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COUNTING CIRCULAR ARC INTERSECTIONS*

PANKAJ K. AGARWAL,t MARCO PELLEGRINI, Arid MICHA SHARIR

Abstract. In this paper efficient algorithms for counting intersections in a collection of circles or circular arcs
are presented. An algorithm for counting intersections in a collection of n circles is presented whose running time is
O (n3/2+), for any e > 0 is presented. Using this algorithm as a subroutine, it is shown that the intersections in a set
of n circular arcs can also be counted in time O(n3/2+). If all arcs have the same radius, the running time can be
improved to 0(n4/3+), for any e > 0.
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1. Introduction. Intersection problems are among the fundamental topics in compu-
tational geometry. In 1979, Bentley and Ottmann, in their famous paper on the line sweep
technique, showed that all K intersections in a collection of n Jordan arcs inI2 can be reported
in time O((n + K) log n) [BO] (under reasonable assumptions concerning the shape of these
arcs and on the model of computation). Their algorithm is significantly faster than the naive
quadratic algorithm for small values of K, but is worse than the naive approach ifK (R) (n2).
Since then much effort has been invested to remove the log n factor from K. Recently Chazelle
and Edelsbrunner [CE] presented an O (n log n + K) time algorithm to report all intersections
in a collection of line segments. However, for general arcs, the Bentley-Ottmann algorithm
is still the best known deterministic algorithm. If we allow randomization, algorithms with
improved running time of O(n log n / K) can be obtained (see Clarkson and Shor [CS2] and
Mulmuley [Mu]).

All of the above algorithms are quite efficient if we want to report the intersections
explicitly. In some applications, however, we are only interested in counting the total number
of intersections (not in finding the actual intersection points). In that case we prefer an
algorithm whose running time does not depend on K, because K can be as large as (R)(n2).
Ideally we would like to have an algorithm that counts the number of intersections in time
O(n log n), but developing such an algorithm seems to be quite hard. For line segments,
Chazelle [Cha] proposed an O(n 3/2 log n) time algorithm. Later Guibas, Overmars, and
Sharir [GOS] gave a randomized algorithm whose expected running time was O(rt4/3+), for
any e > 0. Their algorithm can be made deterministic and somewhat improved using recent
partitioning algorithms of Matougek [Mat l] and Agarwal [Agl]. The best known running
time, at present, for counting segment intersections is O(rt4/3 log 1/3 n) (see [Ag2], [Chb]),
and the corresponding algorithms are deterministic.

The "bichromatic" version of the segment intersection counting problem has also been
studied. Here we are given a set of"red" segments and another set of"blue" segments, and we
want to count the number of red-blue intersections. This problem can also be solved in time
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O(n4/3 log 1/3 n) using a variant of the Guibas, Overmars, and Sharir algorithm (see [Ag2]).
For the special case, where no two red segments and no two blue segments intersect, an optimal
O(n log n)algorithm has been developed by Chazelle et al. [CEGS2].

The intersection counting problem seems to be much harder for general arcs, because
unlike segments, two arcs may intersect at more than one point, which makes their intersec-
tion patterns more involved than those of segments. Using Chazelle and Sharir’s generalized
point location technique in semi-algebraic varieties [CS ], the arc intersection problem can
be solved in slightly subquadratic time (roughly O(n198)). However, we are not aware of any
substantially subquadratic algorithm for the general case. The recent algorithm of Agarwal
et al. [AASS] can be applied to obtain an O(n4/3 log2/3 n) time algorithm for counting inter-
sections in a set of circles with the same radius, but it does not extend to circles of arbitrary
radii.

In this paper we consider the intersection-counting problem for a collection of arbitrary
circles and of circular arcs. Our main results are:

(i) An algorithm for counting intersections in a collection of n arbitrary circles whose
running time is 0(n3/2+), for any e > 0.1

(ii) An algorithm for counting intersections in a collection of n circular arcs, whose
running time is 0(n3/2+).

(iii) If all arcs are of circles of the same radius, the running time of both algorithms can
be improved to 0(n4/3+).

The remainder ofthe paper is organized as follows. In2 we present our circle intersection
algorithm. Section 3 deals with counting intersections between a set of circles and a set of
circular arcs. In 4 we describe our main algorithm, that is, counting intersections in a set of
circular arcs. We conclude with some open problems in 5.

2. Counting circle intersections. In this section we present a divide-and-conquer al-
gorithm for the following problem: "Given a collection C {C1 Cn} of n circles,
count the number of pairs of intersecting circles in C." Let CI {C1 CFn/21} and
C2 {CFn/21+l C}. We first count the number of pairs of intersecting circles in C1 and
in C2 recursively, and then we count the number of intersecting pairs (Ci, Cj) E C x C2. Thus,
it is sufficient to solve the "bichromatic version" of the above problem, that is,

Given a collection C ofm "red" circles and another collection C’ ofn "blue"
circles in the plane, count Z(C, C’), the number of intersecting "red-blue"
pairs of circles.

Note that, assuming nondegenerate configurations, the number of red-blue intersection
points is twice that count.

LEMMA 2.1. Given a pair ofcircles C, C’ with centers p, p’ and radii p, p’, respectively,
C intersects C’ ifand only if

(1) I/9 P’I <_ d(p, p’) <_ p + p’.

Proof. The proof follows from elementary geometry. [3

To compute 2-(C, C’), we define two geometric transforms p and q. Let C be a circle
with center (a, b) and radius r. The first transform, 0, maps C to the point

(2) 0(C) (a, b, r)

Throughout this paper, denotes an arbitrarily small positive constant. The meaning of such a bound is that
for any > 0 the algorithm can be fine-tuned so that its running time is within that bound, where the constant of
proportionality depends on and usually tends to cx as $ 0.
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in N3, and the second transform, q, maps C to the region

(3) P(C)={(x,y,z)lz>0and(z+r)2>_(x-a)2+(y-b)2>(z-r)2}

in 3. The boundary of q (C) consists of two surfaces:

(i) (ii)

FIG. 1. (i) Shaded region denotes q(C); (ii) cross-section ofq(c) at a vertical plane through (a, b).

(i) The outer surface, denoted aPo(C), is the truncated cone

(z -k- r) 2 (x a) 2 + (y- b) 2, z >_ 0.

(ii) The inner sulface, denoted /(C), is the truncated double cone

(z r) 2 (x a) 2 -k- (y b)2, z >_ 0.

A point p (a, b) can be considered a circle of radius zero, so p/(p) 7to(p) is the
cone z2 (x a) 2 -+- (y b) 2. An immediate consequence of the previous lemma is the
following lemma.

LEMMA 2.2. A circle C intersects another circle C’ ifand only if99(C) q (C’).
It therefore suffices to count for each circle C 6 C the number of circles C’ 6 C’ for

which 99(C) 6 q(c’). We describe two algorithms for counting these quantities. The first
algorithm is quite simple and works well when rn > n 3, while the second algorithm, though
more complicated, is efficient for all ranges of rn and n.

2.1. A simple algorithm. Our first algorithm for computing Z(C, C’) works as follows.
Let

(4) {V/o(C’)lC’ ’}u {7(c’) c’ ’}.

Fix a surface H 6 7-t. Intersect it with all other surfaces of . It is easily checked that
each intersection curve is the intersection of H with a plane, and is thus a conic planar curve.
Moreover, each pair of such curves intersect each other in at most two points (these points are
the points of intersection ofH with the line which is the intersection of the two corresponding
planes; since H is a quadric, there are at most two such points).

Let F denote the resulting collection of curves on H. We next form the two-dimensional
arrangement .A(F) of these curves on H. This can be done deterministically, e.g., in time
O(n 2 log n) using a sweeping technique, similar to that of Bentley and Ottmann [BO]. For
each circle C’ C’ and each face f .4(1-’), f lies either fully inside or fully outside (C’).
Consequently, after 4(F) is computed, we can calculate, for each face f of this arrangement,
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the number rf of regions q (C’) that contain it. Since this number changes only by one as we
cross from one face to an adjacent one, a simple traversal of the arrangement will produce all
the quantities rf in time O(n2). We repeat this step for each surface H 6 in overall time
O(n 3 log n).

Next, preprocess ,A(7-/) for spatial point location in time O(n3+) using the algorithm of
Chazelle et al. [CEGS ].2 The processing is done so that the output to a query is the surface
that lies directly below it. The time to answer a query is O(log n). Note that the method of
[CEGS does not require an explicit construction of the arrangement of, especially if the
output to queries is to have this restricted form.

We now take each circle C C and locate its image 0(C) in 4(), obtaining the surface
H lying directly below 0(C) and the vertical projection co(C) of 0(C) on that surface. We
now locate the face f of the corresponding arrangement on H that contains co(C), and add
either rf or rf + to a global count, depending on whether the region q (C’) bounded by H
lies below H or above it near the face f. The sum of these quantities, over all C 6 C, is the
desired Z(C, C’). The time required by this step is O (m log n), so the total running time of the
algorithm is O(n3+ + rn log n).

The running time can be improved using a standard "batching" technique; that is, partition
C’ into m-3] sets C C,’ each containing at mostm 1/3 circles. For each i, we compute
Z(C, C) separately, and then add these quantities to determine 2-(C, C’). The overall running
time is therefore

Inl +) 0 n+m ).O(m (m2/3+ 1+

Hence, we obtain the following result.
THEOREM 2.3. Given a collection C of rn "red" circles and a collection C’ of n "blue"

circles, the number ofintersecting red-blue pairs can be counted in time O(m2/3+n + rn +),
for any > O.

Remark 2.4.
1. By flipping the role of red and blue circles, we can obtain another algorithm whose

running time is O(mn2/3+ -+- n+e).
2. Note that if n < m /3 (or m < n/3), then the above algorithm runs in time O(m+)

(respectively, O (n +)), which is almost optimal.
COROLLARY 2.5. Given a collection ofn circles, the number ofintersectingpairs ofcircles

can be counted in time O(nS/3+),for any > O.

2.2. An improved algorithm. We now present an algorithm for computing 2-(C, C’),
which is significantly faster than the previous one, especially when rn and n are of the same
order of magnitude.

If n > m 3, 2(C, C’) is computed using the previous algorithm, in time O(nl+’), so
assume that n < m 3. Let be the set of surfaces defined in (4). Let r be some sufficiently
large constant. We compute a if-net

_
1-’, of size O(r log r), in time O(n) [Mat2] We

decompose 4() into M O(r3(r) log r) simple cells (of constant complexity), using
the algorithm of Chazelle et al. [CEGS1] (see also [CEGSW, 6]);/3(r) is an extremely slow

2Although the algorithm described in the original paper is randomized, it can be made deterministic without
affecting its asymptotic performance, using a recent result of Matousek for deterministic construction of -nets
[Mat2].

3Specializing from the general concept, we call a subset

_
F of a set of n (algebraic) surfaces a {-net, r < n,

if every (open) cell of constant complexity, of the form obtained in the stratification algorithm of [CEGS ], which
does not intersect any surface of 7, intersects at most n/r surfaces of F" see [HW] for a more formal definition.
Haussler and Welzl [HW] showed that a random subset of I" of size O(r log r) is a 7-net with high probability. Later
Matousek [Mat2] gave an O(nr))-time deterministic algorithm for computing a 7-net of size O(r log r).
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growing function, which depends on the inverse Ackermann function o(r). Let .,4*() denote
the resulting subdivision. Since A* (7) is a r-net of 7-[, each cell r 6 A* (7) of dimension
_> intersects at most 2n/2r n/r surfaces of

Our approach is to partition the points qg(C) among the cells r 6 A*() and to distribute
the surfaces 7rt,o among those cells that they intersect. This gives us a collection of
subproblems, one for each cell r, whose combined solutions give us the desired count.

In more detail, we regard A*() as a collection of pairwise disjoint relatively open cells
of dimensions 3, 2, 1, or 0. For each cell r 6 A* (7), we define C’ as the set of circles C’ for
which I(C’) or gro(C’) intersects r. Similarly, we defineC as the set of circles C for which
0(C) lies in r. Letm ICr I, n IC’ l, and let i. be the number of circles C’ for which

Itr _c q(C’). Every r of dimension >_ intersects at most n/r surfaces of 7-[, thus n <_ 7"
is easy to see that

Z(C, C’) Z Z(C, Cr) + mr

Since each cell r has constant complexity, Cr, C’ and )r can be calculated in O(m + n)
time per cell, so the total time required to compute these quantities is O((m + n)r3(r) log r)
O(m + n), as r is constant. Next, the quantities 2-(Cr, C’r) are computed as follows. If

r is a three-dimensional cell, we compute 2-(C, C’r) recursively. If r is a two-dimensional
cell, we also proceed recursively, except that we have a two-dimensional problem at hand.
This can still be solved using an analogous two-dimensional partitioning scheme. If r is an
edge of 4"(7), we can compute 2-(C, C’), in time O((mr + nr) logn), by computing the
intersection points of r and 0P (C’), for C’ 6 C’, sorting them along r, and then locating the
points 9(C) along r, for C 6 C. Finally, if r is a vertex, then we have 2(C, C’) m nr
(note that in this case mr 0 or 1). The maximum total running time T (m, n) to compute
2-(C, C’) therefore satisfies:

(5)

al(m + n) logn +
T(m,n) <_

a2n +’

Z T(mr,n) if n <m
r4*()
dim >2

if n >_m

where a a2 are some constants (a2 depending on e’) mr < m and n < for every
r. It is easily checked that these equations also hold when we recurse on a two-dimensional
problem. In this case the second equation holds already when n > m 2.

LEMMA 2.6. For every > O, there exist constants A, B, D > 0 depending on such
that

(6) T(m, n) < Am3/4+en 3/4
nt- Bn 1+/3 q- Dm log2 n.

Proof. For n >_ m 3, (6) is obviously true provided we choose B _> a2 and e >_ 3e’. For
n < m 3, we prove the lemma by induction on n. If A and B are chosen appropriately, (6)
holds trivially for small values of n. Assume that the claim is true for all n’ < n. If r > 2,
then by inductive hypothesis, (5) can be written as follows (here we bound the number of cells
in A*(7) by cr3fl(r) log r for an appropriate constant cl > 0):

T(m,n) < Z (Amr3/4+en3/4+Bnl+/3+Dmrlg2n )-t-al(m+n)lOgn’’r
rA*()
dim >2
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<__ A m + Bcr fl(r) log r
.A* (7-)

F

dim >2

+a (m + n) log n + D log n log m
r

dim r>2

< Am3/a+en3/4 (clr3(r) log r)/4- + Bn+/ + Dm log2 n

( r2_e/3 allogn)-+-Bn l+e/3 c (r) logr- 1- ne/
+(al -Dlogr)mlogn

where the first term of the last inequality follows from H61der’s inequality. If D > a, then
al D log r < 0 (as r > 2). Since n < m 3, we have n +/3 _< m3/4+n3/4. We therefore
obtain

T(m,n) < Am3/4+n3/4 ( (clfl(r) log3 r) 1/4- )- + Bn 1+/3 + Dm logZn

+Em3/4+n3/4,

where

a log n )E- B clr2-/3(r)log3r- - B n

If we choose r and A sufficiently large so that

(Clfl(r) log r) 1/4- E
r3

-t- -- _< 1,

the running time becomes

T(m, n) <_ Am3/4+en 3/4 -+- Bn +/3 +Dm log2 n.

THEOREM 2.7. Given a collection C ofm "red" circles and a collection C’ ofn "blue" cir-
cles, the number ofintersecting red-bluepairs ofcircles can be counted in time O(m/4+n/4+
n l+e + m log2 n), for any > O.

Returning to the original problem of counting circle intersections, the above theorem
implies that the merge step of our divide-and-conquer algorithm can be performed in time
O(n/2+). Hence, we obtain the main result of this section.

THEOREM 2.8. Given a collection of n circles in the plane, the number of intersecting
pairs can be counted in time O(n/2+),for any > O.

3. Counting intersections between circles and arcs. In this section, we study the prob-
lem of counting the number of intersection points between a collection C of n circles and
another collection F ofm circular arcs. For the sake of simplicity we assume that all intersec-
tions are transversal and do not lie at the endpoints of the arcs.

Let o,/3 denote the endpoints of an arc ?,, and let c denote the center of the circle
containing ?,. The lines supporting the segments oc and/3c partition the plane into four
wedges (quadrants), and ?’ clearly lies completely in one of the wedges; we will denote this
wedge by co(?,), and denote by 05(?,) the wedge lying opposite to co(?,); see Fig, 3 for an
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FIG. 2. Wedges o9(?’) and (5(/).

(i) (ii) (iii)

FIG. 3. Various circle-arc intersection patterns.

example. For a set C of circles, let E(C) (respectively, I (C)) denote the common exterior
(respectively, interior) of circles in C.

LEMMA 3.1. A circular arc ?" intersects a circle C at one point ifand only if one of the
endpoints of 9/lies in the interior ofC and the other endpoint lies in the exterior of C.

Proof. The proof follows immediately from the Jordan curve theorem and the fact that
two circles intersect in at most two points.

LEMMA 3.2. A circular arc V, which does not span more than a semicircle, intersects C
at two points ifand only ifC intersects the circle containing ?’, and one of the following two
conditions is satisfied:

(i) the endpoints of ?" lie outside C and the center ofC lies in co(?,) (see Fig. 3(i)) or

(ii) the endpoints of ?, lie inside C and the center ofC lies in o(?,) (see Fig. 3(ii)).
Proof. Assume that ?, and C intersect at two points, say z, z2. Let e be the perpendicular

bisector of zz2. Let C* be the circle containing ?,, and let c, r (respectively, c*, r*) denote the
center and radius of C (respectively, C*). Clearly, both c and c* lie on e. Since z, z2 E co(?,),
we can easily show that is fully contained in co(?,) U o5(?,), so either c E co(?,) or c 6 o5(?,).
See Fig. 4 an illustration.

If we fix Zl, z2, and let c slide along , we obtain a one-parameter family of circles C all
passing through z and z2. The line through z and z2 divides the plane into two halfplanes;
we denote by H1 the halfplane containing c* and by H2 the complementary halfplane. It is
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FIG. 4. lllustration ofLemma 3.2.

easily checked that, as c moves along g towards co(?’), C A H1 keeps shrinking while C N H2
keeps expanding. Since the endpoints of ?’ lie in HI, and are incident to C when c c*, they
clearly lie outside C if and only if c 6 co (?’) and inside C if and only if c 6 03(?’). This proves
the "only if" part of the lemma.

The "if" part is proved in a similar manner. We let z, z2 denote the two points of
intersection of C and C*, and define g, H, and H2 as above. Any of the conditions (i), (ii)
implies that is contained in co(?’) tO O3(?’). It then suffices to show that both endpoints of ?’ lie
in HI. If condition (i) occurs then, by the observation made above, we have CN H2

_
C* f) H2,

so both endpoints of ?’ must lie in HI. A similar argument applies for condition (ii). This
completes the proof of the lemma.

In view of Lemmas 3.1 and 3.2, we can divide the pairs of intersecting arcs and circles,
(?’, C) 6 F C, into the following three categories:

I. Both endpoints of ?’ lie in the exterior of C, the center of C lies in co(?’), and C
intersects the circle containing ?’; letZ (F, C) denote the number of such pairs.

II. Both endpoints of ?’ lie in the interior of C, the center of C lies in O3(?’), arid C
intersects the circle containing ?’; let Zz(F, C) denote the number of such pairs.

III. Exactly one of the endpoints of ?’ lies in the exterior of C; let 2-3(F, C) denote the
number of such pairs.

Although all three types of intersecting pairs can be counted by a single algorithm, we
prefer to count each of them by a separate procedure, for the sake of clarity.

3.1. Counting Z (1-’, C). We will view condition I as a conjunction of five constraints,
four ofwhich constrain the locations of endpoints of arcs and the locations of centers of circles,
and the fifth one requires the two circles to intersect. We will construct a four-level structure,
based on the decomposition scheme of Chazelle, Sharir, and Welzl [CSW], which decomposes
1-’ and C into a family .T" of canonical pairs

" {(r’, c) (1-’,,

such that
(i) Fi_FandCi_C,
(ii) for every pair (?’, C) 6 (Fi, Ci), the endpoints of ?’ lie in the exterior of C and the

center of C lies in co(?’), and
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(iii) for every pair (V, C) E I-’ C such that the endpoints of V lie in the exterior of C
and the center of C lies in co(v), there is a unique such that , E I-’ and C Ci.

Each of the four constraints will be satisfied at a different level of the structure. The
first-level structure decomposes F’ and C into a family of canonical pairs (1-’,, C/), 1-’/ c__
F,C C, so that the counterclockwise endpoints of all arcs in 1-’/, lie in E(C/). The second-
level structure then takes each of these canonical pairs and further decomposes them into a
collection of canonical pairs (1-’, C), so that the clockwise endpoints of all arcs in I-’ also lie
in E(C). Thus the first two levels together ensure that the endpoints of all arcs in 1-’ lie in
E(C:).

Next, the third and fourth levels decompose each (1-’r, Cr) into a family of canonical
subsets (17, C), so that the centers of circles inC lie inr co(Y). It is easily checked that
the set of all fourth-level canonical pairs gives the decomposition. So, for each fourth-level
canonical pair, we compute the number of intersecting pairs of circles using the algorithm
described in 2.1, and add up the resulting counts to obtain 2- (1-’, C).

In order to describe the algorithm in detail, we have to define some geometric transforms.
For a circle C of radius r, centered at (a, b), let re(C) denote the plane in3

(7) re(C) z 2ax + 2by + (r2 a2 b2).

For a point p (o,/3), let r (p) denote the point in R

(8) (p) (c,/, c: + :).

We will use re*(C) to denote the point dual to the plane re(C),

(9) re*(C) (2a, 2b, r2 a 2 b2),

and* (p) to denote the plane dual to the point r (p),

(10) *(C) "z -otx fly + Og
2 -- /2.It is easily seen that p lies in the exterior of C if and only if (p) lies above the plane

re(C), which is the same as saying that the point re*(C) lies below the plane *(p).
As in 2, we describe two algorithms. The first algorithm works efficiently when m _< n,

and the second algorithm, which uses the first algorithm as a subroutine, works well for all
ranges of rn and n.

3.2. First algorithm. Let r be some sufficiently large fixed constant. We map the coun-
terclockwise endpoints of arcs in F to a collection of planes in IR

{r*(ot) o is a counterclockwise endpoint of an arc in 1-’},

and decompose the space into a set ,g of O(r3) simplices, each of which intersects at most

m/r planes. E can be computed in O(m) time using the algorithm of Matouek [Mat2]. We
associate with each simplex/ a subset F/ c_ F of arcs and a subset C/, c_ C of circles. An arc

V, whose counterclockwise endpoint is or, is in F/ if* (o) intersects the interior of/, and a
circle C 6 C/ if re* (C) 6 A. Let A/ c_ F denote the set of arcs corresponding to the planes
that lie above . It follows from the above discussion that the counterclockwise endpoints of
all arcs in A/ lie in E(C/), so we output (A,, C/) as one of the first-level canonical pairs.

We recursively decompose each (F/, C/). The recursion stops when the number of arcs
or circles fall below some fixed constant. In this case, we decompose them by a brute-force
method.
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Next, we decompose each first-level canonical pair further using the same partitioning
techniques, except that we now map the clockwise endpoints (instead of the counterclockwise
endpoints) of arcs to planes. Let (1-’, C) be a second-level canonical pair. The endpoints of
all arcs in F lie in E(C).

Let eccw(?’) (respectively, ecv (Y)) denote the line passing through the center of ?’ and
its counterclockwise (respectively, clockwise) endpoint. We map the arcs of F to a set of
lines {gccw(Y) 6 1-’} and decompose the plane in O(IFI) time into O(r2) triangle, each
of which intersects at most II-’l/r lines, again using the technique of [Mat2]. We associate
with each triangle a subset of arcs F 1-’ and a subset of circles C c__ C. An arc ?’ 6 FC
ifccw (?’) intersects , and a circle C 6 C if the center of C lies in . We also associate two
other subsets A and Be of 1-’ with . An arc y is in A (respectively, Be) if both and lie
below (respectively, above) the line eccw(?’). We output (Ac, C) and (B, C) as third-level
canonical pairs and continue decomposing (F, C) recursively.

Next, for each third-level canonical pair (F, Co), we map each arc ’ 6 FC to the line
g.cw (?’) and apply the same partitioning scheme. For each triangle , 1-’, and C are defined
in the same way as in the third-level structure. If eccw (?’), for each arc ?’ 6 l-’c, lies below
(respectively, above) , we define A c_ F to be the set of arcs ?’ such that g.cw(’) lies below
(respectively, above) both and ,. We output (A, C) as a fourth-level canonical pair, and
continue decomposing (1-’, C) recursively.

Each fourth-level canonical pair (F, C) has the properties that the endpoints of all arcs
in F lie in E(C) and that centers of all circles in C lie in (-]r oo(y). By Lemma 3.2,
an arc y F intersects a circle C C if and only if C intersects the circle containing y.
Therefore, the number of intersecting pairs of arcs in F and of circles inC can be counted in
time O(IC 13++ IFI log IC I) by the algorithm described in 2.1. For the sake ofconvenience,
we will consider the circle intersection counting procedure as a fifth-level step ofthe algorithm.

Let T (i) (a, b) denote the maximum time spent in processing a set of a arcs and another
set of b circles at level (i.e., the time spent constructing and processing the structures at levels
> i). It follows from 2.1 that T(5(a,b) O(a3+ -k- bloga). For < 4 we decompose
the problem into tc level-/subproblems, each involving at most a/r arcs and bj circles, and
into tc level-(/+ 1) problems, each involving at most a arcs and b circles. By construction,

,j bj b, t O(r3) for 1, 2, and tc O(r2) for 3, 4. Since we spend O(a + b)
time in computing the set of simplices and various subsets of arcs and circles, we obtain the
following recurrence"

(11) Ti(a,b)

O(bloga + a3+) ifi 5,

O(a + b)

if/ <5,

where tc O(r3) and j=l bj b. The solution of the above recurrence is easily seen to be

T(i(a, b) O(a3+’ + b log6-i a) for/<_ 5.

Hence we can conclude that, given a set ofm circular arcs and another set of n circles, we can
count the number of intersection points between them in time O(n log5 m + m3+), for any
>0.

Remark 3.3. (i) The running time can be improved to O(n log m q-m3+) by an appropriate
modification of the algorithm, but for our purposes the time bound derived above is sufficient.

(ii) If the endpoints of arcs in F are already known to lie in E(C), we do not have to
construct the first two levels.
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3.3. Second algorithm. Wenow describe another algorithm that works well for all ranges
ofm and n. In the above algorithm we mapped the endpoints of arcs to planes/lines and circles
to points, and constructed a multilevel structure. We follow the same approach, but there are
two key differences. The first difference is that we flip the roles of arcs and circles, i.e., we
now map circles to planes/lines and endpoints of arcs to points. The second difference is that
we stop the recursion when the ratio of the number of circles to the number of points becomes
large and solve the problem directly using the first algorithm.

In more detail, we map the circles of C to a set of planes {7r(C) C 6 C}, and partition
3 into a set E of O(r3) simplices each of which intersects at most n/r planes [Mat2]. We
associate with each simplex/ 6 ,E a subset F/ _c F and another subset C/ _c C of circles.
An arc F, whose counterclockwise endpoint is c, is in F/ if r (or) /, and a circle C is in

Ca if 7r(C) intersects the interior of/. Let L/ c_ C denote the set of circles C such that 7r(C)
lies below/. By the above discussion, the counterclockwise endpoints of all arcs in F/ lie
in E(L/). We output (F/, L/) as one of the first-level canonical pairs.

We recursively construct the first-level structure for (F/, Ca). The recursion stops when

IFal < ICal. In this case, we process (F/, C/) using the first algorithm.
Next, for each first-level canonical pair we apply the same procedure for the clockwise

endpoints of arcs. Let (F, C) be a second-level canonical pair. As earlier, the endpoints of
arcs in F lie in E(C).

In the third level, we dualize the centers of circles of Cr to a set of lines, and partition the
plane into O(r2) triangles so that each triangle intersects at most ICl/r lines. We associate
with each triangle three subsets C, LC, and U ofC and a subset F of F. An arc 7’ 6 FC
if the point dual to eccw (F) lies in . A circle C is in C (respectively, L, U) if the line
dual to its center intersects (respectively, lies above, lies below) . Let F (respectively, F’)
be the subset of arcs in FC that lie above (respectively, below) the line g.ccw(F). We output
(Lc, F’) and (U, F) as third-level canonical pairs. We recursively continue constructing
the third-level structure on (F, C). The recursion stops when IF 13 < 1C I. In this case, we
invoke the first algorithm.

Next, for each third-level canonical pair (F, C), we apply a similar two-dimensional
decomposition to the lines dual to the centers of circles in Cc and to the points dual to the
lines cw (F) for g F. Each fourth-level canonical pair (F, C) has the property that the
endpoints of arcs in F lie in E(C), and that the centers of circles in C lie in ["]rv w(F)"
The number of intersection points between C, and the circles containing the arcs of F can

3/4+/3/4 a+ nl+now be computed in time Oa , + + , using Theorem 2.7.

Let T (i) (a, b) denote the maximum running time of the algorithm at level i, defined as
above. Notice that we invoke the first algorithm only when a < b, so the time required by the
first algorithm is only O(b+’). Following the same argument as in the previous subsection,
we obtain the following recurrence:

(12)

O(a3/4+b3/4 -1- a+ + b+) for 5,

T(i)(a, b) O(b+) for < 5, a 3 <__ b,

tc.Ti+l)(a,b)+Ti)(aj, b-s)+O(a+b) for/ <5, 0
3 >b,

\Jj=l

where c O(r) andj a a. The solution of the above recurrence is

T(i)(a, b) O(a3/4+b3/4 -k- al+ + b+) for < 5.
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Hence, Z1 (I’, C) can be counted in time O(m3/4+Ert 3/4 -}- m+ + r/l+e).
3.4. Counting 2"2 (1-’, C). 2"2 (1-’, C) is counted using an algorithm very similar to the one

we just described. The only difference is that conditions (ii) and (iii) for f" now become:
(ii’) For every pair (?’, C) 6 (I"i, C,i), the endpoints of y lie in the interior of C and the

center of C lies in oS(y), and
(iii’) For every pair (, C) 6 1-’ x C, which satisfies the first four constraints of condition II,

there is a unique such that 6 1-’i and C Ci.
To this end, we construct a four-level structure similar to that for counting 2"1 (1-’, C), but

we define the subsets of arcs at each level in a somewhat different way, to meet the new kind
of constraints. For example, at the first level of the first algorithm, we define A/ _c F to be
the set of arcs corresponding to planes that lie below A, and at the third level we define A
(respectively, B) to be the set of arcs such that , lies above (respectively, below) ccw(?’)
and/ lies below (respectively, above) ccw(?’). Similarly, we redefine L/, L, U in the
second algorithm. Following the same analysis as above, we can show that 2"2 (1-’, C) can be
counted in time O(m3/4+n3/4 nt- m 1+ -q- nl+).

3.5. Counting 2"3 (F, C). Counting 2"3 (F, C) is relatively simpler, because the conditions
on (, C’) are now defined as a conjunction of only two constraints. Suppose we want to count
the number of pairs (, C) such that the counterclockwise endpoint of ?’ lies in the exterior
of C and the clockwise endpoint of ?’ lies in the interior of C; the other case can be handled
symmetrically.

The first-level structure is exactly the same as that for counting 2" (F, C). Next, for each
first-level canonical pair (F/, Ca), we map the clockwise endpoints of arcs in F/ to a set of
planes using (10) and apply the same decomposition scheme, except that for each simplex r
we output a canonical pair (Ur, C), if the planes corresponding to arcs in U lie below r.
By Lemma 3.1, each 6 U intersects every circle C 6 C. The total running time is again
O(m3/4+En3/4 -Jr- m 1+ q-- nl+).

Hence, we can conclude the following theorem.
THEOREM 3.4. Given a set of rn circular arcs and a set of n circles, we can count the

number of intersection points between them in time O(m3/4+en3/4 + m l+e q- nl+e).

3.6. The case of unit circles and arcs. If all the circles in C and the circles supporting
the arcs of F have the same radius, say 1, we can count the number of intersections between
C and F more efficiently by modifying the algorithms given above. First, instead of using the
algorithm described in 2, we use the algorithm of Agarwal et al. [AASS] to count the number
of intersection points between two families of unit circles. Second, it turns out that we only
need to apply the decomposition schemes in two dimensions at all levels of the structure (even
in the previous algorithms the third and fourth levels apply two-dimensional decomposition
schemes; only the first two levels of the structure required three-dimensional schemes). We
will describe how to construct the first-level structure for both algorithms; the second-level
structure can be handled analogously.

For a point p in the plane, let D(p) denote the unit disk centered at p. We construct the
first-level structure of the first algorithm as follows. We map the counterclockwise endpoints
of arcs in 1-" to a set of unit circles

D(I-’) {D(ot) Iot is the counterclockwise endpoint of an arc 6 1-’}.

We compute a 7-net R
_

D(1-’) of size O(r log r) in time O(m) (see 2 for a definition of a

-net). We compute the vertical decomposition of the arrangement of R, i.e., draw a vertical
line from every vertex of the arrangement and all the points of vertical tangency of every
circle in both directions until such a line hits an edge of the arrangement. If there is no such
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edge, the line is extended to infinity. The vertical decomposition of R partitions the plane
into O(r2 log2 r) trapezoidal cells. Since R is a ;-net, each cell of the vertical decomposition
intersects at most m/r circles of D(F). We associate with each cell a subset F/ c_ F of
arcs and another subset C/

_
C of circles; an arc F, whose counterclockwise endpoint is o, is

in F/ if D(c) intersects/, and a circle C is in C/ if the center of C lies in/X. Let A/ _c F
be the set of arcs corresponding to discs that contain in their exterior. It is easily seen that
the counterclockwise endpoints of arcs in A/ lie in E(C/), so we output (A/, C/) as one of
the first-level canonical pairs. We recursively decompose (F/, C/).

The second-level structure can also be modified similarly. The third and fourth levels
remain the same. Finally, for each fourth-level canonical pair, we use the algorithm of [AASS]
to count the number of intersection points between two families of circles, so T (5 (a, b)
O(a2 + b log a). Furthermore, tc O(r2 log r) for all < 4, so we have the following
recurrence for < 4:

T (i) (a, b) O(r2 log2 r) T (i+l) (a, b) +
O(r log r)

j=l

where -.j by b. The solution of the above recurrence is O (a2+ -+- b log6-i a).
At the first-level structure of the second algorithm, we choose a {-net R’ ofC and compute

the vertical decomposition of its arrangement. For each cell/x of the vertical decomposition,
we associate the subset C/ c_ C of circles that intersect dx and a subset of arcs F/

_
F whose

counterclockwise endpoints lie in/. The set L/x is now defined to be the subset of circles that
contain/x in their exterior. We output the pair (L/, C/) and recursively decompose the pair
(F, C/).

By [AASS], T5(a, b) is now O(a2/3+b2/3 + a+ -b- b+). Since c O(r2 log r), the
solution of (12) now becomes O (a2/3+eb2/3 -+- a+ b+ ), which yields the following result.

THEOREM 3.5. Given a set ofm circular arcs, each ofradius 1, and another set ofn unit
circles, we can count the number of intersection points between them in time 0 (m2/3+n2/ +
m+ + nl+).

4. Counting arc intersections. In this section we obtain the main result of the paper:
We present an algorithm to count the number of intersection points in a collection F of n
arbitrary circular arcs. As in the previous section, we assume that all arcs in F are in general
position. The algorithm is based on the following two lemmas.

LEMMA 4.1. An arc F ofa circle C intersects an arc F’ ofanother circle C’ at two points

ifand only if IF N C’] 2 and IF’ N CI 2 (see Fig. 5(i)).
Proof. The "only if" part is trivial. The "if" part follows from the observation that C and

C’ must intersect at two points, both of which lie in both g and g’.
The case where two given arcs intersect each other in exactly one point is more involved

and depends on the pattern of intersections between each arc and the circle containing the
other.

LEMMA 4.2. An arc F ofa circle C intersects an arc F’ of another circle C’ at exactly
one point ifand only ifone of thefollowing conditions holds:

(i)]FNC’[= land[F’NC[=2.
(ii) IF (3 C’] 2 and IF’ C] (see Fig. 5(ii)).
(iii) IF C’] and ]F’ C] 1, and thefollowing additional condition holds. Divide

F into two equal subarcs, and let F/2 be the subarc for which [F1/2 C’] 1. Define F[/2
in an analogous manner. Then both arcs F1/2 and F’ fully lie on the same side of the line1/2
connecting the centers of the circles C, C’ (see Fig. 5(iii)).
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FIG. 5. Different cases ofarcs intersections.

Proof. To prove the "only if" part of the lemma, suppose 19/N V’I 1. Then clearly
19/f) C’I > and 19/’ N CI > 1. Suppose neither condition (i) nor (ii) holds. Then necessarily
19/ C’I and 19/’ fq C 1. (If both these numbers were 2, Lemma 4.1 would imply that
19/ 9/’1 2, contrary to assumption.) Let 9/be an arc that intersects a circle C’ in exactly one
point. Then it is easily verified that its corresponding halfarc ?’1/2 lies completely on one side
of the line connecting the centers of C’ and one one side of the circle containing 9/, which is
the same side containing the point of intersection between 9/and C’. This observation easily
implies that the second part of condition (iii) is also satisfied.

Consider now the "if" part of the lemma. If 9/and 9/’ satisfy condition (i), then 9/’ contains
the two points of intersection between C and C’, and 9/contains just one of these points, so
clearly these arcs intersect at exactly one point. A symmetric argument applies if condition
(ii) holds. Suppose condition (iii) holds, so that 19/f3 C’] and 19/’ CI 1. If 9/and 9/’
do not intersect, then p 9/fq C’ and q 9/’ f) C are the two distinct points of intersection
between C and C’, each lying on a different side of the line connecting the circle centers. But
then the above observation implies that each of the corresponding halfarcs 9//2 and 9//2 fully
lie on a different side of this line, contradicting the second part of (iii). This completes the
proof of the lemma. [3

Lemmas 4.1 and 4.2 suggest the following multilevel structure to count the number of
pairs of intersecting arcs in 1-" F’. The preceding lemmas imply that we must count pairs of
arcs, (9/, 9/’), that satisfy one of the following four conditions (where C is the circle containing
9/and C’ is the circle containing 9/’):

(a) 19/fq C’I 2 and 19/’ fq CI 2.
(b) [9/ C’I and 19/’ CI 2.
(c) 19/ C’I 2 and 19/’ CI 1.
(d) 19/ C’I and 19/’ CI 1, and the two halfarcs of condition (iii) of Lemma 4.2

lie on the same side of the line connecting the centers of the circles C, C’.
Finding those pairs of arcs that satisfy one of the conditions (a), (b), or (c) is relatively

simple, applying appropriate variants of the machinery presented in the preceding section.
Consider for example condition (a). By Lemma 3.2, we can find all these pairs by constructing
a nine-level data structure; the first four levels are the same as the first four levels in the data
structures of the preceding section, the next four levels are symmetric variants of the first four
levels (obtained by interchanging the roles of F and 1-"), and the last level tests for intersections
between the corresponding circles C, C’. In a similar manner (but using fewer levels) we can
find all pairs satisfying condition (b) or (c).

Condition (d) is somewhat more involved. Again we use a multilevel structure. The first
two levels enforce, as in the preceding section, the conditions that one endpoint of 9/lies inside
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C’ and one endpoint lies outside C’; the next two levels enforce the symmetric condition for V’
and C. Each resulting canonical pair of subsets (1-’i, 1-’) now has the property that I’ NC’I
and IV’ N CI 1, for each , 6 l-’i, V’ 6 1-’, with C and C’ defined as above.

We next enforce the second part of condition (d). For an arc ,, let o3(,) denote the double
wedge formed by o9(,) U co’ (,). It is easily verified that the second part of (d) is equivalent
to requiring that the center of C’ lies outside the double-wedge o5(?q/2) and the center of C
lies outside the double-wedge o3(,(/2). These two subconditions are easy to test for, using
standard range counting techniques. That is, we take the collection of centers c’ of the circles
C’ containing the arcs of F, and the collection of double wedges that are complements of
o3(v1/2), ’ 6 F’i, and process them, as in the preceding section, to obtain a canonical collection
ofpairs of subsets, (F’ij., 1-’itj), SO that, for each such pair, the centers ofa circle containing the arc
of I"j lie outside every double-wedge O(V1/2) / G I"ij. Finally we apply a symmetric variant
of this step to each of these canonical pairs, with the roles of 1-" and 1-" being interchanged.
The resulting new canonical pairs now fully satisfy condition (d), and the final counting is
thus straightforward.

We omit the details of the analysis of the running time of the algorithm, since it is nearly
identical to the analysis given in the preceding section. We summarize our results in the
following theorem.

THEOREM 4.3. Given a set F ofn circular airs, we can count the number of intersection
points in I" in time 0 (n3/2+), for any > O.

If all arcs in 1-’ have the same radius then, as in 3.6, all levels of the data structure use
only two-dimensional decomposition schemes. Thus, following the analysis of the previous
section, we can easily conclude the following result.

THEOREM 4.4. Given a collection F’ ofn arcs ofthe same radius, we can count the number

of intersection points in F in time O(n4/3+), for any > O.

5. Conclusion. In this paper we presented efficient algorithms for counting intersections
in collections of circles, of circular arcs, and of circles or circular arcs of some fixed radius.
Although our algorithms are significantly faster than the best previously known algorithms,
we believe that their running time can be further improved, because the best known lower
bound for these problems is only f2 (n log n). As a first goal, can circular arc intersections be
counted in time close to 0(n4/3), as is the case for collections of segments? We showed that
this is the case for circular arcs of the same radius.

Finally, the techniques presented here seem to be quite general. An open problem is to
extend them to counting intersections for other types of arcs.
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