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COUNTING ALGEBRAIC NUMBERS WITH LARGE HEIGHT II

DAVID MASSER AND JEFFREY D. VAALER

Abstract. We count algebraic numbers of fixed degree over a fixed algebraic
number field. When the heights of the algebraic numbers are bounded above
by a large parameter H, we obtain asymptotic estimates for their cardinality
as H → ∞.

1. Introduction

In this paper we count algebraic numbers of fixed degree over a fixed algebraic
number field. When the heights of the algebraic numbers are bounded from above
by a large parameter, we obtain asymptotic estimates for their cardinality. These
generalize our recent work [10] over the rational field Q.

There are several related asymptotic estimates in the literature. The earliest
and best known is that of Schanuel [13]. Let K be a number field of degree d over
Q, let n be a positive integer, and let H denote the absolute height on Kn. In 1979
Schanuel proved that as H → ∞ there are asymptotically SK(n)Hd(n+1) elements
α of Kn with H(α) ≤ H. Here SK(n) > 0 is a certain constant depending only
on K and n (see (1.4) below). Actually, Schanuel’s result was proved for projective
space Pn(K) instead of Kn, but it is easy to see that this is equivalent to the version
for affine Kn.

Schmidt [15] was the first to consider what happens if we no longer restrict the
co-ordinates of α to a fixed number field, but restrict only their degrees. In fact
he combined this situation with Schanuel’s situation by treating the subset of all
vectors α = (α1, α2, . . . , αn) in K

n
with relative degree

(1.1) [K(α1, α2, . . . , αn) : K] = m,

where K is an algebraic closure of K. It is well known that the absolute height
function H extends to K

n
, and Northcott’s Theorem [11] implies that for each

m and H the set of vectors α with relative degree m over K and H(α) ≤ H is
finite. Let K

n

m(H) denote the cardinality of this set (actually Schmidt also worked
projectively, but again this makes no real difference).

The asymptotics for estimating K
n

m(H) in general are still unknown. The case
m = 1 in (1.1) corresponds to Schanuel’s Theorem. For m ≥ 2 there are results
only when K = Q. The quadratic case m = 2 was considered by Schmidt [16]. He
showed that Q

n

2 (H) is asymptotic to S(2, n)H2(n+1) if n ≥ 3, to S(2, 2)H6 logH
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if n = 2, and to S(2, 1)H6 if n = 1. Here S(2, n) > 0 depends only on n. For
m ≥ 3 the only asymptotic results known are due to Gao [5] (see also [17], p. 194)
when n ≥ m. The main term for Q

n

m(H) is then S(m, n)Hm(n+1) for S(m, n) > 0
depending only on m and n. If m ≥ 3 and n < m, Gao [5] also proved that the
correct order of magnitude is Hm(m+1).

In a recent note [10] we were able to establish the asymptotic result in the case
n = 1 for any m; that is, for counting algebraic numbers of degree m over Q.

Let us return to arbitrary K. If m ≥ 2 or n ≥ 2 even the correct order of
magnitude for K

n

m(H) is still unknown. The case m = 1 is again covered by
Schanuel. The case n = 1 is covered by [15], which implies that the correct order
of magnitude for K

1

m(H) is Hdm(m+1).
In this paper we make modest progress by generalizing [10] to determine the

asymptotics of K
1

m(H) which counts algebraic numbers of degree m over K with
height at most H. To state our result we need not only Schanuel’s constant SK(m),
but also two constants VR(m) and VC(m) depending only on m. We define

(1.2) VR(m) = (m + 1)l
l∏

i=1

(2i)m−2i

(2i + 1)m+1−2i
,

where l = [(m − 1)/2] and an empty product is interpreted as 1, and

(1.3) VC(m) =
(m + 1)m+1(
(m + 1)!

)2 .

We recall that

(1.4) SK(m) = (m + 1)r+s−1

(
2r(2π)s√

|∆K |

)m+1
hKRK

wKζK(m + 1)
.

Here r = rK is the number of real embeddings of K, s = sK is the number of pairs
of distinct complex conjugate embeddings of K, ∆K is the discriminant, hK the
class number, RK the regulator, wK the number of roots of unity in K, and ζK is
the Dedekind zeta-function of K.

Theorem. Let K be an algebraic number field of degree d over Q. Then as H → ∞,
the number of β in K such that

[K(β) : K] = m and H(β) ≤ H

is

(1.5) mVR(m)rVC(m)sSK(m)Hdm(m+1) + O(Hdm(m+1)−mL),

where L = 1 unless (d, m) = (1, 1) or (d, m) = (1, 2) in which case L = logH.

For K = Q this reduces to the main result of our note [10]. For any other K
it is new; to take just one example, there are cH12 + O(H10) algebraic numbers α,
quadratic over the field Q(i), with H(α) ≤ H; here

c =
3π3

8ζQ(i)(3)
=

12
ζQ(3)

.

Our work sheds no light on the asymptotics of K
n

m(H) for n > 1. But it does
suggest an interesting reciprocity relation regarding m and n. This becomes clearer

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COUNTING ALGEBRAIC NUMBERS WITH LARGE HEIGHT II 429

in Schmidt’s notation Z(K, m, n, X), which counts the projective version of K
n

m(H)
with X = Hdm. It follows easily by comparing our Theorem with Schanuel’s that

(1.6)
Z(K, m, 1, X)
Z(K, 1, m, X)

tends to the rational number mVR(m)rVC(m)s as X → ∞. So one can ask more
generally if

(1.7)
Z(K, m, n, X)
Z(K, n, m, X)

tends to a rational limit as X → ∞. In view of the restriction n ≥ m in [5], this is
not known for any n ≥ 2 even if K = Q. Moreover, even if the limit in (1.7) can be
calculated, there may be difficulties in establishing its rationality. For example, the
multiplying constant S(2, n) in the above asymptotics for Z(Q, 2, n, X) or Q

n

2 (H)
involve for n ≥ 3 the (convergent) sum∑

K

SK(n)

of Schanuel’s (1.4) over all quadratic fields K, which does not look particularly
summable. This is in contrast to the explicit constants

S(2, 1) =
8

ζQ(3)
and S(2, 2) =

96 + 8π2

ζQ(3)2
.

At any rate it is quickly checked for K = Q that the numerator and denominator
in (1.7) have the same order of magnitude as X → ∞.

The connection between the numerator and denominator arises naturally from
our proof. Let β be in K with [K(β) : K] = m. It satisfies an equation f(β) = 0
with a unique, monic polynomial

(1.8) f(x) = xm + α1x
m−1 + α2x

m−2 + · · · + αm

in K[x]. So we obtain at once an element α in Km. However, the height H(α)
defined by

(1.9) H(α)d =
∏
v

max{1, |α1|v, |α2|v, . . . , |αm|v}dv

(see section 2 for the notation) has nothing to do with the height H(β), which can
be calculated in terms of certain local Mahler measures.

For example, if K = Q and v = ∞, then any f(x), as in (1.8), factors over C as

(1.10) f(x) = (x − ζ1)(x − ζ2) · · · (x − ζm).

It has a Mahler measure

(1.11) M∞(f) = max{1, |ζ1|}max{1, |ζ2|} · · ·max{1, |ζm|}.
This can be considered as a function N∞ of the coefficients 1, α1, α2, . . . , αm of f
in (1.8), and so one must be prepared to replace the maximum norm in (1.9) at
v = ∞ with N∞. In fact N∞ is a symmetric distance function on Rm or Cm in the
sense of the geometry of numbers (as discussed in [1], Chapter IV), but it is not a
norm because it fails to satisfy the triangle inequality.

Suppose for the sake of explanation that β is an algebraic integer. Then f(x) is
in Z[x] and one finds that H(β) = M∞(f)1/m. Thus we have to count the monic f
in Z[x] with degree m and M∞(f) ≤ Hm.
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This type of problem was considered by Chern and the second author in [2], and
they obtained asymptotic results. In our context we cannot afford the assumption
that f is monic. They considered this case too, and they found the main term

VR(m)
2m+1

Hm(m+1).

In our discussion we can omit the integrality assumption by also taking into
account the v �= ∞. Still with K = Q, let Qv be the corresponding topological
completion. Then f(x) in (1.8) factors in the algebraic closure Qv as in (1.10) and
there is an analogue

Mv(f) = max{1, |ζ1|v}max{1, |ζ2|v} · · ·max{1, |ζm|v}

of (1.11). However, Gauss’s Lemma implies that

Mv(f) = max{1, |α1|v, |α2|v, . . . , |αm|v}

as in (1.9). So in this case Nv remains the maximum norm.
The strategy of our proof should now be clear. We have a natural collection N of

continuous functions Nv on the completions Km+1
v , and using these we can define a

height HN in order to make HN (α) = H(β)m in the situation above. So all we have
to do is imitate the Schanuel proof for Kn with HN instead of H. If v corresponds
to a complex embedding of K, then we can also appeal to the analogous results of
[2] involving VC(m), and in this way the main term in (1.5) appears. The additional
extra factor m in (1.5) is explained simply by the fact that the polynomial f has
m different zeros.

We are now rather close to the adelic formulations introduced by Peyre [12], and
in fact it is just as easy to work with an arbitrary collection of Nv, provided that Nv

is the maximum norm for all finite v (possibly with a finite number of exceptions).
For example, this allows us to recover the version of Schanuel’s Theorem for the
l2 norms (1 + |α1|2 + · · · + |αm|2)1/2 at infinity (already mentioned by Thunder in
[19] and [20]). Way back in [14], Schmidt had defined heights HF attached to an
arbitrary distance function F , so we could also deduce counting results for these.
See also Schmidt’s height HS defined in [16] for quadratic K, which depends on a
suitable subset S of R2m+2.

It is conceivable that the main terms of all our asymptotic formulae could be
guessed from the very general conjectures of [12], but it is unlikely that the latter
would lead to comparable error terms. Such error terms arise from certain technical
Lipschitz-type conditions on the sets defined by Nv = 1. We are particularly keen to
obtain the precise error term in (1.5) so that for m = 1 we recover the full Schanuel
Theorem. Another motivation comes from the possibility of summing (1.5) over K
as Schmidt did. It is unclear if our error terms can come from considerations of
the analytic continuation of a height zeta-function, as in the original investigation
of Franke, Manin and Tschinkel [4].

Our programme is now as follows. In section 2 we describe the general heights set-
up, state a Proposition, and deduce some consequences such as the Theorem above.
We also reverse the situation to deduce something about the analytic continuation
of the corresponding height zeta-function. The remainder of our paper is devoted
to a proof of the Proposition. This could be considered as just an exercise, but it
is one that we unashamedly carry out, as we consider that our proof simplifies the
original exposition of Schanuel.
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Since writing this paper we have been able to consult the unpublished work [5]
of Gao Xia. He defines a height HU generalizing Schmidt’s height HS to arbitrary
number fields K. Then in his Theorem 3.1 he proves a result resembling our Propo-
sition (but with an explicit dependence on K). This opens a second approach to
our Theorem; however along the way one would meet the problems with Daven-
port’s counting principle referred to in our section 3, as well as its extension to the
situation of our Lemma 3.

We are very grateful to Gao Xia for showing us his work.

2. A generalization

Here we give a detailed description of the general situation. Suppose that δ is
an integer with 0 ≤ δ ≤ D. We say that a set in RD is Lipschitz parameterizable
of codimension δ if there is a constant L and finitely many maps φ from the cube
[0, 1]D−δ to RD, whose images cover the set, each satisfying

(2.1) |φ(x1) − φ(x2)| ≤ L|x1 − x2|
with (for example) the Euclidean norms. If δ = D this is to be interpreted simply
as the finiteness of the set.

Let n be a positive integer. We consider continuous functions N from Rn+1 or
Cn+1 to the real interval [0,∞) satisfying the following conditions:

(i) N(z) = 0 if and only if z is the zero vector,
(ii) N(wz) = |w|N(z) for any scalar w in R or C,
(iii) the set {z : N(z) = 1} in Rn+1 or Cn+1 = R2n+2 is Lipschitz parame-

terizable of codimension 1.
We call such functions Lipschitz distance functions (of dimension n).
The set defined in (iii) is the boundary of the set B = {z : N(z) < 1}, and

it follows (as in [1], Chapter IV, section 2) that B is a bounded, symmetric, open
star-body in Rn+1 or Cn+1. In particular the set B has a finite volume VN .

Let r and s be nonnegative integers not both zero. We will consider a system
N of r + s such Lipschitz distance functions N , one for each of the factors in the
product Rr × Cs. We call such a system an (r, s)-Lipschitz system (of dimension
n). We define its volume VN to be the product of the r + s volumes VN .

Next let K be a number field with r real embeddings and s pairs of complex
conjugate embeddings. These induce r + s infinite places of K. If v is any one
of these, then we can choose an identification of the completion Kv with R or C.
Thus an (r, s)-Lipschitz system N gives a system of distance functions Nv on each
Kn+1

v . We are now rather close to the adelic situation of [12] (p. 107), except for
two things: first we have an extra condition (iii), and second we are restricted to
the infinite places v. This second restriction can be lifted simply by defining

(2.2) Nv(z) = max{|z0|v, |z1|v, . . . , |zn|v}
for z = (z0, z1, . . . , zn) in Kn+1

v and v a finite place of K. If v|p, then the absolute
value is the unique one extending the standard p-adic absolute value on Qp. Note,
however, that [12] allows a finite number of exceptions v to (2.2).

We define now for α = (α0, α1, . . . , αn) in Kn+1 the corresponding absolute
height HN by

(2.3) HN (α)d =
∏
v

Nv

(
σv(α)

)dv
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taken over all places v, infinite and finite, where σv is the canonical embedding of
K in Kv extended componentwise to Kn+1, d = [K : Q] and dv = [Kv : Qv] is the
local degree. We have the product formula∏

v

|σv(α)|dv
v = 1

for any α �= 0 in K, where the absolute values are as in (ii) for infinite v and as
in (2.2) for finite v. This implies that (2.3) defines a height on Pn(K) satisfying
HN (α) ≥ 1.

This definition is slightly more general than Schmidt’s HF in [14] (p. 432), which
takes F on Rn+1 and then uses

Nv(z) = F
(
|z0|, |z1|, . . . , |zn|

)
.

But we need to allow genuine functions on Cn+1 as well in order to deduce our
Theorem. This is because when n ≥ 2 the Mahler measure of z0x

n+z1x
n−1+· · ·+zn

is not a function of |z0|, |z1|, . . . , |zn| alone (even if z0, z1, . . . , zn are real). For
example,

M(x2 + 2x + 1) = 1 < 1 +
√

2 = M(x2 + 2x − 1).

Proposition. Let K be a number field with r real embeddings and s pairs of com-
plex conjugate embeddings, and for n ≥ 1 let N be an (r, s)-Lipschitz system of
dimension n. Then for any H ≥ 1 there are only finitely many α in Pn(K) with
HN (α) ≤ H, and as H → ∞ their number is

2−r(n+1)π−s(n+1)VNSK(n)Hd(n+1) + O
(
Hd(n+1)−1L),

where L = 1 unless (d, n) = (1, 1) in which case L = logH.

Note that Schmidt [16] in Theorem 2a (p. 358) already proved a similar result
for his height HS(α) when K is quadratic, with an especially good explicit error
term if the points of Pn(Q) are excluded from the counting.

We will prove our result in subsequent sections. But for now we list and prove
some consequences.

If we choose (2.2) for all v, then clearly VN = 2r(n+1)πs(n+1). The boundary
of a cube in Rn+1 is clearly Lipschitz parameterizable (most naturally with 2n + 2
linear maps), and the complex analogue can also be parameterized (for example,
with n + 1 trigonometrical maps). So we recover Schanuel’s Theorem, with in fact
the same error term.

If we choose
Nv(z) =

(
|z0|2 + |z1|2 + · · · + |zn|2

)1/2

for all infinite v, then VN may be calculated in terms of the volume

VD =
πD/2

Γ(1 + D/2)
of the D-dimensional unit ball as V r

n+1V
s
2n+2. The boundary of such a ball is well

known to be Lipschitz parameterizable (for example, with a single trigonometrical
map). Thus with the corresponding height HN = H2 we find the main term

2−r(n+1)π−s(n+1)V r
n+1V

s
2n+2SK(n)Hd(n+1)

for the number of α in Pn(K) with H2(α) ≤ H. If we interpret these α as one-
dimensional subspaces of Kn+1, then this agrees with special cases of Theorem 1
of [19] (p. 395) or Theorem 1 of [20] (p. 229).
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In [11] Northcott used l1 norms at all infinite v, so that

Nv(z) = |z0| + |z1| + · · · + |zn|,
and so we find the main term(

22nn!
)s

SK(n)Hd(n+1)(
(n + 1)!

)r((2n + 1)!
)s .

More generally, if the set defined by Schmidt’s F (|z0|, |z1|, . . . , |zn|) = 1 is
Lipschitz parameterizable of codimension 1 in Rn+1, then we find the main term

2−r(n+1)π−s(n+1)V r
F,RV s

F,CSK(n)Hd(n+1)

counting points α with HF (α) ≤ H, where VF,R and VF,C are the volumes of the
sets defined by F (|z0|, |z1|, . . . , |zn|) ≤ 1 in Rn+1 and Cn+1, respectively.

Here we may also deduce the counting results on algebraic subgroups G of the
multiplicative group Gn+1

m referred to in [10]. Any such subgroup has a degree
deg G which can be interpreted, for example, as the degree of the Zariski closure in
Pn+1(C).

If G is of dimension n, then it is defined by an equation

(2.4) xα0
0 xα1

1 · · ·xαn
n = 1

for non-zero α = (α0, α1, . . . , αn) in Zn+1. One sees immediately by homogenizing
that deg G = N(α), where

(2.5) N(z) = max
{ ∑

i∈I
zi,

∑
j∈J

(−zj)
}

= max
K

{∣∣∣∑
k∈K

zk

∣∣∣}

on Rn+1; here I = I(z) is the set of i with zi > 0, J = J (z) is the set of j with zj <
0, and K runs over all nonempty subsets of {0, 1, . . . , n}. Further G is connected
if and only if α0, α1, . . . , αn are coprime. Thus in this case deg G = HN (α), where
N (for r = 1, s = 0) is defined by N in (2.5). It is an easy exercise to prove that N
is a Lipschitz distance function (even convex). Also, if I has cardinality I in (2.5),
we find that

VN =
n+1∑
I=0

(
n + 1

I

)
1

I!(n − I + 1)!

=
1

(n + 1)!

n+1∑
I=0

(
n + 1

I

)2

=
(2n + 2)!(
(n + 1)!

)3 .

Thus the number of connected G of dimension n in Gn+1
m with deg G ≤ H is

cn+1,nHn+1 + O(HnL) as H → ∞, where

cn+1,n =
(2n + 2)!

2
(
(n + 1)!

)3
ζQ(n + 1)

.

If G is connected of dimension 1, then it is defined by parametric equations

x0 = tα0 , x1 = tα1 , . . . , xn = tαn

with α0, α1, . . . , αn coprime. One sees by intersecting with a generic hyperplane
that deg G = N(α), where now

N(z) = max
i∈I

zi + max
j∈J

(−zj) = max
{

max
0≤k≤n

|zk|, max
0≤p,q≤n

|zp − zq|
}
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with I and J as above. This time we find that

VN = 1 +
n+1∑
I=0

(
n + 1

I

) ∫ 1

0

ItI−1(1 − t)n−I+1 dt

=
n+1∑
I=0

(
n + 1

I

)
I!(n − I + 1)!

(n + 1)!
= n + 1.

Thus the number of connected G of dimension 1 in Gn+1
m with deg G ≤ H is

cn+1,1Hn+1 + O(HnL) as H → ∞, where

cn+1,1 =
n + 1

2ζQ(n + 1)
.

Similar results may be obtained when the multiplicative group Gm is replaced
by a suitable abelian variety. But then it is usually the l2-norm that turns up. For
example, if E is an elliptic curve whose endomorphism algebra K is either Q or an
imaginary quadratic field, and the endomorphism ring is maximal, then the degree
of a connected algebraic subgroup of dimension 1 or n in En+1 is given by CH2(α)2

as above, where α is in Kn+1 and C depends only on n and a polarization on E.
See Appendix B of [8].

The rest of this section is devoted to deducing our Theorem from our Proposition,
and to pointing out a simple consequence for height zeta-functions.

We choose N as explained in section 1. Any polynomial f in C[x] has a Mahler
measure M(f). The simplest definition is analytic using the integral

m(f) =
∫ 1

0

log |f(e2πit)| dt

if f �= 0; then M(f) = expm(f) and M(0) = 0. Algebraically, M(f) = |f | if f is
constant, and if f �= 0 factors over C[x] as

f(x) = z0(x − ζ1)(x − ζ2) · · · (x − ζm) with m ≥ 1,

then
M(f) = |z0|max{1, |ζ1|}max{1, |ζ2|} · · ·max{1, |ζm|}.

The continuity of M as a function of the coefficients was proved by Mahler as
Lemma 1 (p. 146) of [9]; see also Theorem 4 (p. 6) of [2], for a Lipschitz-type
strengthening which, however, has nothing to do with our (iii) above.

Clearly

(2.6) M(f1f2) = M(f1)M(f2).

If we define

(2.7) N(z) = M
(
z0x

n + z1x
n−1 + · · · + zn

)
,

then the properties (i) and (ii) above are clear.
Property (iii) is not so clear, but it is implied by the following result.

Lemma 1. The subsets of Rn+1 and Cn+1 = R2n+2 defined by

M(z0x
n + z1x

n−1 + · · · + zn) = 1

are Lipschitz parameterizable of codimension 1.
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Proof. This is proved in detail for Rn+1 as Theorem 20 (p. 35) of [2]. A similar
argument works in the complex case, so we content ourselves here with a sketch.
Let

f(x) = z0x
n + z1x

n−1 + · · · + zn

be in C[x] with M(f) = 1.
If f is constant, then |zn| = 1 and there is an obvious parameterization coming

from zn = e2πiw with w in [0, 1].
Next suppose f is nonconstant and that all its zeros are in the closed unit disc.

Then f(x) = zn−pg(x) for

g(x) = xp + u1x
p−1 + · · · + up

with 1 ≤ p ≤ n, |zn−p| = 1, and M(g) = 1. This implies that |u1|, |u2|, . . . , |up|
are bounded by functions of n. So f can be parameterized using zn−p = e2πiw and
the real and imaginary parts of u1, u2, . . . , up suitably scaled; this gives a map from
[0, 1]2p+1. So we obtain a φ in (2.1) for each p.

Next suppose f is still nonconstant but that all its zeros are outside the closed
unit disc. Now f = h for

h(x) = v0x
q + v1x

q−1 + · · · + vq−1x + zn

with 1 ≤ q ≤ n and |zn| = 1 and M(h) = 1. We get similar parameterizations on
[0, 1]2q+1 using zn = e2πiw and the real and imaginary parts of v0, v2, . . . , vq−1.

Finally, if f is nonconstant with zeros both inside and outside the closed unit
disc, then we can factor f as f = gh with

g(x) = xp + u1x
p−1 + · · · + up, h(x) = v0x

q + v1x
q−1 + · · · + vq−1x + vq,

and p ≥ 1, q ≥ 1, p + q ≤ n, M(g) = M(h) = 1, and |vq| = 1. For each p
and q we obtain parameterizations linear in each of the real and imaginary parts
of u1, u2, . . . , up, v0, v1, . . . , vq−1 and also involving w with vq = e2πiw. The total
number of variables is 2p + 2q + 1 ≤ 2n + 1, and we are finished.

Therefore we have a Lipschitz distance function N . The volume VN was also com-
puted in [2]. From Corollary 2 (p. 4) we find that the volume is either 2n+1VR(n)
or πn+1VC(n). Thus taking the (r, s)-Lipschitz system N to consist of copies of N ,
we deduce

VN = 2r(n+1)πs(n+1)VR(n)rVC(n)s,

supporting the main term in (1.5). We conclude from the Proposition that there
are

(2.8) VR(n)rVC(n)sSK(n)Hd(n+1)
0 + O

(
Hd(n+1)−1

0 L0

)
elements α of Pn(K) with HN (α) ≤ H0, where L0 = 1 unless (d, n) = (1, 1) in
which case L0 = logH0.

We proceed to reformulate this in terms of polynomials. For f �= 0 in K[x] of
degree at most n we can define

(2.9) M0(f) = HN (α)

for the vector α of coefficients. This could be referred to as the global absolute
Mahler measure; like HN it is projective in the sense that M0(γf) = M0(f) for any
γ �= 0 in K. So (2.8) counts all such f , up to proportionality, with

(2.10) M0(f) ≤ H0.
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We also note from (2.6) that

(2.11) M0(f1f2) = M0(f1)M0(f2)

if f1f2 has degree at most n.
Clearly if we now restrict to f of degree exactly n, then the estimate (2.8)

continues to hold, because we only have to remove the f of smaller degree. Any
such f is proportional to a unique monic polynomial of degree n, and so (2.8) counts
the number of these with (2.10).

We wish, however, further to restrict to f irreducible over K. This can be
achieved by removing f = gh with g, h monic of degrees p < n, q < n, respectively
(see also [16], p. 363). By symmetry we can assume q ≥ n/2. Since M0(g) ≥ 1
there is an integer k ≥ 1 with 2k−1 ≤ M0(g) < 2k. Now the multiplicativity (2.11)
gives M0(h) ≤ 21−kH0. For each fixed k the estimate (2.8) implies that there are
at most c

(
2k

)d(p+1) possibilities for g and at most c
(
21−kH0

)d(q+1) possibilities for
h, where c depends only on K and n. If q < n − 1 we have

(2.12)
(
2k

)p+1(21−kH0

)q+1 =
(
2H0

)q+12k(n−2q) ≤ (2H0)n−1,

and summing the d-th powers over all k ≥ 1 with 2k−1 ≤ H0 gives an extra factor
2 logH0 (if say H0 ≥ 8). So for q < n − 1 there are at most

(2.13) 2c2(2H0)d(n−1) logH0

possibilities for gh = f . This is smaller than the error term allowed in (2.8).
If q = n − 1 and n > 2, then q > n/2, and so summing the d-th powers of the

middle terms in (2.12) over all k ≥ 1 in Z gives at most c2(2H0)dn possibilities for
f . This is still no larger than the error term in (2.8).

Finally if q = n− 1 and n = 2 we get at most 2c2(2H0)2d logH0 possibilities for
f . This is covered by (2.8) unless d = 1. So in the case (d, n) = (1, 2) we have to
include the logarithm.

Summing up, we have shown that the number of monic f in K[x] of degree n,
irreducible over K with (2.10), is

(2.14) VR(n)rVC(n)sSK(n)Hd(n+1)
0 + O

(
Hd(n+1)−1

0 L′
0

)
,

where L′
0 = 1 unless (d, n) = (1, 1) or (d, n) = (1, 2), in which case L′

0 = logH0.
The last step to the Theorem is relatively easy. Here we wish to count β in K

with [K(β) : K] = n. Any such β is the zero of a unique f as above, and in fact

(2.15) M0(f) = H(β)n.

This can be seen as follows. The equations (2.3), (2.7) and (2.9) define M0(f) on
K[x]. But it is easy to verify that they are independent of the field K, and so they
provide a definition on Q[x]. Further, M0(x − ζ) = H(ζ), the standard absolute
height. Now (2.15) follows after factoring f over Q, using (2.11), and noting that
all the zeroes of f have the same height H(β).

If now H(β) ≤ H, then (2.15) implies that this is equivalent to M0(f) ≤ Hn. So
in view of (2.10), to obtain our Theorem all we have to do is substitute H0 = Hn

in (2.14) and multiply by n to take account of the fact that precisely n different β
in K give rise to the same f . This completes the proof.
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Incidentally the expression Mv(f) = M(σv(f)) (where σv acts on the coefficients)
could be termed the local Mahler measure, so that (2.3) yields

M0(f)d =
∏
v

Mv(f)dv .

Finally, we add some remarks about height zeta-functions. Let N be an arbitrary
Lipschitz system on a number field K. We may formally define

ζN (s) =
∑
α

HN (α)−s

taken over all α in Pn(K). The upper bound of order Hd(n+1) in the Proposition
implies that ζN (s) converges for all complex s with real part �(s) > d(n + 1). The
full asymptotic result with error term implies that ζN (s) has an analytic contin-
uation to �(s) > d(n + 1) − 1, with a simple pole at s = d(n + 1) whose residue
is

d(n + 1)2−rK(n+1)π−sK(n+1)VNSK(n).
It would be interesting to know if this can be deduced from the Langlands theory
invoked in [4].

3. Counting principles

Traditionally the counting is carried out with the help of the well-known principle
that a reasonable set S in RD contains about V/∆ points of a lattice Λ, where V
is the volume of S and ∆ is the determinant of Λ. In fact it usually suffices to
take S as a large multiple tS1 of a fixed set S1 and Λ also as fixed. But some of
the details of the present proofs can be simplified if the dependence on Λ is made
explicit. This we do in the following result; recall that the first successive minimum
of Λ with respect to the Euclidean distance function is simply the smallest length
of any nonzero element of Λ.

Lemma 2. Let S in RD be a bounded set whose boundary ∂S can be covered by the
images of at most W maps φ from [0, 1]D−1 to RD satisfying Lipschitz conditions

(3.1) |φ(x1) − φ(x2)| ≤ L|x1 − x2|
for the Euclidean norms. Then S is measurable. Further let Λ in RD be a lattice
with first successive minimum λ1. Then the number Z of points in S ∩ Λ satisfies

(3.2) |Z − V/∆| ≤ cW
( L

λ1
+ 1

)D−1

for some c = c(D) depending only on D.

Proof. The versions in [6] (p. 128) or [7] (p. 294) can easily be made to yield
explicit constants, and in [18] this is efficiently carried out for Λ = ZD. But in
these proofs there is the danger of bringing in also the last successive minimum λD

of Λ.
The measurability of S has already been observed in [7] and [18]. For the estimate

(3.2) we start with the case Λ = ZD, using various constants c which depend only
on D.

A standard argument shows that the left-hand side of (3.2) is at most the number
of lattice points y such that Cy = y + [0, 1]D intersects ∂S. We can split [0, 1]D−1

into LD−1
1 subcubes of side 1/L1, where L1 = 1 + [L], and the images of these

subcubes under each φ in (3.1) have diameters at most cL/L1 ≤ c. Clearly no more
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than c of the Cy can meet a single such image, and the result (3.2) follows from
the covering property, at least for Λ = ZD with λ1 = 1.

In general Λ has basis elements y1, y2, . . . , yD satisfying |yi| ≤ cλi (1 ≤ i ≤ D)
for the successive minima λ1, λ2, . . . , λD of Λ. See for example Lemma 8 (p. 135) of
[1]. If η−1 is the automorphism of RD whose matrix has the columns y1, y2, . . . , yD,
then η(Λ) = ZD and we can apply the result above to η(S). The boundary of this
latter set can be parameterized by finitely many maps ψ(x) = η(φ(x)), and from
(3.1) we obtain

(3.3) |ψ(x1) − ψ(x2)| ≤ L‖η‖|x1 − x2|,
where ‖η‖ is the (Euclidean) operator norm of η.

Finally the entries of row i of the matrix of η have the shape ∆−1µ, where µ is
a minor of the matrix with columns y1, y2, . . . , yD omitting yi. For these

|µ| ≤ c
|y1||y2| · · · |yD|

|yi|
≤ c

λ1λ2 · · ·λD

λi
.

As λ1λ2 · · ·λD ≤ c∆ by Minkowski’s Second Theorem, we see that each entry of
the matrix of η has absolute value at most c/λ1. It follows easily that ‖η‖ ≤ c/λ1.
Now (3.2) comes out because the L in (3.1) has been replaced by L‖η‖ in (3.3).

Note that this result is not restricted to homogeneously expanding domains S =
tS1.

An alternative counting principle was proved by Davenport [3], but formulated
only for Λ = ZD. It was adapted to arbitrary Λ using the geometry of numbers
by Thunder [19], [20], and Schmidt [16]. This works very well if we know enough
about the intersections of lines with suitable projections of S. The situation is
optimal if S is convex, and controllable if S is defined by inequalities such as
|x1x2 · · ·xD| ≤ C. But to prove our Theorem we have to consider inequalities of
the form F (x1)F (x2) · · ·F (xd) ≤ C in d sets of variables with

F (x) = F (x0, x1, . . . , xn) = M(x0z
n + x1z

n−1 + · · · + xn)

defined using a Mahler measure. It is known (see below) that the individual sets
defined by M(x0z

n + x1z
n−1 + · · · + xn) ≤ C are not convex if n ≥ 2. There is a

good substitute for convexity in Theorem 4 (p. 6) of [2], but it says nothing about
intersections with lines.

Further the versions in [19], [20] use “co-ordinate domains” S defined by the
property that x in S and |y1| ≤ |x1|, |y2| ≤ |x2|, ... , |yD| ≤ |xD| imply y in S.
This too fails for the Mahler measure; a simple example follows from the observation

M(4x2 + 10x + 4) = 8 < 9 = M(3x2 + 10x + 3).

(Here one can also see the lack of convexity—dividing by 8 and 9 we get f1, f2 with
M(f1) = M(f2) = 1, and one checks that

M( 1
2f1 + 1

2f2) =
85 +

√
3625

144
> 1.)

Probably it is not too difficult to overcome these problems, but then the Proposi-
tion would have to involve “(r, s)-Davenport systems” which we prefer not to meet
in the dark. It may be worth pointing out that the Davenport property might well
imply the Lipschitz property (for example a convex set probably has a parameter-
izable boundary), but certainly not conversely (for counterexamples a biscuit with
crinkly edges or a cubical golf ball).
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4. Preliminaries

Here we do no counting, but we define and investigate the sets to which Lemma
2 will be applied.

For nonnegative integers r and s not both zero write q = r + s − 1 ≥ 0. Denote
by Σ the hyperplane in Rq+1 defined by x1 + x2 + · · · + xq+1 = 0, and write
δ = (d1, d2, . . . , dq+1), where di = 1 for 1 ≤ i ≤ r (if r ≥ 1) and di = 2 for
r + 1 ≤ i ≤ r + s = q + 1 (if s ≥ 1). Let F be a bounded set in Σ, and for real
T > 0 denote by F (T ) in Rq+1 the vector sum

(4.1) F (T ) = F + (−∞, log T ]δ.

Write exp for the diagonal exponential map from Rq+1 to [0,∞)q+1 in Rq+1.
Let n be a positive integer, and let N be a fixed (r, s)-Lipschitz system of di-

mension n. So we have Lipschitz distance functions N1, N2, . . . , Nq+1 on each of
the q + 1 factors of Rr ×Cs. We use corresponding variables z1, z2, . . . , zq+1; thus
zi is in Rdi(n+1) according to the above definition of di for 1 ≤ i ≤ q + 1. Write
d = r + 2s. We define SF (T ) in RD for

D =
q+1∑
i=1

di(n + 1) = d(n + 1)

as the set of all (z1, z2, . . . , zq+1) with
(
N1(z1)d1 , N2(z2)d2 , . . . , Nq+1(zq+1)dq+1

)
in expF (T ).

Using (ii) of section 2 together with (4.1) and the observation

exp
(
(log |w|)δ

)
=

(
|w|d1 , |w|d2 , . . . , |w|dq+1

)
for real w, it is easy to see that

(4.2) SF (T ) = TSF (1)

is homogeneously expanding and bounded.

Lemma 3. Suppose q ≥ 1 and F has a boundary ∂F that is Lipschitz param-
eterizable of codimension 2 in Rq+1. Then the boundary of SF (1) is Lipschitz
parameterizable of codimension 1 in RD.

Proof. Consider to begin with the boundary ∂F (1) in (4.1). Because F is in the
hyperplane Σ and δ is not, we see that ∂F (1) is contained in two parts: the closure
of F together with ∂F +(−∞, 0]δ. As F is bounded the first part is clearly Lipschitz
parameterizable of codimension 1 in Rq+1; for example one can project to any q
coordinates, say x1, x2, . . . , xq, and use the inverse map φ = (φ1, φ2, . . . , φq+1)
suitably scaled to [0, 1]q.

To parameterize the second part ∂F + (−∞, 0]δ, at least if q ≥ 2, we simply
let ψ = (ψ1, ψ2, . . . , ψq+1) be one of the Lipschitz parameterizing maps for ∂F on
[0, 1]q−1 and use ψ + tδ (−∞ < t ≤ 0). Of course this region for t is not compact,
but we deduce that exp ∂F (1) can be covered by the images of maps

(4.3) Φ = expφ =
(
eφ1 , eφ2 , . . . , eφq+1

)
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on [0, 1]q or maps

Φ = exp(ψ + tδ) =
(
eψ1+td1 , eψ2+td2 , . . . , eψq+1+tdq+1

)
=

(
eψ1ud1 , eψ2ud2 , . . . , eψq+1udq+1

)(4.4)

on [0, 1]q−1 × [0, 1], with u = et in (0, 1].
It is not difficult to check that these maps satisfy the Lipschitz conditions (3.1).

By hypothesis this is certainly true of the functions φ1, φ2, . . . , φq+1, ψ1, ψ2, . . . ,
ψq+1. Also, it is well known that the class of functions from [0, 1]q to R satisfying
(3.1) is closed under addition, multiplication, and exponentiation (or more generally
composition suitably formulated). Thus exp∂F (1) is Lipschitz parameterizable of
codimension 1 in Rq+1, at least if q ≥ 2; and it is easy to check this also for q = 1
(when F is just a finite set).

Next, since F is bounded we see from (4.1) that ∂
(
expF (1)

)
consists of exp∂F (1)

together with the origin. So this too is Lipschitz parameterizable of codimension 1
in Rq+1; one only has to extend the range of u to [0, 1]. Let

Φ =
(
Φ1(t), Φ2(t), . . . , Φq+1(t)

)
be a typical parameterizing map as in (4.3) or (4.4), defined for t in [0, 1]q.

Now ∂SF (1) is the set of all (z1, z2, . . . , zq+1) with

(4.5)
(
N1(z1)d1 , N2(z2)d2 , . . . , Nq+1(zq+1)dq+1

)
in ∂

(
expF (1)

)
, because N1, N2, . . . , Nq+1 are continuous. So the part of it covered

by Φ is contained in the set of all (z1, z2, . . . , zq+1) for which there exists t in [0, 1]q

with Ni(zi)di = Φi(t) (1 ≤ i ≤ q+1). By (iii) of section 2 the boundaries defined by
Ni(z) = 1 are parameterized by maps Ψi(ti) for ti in [0, 1]ei with ei = di(n+1)−1
(1 ≤ i ≤ q + 1). So the set Ni(z) = ζ (for ζ ≥ 0) is parameterized by ζΨi, by (ii)
of section 2. Thus ∂SF (1) can be parameterized by

(
Φ1(t)1/d1Ψ1(t1), Φ2(t)1/d2Ψ2(t2), . . . , Φq+1(t)1/dq+1Ψq+1(tq+1)

)
.

From (4.3) and (4.4) we see that Φi(t)1/di is eφi/di or eψi/diu (1 ≤ i ≤ q + 1),
and so the foregoing remarks about multiplication and exponentiation show that
the above maps continue to satisfy the Lipschitz conditions. The total number of
variables is

q +
q+1∑
i=1

ei = D − 1,

and therefore ∂SF (1) is parameterizable of codimension 1 as required.

In the sequel the set F will be a fundamental domain for a lattice. In practice
this can be taken as a parallelepiped and so is easily parameterizable, e.g., by
continuously differentiable maps. In this case the proof of Lemma 3 simplifies
considerably.

Lemma 4. Suppose that F is measurable with volume VF . Then SF (1) is measur-
able with volume

(n + 1)q(q + 1)−1/2VF VN .
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Proof. The set SF (1) is the inverse image of expF (1) under the continuous map N
taking (z1, z2, . . . , zq+1) in RD to (4.5). So its volume V is∫

exp F (1)

dρ(X),

where ρ(X) = ρ(X1, X2, . . . , Xq+1) is the corresponding distribution function; that
is, the measure of the set defined by Ni(zi)di ≤ Xi (1 ≤ i ≤ q + 1). But we noted
that the sets with Ni(zi) ≤ 1 are measurable, with volume say Vi (1 ≤ i ≤ q + 1).
By (ii) of section 2 it follows that

ρ(X) = V1V2 · · ·Vq+1X
n+1
1 Xn+1

2 · · ·Xn+1
q+1 .

Thus

V = (n + 1)q+1VN

∫
exp F (1)

Xn
1 Xn

2 · · ·Xn
q+1dX1dX2 · · ·dXq+1.

Let us use for definiteness x1, x2, . . . , xq as co-ordinates on F (with xq+1 =
−x1 − x2 − · · · − xq), and then Xi = exi+tdi (1 ≤ i ≤ q + 1) for the corresponding
co-ordinates on expF (1) = exp

(
F + (−∞, 0]δ

)
. The Jacobian determinant

∂(X1, X2, . . . , Xq+1)
∂(x1, x2, . . . , xq, t)

is readily calculated as

(d1 + d2 + · · · + dq+1)X1X2 · · ·Xq+1 = dX1X2 · · ·Xq+1,

and it follows that

V = d(n + 1)q+1VN

∫ 0

−∞
etd(n+1) dt

∫
F

dx1dx2 · · · dxq.

The lemma comes out after noting that the above integral over F is (q +1)−1/2VF .

5. Proof of the Proposition

Let K be a number field of degree d with r embeddings σ1, σ2, . . . , σr into R and
s pairs σr+1, σr+1, σr+2, σr+2, . . . , σr+s, σr+s of complex conjugate embeddings into
C. Then σ = (σ1, . . . , σr+s) defines a map from K into Rd. As in section 4 write
q = r + s − 1.

Let A be a nonzero ideal in the ring of integers O = OK of K, with norm [O : A]
abbreviated to [A] for convenience. For a positive integer n write D = d(n + 1),
also as in section 4.

Lemma 5. The product Λ(A) = σ(A)n+1 is a lattice in RD with determinant

∆ =
(
2−s[A]

√
|∆K |

)n+1
,

and its first successive minimum with respect to the Euclidean distance is λ1 ≥
[A]1/d.

Proof. That Λ(A) is a lattice with the desired determinant is classical; see for
example Lemma 2 (p. 115) of [6]. Clearly λ1 is also the first minimum of the
lattice σ(A). An element σ(α) of this lattice has squared length

q+1∑
i=1

|σi(α)|2 ≥ 1
2

q+1∑
i=1

di|σi(α)|2
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with d1, d2, . . . , dq+1 as in section 4; here the fraction 1
2 can be omitted if d = 1.

Using the weighted arithmetic mean we see that this is at least 1
2d

∏q+1
i=1 |σi(α)|2di/d.

Here
∏q+1

i=1 |σi(α)|di is the absolute value of the norm of α from K to Q, which if
α �= 0 is at least [A]; the result follows.

Now let N be an (r, s)-Lipschitz system of dimension n. In what follows we will
often suppress the dependence on K and N . Let Σ be the hyperplane in Rq+1

defined as in section 4 by x1 + x2 + · · ·+ xq+1 = 0. With F , T , δ and SF (T ) as in
section 4 and Λ(A) as above, we consider the intersection SF (T )∩Λ(A). As SF (T )
is bounded and Λ(A) is a lattice, this intersection is a finite set; let ZF (A, T ) denote
the number of its nonzero points.

Lemma 6. There is a positive constant c, depending only on K and N , with the
following property. Let F be bounded measurable with volume VF such that ∂F is
Lipschitz parameterizable of codimension 2. If T < c[A]1/d, then ZF (A, T ) = 0. If
T ≥ c[A]1/d, then

∣∣∣ZF (A, T ) − CF
T d(n+1)

[A]n+1

∣∣∣ ≤ cF
T d(n+1)−1

[A]n+1−1/d

for cF depending only on K, N and F , and

(5.1) CF =
(n + 1)q

√
q + 1

2s(n+1)√
|∆K |n+1

VF VN .

Proof. The set SF (T ) consists of all (z1, z2, . . . , zq+1), with zi in Rdi(n+1) (1 ≤ i ≤
q + 1), such that (4.5) lies in

exp F (T ) = exp
(
F + (−∞, log T ]δ

)
.

Thanks to −∞ this set contains the origin, which we exclude from the counting.
Thanks to log T we deduce

(5.2)
q+1∏
i=1

Ni(zi)di ≤ T d

on this set. Because of (i) of section 2 (see also [1], p. 108) there are positive
constants ci with

(5.3) Ni(z) ≥ ci max{|z0|, |z1|, . . . , |zn|}
for all z = (z0, z1, . . . , zn) in Rdi(n+1) (1 ≤ i ≤ q + 1).

Our lattice points have the shape zi = σi(α) for some α = (α0, α1, . . . , αn) in
An+1. If α is not zero, then some αj �= 0 and (5.3) implies

q+1∏
i=1

Ni(zi)di ≥ cd

q+1∏
i=1

∣∣σi(αj)
∣∣di ≥ cd[A] with c =

q+1∏
i=1

c
di/d
i .

Comparing with (5.2) gives the first assertion of the present lemma.
Next, recall from (4.2) that SF (T ) = TSF (1). By Lemma 4 the volume of SF (T )

is
V = (n + 1)q(q + 1)−1/2VF VNT d(n+1).

It follows from Lemma 3 that ∂SF (1) is Lipschitz parameterizable of codimension
1, and so we deduce the same for ∂SF (T ); in Lemma 3 the number W of maps
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depends only on K, N and F . We also get L ≤ c′F T with c′F also depending only
on K, N and F .

Finally Λ(A) has determinant

∆ =
(
2−s[A]

√
|∆K |

)n+1

with first successive minimum λ1 ≥ [A]1/d thanks to Lemma 5. The main estimate
of the present lemma comes from applying Lemma 2 and adjusting for the origin.
This completes the proof.

The points of SF (T ) ∩ Λ(A) correspond to α = (α0, α1, . . . , αn) in An+1, which
is equivalent to

(5.4) α0O + α1O + · · · + αnO ⊆ A.

We now use Möbius inversion to count the subset with α0O+α1O+ · · ·+αnO = A.
Write Z∗

F (A, T ) for the cardinality of this subset.

Lemma 7. Let F be bounded measurable with volume VF such that ∂F is Lipschitz
parameterizable of codimension 2. Then for any T ≥ e we have∣∣∣Z∗

F (A, T ) − C∗
F

T d(n+1)

[A]n+1

∣∣∣ ≤ c∗F T d(n+1)−1L0

for c∗F depending only on K, N and F and C∗
F = CF /ζK(n + 1). Here L0 = 1

unless (d, n) = (1, 1) in which case L0 = log T .

Proof. As the inclusion (5.4) for nonzero α is equivalent to α0O+α1O+· · ·+αnO =
AB for some nonzero integral ideal B, using the Möbius function µK of K shows
that

Z∗
F (A, T ) =

∑
B

µK(B)ZF (AB, T ),

and we may restrict here to B with [B] ≤ c−dT d. The present lemma then follows
after a short calculation from Lemma 6 on recalling that∑

B

µK(B)[B]−s = 1/ζK(s)

for s > 1 (here s = n + 1). The error terms arise because∑
[B]>X

[B]−s

has order at most X1−s as X → ∞ if s > 1 (here s = n + 1), and because∑
[B]≤X

[B]−s

has order at most 1 as X → ∞ if s > 1, with an extra logarithm if s = 1 (here
s = n + 1 − 1/d). For references see [6] (pp. 155–162) or [13] (p. 446).

In our Proposition we are considering (α0, α1, . . . , αn) in Pn(K) with

HN (α0, α1, . . . , αn) ≤ H.

It is not difficult to see that this is a finite set. For example the definition (2.3)
together with (2.2) and (5.3) show that

HN (α0, α1, . . . , αn) ≥ cH(α0, α1, . . . , αn)
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for

c =
q+1∏
i=1

c
di/d
i

and the conventional height. Denoting the cardinality of this finite set by Z(H),
we may formulate the final step in the proof as follows.

Recall the standard logarithmic map l from K× to Rq+1 taking η to

(5.5) l(η) =
(
d1 log |σ1(η)|, d2 log |σ2(η)|, . . . , dq+1 log |σq+1(η)|

)
.

If U is the unit group of K, then l(U) is a lattice in the hyperplane Σ.

Lemma 8. If F is a bounded measurable fundamental domain for l(U) with volume
VF and ∂F Lipschitz parameterizable of codimension 2, then for any H ≥ 1

(5.6) Z(H) = w−1
K

∑
A

Z∗
F

(
A, [A]1/dH

)
,

where the sum is taken over any set of integral ideal class representatives of K.

Proof. Any (α0, α1, . . . , αn) in Pn(K) corresponds to a unique ideal class, that of
α0O + α1O + · · · + αnO, and so there is A in the sum (5.6) such that we can take
a representative α in Kn+1 with

(5.7) α0O + α1O + · · · + αnO = A.

This representative is unique up to units η. Now the set F (∞) = F + Rδ is a
fundamental domain for Rq+1 under the additive action of l(U). From the identities

log Ni

(
σi(ηα)

)di = log Ni

(
σi(α)

)di + di log |σi(η)| (1 ≤ i ≤ q + 1)

arising from (ii) of section 2, we see that there is exactly one unit, up to roots of
unity, such that(

d1 log N1

(
σ1(α)

)
, d2 log N2

(
σ2(α)

)
, . . . , dq+1 log Nq+1

(
σq+1(α)

))
lies in F (∞). This is equivalent to

(
N1

(
σ1(α)

)d1 , N2

(
σ2(α)

)d2 , . . . , Nq+1

(
σq+1(α)

)dq+1
)

lying in expF (∞).
Now exp F (T ) is the set of (X1, X2, . . . , Xq+1) with X1X2 · · ·Xq+1 ≤ T d and

for Xi = Ni

(
σi(α)

)di (1 ≤ i ≤ q + 1), this is equivalent to HN (α) ≤ T/Hfin(α),
where

Hfin(α)d =
∏
v�∞

Nv

(
σv(α)

)dv

is the product over all finite places. In view of (2.2) and (5.7) this product is exactly
[A]−1. The present lemma follows at once.

Finally our Proposition drops out using the estimates of Lemma 7. We just
have to remember that the regulator RK is the absolute value of any maximal
subdeterminant of the matrix with q rows and q + 1 columns formed with the map
(5.5) evaluated on basis elements of U , while the volume VF of the fundamental
domain is the square root of the sums of the squares of these same subdeterminants.
This completes the proof.
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