are of the order of few Lp. Numerical
studies showed that the CP vortices with the same topo-
logical charge tend to form standing waves, whereas the
vortices with the opposite charges tend to form rotating
striictures. Some typical examples of collisions hetween
single head-on input vortices with the same topological
charge +1 are shown in Fig. 26. which represents the
phase diagram in the plane of conlrol parameters. One
can notice in the figure a narrow threshold region which
separates che stable vortices from the other struciures.
The shape of the threshold region follows the genreral
'L = const. form. Above this region stable dipoles.
tripoles and quadripoles are seen. in the form of standing
waves. For higher values of the parameters, the following
quasi-stable situations are tdentified: the transformation
of a quasi-stable quadrupole ulo a stable tripole, several
transformations of quadrupoles into quadrupoles, and a
stable rotating dipole. Above the quasi-stable region, CP
vortices produced unstable structures.

C. Counterpropagating beams in liquid crystals

Nematic liquid crystals (NLC) exhibit huge optical
nenlinearities, owing to large refractive index anisotropy,
coupled with the opticallv-induced collective molecutar
reorientation. They behave in a fAuid-like fashion, buw
display a long-range order that is characteristic of crys-
tals. Thanks Lo the optically nonlinear. saturable. non-
local and nonresonant response. NLC have been the sub-
ject of considerable study in rvecent years. The behavior
of CP self-focused beams in bulk NLC, both in time and
in three spatial dimensions was investigated in [57, 58],
using an appropriately developed theoretical model and



a numnerical procedure based on the beam propagation
method.

The evolution of slowly-varying beam envelopes £ and
B, linearly polarized along x axis and propagating along
z axis in a NLC cell. is described by the following paraxial
wave equatbions:

F . 3
2k g— 4+ AF + k2e,[sin? 8 — sin® (B, )| F = 0, (15a)
b
ol oB 2 a2 L2 _
-2k =7 + AB + kje,[sin” & ~ sin” (600 )] B = 0, (15b)
z

where F and B are the forward and backward propagat-
ing beamn envelopes, k = kgny is the wave vector in the
medium, £, = ni - ng is the birefringence of the medinm,
and A is transverse Laplacian. The rest distribution an-
gle O.q in the presence of a low-frequency electrie field
is modeled by:

Orese (2. V) = 0(V) + [fin — 0a(V)]

- [exp(—z/Z) + exp(—(L — 2)/7)], (16)

with 8,(V)) being the orientation distribution due to the
applied voltage far from the imput interface. 4, is the
director orientation at the boundaries z = 0 and 2 = L.
where L is the propagation distance and Z is the relax-
ation distance. The temporal evolution of the angle of
reorientation is given by the diffusion equation:

'yﬁ = KA, 0+ 1505,, sin(20)[|F|* + |B|?),  (17)
ot 4

where 4 is the viscons coefficient and K is Frank’s elastic
constant. Here 8 is the overall tilt angle, owing te both
the light and the voltage influence.

It was found numerically [57, 58] that the stable vee-
tor solitons can only exist in a narrow threshold region
of control parameters. Bellow this region the beams
diffract, above they self-focus into a series of focal spots.
Spatiotemporal instabilities were observed as the input
intensity, the propagation distance, and the hirefringence
were increased. The effect of the input inlensity variation
on the CP Gaussian beam propagation is presented in
Fig. 27. For smaller intensities [Fig. 27(a)] self-focusing
is too weak to keep the beam tightly focused, so it can
not pass through nnchanged. as a spatial soliton. By
increasing the beam intensity [Fig. 27(h)] at one point
stable soliton propagation is achieved. For still higher
intensities transverse motion of the beam is observed, in
the form of one [Fig. 27(c)], or two consecutive jumps.
resembling beam undulations. For further increase of
the intensity nnstable dynamical behavior of beams [Fig.
27(d)] is seen.

An interesting experimental account on the interaction
of CP solitons in a NLC E7 cell is provided in [59]. Ex-
periments are performed to estimate the nounlocality of

F1G. 27: Beam propagation, sliown for one beam in the (y, z}
plane, for different input intensities: (a) I = 6 x 10°V?/m?,
() I = 7x10°V2/m?, (¢) [ =& x 10°V?/m?, and (d) I =
9% 10™V2/m2. In (c) the beam intensity is also shown in the
(x,y) output plane. Parameters: input beam width (FWHNM)
4pm, L = 0.5 mm, and z, = 0.5. Adopted from [58].
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FIG. 28: Curved beam resulting from the fusion ol two nonlo-
cal CP solitons. The fibres are artificially marked, the dashed
lines indicate the initial direction of the solitons. Reprinted
from (59).



the reorientational nonlinearity in thick samples. The
attraction of spatial optical solitons counterpropagating
parallel to each other and at different small distances
is displayed. An experimental method to estimase the
width of the refractive index profile in a NLC sample ex-
cited by a narrow laser beam is developed. It is shown
that the width of the index profile can nicely be fitted
by a Lorentzian curve. A rare experimental picture of
a stable CP soliton pair. launched with a considerable
transverse displacement in a NLC, is presented in Fig.
28.

VII. CONCLUSIONS

We have summarized recent developments in the
physics of CP optical beams and spatial solitons, propa-
gating in NL media. We have analyzed the formation of
various stationary medes, as well as spatiolemporal insta-
bilities of CP beams. We have emploved several models
for describing the evolution and interactions of optical
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beams and spatial solitons that propagate in opposite di-
rections, but the majority of the resnlts are presented for
the model of saturable PR. nonlinearity. We have dis-
cussed the recent experimental observations of the coun-
terpropagation effects and instabilities in waveguides and
bulk geometries, as well as for one- and two-dimensional
photonic lattices. We have also discussed several gen-
eralizations of this cencept, including the CP beams of
complex structures. such as multipole beams and optical
vortices, as well as counterpropagation in other media,
such as photonic and nematic lignid crystals.
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