J. Austral. Math. Soc. (Series A) 39 (1985), 270-281

COUNTING 2-CIRCULANT GRAPHS

GEK-LING CHIA and CHONG-KEANG LIM

(Received 15 October 1983)

Communicated by W. D. Wallis

Abstract

Alspach and Sutcliffe call a graph X(S, q, F) 2-circulant if it consists of two isomorphic copies of circulant graphs X(p, S) and X(p, qS) on p vertices with "cross-edges" joining one another in a prescribed manner. In this paper, we enumerate the nonisomorphic classes of 2-circulant graphs X(S, q, F) such that |S| = m and |F| = k. We also determine a necessary and sufficient condition for a 2-circulant graph to be a GRR. The nonisomorphic classes of GRR on 2p vertices are also enumerated.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 C 25, 05 C 30, 05 C 99.

1. Introduction

We consider only finite undirected graphs with no loops or multiple edges. Definitions not given here may be found in [10]. Let Z_n be the ring of integers and Z_n^* the multiplicative group of units in Z_n . Let S be a subset of Z_n^* with S = -S. The *circulant graph* X = X(n, S) with symbol S is the graph with vertex set u_0 , u_1, \ldots, u_{n-1} and an edge joining u_i and u_j if and only if $j - i \in S$. Let p denote a prime number. Turner [12] shows that two circulant graphs X(p, S) and X(p, S') are isomorphic if and only if S' = qS for some q in Z_p^* . He also gave an enumerative polynomial for this class of circulant graphs. The automorphism group A(X) of a circulant graph X = X(p, S) was determined explicitly by Alspach [1]. If $\emptyset \subset S \subset Z_p^*$, then A(X) has order |E(S)|p where E(S) is the largest subgroup of Z_p^* for which S can be written as a union of cosets of E(S). If $\beta^*(p, m, d)$ denotes the number of nonisomorphic circulant graphs X = X(p, S)

^{© 1985} Australian Mathematical Society 0263-6115/85 \$A2.00 + 0.00

with degree |S| = m and automorphism group of order dp, then

$$\beta^*(p, m, d) = \frac{d}{m} \sum_{d \mid d_i} \mu\left(\frac{d_i}{d}\right) \left(\frac{\frac{p-1}{d_i}-1}{\frac{m}{d_i}-1}\right)$$

where $\mu(n)$ is the classical Möbius function (see [5] Chapter 5).

In [2] Alspach and Sutcliffe call a graph X = X(S, q, F) 2-circulant if (i) $V(X) = V(X_1) \cup V(X_2)$ where $X_1 = X(p, S)$ and $X_2 = X(p, qS)$ are two isomorphic circulant graphs with $V(X_j) = \{u_{j,0}, u_{j,1}, \dots, u_{j,p-1}\}, j = 1, 2$, (ii) E(X) $= E(X_1) \cup E(X_2) \cup \{(u_{1,i}, u_{2,j}) | j - i \in F\}$, (iii) q is chosen such that $q^2 \in E(S)$ and (iv) (a) if qS = S then F is any subset of Z_p , (b) if $qS \neq S$ then $j \in F$ implies that $-q j \in F$. A 2-circulant X(S, q, F) is said to be of Type-I if it has a representation $X(S', q', F') \cong X(S, q, F)$ with q' = 1; otherwise it is said to be of Type-II. In this paper we enumerate separately, the nonisomorphic classes of Type-I and Type-II 2-circulants such that |S| = m and |F| = k. Our method is similar to the one used in [4].

It is not difficult to see that a GRR on 2p vertices is a Type-I 2-circulant. In the final section, we determine a necessary and sufficient condition for a Type-I 2-circulant graph to be a GRR (Theorem 4.3). We then proceed to enumerate the nonisomorphic classes of GRR on 2p vertices.

2. Type-I 2-circulants

In this section we shall count the number of Type-I 2-circulant graphs. Theorem 8 of [2] asserts that X(S, q, F) with $|F| \neq 0$ is of Type-I if and only if qS = S. Now this is possible if and only if $q \in E(S)$. So we may assume without loss of generality that q = 1 whenever X(S, q, F) is Type-I.

Let 2I(p, m, k) denote the number of nonisomorphic Type-I 2-circulant graphs X(S, 1, F) with |S| = m (even) and |F| = k. We note that 2I(p, m, k) =2I(p, m, p - k) = 2I(p, p - m - 1, p - k) for any $k \ge 0$ and m > 0. We note further that if k = 0 or k = 1, then 2I(p, m, k) is the number of circulant graphs X(p, S) with |S| = m. In view of these we may assume that $2 \le |F| \le (p - 1)/2$ and $0 < m \le (p - 1)/2$.

THEOREM 2.1 [2, Theorem 10]. Two Type-I 2-circulant graphs X(S, 1, F) and X(S, 1, F') with $\emptyset \subset F, F' \subset Z_p$ are isomorphic if and only if there exists $\alpha \in E(S)$ such that $F' = \alpha F + c$ for some $c \in Z_p$.

Let X = X(S, 1, F) and $\mathscr{F}(k)$ be the collection of all subsets of Z_p each of cardinality k > 0. Suppose k < p and let $F \in \mathscr{F}(k)$. By Theorem 2.1, $X(S, 1, F + c) \cong X(S, 1, F + d)$ for any $c, d \in Z_p$. Now since $F + c \neq F + d$ if $c \neq d$, each $F \in \mathscr{F}(k)$ induces a family containing p elements and so there are $n = (1/p)\binom{p}{k}$ families in $\mathscr{F}(k)$. Let these families be $\mathscr{F}_1, \ldots, \mathscr{F}_n$. Two families \mathscr{F}_i and \mathscr{F}_j are said to be *equivalent* under E(S), written $\mathscr{F}_i \sim \mathscr{F}_j$ if there exist $\alpha \in E(S), F \in \mathscr{F}_i$ and $F' \in \mathscr{F}_j$ such that $\alpha F = F' + c$ for some $c \in Z_p$. Evidently \sim is an equivalence relation and that if $\mathscr{F}_i \sim \mathscr{F}_j$, then $X(S, 1, F) \cong$ X(S, 1, F') for any $F \in \mathscr{F}_i$ and $F' \in \mathscr{F}_j$. By Theorem 2.1 the action of E(S) will partition $\mathscr{F}_1, \ldots, \mathscr{F}_n$ into equivalence classes. We shall determine the number of these equivalence classes.

Let E_i be the subgroup of Z_p^* with $|E_i| = d_i$. Then \mathscr{F} is said to be *invariant* under E_i , if for every $F \in \mathscr{F}$, we have $\alpha F = F + c$ for any $\alpha \in E_i$ and some $c \in Z_p$.

LEMMA 2.2. \mathscr{F} is invariant under $E_i \neq 1$ if and only if there exists $F \in \mathscr{F}$ such that $F = \bigcup_{\alpha} \alpha E_i$ or $F \setminus \{0\} = \bigcup_{\alpha} \alpha E_i$.

PROOF. The sufficiency is clear. If \mathscr{F} is invariant under E_i , then for every $F \in \mathscr{F}$, we have aF = F + c for some $c \in Z_p$ and any $a \in E_i$. In particular we choose F such that c = 0. Since aF = F if and only if $a \in E_i$, it follows that either $F = \bigcup_{\alpha} \alpha E_i$ or $F \setminus \{0\} = \bigcup_{\alpha} \alpha E_i$.

LEMMA 2.3. Let $A_1 = \bigcup_{\alpha} \alpha E_i$, $A_2 = \bigcup_{\beta} \beta E_i$ where $E_i \neq 1$. If $A_1 \neq A_2$, then $A_1 \neq A_2 + c$ for any $c \in Z_p$.

PROOF. We need only note that for $E_i \neq 1$ and $j = 1, 2, \sum_{r \in A_j} r \equiv 0 \pmod{p}$ and that $c|A_2| \neq 0 \pmod{p}$ unless c = 0 or $|A_2| = p$. But these are ruled out by the fact that $A_1 \neq A_2$.

Combining Lemmas 2.2 and 2.3, we have

LEMMA 2.4. The number of families which are invariant under some non-trivial subgroup E_i of E(S) is given by

$$\Psi(E_i; F) = \begin{cases} \begin{pmatrix} (p-1)/d_i \\ |F|/d_i \end{pmatrix} & \text{if } d_i \text{ divides } |F|, \\ \begin{pmatrix} (p-1)/d_i \\ (|F|-1)/d_i \end{pmatrix} & \text{if } d_i \text{ divides } |F|-1 \\ 0 & \text{otherwise.} \end{cases}$$

Since the identity subgroup $E_0 = 1$ of E(S) leaves all families invariant, $\Psi(1; F) = (1/p) \binom{p}{|E|}$.

For each $i \ge 0$ and d_i dividing d = |E(S)|, let \mathscr{A}_i denote the collection of all \mathscr{F} which are invariant under $E_i \le E(S)$. Then $|\mathscr{A}_i| = \Psi(E_i; F)$.

LEMMA 2.5. $\mathscr{A}_i \cap \mathscr{A}_i = \mathscr{A}_i$ if and only if d_i divides d_i .

PROOF. Now d_i divides d_j implies that $E_i \leq E_j$ so that any \mathscr{F} invariant under E_j is also invariant under E_i . Now if $\mathscr{A}_i = \mathscr{A}_j$, the result is true. So we may assume that $\mathscr{A}_j \subset \mathscr{A}_i$ and that there is no \mathscr{A}_k with $\mathscr{A}_j \subset \mathscr{A}_k \subset \mathscr{A}_i$. Let $\mathscr{F} \in \mathscr{A}_j$. By Lemma 2.2, there exists $F \in \mathscr{F}$ such that either $F = \bigcup_{\alpha} \alpha E_j$ or $F \setminus \{0\} = \bigcup_{\alpha} \alpha E_j$. Since $\mathscr{A}_j \subset \mathscr{A}_i$, \mathscr{F} is also invariant under E_i , and the same $F \in \mathscr{F}$ will have the property that aF = F for all $a \in E_i$. Hence either $F = \bigcup_{\alpha} \alpha E_i$ or $F \setminus \{0\} = \bigcup_{\alpha} \alpha E_i$. Thus we have either $F = \bigcup_{\alpha} \alpha E_j = \bigcup_{\alpha} \alpha E_i$ or $F \setminus \{0\} = \bigcup_{\alpha} \alpha E_i$. By letting $b \in E_i \setminus E_i$, we check that d_i divides d_i .

Let [a, b] denote the least common multiple of a and b. Using Lemma 2.5, we obtain the following lemma.

LEMMA 2.6. $\mathscr{A}_i \cap \mathscr{A}_i = \mathscr{A}_k$ if and only if $d_k = [d_i, d_i]$.

LEMMA 2.7. E(S) partitions $\mathscr{A}_i \setminus \bigcup_j \mathscr{A}_j$ into equivalence classes each containing exactly d/d_i families.

PROOF. Since E_i is a subgroup of E(S), we have

$$E(S) = E_i \cup g^k E_i \cup \cdots \cup g^{(n-1)k} E_i$$

where g is a primitive root of p and k = (p-1)/d. Since $\mathscr{F} \in \mathscr{A}_i \setminus \bigcup_j \mathscr{A}_j$ is invariant under E_i , there exists $F \in \mathscr{F}$ with $F = \bigcup_{\alpha} \alpha E_i$ or $F \setminus \{0\} = \bigcup_{\alpha} \alpha E_i$. Hence the action of E(S) on $\mathscr{A}_i \setminus \bigcup_j \mathscr{A}_j$ is equivalent to the action of $\{1, g^k, \ldots, g^{(n-1)k}\}$ on $\mathscr{A}_i \setminus \bigcup_j \mathscr{A}_j$. Now $g^{ak}F \neq g^{bk}F$ whenever $0 \leq a \neq b \leq n -$ 1. Furthermore we assert that $g^{ak}F \neq g^{bk}F + c$ for any $c \in z_p$. This assertion is true for $E_i \neq 1$ as can be seen from Lemma 2.3. It remains to show that it is true for $E_i = 1$. Without loss of generality we show that $F \neq g^{ak}F + c$ for every $c \in Z_p$ and $a \neq 0$. Suppose the contrary; then $F = g^{ak}F + c$ for some $c \in Z_p$. But this implies that $F = g^{-ak}F + d$ for some $d \in Z_p$, and \mathscr{F} is invariant under $\{1, g^{ak}, g^{-ak}\}$ which is a subgroup of E(S). This contradicts $\mathscr{F} \in \mathscr{A}_0 \setminus \bigcup_j \mathscr{A}_j$.

Note that the above lemma does not hold if $|F| \le 1$, or $|F| \ge p - 1$. However we have assumed earlier that $2 \le |F| \le (p - 1)/2$. Let $2I^*(p, d, d_i, |F|)$ denote

the number of equivalence classes in $\mathscr{A}_i \setminus \bigcup_i \mathscr{A}_i$. Then by Lemma 2.7, we have

$$\frac{d}{d_i} 2I^*(p, d, d_i, |F|) = |\mathscr{A}_i| - \left| \bigcup_j \mathscr{A}_j \right|.$$

Using Lemma 2.6 and applying the principle of inclusion and exclusion, we obtain

$$2I^{*}(p, d, d_{i}, |F|) = \frac{d_{i}}{d} \sum_{d_{i}|d_{j}} \mu\left(\frac{d_{j}}{d_{i}}\right) \Psi(E_{j}; F).$$

Summing up $2I^*(p, d, d_i, |F|)$ for all d_i which divides d, we obtain

$$2I^{*}(p, d, |F|) = \sum_{d_{i}|d} 2I^{*}(p, d, d_{i}, |F|)$$

which is the number of equivalence classes in $\mathscr{F}(k)$ for a fixed S with |E(S)| = d. But there are altogether $\beta^*(p, m, d)$ non-equivalence S with $|E(S)| = d, 0 < |S| \le (p-1)/2$. Thus summing up $2I^*(p, d, |F|)\beta^*(p, m, d)$ for all d even (recall that d is a common divisor of m and p - 1), we get

$$2I(p, m, |F|) = \sum_{d \text{ even}} 2I^*(p, d, |F|)\beta^*(p, m, d).$$

THEOREM 2.8. The number of Type-I 2-circulant graphs X = X(S, 1, F) with |S| = m and $2 \le |F| \le (p - 1)/2$ is given by

$$2I(p, m, |F|) = \sum_{d} 2I^{*}(p, d, |F|)\beta^{*}(p, m, d)$$

where the summation ranges over all even common divisors d of m and p - 1.

EXAMPLE 1. Let p = 13, m = 6 and k = 6. Then the common divisors d of m and p - 1 are 1 < 2 < 3 < 6.

(i) When d = 6,

.

$$2I^{*}(p, 6, 1, 6) = \frac{1}{6} \sum_{1|d_{j}} \mu(d_{j}) \Psi(E_{j}; F) = 18,$$

$$2I^{*}(p, 6, 2, 6) = \frac{2}{6} \sum_{2|d_{j}} \mu\left(\frac{d_{j}}{2}\right) \Psi(E_{j}; F) = 6,$$

$$2I^{*}(p, 6, 3, 6) = \frac{3}{6} \sum_{3|d_{j}} \mu\left(\frac{d_{j}}{3}\right) \Psi(E_{j}; F) = 2,$$

$$2I^{*}(p, 6, 6, 6) = \frac{6}{6} \sum_{6|d_{j}} \mu\left(\frac{d_{j}}{6}\right) \Psi(E_{j}; F) = 2.$$

Thus

$$2I^{*}(p, 6, 6) = \sum_{d|6} 2I^{*}(p, 6, d, 6) = 28,$$

$$\beta^{*}(p, m, 6) = \frac{6}{m} \sum_{6|d_{j}} \mu\left(\frac{d_{j}}{6}\right) \left(\frac{p-1}{d_{j}} - 1\right) = 1$$

(ii) When d = 2,

$$2I^{*}(p,2,1,6) = \frac{1}{2} \sum_{1|d_{j}} \mu(d_{j}) \Psi(E_{j};F) = 56,$$

$$2I^{*}(p,2,2,6) = \frac{2}{2} \sum_{2|d_{j}} \mu\left(\frac{d_{j}}{2}\right) \Psi(E_{j};F) = 18,$$

$$2I^{*}(p,2,6) = 74,$$

$$\boldsymbol{\beta^*}(p,m,2) = \frac{2}{m} \sum_{2|d_j} \mu\left(\frac{d_j}{2}\right) \left(\frac{p-1}{d_j}-1\right) = 3.$$

Hence

$$2I(p, m, 6) = \sum_{d} 2I^{*}(p, d, 6)\beta^{*}(p, m, d) = 250.$$

For the case $H = Z_p^*$, we note that $E(S) = Z_p^*$ and that the expression $2I^*(p, d, d_i, |F|)$ also works for d = p - 1. Hence $2I^*(p, p - 1, |F|) = \sum_{d|p-1} 2I^*(p, p - 1, d, |F|)$. However there is only one circulant graph X(p, S) with $S = Z_p^*$. Thus $2I(p, p - 1, |F|) = 2I^*(p, p - 1, |F|)$ and we have the following formula which counts the number of weak starred polygons of degree |F| on 2p vertices. (See [6] for the definition of weak starred polygons.)

THEOREM 2.9.
$$2I(p, 0, |F|) = 2I(p, p - 1, |F|) = \sum_{d|p-1} 2I^*(p, p - 1, d, |F|).$$

3. Type-II 2-circulants

In this section we shall count Type-II 2-circulant graphs X(S, q, F) with |S| = m and |F| = k. We proceed by determining the conditions on q which make X(S, q, F) Type-II 2-circulant.

PROPOSITION 3.1. A 2-circulant graph X = X(S, q, F) with $\emptyset \subset F \subset Z_p$ is Type-II if and only if $q = g^{k/2}$ a for some $a \in E(S)$, where g is a primitive root of p and k = (p - 1)/|E(S)|.

PROOF. Now $Z_p^* = E(S) \cup gE(S) \cup \cdots \cup g^{k-1}E(S)$. If X is Type-II 2-circulant, then $qS \neq S$ and so $q \notin E(S)$ and $q = g^{\alpha}a$ for some $a \in E(S)$ and $0 < \alpha \leq k - 1$. Now since $q^2 = g^{2\alpha}a^2 \in E(S)$ we must have $g^{2\alpha} \in E(S)$. But this is possible only if $2\alpha \equiv 0 \pmod{k}$ or $\alpha = k/2$.

On the other hand if $q = g^{k/2}a$, then $qS \neq S$. Since $\emptyset \subset F \subset Z_p$, X is a Type-II 2-circulant graph according to Theorem 8 of [2].

COROLLARY 3.2 [2, Theorem 9]. If X = X(S, q, F) is a Type-II 2-circulant graph, then $p \equiv 1 \pmod{4}$.

PROOF. Since X is Type-II 2-circulant, Proposition 3.1 asserts that k/2 = (p-1)/2d is an integer. Since d is even, the result follows.

COROLLARY 3.3. If X = X(S, q, F) is of Type-II 2-circulant, then 2|E(S)| divides p - 1.

PROOF. If X = X(S, q, F) is Type-II 2-circulant, then by Proposition 3.1, k = (p - 1)/|E(S)| is an even integer. Hence the result follows.

THEOREM 3.4 [2, Theorem 10]. Two Type-II 2-circulant graphs X(S, q, F) and X(S, q', F') are isomorphic if and only if there exists $\alpha \in E(S)$ with $\alpha F = F'$.

Let #(a) denote the order of $a \in E(S)$.

LEMMA 3.5. If X = X(S, q, F) is Type-II 2-circulant, then $\#(q^2)$ is even.

PROOF. Since $q = g^{k/2}a = g^{k/2}g^{rk}$, $0 \le r \le d - 1$, we have $q^2 = g^{(2r+1)k}$. Since d is even, it follows that $q^{2n} = g^{n(2r+1)k} = 1$ only if n is even. Hence $\#(q^2)$ is even.

LEMMA 3.6. Let $\#(q^2) = d_i$. Then for any $j \in F$, $jE_v \subseteq F$ where $d_v = 2d_i$.

PROOF. It suffices to show that $1 \in F$ implies $E_v \subseteq F$. Let $1 \in F$. Then by condition (iv)(b), $-q \in F$. Continuing we have $(-1)^r q^r \in F$ where $0 \leq r \leq 2d_i - 2$. Then $\{1, q^2, \ldots, q^{2d_i - 2}\} \cup -q\{1, q^2, \ldots, q^{2d_i - 2}\} \subseteq F$. Since d_i is even by Lemma

3.5, it follows that $-q\{1, q^2, ..., q^{2d_i-2}\} = q\{1, q^2, ..., q^{2d_i-2}\}$. Since $\#(q^2) = d_i$, we see that $q^2 = g^{k_i}$ and so $q = g^{k_i/2} = g^{k_o}$. Thus $\{1, q^2, ..., q^{2d_i-2}\} \cup q\{1, q^2, ..., q^{2d_i-2}\} = E_v$ and the lemma follows.

Thus we see that if $|F| \neq 1$, then F depends on the choice of q, and for this reason we may sometimes write F = F(q). Since $d_v = 2d_i = 2\#(q^2)$ and $F = \bigcup_{\alpha} \alpha E_v$ or $F \setminus \{0\} = \bigcup_{\alpha} \alpha E_v$, we have the following corollary.

COROLLARY 3.7. If X = X(S, q, F) is Type-II 2-circulant, then $\emptyset \subset F \subset Z_p$ and $|F| \equiv 0 \pmod{2\#(q^2)}$ or $|F| \equiv 1 \pmod{2\#(q^2)}$.

Let $\mathscr{B}(|F(q)|)$ denote the collection of all F(q) of a Type-II 2-circulant X(S, q, F(q)) with |F(q)| > 1. Then

$$|\mathscr{B}(|F(q)|)| = \begin{cases} \binom{(p-1)/2\#(q^2)}{|F|/2\#(q^2)} & \text{if } |F| \equiv 0 \pmod{2\#(q^2)}, \\ \binom{(p-1)/2\#(q^2)}{(|F|-1)/2\#(q^2)} & \text{if } |F| \equiv 1 \pmod{2\#(q^2)}, \\ 0 & \text{otherwise.} \end{cases}$$

Let (a, b) denote the greatest common divisor of a and b.

LEMMA 3.8. The action of E(S) partitions $\mathscr{B}(|F(q)|)$ into equivalence classes each containing exactly $d/(2\#(q^2), d)$ elements.

PROOF. Let $2\#(q^2) = d_v = 2d_i$, and $(2\#(q^2), d) = d_i$. Then $E_v \cap E(S) = E_i$ and

$$E(S) = E_t \cup g^k E_t \cup \cdots \cup g^{(d/d_t-1)k} E_t,$$

$$E_v = E_t \cup g^{k_v} E_t \cup \cdots \cup g^{(d_v/d_t-1)k_v} E_t.$$

Since F or $F \setminus \{0\} = \bigcup_{\alpha} \alpha E_v = \bigcup_{\beta} \beta E_i$, we see that the action of E(S) on $\mathscr{B}(|F(q)|)$ is equivalent to the action of $\{1, g^k, \dots, g^{(d/d_i-1)k}\}$ on $\mathscr{B}(|F(q)|)$. Furthermore $g^{ak}F \neq g^{bk}F$ for any $0 \leq a \neq b \leq d/d_i - 1$ and this proves the lemma.

Let $2II^*(p, d, |F(q)|)$ denote the number of equivalence classes in $\mathscr{B}(|F(q)|)$ for a fixed S with |E(S)| = d. Then by Lemma 3.8

$$2II^{*}(p, d, |F(q)|) = \frac{(2\#(q^{2}), d)}{d} |\mathscr{B}(|F(q)|)|,$$

|F(q)| > 1. Furthermore, if $F(q) = \{0\}$, then E(S) fixes F(q) so that $2II^*(p, d, |F(q)|) = 1$. Since there are altogether $\beta^*(p, m, d)$ non-equivalent S

[9]

with |E(S)| = d and |S| = m, on summing $2II^*(p, d, |F(q)|)\beta^*(p, m, d)$ for all common divisors d of m and p-1 with 2d dividing p-1, we obtain 2II(p, m, |F(q)|), the number of Type-II 2-circulant graphs X(S, q, F(q)) with |S| = m.

THEOREM 3.9. The number of Type-II 2-circulant graphs X = X(S, q, F(q)) with |S| = m is given by

$$2II(p, m, |F(q)|) = \sum_{d} 2II^{*}(p, d, |F(q)|)\beta^{*}(p, m, d)$$

where the summation ranges over all even common divisors d of m and p - 1 with 2d dividing p - 1.

REMARK. If $S = \emptyset$, $S = Z_p^*$ or $F = \emptyset$, $F = Z_p$ then X(S, q, F) is Type-I 2-circulant. Hence 2II(p, 0, k) = 0 = 2II(p, m, 0). Note that 2II(p, m, |F(q)|) = 2II(p, p - 1 - m, p - |F(q)|). Furthermore since $2II^*(p, d, |F(q)|) = 2II^*(p, d, p - |F(q)|)$ it follows that 2II(p, m, |F(q)|) = 2II(p, m, p - |F(q)|).

EXAMPLE 2. Let p = 13, m = 6 and |F(q)| = 4. Then the even common divisors d of m and p - 1 are 2 and 6.

(i) When d = 2, $\#(q^2) = 2$ and so $2II^*(p, d, 4) = 3$ and $\beta^*(p, m, 2) = 2$.

(ii) When d = 6, then either $\#(q^2) = 2$ or $\#(q^2) = 6$. Since $2\#(q^2)$ must divide |F(q)|, only $\#(q^2) = 2$ is possible. So $2II^*(p, d, 4) = 1$ and $\beta^*(p, m, 6) = 1$.

Thus $2II(p, m, |F(q)|) = \sum_{d} 2II^{*}(p, m, d)\beta^{*}(p, m, d) = 10.$

4. GRR on 2 p vertices

Let G be a finite group and H a subset of G with the properties (i) $1 \notin H$ and (ii) $h \in H$ implies $h^{-1} \in H$. Then the Cayley graph of G with respect to the generating set H is the graph $X_{G,H}$ with $V(X_{G,H}) = G$ and $E(X_{G,H}) = \{(g, gh) | h \in H\}$. Clearly $X_{G,H}$ is connected if and only if $\langle H \rangle = G$. A graph X is called a graphical regular representation (GRR) of a group G if the automorphism group A(X) of X is regular, as a permutation group, and isomorphic to G. Sabidussi in [11] shows that if X is a GRR, then $X \cong \overline{K}_2$, or else X is connected and $X \cong X_{G,H}$ for some group G and some generating set H of G. In this section we shall apply the method developed in Section 2 to count the number of GRR on 2p vertices. A special case of our result is a partial solution (Corollary 4.7) to a problem (8b) raised in [9]: which groups have a cubic GRR? We remark that the set of Type-I 2-circulant graphs coincides with the set of Cayley graphs $X_{D_p,J}$. (Here $D_p = \langle a, b | a^p = b^2 = 1$, $bab = a^{-1} \rangle$ denotes the dihedral group of order 2*p*.) For if $X = X_{D_p,H}$, then X is of Type-I 2-circulant X(S, 1, F) with $S = \{i | a^i \in H\}$ and $F = \{i | a^i b \in H\}$. Conversely if X = X(S, 1, F), then X is a Cayley graph on the cyclic group Z_{2p} , or on the dihedral group D_p [2, Theorem 6]. Moreover if $X = X_{Z_{2p},H}$, then $X \cong X_{D_p,H'}$ for some generating set H' of D_p .

Let $\alpha \in Z_p^*$ and $c \in Z_p$ and define $\psi_{\alpha,c}$: $D_p \to D_p$ by $\psi_{\alpha,c}(a^i) = a^{\alpha i}$ and $\psi_{\alpha,c}(a^ib) = a^{\alpha i+c}b$. Then the automorphism group of D_p is $A(D_p) = \{\psi_{\alpha,c} | \alpha \in Z_p^*\}$, $c \in Z_p\}$ [6, Lemma 2]. Now any isomorphism ψ of $X_1 = X_{D_p,H}$ onto $X_2 = X_{D_p,H'}$ with $\psi(H) = H'$ corresponds to an isomorphism (α, c) of $X_1 = X(S, 1, F)$ onto $X_2 = X(S', 1, F')$ with $\alpha S = S'$ and $\alpha F = F' + c$. Thus ψ is of the form $\psi = \psi_{\alpha,c} \in A(D_p)$. This observation proves the following lemma.

LEMMA 4.1. Let $X = X_{D_n,H}$. Then $\{ \psi \in A(X) | \psi(1) = 1 \} \leq A(D_p)$.

Let $X = X_{G,H}$. Since $\{\psi \in A(G) | \psi(H) = H\} \leq \{\psi \in A(X) | \psi(1) = 1\}$ and that X is a GRR of G if and only if $\{\psi \in A(X) | \psi(1) = 1\} = \{1\}$, we have

COROLLARY 4.2. $X_{D_p,H}$ is a GRR of D_p if and only if there exists no nontrivial group automorphism $\psi \in A(D_p)$ with $\psi(H) = H$.

THEOREM 4.3. Let X = X(S, 1, F) where $0 < |S| \le (p - 1)/2$. Then X is a GRR of D_p if and only if $F \notin \mathcal{F}$ for any \mathcal{F} which is invariant under some nontrivial subgroup of E(S).

PROOF. If $F \notin \mathscr{F}$ for any \mathscr{F} which is invariant under some nontrivial subgroup of E(S), then $F \in \mathscr{F}$ for some $\mathscr{F} \in \mathscr{A}_0$. This means that $\alpha F \neq F + c$ for any $c \in Z_p$ unless $\alpha = 1$ and c = 0. By Corollary 4.2 and the above discussion, this implies that X is a GRR of D_p .

Conversely let X be a GRR of D_p . Since |V(X)| = 2p, $X \cong X_{D_p,H}$, $H = \{a^i, a^j b | i \in S, j \in F\}$. If $F \in \mathscr{F}$ for some $\mathscr{F} \in \mathscr{A}_i$ $(i \ge 1)$, then for some $1 \ne \alpha \in E_i \subseteq E(S)$, we have $\alpha S = S$ and $\alpha F = F + c$ for some $c \in Z_p$. Since $X(S, 1, F) \cong X(S, 1, F + d)$ for any $d \in Z_p$, we can assume without loss of generality that F is such that c = 0 so that $\alpha S = S$ and $\alpha F = F$. But then this α corresponds to a nontrivial group automorphism $\psi_{\alpha,0}$ of D_p such that $\psi_{\alpha,0}(H) = H$. This however contradicts Corollary 4.2 that X is a GRR of D_p .

Applying Theorem 4.3 and the results in Section 2, we obtain the following result.

THEOREM 4.4. The number of GRR X(S, 1, F) with $0 < |S| \leq (p - 1)/2$ is given by

$$s(p, |S|, |F|) = \sum_{d \text{ even}} 2I^{*}(p, d, 1, |F|)\beta^{*}(p, |S|, d)$$

where the summation is extended over all even common divisors d of |S| and p - 1.

We note that

s(p, m, k) = s(p, m, p - k) and s(p, m, k) = s(p, p - m - 1, p - k). We remark that Theorem 4.3 is also true for $S = Z_p^*$. Now there is only one circulant graph X(p, S) with $S = Z_p^*$ and hence

$$s(p, p-1, |F|) = 2I^{*}(p, p-1, 1, |F|) = \frac{1}{p-1} \sum_{d_{i}} \mu(d_{i}) \Psi(E_{i}; F)$$

where the summation is over all divisors d_i of p-1 such that d_i divides |F| or |F| - 1. Thus we have the following result.

THEOREM 4.5. $s(p, 0, |F|) = (1/(p-1))\sum_{d_i} \mu(d_i) \Psi(E_i; F).$

Note that if $|F| \le 2$ or $|F| \ge p - 2$, then s(p, m, |F|) = 0 for any $m \ge 0$. We are interested in the case when m = 0 and |F| = 3. We shall omit the proof since it is straight forward.

COROLLARY 4.6. s(p, 0, 3) is equal to (p - 7)/6 if 3 divides p - 1 and equal to (p - 5)/6 otherwise.

A group G is said to have a *cubic GRR* if there exists a GRR $X_{G,H}$ of G with |H| = 3.

COROLLARY 4.7. D_p has a cubic GRR if and only if $p \ge 11$.

References

- [1] B. Alspach, 'Point-symmetric graphs and digraphs of prime order and transitive permutation groups of prime degree,' J. Combin. Theory Ser. B. 15 (1973), 12–17.
- [2] B. Alspach and R. Sutcliffe, 'Vertex-transitive graphs of order 2p,' Ann. New York Acad. Sci. 319 (1979), 18-27.
- [3] L. Babai, 'Isomorphism problem for a class of point symmetric structures,' Acta Math. Acad. Sci. Hungar. 29 (1977), 329-336.

Counting 2-circulant graphs

- [4] G. L. Chia and C. K. Lim, 'A class of self-complementary vertex-transitive digraphs,' J. Combin. Theory, to appear.
- [5] G. L. Chia, A class of strongly vertex transitive digraphs, (M. Sc. Thesis, University of Malaya, 1979).
- [6] J. K. Doyle, 'Weak starred polygons and Cayley graphs,' Nanta Math. 11 (1978), 7-9.
- [7] B. Elspas and J. Turner, 'Graphs with circulant adjecency matrices,' J. Combin. Theory 9 (1970), 297-307.
- [8] C. D. Godsil, 'On Cayley graph isomorphisms,' Research Report No. 21, 1977, University of Melbourne.
- [9] C. D. Godsil, 'Unsolved Problems,' Summer Research Workshop in Algebraic Combinatorics, July 1979, Simon Fraser University.
- [10] F. Harary, Graph theory (Addison-Wesley, Reading, Menlo Park, London, 1969).
- [11] G. Sabidussi, 'On a class of fixed-point-free graphs,' Proc. Amer. Math. Soc. 9 (1958), 800-804.
- [12] J. Turner, 'Point-symmetric graphs with a prime number of points,' J. Combin. Theory 3 (1967), 136-145.
- [13] M. E. Watkins, 'On the action of non-Abelian groups on graphs,' J. Combin. Theory 11 (1971), 95-104.

Department of Mathematics University of Malaya Kuala Lumpur 22-11 Malaysia

[12]