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Abstract. We define a counting class #Padd in the Blum-Shub-Smale-setting of additive com-
putations over the reals. Structural properties of this class are studied, including a characterization
in terms of the classical counting class #P introduced by Valiant. We also establish transfer theorems
for both directions between the real additive and the discrete setting. Then we characterize in terms
of completeness results the complexity of computing basic topological invariants of semi-linear sets

given by additive circuits. It turns out that the computation of the Euler characteristic is FP
#Padd
add -

complete, while for fixed k, the computation of the kth Betti number is FPARadd-complete. Thus
the latter is more difficult under standard complexity theoretic assumptions. We use all the above
to prove some analogous completeness results in the classical setting.
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1. Introduction. In 1989 Blum, Shub and Smale [5] introduced a theory of
computation over the real numbers with the goal of providing numerical computations
(as performed e.g., in numerical analysis or computational geometry) the kind of
foundations classical complexity theory has provided to discrete computation. This
theory describes the difficulty of solving numerical problems and provides a taxonomy
of complexity classes capturing different degrees of such a difficulty.

Since its introduction, this BSS-theory has focused mainly on decisional prob-
lems. Functional problems attracted attention at the level of analysis of particular
algorithms, but structural properties of classes of such problems were hardly studied.
So far, the only systematic approach to study the complexity of certain functional
problems within a framework of computations over the reals is Valiant’s theory of
VNP-completeness [7, 40, 43]. However, the relationship of this theory to the more
general BSS-setting is, as of today, poorly understood. A detailed account of the
research on complexity of real functions within the classical framework can be found
in [23].

A first step in the study of functional properties could focus on complexity classes
related to counting problems, i.e., functional problems, whose associated functions
count the number of solutions of some decisional problem.

In classical complexity theory, counting classes were introduced by Valiant in his
seminal papers [41, 42]. Valiant defined #P as the class of functions which count the
number of accepting paths of nondeterministic polynomial time machines and proved
that the computation of the permanent is #P-complete. This exhibited an unexpected
difficulty for the computation of a function, whose definition is only slightly different
from that of the determinant, a problem known to be in FNC2 ⊆ FP, and thus
considered “easy.” This difficulty was highlighted by a result of Toda [38] proving
that PH ⊆ P#P, i.e., that #P has at least the power of the polynomial hierarchy.

In the continuous setting, i.e., over the reals, the only attempt to define counting
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classes was made by Meer [27]. He defined a real version of the class #P and studied
some of its logical properties in terms of metafinite model theory. Meer did not
investigate complete problems for this class.

In this paper we will define and study counting classes in the model of additive
BSS-machines [24]. The computation nodes of these machines perform additions and
subtractions, but no multiplications and divisions. The corresponding complexity
classes are denoted by Padd and NPadd

1.
The results in this paper can be seen as a first step towards a better understanding

of the power of counting in the unrestricted BSS-model over the reals (allowing also
for multiplications and divisions). A sequel to this paper studying this setting is under
preparation [11].

Our results can be grouped in two kinds: structural relationships between com-
plexity classes and completeness results. The latter (for whose proofs the former are
used) satisfy a driving motivation for this paper: to capture the complexity of com-
puting basic topological invariants of geometric objects in terms of complexity classes
and completeness results. In the following, we give an outline of the main results of
this paper.

1.1. Counting classes. Recall that #P is the class of functions f : {0, 1}∞ → N

for which there exists a polynomial time Turing machine M and a polynomial p with
the property that for all n ∈ N and all x ∈ {0, 1}n, f(x) counts the number of strings
y ∈ {0, 1}p(n) such that M accepts (x, y).

By replacing Turing machines with additive BSS-machines in the above definition,
we get a class of functions f : R∞ → N∪{∞}, which we denote by #Padd. Thus f(x)
counts the number of vectors y ∈ Rp(n) such that M accepts (x, y). By counting only
the number of “digital” vectors y ∈ {0, 1}p(n), we obtain a smaller class of functions
f : R∞ → N denoted by D#Padd.

In Theorem 4.7 we show that a counting problem f ∈ D#Padd is D#Padd-
complete with respect to Turing reductions iff it is #Padd-complete with respect
to Turing reductions. Moreover, in §4.3 we prove that there is a wealth of natural
complete problems for the class D#Padd with respect to Turing reductions. For in-
stance, consider the following counting version of the real weighted perfect matching
problem #PMR: given w ∈ R and a bipartite graph G with real weights on the
edges, count the number of perfect matchings of G having weight at most w. (The
weight of a matching is defined as the sum of the weights of its edges.) The problem
#PMR turns out to be D#Padd-complete with respect to Turing reductions. The
same is true for the counting version of the real traveling salesman problem #TSPR
to count the number of Hamilton circuits of weight at most w of a given graph with
real weights on the edges. It is an interesting open problem whether these problems
are also D#Padd-complete with respect to parsimonious reductions, see §7.

The above completeness results follow from a general principle (Proposition 4.13),
which says that for proving D#Padd-completeness of the counting version of a problem
in DNPadd, it is sufficent to show that the restriction of the corresponding counting
problem to integer inputs is #P-complete. The proof of this principle is based on an
extension of the structural relationships between the real additive and the discrete
setting, discovered by Fournier and Koiran [16, 17], discussed next.

1To distinguish between classical and additive complexity complexity classes, we use the subscript
“add” to indicate the latter. Also, to further emphasize this distinction, we write the former in sans
serif.
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1.2. Structural relationships. The main result of §4.1 is summarized in The-
orem 4.1, which says that for several classical2 complexity classes C consisting of
decisional problems, the corresponding additive complexity class Cadd is contained
in, or even equal to, PCadd. That is, all problems in Cadd can be solved by an addi-
tive machine working in polynomial time and having access to a (discrete) oracle in C.
Likewise, if C is a classical complexity class of functions {0, 1}∞ → {0, 1}∞, we obtain
that Cadd ⊆ FPCadd. In particular, we have FP#Padd

add = FP#P
add.

Theorem 4.1 is an extension of the work of Fournier and Koiran [16, 17], who
discovered this close relationship between the real additive and the discrete setting.
This relationship is based on Meyer auf der Heide’s (nonuniform) construction of small
depth linear decision trees for point location in arrangements of hyperplanes [29,
30] (see also Meiser [28] for an extension of these results). Fournier and Koiran
showed that this construction can be made uniform if a classical NP-oracle is available.
This way, they proved that NPadd ⊆ PNP

add. We have extended this result in various
directions, in particular to the counting context.

An interesting application of the above insights is that Toda’s famous result [38],
as well as its extension by Toda and Watanabe’s [39], carry over to the real additive
setting (Corollary 4.6). We use this to prove that the counting class #Padd is closely
related to its digital variant D#Padd in the sense that FP#Padd

add = FPD#Padd
add . In

other words, a #Padd-oracle does not give more power to an additive polynomial time
Turing machine than a D#Padd-oracle.

An important application of our structural insights is the following transfer result
(Corollary 4.11)

#Padd ⊆ FPadd ⇐⇒ D#Padd ⊆ FPadd ⇐⇒ #P ⊆ FP/poly.

The proof uses the fact that the Boolean part of D#Padd, consisting of the restrictions
of all functions in D#Padd to the set of binary inputs {0, 1}∞, is equal to #P/poly

(Proposition 4.10).

1.3. Topological invariants. Algebraic topology studies topological spaces X
by assigning to X various algebraic objects in a functorial way. In particular, home-
omorphic (or even homotopy equivalent) spaces lead to isomorphic algebraic objects.
For a general reference in algebraic topology we refer to [20, 33]. Typical examples
of such algebraic objects studied are the (singular) homology vector spaces Hk(X;Q)
over Q, defined for integers k ∈ N. The dimension bk(X) of Hk(X;Q) is called the
kth Betti number of the space X. The zeroth Betti number b0(X) counts the number
of connected components of X, and for k > 0, bk(X) measures a more sophisticated
“degree of connectivity”. Intuitively speaking, for a three-dimensional space X, b1(X)
counts the number of holes and b2(X) counts the number of cavities of X. It is known
that bk(X) = 0 for k > n := dimX. The Euler characteristic of X defined by
χ(X) :=

∑n
k=0(−1)kbk(X) is an important numerical invariant of X, enjoying several

nice properties. For a finite set X, χ(X) is just the cardinality of X.
The notion of a cell complex [20, 33] will be of importance for our algorithms

to compute the Euler characteristic and the Betti numbers. For instance, if X is
decomposed as a finite cell complex having ck cells of dimension k, then χ(X) :=∑n
k=0(−1)kck.

2All along this paper we use the words discrete, classical or Boolean to emphasize we are refering
to the theory of complexity over a finite alphabet as exposed in, e.g., [2, 34].
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We remark that the number of connected components, the Euler characteristic,
and the Betti numbers lead to interesting lower complexity bounds for semi-algebraic
decision problems, see [3, 44, 45] and the survey [9].

1.4. Semi-linear sets and additive circuits. In this paper, we will confine our
investigations to semi-linear sets X ⊆ Rn, which are derived from closed halfspaces
by taking a finite number of unions, intersections and complements. Moreover, we
assume that the closed halfspaces are given by linear inequalities of “mixed type”
a1X1 + · · ·+ anXn ≤ b with integer coefficients ai and real right-hand side b.

We will represent semi-linear sets by a very compact data structure. An additive
circuit C is a special arithmetic circuit [19], whose set of arithmetic operations is
restricted to additions and subtractions. The circuit may have selection gates and
use a finite set of real constants. (See Definition 2.9 for details.) The set of inputs
accepted by an additive circuit is semi-linear, and any semi-linear set can be described
this way.

The basic problem CSATadd to decide whether the semi-linear set X given by
an additive circuit is non-empty, turns out to be NPadd-complete [4]. By contrast,
the feasibility question for a system of linear inequalities of the above mixed type is
solvable in Padd. This is just a rephrasing of a well-known result by Tardos [37] (cf.
Remark 2.7).

Over the real numbers, space is not as meaningful a resource as it is in the discrete
setting (cf. [31]). The role of space, however, is satisfactorily played by parallel time
formalized by the notion of uniform arithmetic circuits (cf. [4, 14]). We denote by
PARadd the class of decision problems for which there exists a Padd-uniform family
(Cn) of additive circuits such that the depth of Cn grows at most polynomially in n
(see §2). FPARadd denotes the class of functions f which can be computed with such
resources and such that the size of f(x) is polynomially bounded in the size of x.
(The size of a vector is defined as its length.)

1.5. Completeness results for topological invariants. In the computational
problems listed below, it is always assumed that the input is an additive circuit C and
X is the semi-linear set accepted by C. We also say that X is defined or given by C.

Among the completeness results proved in this paper, the most important ones
are the following (for a complete list see §6).

1. The problem DIMadd(d) to decide whether dimX ≥ d is NPadd-complete
(Theorem 5.1).

2. The problem EULERadd to compute the Euler characteristic of a closed semi-
linear set X is FP#Padd

add -complete with respect to Turing reductions (Theorem 5.18).
3. The problem BETTIadd(k) to compute the kth Betti number bk(X) of of

a closed semi-linear set X is FPARadd-complete with respect to Turing reductions
(Theorem 5.19).

These results give a complexity theoretic distinction between the problems to
compute the Euler characteristic and to compute Betti numbers. The computation of
the Euler characteristic is strictly easier than the computation of the number of con-
nected components, or more generally than the computation of the kth Betti number
for any fixed k, under a standard complexity theoretic assumption (Corollary 5.23).
Intuitively, the fact that EULERadd is easier than BETTIadd(k) can be explained by
the various nice properties satisfied by the Euler characteristic.

Let us now restrict the inputs in the above three problems P to constant free
additive circuits and denote the resulting computational problem by P0. Note that
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constant-free circuits can be encoded over a finite alphabet and thus be handled by
(classical) Turing machines. In §5.3.6 we derive the following completeness results
in the Turing model: DIM0

add(d) is NP-complete, EULER0
add is FP#P-complete, and

BETTI0
add(k) is FPSPACE-complete.

We briefly describe the proof idea for BETTIadd(k). The lower bound is inspired
by an early paper by Reif [35] (see also [36]), who showed the PSPACE-hardness of a
generalized movers problem in robotics. The reachability problem REACHadd is the
following: given an additive circuit defining the semi-linear set X and given two points
s, t ∈ X, decide whether s and t are in the same connected component of X. Reif’s
result implies that the analogue of the reachability problem for semi-algebraic sets
(given by inequalities of rational polynomials) is PSPACE-hard. We cannot apply this
result in our context, since we are dealing here with linear polynomials (of mixed type).
However, we borrow from Reif’s proof the idea to characterize PSPACE by symmetric
polynomial space Turing machines [26] and prove that REACHadd is PARadd-hard
(Proposition 5.9). From this lower bound result, one can derive the PARadd-hardness
of BETTIadd(k) by standard constructions of algebraic topology.

The proof that BETTIadd(k)belongs to FPARadd proceeds by the following steps:
1. An additive circuit C accepting a set X defines a decomposition of X into leaf sets.
This decomposition can be refined to a finite cell complex if X is compact (cf. §5.3.3).
2. The matrices (aij) of the boundary maps of the corresponding cellular homology
can be succinctly represented by Boolean circuits computing aij from the index pair
(i, j) given in binary. 3. The rank of an integer matrix given in succinct representation
can be computed in a space efficient manner (Lemma 5.21).

1.6. Organization of the paper. We start in §2 by introducing some notation
and recalling basic facts about additive machines. Then we define in §3 the counting
complexity class #Padd in the additive model as well as its digital variant D#Padd,
introduce different notions of reductions, and prove some basic completeness results.
Section 4 deals with structural relationships and can be seen as the first part of this
paper. Section 5 about the complexity to compute topological invariants constitutes
the second part of this paper. It contains completeness proofs for several natural
computational problems, each of which are treated in separate subsections. Those
problems are: counting connected components, computing the Euler characteristic,
and computing Betti numbers. We also present completeness results for the corre-
sponding problems in the Turing model in §5.3.6. Finally, we end the paper in §6 with
a summary of problems and results, and with some selected open problems in §7.

Acknowledgments. We thank Eric Allender and Saugata Basu for helpful dis-
cussions. We are grateful to the referees for many valuable comments, which helped
to improve the presentation significantly.

2. Preliminaries about additive machines. We denote by R∞ the disjoint
union R∞ =

⊔
n≥0R

n, where for n ≥ 0, Rn is the standard n-dimensional space
over R. The space R∞ is a natural one to represent problem instances of arbitrarily
high dimension. For x ∈ Rn ⊂ R

∞, we call n the size of x and we denote it by
size(x). Contained in R∞ is the set of bitstrings {0, 1}∞ defined as the union of the
sets {0, 1}n, for n ∈ N.

Additive machines (in the sequel called simply “machines”) are BSS-machines
whose computation nodes perform only additions and subtractions (see [4, 24] for
details). To a machine M we naturally associate an input-output map ϕM : R∞ →
R
∞. We shall say that a function f : R∞ → R

k, k ≤ ∞, is computable when there
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is a machine M such that f = ϕM . Also, a set A ⊆ R∞ is decided by a machine M
if its characteristic function χA : R∞ → {0, 1} coincides with ϕM . So, for decision
problems, we consider machines whose output space is {0, 1} ⊂ R.

We can now introduce some central complexity classes.
Definition 2.1. A machine M over R is said to work in polynomial time when

there is a constant c ∈ N such that for every input x ∈ R∞, M reaches its output node
after at most size(x)c steps. The class Padd is then defined as the sets of all subsets
of R∞ that can be decided by a machine working in polynomial time. The class FPadd

is the class of functions computed by machines working in polynomial time.
Definition 2.2. A set A belongs to NPadd if there is a machine M satisfying the

following condition: for all x, x ∈ A iff there is y ∈ R∞ such that M accepts the input
(x, y) within time polynomial in size(x). In this case, the element y is said to be a
witness for x. If we require the witness y to belong to {0, 1}∞ we say that A ∈ DNPadd

(the D standing for digital). Abusing language we will call the machine M above an
NPadd-machine (resp. a DNPadd-machine).

Remark 2.3.

(i) In this model the element y can be seen as the sequence of guesses used
in the Turing machine model (but note that, in the case of NPadd, these guesses are
not necessarily binary). However, we note that in this definition no nondeterministic
machine is introduced as a computational model, and nondeterminism appears here
as a new acceptance definition for the deterministic machine. Also, we note that
w.l.o.g., the length of y can be bounded by the running time of M (which is of the
form p(size(x)) for a polynomial p).

(ii) The definitions of NPadd and DNPadd extend in a straightforward manner
to all levels of the polynomial hierarchies PHadd and DPHadd respectively (i.e., to the
classes Σkadd and Πk

add for k ≥ 0). For details see [4, 14].
Definition 2.4. We say that an additive machine has no real constants when

the only machine constants appearing in its program are 0 and 1. Complexity classes
for these machines are distinguished by the superscript 0 as in P0

add, NP0
add.

Natural examples of sets in these classes exist. For instance, the real traveling
salesman problem TSPR discussed in §1.1 belongs to DNPadd (actually to DNP0

add).
Problems which are known to be NPadd-complete for many-one reductions are scarse
(for some known problems see [15]). In contrast, the following result by Fournier
and Koiran [17] exhibits plenty of NPadd-complete problems with respect to Turing
reductions. For a problem S ⊆ R∞, we define its integer part to be SZ = S ∩ Z∞.

Theorem 2.5 ([17]). Let S ∈ NPadd. If SZ is NP-complete with respect to Turing
reductions, then S is NPadd-complete with respect to Turing reductions.

Of course, this theorem implies the NPadd-completeness for Turing reductions
of a large number of decision problems, for instance for TSPR and PMR (for formal
definitions of these problems, see §6). Note that, in particular, every discrete NP-
complete problem (e.g., SAT) is NPadd-Turing-complete.

A basic fact used in proving many results on additive machines is the existence
of “small” rational points in polyhedra when the defining matrix has “small” integer
entries. In what follows, for an integer n ≥ 1, we denote the set {1, . . . , n} by [n].

Theorem 2.6 (Theorem 3, Chapter 21 of [4]). Let P be a non-empty polyhedron
of Rn defined by a system

A1y ≤ b1; A2y < b2, (2.1)

where A1 ∈ ZN1×n, A2 ∈ ZN2×n, b1 ∈ RN1 , and b2 ∈ RN2 . The entries of A1 and
A2 are integers of bit-size bounded by L. Then there is y ∈ P with the following
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description

yi =
∑
j∈I1

uijb1j +
∑
j∈I2

vijb2j + wi, i = 1, . . . , n

where I1 ⊆ [N1], I2 ⊆ [N2], |I1| + |I2| ≤ n, and the coefficients uij, vij, wi are
rationals of bit-size at most (Ln)c for some constant c.

Remark 2.7. The feasibility of a system (2.1) of linear inequalities for given
integer matrices A1, A2 and real vectors b1, b2 can be decided in Padd. Moreover, a
solution can be computed in FPadd, if it exists. This is just a rephrasing a of well-
known and important result by Tardos [37]. We will not need this remark in the rest
of the paper.

Recall from [4] or [10, Ex. 3.15] that a linear decision tree T is a regular binary
tree, whose internal nodes are labeled by linear functions ` : Rn → R, and whose
leaves are labeled with “accept” or “reject”. Here, n is the dimension of the input
space. At a given node, an input x ∈ Rn goes to the left child if `(x) ≥ 0 and to the
right child if `(x) < 0. Let X ⊆ Rn be the set accepted by the linear decision tree T .
The set of inputs in Rn, whose path in the computation tree T ends up with a specific
leaf ν, shall be called the leaf set Dν of ν. Note that the set Dν can be described
by a set of linear inequalities and is therefore convex. It is clear that the leaf sets
corresponding to the accepting leaves form a partition of the set X. In particular, X
is semi-linear (cf. §1.4).

We next use Theorem 2.6 to prove that NPadd = DNPadd. This is a well-known
result [24], but the idea of the proof will be repeatedly used in this paper.

Corollary 2.8. NPadd = DNPadd.
Proof. Let X ∈ NPadd and M be a machine deciding X as in Definition 2.2.

By unwinding the computation of M on pairs (x, y) ∈ Rn × Rp(n) we obtain a linear
decision tree T of depth polynomial in n. If z is a value tested for positivity at a
branch node of this tree, then

z =
p(n)∑
i=1

aiyi +
n∑
i=1

bixi +
k∑
i=1

ciαi + d, (2.2)

where α1, . . . , αk are the constants of M and the coefficients ai, bi, ci, and d are
integers of bit-size polynomial in n. Thus, for a given x ∈ Rn, the leaf set Dν of
points y such that (x, y) reaches the accepting leaf ν in T is the set of solutions of a
system of inequalities as in Theorem 2.6. We conclude that Dν is non-empty if and
only if Dν contains a point y such that, for i = 1, . . . , p(n),

yi =
n∑
j=1

bijxj +
k∑
j=1

cijαj + di (2.3)

where the coefficients bij , cij and di are rationals of bit-size polynomial in n (for a
polynomial which does not depend on ν or x). Then, to decide whether x ∈ X, one
can guess bij , cij , di ∈ Q, compute yi according to (2.3) and check whether M accepts
(x1, . . . , xn, y1, . . . , yp(n)). Alternatively, one could also compute y in FPadd according
to Remark 2.7 and check whether M accepts (x1, . . . , xn, y1, . . . , yp(n)).

Over the real numbers, space is not as meaningful a resource as it is in the discrete
setting (cf. [31]). The role of space, however, is satisfactorily played by parallel time
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(cf. [4, 14]). To introduce parallel time, we briefly recall the model of additive circuits,
a restriction of the more general model of arithmetic circuits introduced in [19].

Definition 2.9. An additive circuit C over R is an acyclic directed graph where
each node has indegree 0, 1, 2 or 3. Nodes with indegree 0 are either labeled as
input nodes or with elements of R (we shall call these constant nodes). Nodes with
indegree 2 are labeled with one of {+,−}. They are called arithmetic nodes. Nodes
with indegree 1 are output nodes. Nodes with indegree 3 are selection nodes. All
output nodes have outdegree 0. Otherwise, there is no upper bound on the outdegree
of the other nodes.

For an additive circuit C, the size of C is the number of nodes in C. The depth
of C is the length of the longest path from some input node to some output node.

The semantics of a selection node is as follows. With input (x, y, z) the node
returns y if x ≥ 0 and z otherwise. The semantics of all other nodes is obvious. If C
is an additive circuit with n input nodes and m output nodes, we may talk about the
function ϕC : Rn → R

m computed by the circuit. We remark that the computation of
an additive circuit can always be unwound to a linear decision tree.

Let f : R∞ → R
∞. The family of additive circuits {Cn}n∈N computes f if for all

n ≥ 1, ϕCn is the restriction of f to Rn.
The other ingredient we need to define parallel complexity classes, is a notion of

uniformity.
Note that nodes of additive circuits can be described by five real numbers in the

following way. If the nodes of the circuit are g1, . . . , gN , then node gj is described
by the tuple (j, t, i`, ir, im) ∈ R5 where t represents the type of gj according to the
following (arbitrary) dictionary:

gj input constant + − selection output
t 1 2 3 4 5 6

.

For nodes of indegree two, i` and ir denote the numbers of the nodes which provide
left and right input to gj , respectively. If gj is a constant node, then i` equals its
constant and if gj is an output node, then i` numbers the node which provides the
input to gj . Finally, if gj is a selection node, then i`, ir and im number its left, right
and middle inputs. All components not mentioned above are set to 0. Thus, the
whole circuit can be described by a point in R5N .

Definition 2.10. A family of circuits {Cn}n∈N is said to be uniform if there
exists an additive machine M that, on input (n, i), outputs the description of the i-th
node of Cn. If M works in time nO(1),we shall say that the family is Padd-uniform.

We denote by PARadd the class of decision problems whose characteristic function
can be computed in parallel polynomial time, i.e., by a Padd-uniform family of circuits
such that depth(Cn) = nO(1). Also, FPARadd denotes the class of functions f which
can be computed with such resources, and for which there is a polynomial p such that
size(f(x)) = p(size(x)) for all x ∈ R∞.

Remark 2.11.

(i) Corollary 2.8 extends to all the polynomial hierarchy. That is, the power of
real quantification is the same as that of digital quantification as long as the number
of quantifier alternations is bounded. Surprisingly, if the number of quantifier alter-
nations is not bounded, then the power of digital quantification is exactly PARadd

and that of real quantification is at least additive exponential time, thus showing that
the latter is more powerful than the former. For details see [4, 14].

(ii) In classical complexity theory, NP is a class of decision problems. Yet, if
S ∈ NP and x ∈ S, a witness y for x can be computed in FPNP and thus in FPSPACE
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by computing its components one by one with an NP-routine. Looking at the proof
of Corollary 2.8, we see that one can do the same with NPadd and FPARadd.

3. Counting classes. We now want to define counting classes, following the
lines used in discrete complexity theory to define #P. This is the class of functions
f : {0, 1}∞ → N for which there exists an NP-machine M and a polynomial p such
that, for all n ∈ N, x ∈ {0, 1}n, f(x) = |{y ∈ {0, 1}p(n) | M accepts (x, y)}|. That is,
f(x) is the number of witnesses for x. A first remark is that over the reals, one can
define two such complexity classes by counting the witnesses in an NPadd-machine,
or in a DNPadd-machine, respectively.

Definition 3.1.

1. We say that a function f : R∞ → N ∪ {∞} belongs to the class #Padd, if
there exists a NPadd-machine M and a polynomial p such that, for all n ∈ N, x ∈ Rn,

f(x) = |{y ∈ Rp(n) |M accepts (x, y)}|.

2. We say that a function f : R∞ → N belongs to the class D#Padd, if there
exists a DNPadd-machine M and a polynomial p such that, for all n ∈ N, x ∈ Rn,

f(x) = |{y ∈ {0, 1}p(n) |M accepts (x, y)}|.

Remark 3.2.

(i) An unrestricted version of the class #Padd defined for machines over R which
can multiply and divide, was defined by Meer in [27].

(ii) Note that it is not clear that NPadd = DNPadd implies #Padd = D#Padd,
since now we are counting, not considering existence.

(iii) If f belongs to D#Padd, then the bit-size of f(x) is bounded by a polynomial
in the size of x. The same holds for f ∈ #Padd for those x ∈ Rn for which f(x) is
finite.

The next proposition locates the power of counting complexity classes within the
landscape of known complexity classes. For interpreting the second inclusion, one
should represent the value ∞ by some number in R \ N.

Proposition 3.3. We have the following inclusions of complexity classes over R

D#Padd ⊆ #Padd ⊆ FPARadd.

To prove Proposition 3.3 we will use the following result. Let CINFadd be the
problem to decide whether the solution set described by an additive circuit has in-
finitely many points.

Lemma 3.4. CINFadd is NPadd-complete.
Proof. Recall from §1.4 that the circuit satisfiability problem CSATadd is NPadd-

complete. Adding a dummy variable to an additive circuit gives a (trivial) reduction
from CSATadd to CINFadd, which shows the NPadd-hardness of CINFadd.

For the membership in NPadd, note that leaf sets are convex. So they are infinite
if and only if they contain at least two points. Therefore, the following algorithm
shows that membership of CINFadd is in NPadd. On input C guess a leaf ν and guess
y1, y2 ∈ Rn. Then check whether y1 6= y2 and whether y1, y2 reach the leaf ν. If yes,
then accept, otherwise reject.

Proof of Proposition 3.3. The first inclusion is clear. For the second, consider
the algorithm that, in parallel, checks for each accepting leaf ν whether there is any
point in Dν and, if yes, whether Dν has infinitely many points. These verifications
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can be done in NPadd. If |Dν | =∞ for some ν, then return∞; else return the number
of ν’s such that Dν 6= ∅. This procedure clearly is in FPARNPadd

add = FPARadd.
We will see in Theorem 4.7 below that the difference in power of D#Padd and

#Padd is negligible.
We now focus on complete problems. To do so, we define the appropriate notions

of reduction.
Definition 3.5. Let f, g : R∞ → N ∪ {∞} and C be any of D#Padd or #Padd.

1. We say that ϕ : R∞ → R
∞ is a parsimonious reduction from f to g, if ϕ can

be computed in polynomial time and, for all x ∈ R∞, f(x) = g(ϕ(x)).
2. We say that f Turing reduces to g, if there exists an oracle machine which,

with oracle g, computes f in polynomial time.
3. We say that a function g is C-hard for if, for every f ∈ C, there is a parsi-

monious reduction from f to g. We say that g is C-complete if, in addition, g ∈ C.
4. The notions of hardness and completeness with respect to Turing reductions

are defined similarly.
Let #CSATadd denote the problem of counting the number of points of a semi-

linear set given by an additive circuit. (Note that this requires to compute a function
with values in N ∪ {∞}.)

Theorem 3.6. The counting problem #CSATadd is #Padd-complete.
Proof. One just checks that the usual many-one reduction from the nondetermin-

istic machine acceptance to additive circuit satisfiability is parsimonious.
We close this section by recalling a principle introduced by Toda [38, 39], which al-

lows to assign to any complexity class C of decision problems a corresponding counting
complexity class # · C.

Definition 3.7. Given a set A ∈ {0, 1}∞ and a polynomial p, we define the
function #p

A : {0, 1}∞ → N which associates to x ∈ {0, 1}n the number

#p
A(x) = |{y ∈ {0, 1}p(n) | (x, y) ∈ A}|.

If C ⊆ 2{0,1}
∞

is a complexity class of decision problems, then we define

# · C = {#p
A | A ∈ C and p a polynomial}.

Similarly, one assigns # · C and D# · C to a complexity class C over R.
Note that # · P = #P, # · Padd = #Padd, and D# · Padd = D#Padd.
We will use the following important result due to Toda and Watanabe several

times.
Theorem 3.8 ([39]). We have # · PH ⊆ FP#P.

4. Relationships between the real additive and discrete setting. The
work of Koiran [24], Cucker and Koiran [14], and Fournier and Koiran [16, 17] es-
tablishes close relationships between the real additive and the discrete model of com-
putation. Building on these techniques, we show in §4.1 that similar relationships
hold for the counting classes. Then we use this in §4.2 to derive transfer theorems for
counting classes between the additive real and the discrete setting.

4.1. The power of discrete oracles. The main result of this section, Theo-
rem 4.1 stated below, says that for several classical complexity classes C, the corre-
sponding additive complexity classes Cadd are contained in, or even equal to, PCadd.
That is, all problems in Cadd can be solved by an additive machine working in poly-
nomial time and having access to an oracle in C.
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This result was stated and proved for the class NPadd in [17]. Moreover, in [17,
Remark 2] it was already mentioned that the result for NPadd can be extended to the
classes of the polynomial hierarchy and to PARadd. So what is new in Theorem 4.1
is the extension to the counting classes, and to the functional class FPARadd.

Theorem 4.1. The following statements hold (k ≥ 0):

1. Σkadd ⊆ PΣk

add, Πk
add ⊆ PΠk

add, PHadd = PPH
add.

2. D# · Σkadd ⊆ FP#·Σk
add , D# ·Πk

add ⊆ FP#·Πk
add , D# · PHadd ⊆ FP#·PH

add .

3. PARadd = PPSPACE
add .

4. FPARadd = FPPARadd
add = FPPSPACE

add .

Observe that part two of this theorem implies that D#Padd ⊆ FP#P
add.

As in Fournier and Koiran [16, 17], the proof of Theorem 4.1 relies on Meyer auf
der Heide’s (nonuniform) construction of small depth linear decision trees for point
location in arrangements of hyperplanes [29, 30]. Before giving the proof, we need to
develop some lemmas.

First, let us recall some terminology regarding arrangements of hyperplanes. For
s, n ∈ N we define Hs,n to be the set of linear polynomials a0 +

∑n
i=1 aiXi with integer

coefficients ai such that
∑n
i=0 |ai| ≤ 2s. We denote by Fs,n the set of all non-empty

sets

F =
⋂

f∈Hs,n

{x ∈ Rn | f(x) = σ(f)},

corresponding to some sign function σ : Hs,n → {−1, 0, 1}. The space Rn is the
disjoint union of all F ∈ Fs,n. We will call this the universal cell decomposition for
the parameters s, n, and we call the sets F ∈ Fs,n the corresponding faces or cells.

By Theorem 2.6, each face F ∈ Fs,n contains a rational point of bit-size at most
(sn)c, for some fixed constant c > 0. (Even though a face F may be described by a
number of constraints exponential in n, s.) Therefore, log |Fs,n| ≤ (sn)c.

In what follows, we will encode a face F ∈ Fs,n by a triple (s, n, x) ∈ N2 × Qn
such that x ∈ F and the bit-size of x is at most (sn)c. This way, we can describe
all faces in Fs,n, but of course, the description is not unique. Abusing notation, we
will shortly express this by saying that the face F is represented by a “small rational
point” x.

For a fixed polynomial t we define Ht as the union of the Ht(n),n over all n ∈ N,
and Ft as the union of the Ft(n),n over all n ∈ N.

Lemma 4.2. Let M be an additive machine without real constants taking inputs
in R∞ × {0, 1}∞ such that its running time is bounded by a polynomial t in the size
of its first argument. The discrete relation

R := {(F, y) ∈ Ft × {0, 1}∞ | ∀x ∈ F
(
M accepts (x, y)

)
}

can be checked in P, that is, in classical polynomial time.
Proof. Running M on an input (x, y) ∈ Rn × {0, 1}m takes at most t(n) steps

by assumption. On such an input, the machine M branches according to the signs of
expressions a0 +

∑n
i=1 aixi +

∑m
j=1 bjyj , where

∑n
i=0 |ai|+

∑m
j=1 |bj | ≤ 2t(n). Hence

the hyperplane defined by (a0 +
∑m
j=1 bjyj) +

∑n
i=1 aiXi belongs to Ht(n),n for any

y ∈ {0, 1}m. It follows that if x and x′ belong to the same face F of Ft(n),n, then
for all y, (x, y) and (x′, y) follow the same path in the decision tree induced by M .
Therefore, if M accepts (x, y) for some x ∈ F , then it must accept (x, y) for all x ∈ F .
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Therefore, checking that (F, y) ∈ R can be done as follows. Let F be represented
by the small rational point x ∈ F . Simulate the computation of the real machine M
on input (x, y) by a Turing machine. Since M has no real constants and works in
polynomial time, this simulation takes polynomial time (see [24, 4]).

The following is an immediate consequence of Lemma 4.2 and the definition of Σk.
Corollary 4.3. Let M be an additive machine as in Lemma 4.2, k ∈ N, and

q1, . . . , qk be polynomials. Consider the discrete relation

R := {(F, y) ∈ Ft × {0, 1}∞ | ∀x ∈ F ∃z1∀z2 . . . Qzk(
M accepts (x, y, z1, . . . , zk)

)
},

where quantifiers alternate (Q is either existential or universal depending on the par-
ity of k), the quantification is over zi ∈ {0, 1}qi(size(x)). Then R can be checked in
(classical) Σk.

Consider the following problem FEVALadd: given a quantifier-free formula ψ of
the first-order theory of (R,+,−,≤) with k free variables and a point x ∈ Rk, decide
whether ψ(x) holds. Note that the formula ψ can be encoded as an element of R∞

in a straightforward way. In the following, we will identify ψ with its encoding. It is
well-known that FEVALadd ∈ P0

add.
The next result is proved similarly as Lemma 4.2.
Lemma 4.4. Let M be a machine solving FEVALadd in time bounded by a poly-

nomial t in size(ψ). Then the following set belongs to PSPACE:

L := {F ∈ Ft | ∀ψ ∈ F Q1z1Q2z2 . . . Qnzn
(
M accepts (ψ, z1, . . . , zn)

)
}.

Here Qi ∈ {∀,∃}, zi ∈ {0, 1}. Moreover, n denotes the size of ψ. Hence the number
of free variables of ψ is at most n and the behavior of M on (ψ, z1, . . . , zn) is well-
defined.

Given a polynomial t, the point location problem for t is the problem of computing,
for a given input x ∈ R∞, a small rational point of the uniquely determined face
F ∈ Ft(size(x)),size(x) in which x lies. The following crucial statement is proved by
Fournier and Koiran [17, Theorem 2].

Proposition 4.5. For any polynomial t, the point location problem can be solved
in (FP0

add)NP. That is, a small rational point of the face F ∈ Ft(n),n containing
the input point can be computed in polynomial time by an additive machine using a
classical oracle in NP.

We remark that in [17], a face F is represented by a system S of nO(1) linear
inequalities with integer coefficients of bit-size nO(1), such that the polyhedral set
defined by the system S is non-empty and is contained in the face F . However, note
that since linear programming (discrete setting) is in polyomial time [21, 22], we can
always compute from the system S a small rational point of F in polynomial time.

Proof of Theorem 4.1. 1. Assume that A ∈ Σkadd. Then (cf. Remark 2.11(i))
there exist polynomials q1, . . . , qk and B ∈ Padd such that for all x ∈ R∞

x ∈ A⇐⇒ ∃z1∀z2 . . . Qzk (x, z) ∈ B,

where quantifiers alternate (Q is either existential or universal depending on the parity
of k) and the quantification is over zi ∈ {0, 1}qi(size(x)).

Let MB be an additive machine deciding B in time bounded by some polynomial t
and α1, . . . , α` be the constants occurring in the program of MB other than 0 or 1.
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Denote α = (α1, . . . , α`) and let

C = {(x, z, v) ∈ R∞ × {0, 1}∞ × R` | MB accepts (x, z) when replacing
α by v in its program}.

Clearly, C ∈ P0
add and, for all (x, z) ∈ R∞ × {0, 1}∞, (x, z) ∈ B ⇐⇒ (x, z, α) ∈ C.

In order to prove that A ∈ PΣk

add, it is sufficient to show that the set

A′ = {(x, v) ∈ R∞ × R` | ∃z1∀z2 . . . Qzk (x, z, v) ∈ C}

belongs to the class (P0
add)Σk . This reasoning shows that we may assume without loss

of generality that MB has no real constants, i.e., that B ∈ P0
add.

Since B ∈ P0
add, we may use Corollary 4.3 (used without the y in the input) to

deduce that the discrete language

R = {F ∈ Ft | ∀x ∈ F ∃z1∀z2 . . . Qzk
(
MB accepts (x, z)

)
}

lies in the class Σk. (Recall that t bounds the running time of MB .) Consider now
the following algorithm. On input x ∈ Rn locate x in a face F of Ft(n),n (due to
Proposition 4.5, this can be done in (FP0

add)NP). Then decide whether F ∈ R by an
oracle call to Σk. This algorithm works in PΣk

add and decides A.
The above reasoning shows that A ∈ PΣk

add. This immediately implies the inclu-
sions for Πk and PH. And, since PHadd is closed under Turing reductions, we even
get equality in this case.

2. Let ϕ : R∞ → N be a counting problem in D#·Σkadd. Then there exist B ∈ Padd

and polynomials p, q1, . . . , qk such that for all n ∈ N and all x ∈ Rn

ϕ(x) = |{y ∈ {0, 1}p(n) | ∃z1∀z2 . . . Qzk (x, y, z1, . . . , zk) ∈ B}|

where quantifiers alternate and the quantification is over zi ∈ {0, 1}qi(size(x)).
Let MB be some additive machine deciding B in time t for some polynomial t.

As in the proof of part one, we can assume that MB has no real constants. By
Corollary 4.3, the map ψ : Ft → N defined for F ∈ Ft(n),n by

ψ(F ) := |{y ∈ {0, 1}p(n) | ∀x ∈ F ∃z1∀z2 . . . Qzk (x, y, z1, . . . , zk) ∈ B}|

lies in the discrete counting class # · Σk. Note that ϕ(x) = ψ(F ) for F ∈ Ft(n),n,
x ∈ F .

Consider now the following algorithm. On input x ∈ Rn, locate x in a face F
of Ft(n),n. Then compute ψ(F ) by an oracle call to # · Σk and return ψ(F ). This

algorithm works in FP#·Σk
add and computes ϕ(x).

The above proves the inclusion D# · Σkadd ⊆ FP#·Σk
add . The inclusion D# · Πk

add ⊆
FP#·Πk

add is proved similarly and it follows that D# · PHadd ⊆ FP#·PH
add .

3. The inclusion PPSPACE
add ⊆ PARadd is clear, since PARadd is closed under Turing

reductions. Consider the subset DTRAO of the theory of the reals with addition and
order which consists of the sentences all of whose variables z satisfy a constraint of
the form z = 0 ∨ z = 1. In [14] it is proven that DTRAO is PARadd-complete. It is
therefore sufficient to show that DTRAO ∈ PPSPACE

add .
Consider now the following algorithm. On input a digitally quantified first-order

sentence ϕ = Q1z1Q2z2 . . . Qkzk ψ(z1, . . . , zk), of the theory of (R,+,−,≤), where ψ
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is quantifier free of size n, we locate ψ in a face F ∈ Ft(n),n, where n is the size of ψ.
By construction, ϕ is true iff F belongs to the set L in Lemma 4.4. We then decide this
membership by an oracle call to PSPACE. This algorithm decides DTRAO ∈ PPSPACE

add .
4. The equality FPPARadd

add = FPPSPACE
add follows from the third statement of Theo-

rem 4.1. To prove the first equality, let f ∈ FPARadd, x ∈ Rn, and y = f(x) ∈ Rp(n).
Let α1, . . . , αk be the constants occurring in the additive machine that generates the
circuits computing f as described in Definition 2.10. For ` ≤ p(n) we have

y` =
n∑
i=1

u
(`)
i xi +

k∑
j=1

v
(`)
j αj + b(`) (4.1)

where u(`)
i , v

(`)
j and b(`) are integers of bit-size at most q(n) for a polynomial q. Let

Bx be the relation defined by

Bx = {(s, i, `, x) ∈ N3 × R∞ | the s-th bit of u(`)
i is 1}

and Bα, B1 the analogous relations for v(`)
j and b(`). We claim that Bx, Bα, B1 ∈

PARadd. In fact, the parallel algorithm deciding any of these relations simulates the
behaviour of Cn (the circuit computing the restriction of f to Rn) on input x keeping
expressions in the form (4.1) instead of actually performing the arithmetic operations.

To compute f(x) in FPPARadd
add , one uses the oracles Bx, Bα, and B1 to obtain the

binary expansions of u(`)
i , v(`)

j and b(`), for all `, i, j. Then compute y by (4.1).
The following corollary is a real analogue of Toda and Watanabe’s Theorem 3.8.
Corollary 4.6. We have D# · PHadd ⊆ FP#P

add.
Proof. We conclude from Theorem 4.1(2) and Theorem 3.8 that

D# · PHadd ⊆ FP#·PH
add ⊆ FPFP#P

add = FP#P
add

which proves the claim.
We use this to prove that the counting class #Padd is closely related to its digital

variant D#Padd, in the sense that a #Padd-oracle does not give more power to an
additive polynomial time Turing machine than a D#Padd-oracle

Theorem 4.7. We have FP#Padd
add = FPD#Padd

add = FP#P
add.

Proof. Clearly, it is enough to show that #Padd ⊆ FP#P
add. For this, it is sufficient

to prove that

#Padd ⊆ FPD#·NPadd
add . (4.2)

Indeed, by Corollary 4.6, we know that D# ·NPadd ⊆ FP#P
add.

In order to prove (4.2), let ϕ ∈ #Padd. Then there exist a polynomial p and an
additive machine M working in polynomial time such that, for all n ∈ N, x ∈ Rn,

ϕ(x) = |{y ∈ Rp(n) |M accepts (x, y)}|.

Using Lemma 3.4 we can find out in NPadd whether ϕ(x) is infinite on input x ∈ Rn.
Assume then that ϕ(x) is finite. Since leaf sets are convex, they are either infinite or
consist of just one point. In the case that ϕ(x) is finite, we have

ϕ(x) = |{ν ∈ {0, 1}t(n) | ∃y ∈ Rp(n) input (x, y) reaches the accepting leaf ν}|,
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since y is uniquely determined. Define B := ∪n∈NBn, where

Bn := {(x, ν) ∈ Rn×{0, 1}t(n) | ∃y ∈ Rp(n) input (x, y) reaches the accepting leaf ν}.

Then we have B ∈ NPadd. This implies that ϕ ∈ D# ·NPadd.
Remark 4.8.

(i) Statements analogous to Theorem 4.1 hold in the constant-free setting, e.g.,

NP0
add ⊆ (P0

add)NP, D#P0
add ⊆ (FP0

add)#P, FPAR0
add = (FP0

add)PSPACE.

(ii) Similarly to Theorem 4.7, we have FP#Σkadd
add = FPD#·Σkadd

add = FP#P
add for k ≥ 0.

4.2. Boolean parts and transfer theorems. A problem that has attracted
much attention in real complexity is the computation of Boolean parts [8, 12, 13,
14, 24, 25]. Roughly speaking, this amounts to characterizing, in terms of classical
complexity classes, the power of resource bounded machines over R when their inputs
are restricted to be binary. In this section, we will be interested in the Boolean parts
of counting classes.

Definition 4.9. Let C be a counting class over R. Its Boolean part is the
classical complexity class BP(C) = {f : {0, 1}∞ → N | f = g|{0,1}∞ for some g ∈ C}.

Proposition 4.10. We have BP(D#Padd) = #P/poly.
Proof. The proof closely follows that of [4, Theorem 2, Chapter 22]. Consider a

function f in #P/poly. There is a polynomial q and an advice function h such that
h(n) belongs to {0, 1}q(n) for all n. Furthermore, there are an NP-machine M and a
polynomial p such that M accepts for exactly f(x) witnesses in {0, 1}p(n) on input
(x, h(n)), for all x ∈ {0, 1}n. Let us code in a single number ξh ∈ R the sequence
of advices h(1), h(2), . . .. Then we can consider a DNPadd-machine which, for each
input x ∈ {0, 1}n, first produces the digits of ξh and obtains h(n), and then simulates
M on (x, h(n)). This shows that #P/poly ⊆ BP(D#Padd).

Conversely, let us consider a function f in the Boolean part of D#Padd defined
by a DNPadd-machine M with time bound q. The computation of M on inputs of
size n is described by a linear decision tree T of depth q(n). Therefore, if α1, . . . , αk
are the real constants of M then, for each x ∈ {0, 1}n, the test performed by T at a
node i has the form gi(x, α) ≥ 0 with

gi(x, α) =
n∑
j=1

aijxj +
k∑
j=1

bijαj + ci, (4.3)

and where aij , bij and ci are integers of bit-size polynomial in n. For a given x ∈
{0, 1}n, according to the outcome of the test (4.3), the point α ∈ Rk satisfies then an
inequality of the form gi,x(α) ≥ 0 or gi,x(α) < 0 where gi,x ∈ Z[Y1, . . . , Yk] is defined
by gi,x(y) = gi(x, y). Let Φ be the system of all these linear inequalities, for i varying
over all branching nodes of T and x varying over the 2n possible points of {0, 1}n.
The system Φ is satisfied by α. Then, according to Theorem 2.6, there is a point
βn ∈ Qk all of whose coordinates have polynomial bit-size in n, which also satisfies
Φ. Thus, if we replace α = (α1, . . . , αk) by βn in the tree T , the path followed by any
x ∈ {0, 1}n will not change and x will be accepted or rejected as in T .

Let us now consider the function h : N → Q
k defined by h(n) = βn. Since the

bit-size of βn is polynomial in n we may interpret h as an advice function. The
classical machine which, with input (x, h(size(x))), simulates the behavior of M with
the constants α1, . . . , αk replaced by h(size(x)) shows that f ∈ #P/poly.
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Combining Proposition 4.10 with the results of §4.1, we obtain:
Corollary 4.11. We have the following transfer results:

1. #Padd ⊆ FPadd iff D#Padd ⊆ FPadd iff #P ⊆ FP/poly.

2. FPARadd ⊆ FP#Padd
add iff PSPACE ⊆ P#P/poly.

3. Similar equivalences hold for additive machines without constants and uni-
form classical complexity classes, respectively.

Proof. The first equivalence of (1) follows from Theorem 4.7. In the second
equivalence of (1), the direction from left to right follows from

#P ⊆ #P/poly = BP(D#Padd) ⊆ BP(FPadd) ⊆ FP/poly.

Here, the equality holds by Proposition 4.10, the last inclusion holds by Remark 4.12
below, and the one before the last is true by assumption. For the other direction, we
use Theorem 4.1(2) to get D#Padd ⊆ FP#P

add ⊆ FPFP/poly
add = FPadd, where the second

inclusion follows by assumption. The other equivalences can be shown similarly.
Remark 4.12. One can extend the definition of Boolean parts to classes of (not

necessarily counting) functions over the reals and consider, for instance,

BP(FPadd) = {f : {0, 1}∞ → {0, 1}∞ | f = g|{0,1}∞ for some g ∈ FPadd}.

One can then use the same arguments to show that

BP(FPadd) = FP/poly, BP(FP#Padd
add ) = FP#P/poly, BP(FPARadd) = FPSPACE/poly.

Also, for machines without constants we have the following, easier to prove, results:

BP(FP0
add) = FP, BP((FP0

add)#P0
add) = FP#P, BP(FPAR0

add) = FPSPACE.

4.3. Complete counting problems. We obtain from Theorem 4.1 the follow-
ing result, providing us with plenty of complete problems for the class D#Padd.

Proposition 4.13. Let f : R∞ → N belong to D#Padd and assume that the
restriction of f to Z∞ is #P-complete with respect to Turing reductions. Then f is
#Padd-complete and thus D#Padd-complete with respect to Turing reductions.

Proof. This is an immediate consequence of Theorem 4.7.
Proposition 4.13 yields plenty of Turing complete problems in D#Padd. We just

mention two particularly interesting ones. Assume that we are given a graph G with
real weights on the edges and some w ∈ R. We define the weight of a subgraph as the
sum of the weights of its edges.

1. (Counting Traveling Salesman) Let #TSPR be the problem to count the
number of Hamilton cycles of weight at most w in the graph G.

2. (Counting Weighted Perfect Matchings) Let #PMR be the problem to count
the number of perfect matchings of weight at most w in the graph G (here we assume
that G is bipartite).

Valiant [41, 42] proved the #P-completeness of the problem to count the number
of Hamilton cycles of a given graph, and of the problem to count the number of
perfect matchings of a given bipartite graph. Together with Proposition 4.13, this
immediately implies the following corollary.

Corollary 4.14. The problems #TSPR and #PMR are D#Padd-complete with
respect to Turing reductions.
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Note that the problem to count the number of perfect matchings of a given bipar-
tite graph is equivalent to the famous problem to evaluate the permanent of a matrix
with entries in {0, 1}.

Remark 4.15.

1. Results for PARadd and FPARadd similar to Proposition 4.13 follow from
Theorem 4.1 in the same manner.

2. There is an algebraic theory of NP-completeness due to Valiant [7, 40, 43],
which captures the complexity to evaluate the generating functions of graph prop-
erties. For instance, the generating function of the property “perfect matching” is
the permanent of a real matrix, which turns out to be complete in this theory. The
functional problems studied in this theory take real values on real inputs and thus
differ substantially from the counting problems studied in this paper. It would be
interesting to clarify the relationship between these two approaches.

5. Complexity to compute topological invariants. In the computational
problems studied in this section, it is always assumed that the input is an additive
circuit C and X is the semi-linear set accepted by C.

In the following subsections, we characterize the complexity to compute several
basic invariants of a semi-linear set X. These invariants are the dimension (§5.1),
the number of connected components (§5.2), the Euler characteristic (§5.3.4), and the
Betti numbers (§5.3.5). In §6 we show that corresponding completeness results for
the Turing model hold as well.

5.1. Complexity of computing the dimension. For all d ≥ 0, the problem
DIMadd(d) consists of deciding whether the set X given by an additive circuit C has
dimension at least d. We define dim ∅ := −1 so that we can decide for non-emptyness
using the dimension function.

Theorem 5.1. For all d ≥ 0, the problem DIMadd(d) is NPadd-complete.
The main tool in proving Theorem 5.1 is the following proposition. It states that

if a polyhedron P has dimension at least d, then there is a projection of P onto a
d-dimensional coordinate subspace containing a scaled down d-dimensional standard
simplex. This can be used to construct an NPadd-certificate.

To formally state this proposition we define ej = (0, . . . , 0, 1, 0, . . . , 0)T ∈ Rn, the
column unit vector with 1 in the jth place. Also, recall that we denote by [m] the set
{1, . . . ,m}, for any m ∈ N.

Proposition 5.2. Let P be a polyhedron in Rn of dimension d ≥ 0 defined by a
system A1x ≤ b1; A2x < b2, where A1 ∈ RN1×n, A2 ∈ RN2×n, b1 ∈ RN1 and b2 ∈ RN2 .
Then there exist points x(0), . . . , x(d) ∈ P , ρ > 0, and an injective map π : [d] → [n]
such that for all `, i ∈ [d] we have x

(`)
π(i) − x

(0)
π(i) = ρδ`,i. Here δ is the Kronecker’s

delta.
Proof. We first prove the result for the case d = n. Let N = N1 + N2, A =[

A1

A2

]
∈ RN×n, b =

[
b1
b2

]
∈ RN , and denote by aT

i ∈ Rn the ith row of A = (ai,j).

W.l.o.g. A 6= 0. Since d = n, the polyhedron

P ∗ := {x ∈ Rn | Ax < b}.

is non-empty. Let x∗ ∈ P ∗ and put y∗ := b − Ax∗ > 0, ε := mini≤N y∗i = y∗i0 .
Then aT

i x
∗ ≤ bi − ε for all i ≤ N . Define ρ = ε/(2 maxi,j |aij |). For all i, j we have

ρ|aT
i ej | = ρ|aij | ≤ ε/2. This implies that, for all i,

|aT
i (x∗ + ρej)| ≤ bi − ε+

ε

2
< bi.
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The points x(0) = x∗, x(j) = x∗ + ρej together with the identity map π : [n] → [n]
satisfy the statement.

We now consider the general case, with d ≥ 1 (the case d = 0 is trivial). Since
dimP = d, there exists I ⊆ [N1] with |I| ≥ n− d such that the set

P ∗ := {x ∈ Rn | aT
i x = bi for i ∈ I, and aT

i x < bi for i 6∈ I}

is included in P and has dimension d. After eliminating redundant equalities if nec-
essary, we can assume |I| = n− d.

In what follows, if x ∈ Rn and J ⊆ [n], we denote by xJ the vector obtained by
removing from x the coordinates with index not in J . Write J̄ = [n] − J . Let H be
the affine linear variety given by aT

i x = bi for i ∈ I. Since dimH = d there exists
J ⊆ [n], |J | = d, such that we can express the coordinates xj , j 6∈ J , in terms of the
coordinates xj , j ∈ J . More precisely, there exist S ∈ RJ̄×J and c ∈ RJ̄ such that

xJ̄ = SxJ + c. (5.1)

The projection of P ∗ on RJ has dimension d. It is given by the set of strict inequalities
obtained by substituting xJ̄ in the inequalities aix < bi, i 6∈ I according to (5.1).

We now apply the full dimensional case to this set of inequalities to find points
x

(`)
J ∈ RJ , ` = 0, . . . , d, satisfying the statement in RJ (for some bijection π : [d]→ J).

Finally, we lift these points to x(`) ∈ Rn, ` ∈ [d], by using (5.1).
Proof of Theorem 5.1. The hardness is immediate since adding d dummy vari-

ables reduces circuit satisfiability CSATadd to DIMadd(d). (Here we use the convention
dim ∅ = −1.)

For the membership, note that leaf sets are convex. Therefore, if such a leaf set
contains the vertices of a d-dimensional simplex in Rn, it contains the whole simplex.
This ensures the correctness of the following algorithm for DIMadd(d).check

input C
compute n, the number of input gates of C
guess an accepting leaf ν, x(0), . . . , x(d) ∈ Rn, ρ ∈ R, and π : [d]→ [n]
check whether x(0), . . . , x(d), ρ and π satisfy the statement of Proposition 5.2
if x(0), . . . , x(d) reach the leaf ν then ACCEPT else REJECT

This is clearly an NPadd-algorithm.

5.2. Counting connected components. Consider the reachability problem
REACHadd to decide for a given additive circuit C and two points s and t, whether
these points are in the same connected component of the semi-linear set X defined
by C. The corresponding counting problem #ccCSATadd is the problem of counting
the number of connected components of X given by C.

The main result of this section is the following.
Theorem 5.3. The problems REACHadd and #ccCSATadd are PARadd-complete

and FPARadd-complete with respect to Turing reductions, respectively.
This result is inspired by an early paper by Reif [35] (see also [36]), which showed

the PSPACE-hardness of a generalized movers problem in robotics. Reif’s result im-
plies that the analogue of REACHadd for semi-algebraic sets given by inequalities
of (nonlinear) rational polynomials is PSPACE-hard. We cannot apply this result in
our context, since we are dealing here with linear polynomials. However, we borrow
from Reif’s proof the idea to describe PSPACE by symmetric polynomial space Turing
machines, see §5.2.1.
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The problem REACHadd has a similar flavour as the undirected reachability prob-
lem for succinctly represented graphs, which asks whether two nodes s, t of such a
graph G are connected by a path. By a succinct representation of a graph [18] we un-
derstand a Boolean circuit which decides, for a pair of nodes given in binary encoding,
whether they are adjacent. This representation allows a polynomial size representation
of graphs with exponentially many nodes. It is known that the undirected reachability
problem for succinctly represented graphs is PSPACE-complete. A detailed treatment
of the complexity of succinct problems can be found in [1].

The rest of this section is devoted to the proof of Theorem 5.3. It is organized
as follows: after two preparatory subsections on symmetric Turing machines and
embedding graphs, we provide the lower bound part of the proof in §5.2.3. The upper
bound part of the proof is given in §5.2.4.

5.2.1. Symmetric Turing machines. Roughly speaking, a symmetric Turing
machine [26] is a nondeterministic Turing machine with the property that its transition
relation is symmetric. Thus its configuration digraph is in fact a graph, which is
essential for capturing the symmetric reachability relation of REACHadd.

We briefly recall the notions which are essential for our proof. A (one tape)
symmetric Turing machine M is given by (Q,Σ,Σ0, s, t,∆), where Q is a finite state
space, s ∈ Q is the initial state, t ∈ Q is the final state, and ∆ is a finite set of
transitions. We will assume that the input alphabet Σ0 equals {0, 1} and that the
machine alphabet Σ contains 0, 1 and the blank ‘[’. The transitions δ ∈ ∆ are either
of the form δ1 = (p, a, 0, b, q) or δ2 = (p, ab, cd, q), where p, q ∈ Q and a, b, c, d ∈ Σ.
The transition δ1 is to be interpreted as follows: if the current state of the machine
is p and the head of the machine is above a cell containing the symbol a, then the
machine may rewrite this symbol by b and enter the state q without moving the
head. Similarly, reading backwards, if the machine is in state q and the head of the
machine is above a cell containing the symbol b, then the machine may rewrite this
symbol by a and enter the state p without moving the head. The interpretation of the
transition δ2 is as follows: If the current state is p, the head of the machine is above
a cell containing a and the symbol in the cell to the immediate right is b, then the
the machine may rewrite a by c and b by d, move one step to the right and enter the
state q. The transition δ2 may also be read backwards with the obvious interpretation.
A configuration of M is an element (q, h, w) ∈ Q × N × ΣN, where q is the current
state, h the position of the head and w the current tape contents. (All but finitely
many components of w are blanks.) The transitions induce a symmetric relation on
the set of configurations, which defines the (undirected) configuration graph.

In [26, Thm. 1] it is shown that any language recognized by a deterministic Turing
machine may be recognized by a symmetric Turing machine respecting the same space
bound.

5.2.2. Embedding graphs by straight-line segments. We first define two
types of products of graphs. Then we study embeddings of such graph products in
Euclidean space such that point location in these embedded graphs can be done by
additive circuits. This will be needed for the lower bound proof in §5.2.3.

Definition 5.4. Let Gi = (Vi, Ei) be graphs, 1 ≤ i ≤ t.
1. The product G1 × · · · × Gt is defined as a graph with the set of nodes V1 ×

· · ·×Vt; two distinct nodes u = (u1, . . . , ut) and v = (v1, . . . , vt) are adjacent iff there
exists i such that {ui, vi} ∈ Ei and uj = vj for all j 6= i. If Gi = G for all i we will
write Gt instead of G× · · · ×G.
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2. The extended product G1⊗ · · ·⊗Gt also has set of nodes V1× · · ·×Vt. Now
two distinct nodes u = (u1, . . . , ut) and v = (v1, . . . , vt) are adjacent iff for all i either
ui = vi or {ui, vi} ∈ Ei.

Let G = (V,E) be a graph and ϕ : V → R
n be an injective map. We assign to

each edge e = {u, v} the closed (straight-line) segment ϕ(e) := {tϕ(u) + (1− t)ϕ(v) |
t ∈ [0, 1]}.

Definition 5.5. The injective map ϕ : V → R
n induces an embedding of the

graph G = (V,E) into Rn (by straight-line segments) iff

∀v ∈ V ∀e, e′ ∈ E
(
ϕ(v) ∈ ϕ(e) =⇒ v ∈ e

)
∧
(
ϕ(e) ∩ ϕ(e′) 6= ∅ =⇒ e ∩ e′ 6= ∅

)
.

The edge skeleton of the embedding is defined as the union of the segments corre-
sponding to all edges.

We denote by Km the complete graph on the set of nodes [m] and embed it in
R
m by sending the node i to the ith canonical basis vector ei. Thus we interpret Km

as the standard simplex in Rm.
Lemma 5.6.

1. Assume that ϕi : Vi → R
ni induces an embedding of Gi for i ∈ [t]. Then

V1×· · ·×Vt → R
n1×· · ·×Rnt , (v1 . . . , vt) 7→ (ϕ1(v1), . . . , ϕt(vt)) induces an embedding

of G1 × · · · ×Gt.
2. Let ϕ : V → R

n−{0} induce an embedding of G = (V,E) and m ∈ N,m > 0.
Assume further that ϕ(u), ϕ(v) are linearly independent for all edges {u, v} ∈ E.
Define ψ : [m] × V → (Rn)m by ψ(i, v) := (0, . . . , 0, ϕ(v), 0, . . . , 0) with 0 everywhere
except at position i. Then ψ induces an embedding of the extended product Km ⊗ G
into (Rn)m.

Proof. 1. This can be shown by straightforward verification.
2. The proof is a bit cumbersome, since it requires several case distinctions.

Assume for simplicity m = 2. Let e = {(1, u), (2, v)}, e′ = {(1, u′), (2, v′)} be edges
of K2 ⊗ G such that ψ(e) ∩ ψ(e′) 6= ∅. Hence there exist s, t ∈ [0, 1] such that
tψ(1, u) + (1− t)ψ(2, v) = sψ(1, u′) + (1− s)ψ(2, v′). This means that tϕ(u) = sϕ(u′)
and (1− t)ϕ(v) = (1− s)ϕ(v′). We claim that e ∩ e′ 6= ∅.

If t = 0, then s = 0 (since imϕ ⊆ Rn − {0}), hence ϕ(v) = ϕ(v′). Therefore
v = v′ and we are done. Similarly, t = 1 implies u = u′. We may therefore assume
that s, t 6∈ {0, 1}.

Suppose u = v′. Then either u′ = u or {u′, u} ∈ E. In the latter case, ϕ(u′), ϕ(u)
are not linearly independent by assumption, which contradicts tϕ(u) = sϕ(u′). We
may therefore assume that u 6= v′ and v 6= u′.

Since s = t implies u′ = u, we assume w.l.o.g. that 0 < s < t < 1. It is easy to see
that under these assumptions we have ϕ({u, v})∩ϕ({u′, v′}) 6= ∅ (cf. Figure 5.1). As

0 ϕ(u) ϕ(u′)

ϕ(v′)

ϕ(v)

Fig. 5.1. The segments ϕ({u, v}) and ϕ({u′, v′}) intersect.
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ϕ is an embedding, we deduce from this {u, v} ∩ {u′, v′} 6= ∅, hence u = u′ or v = v′,
which proves the claim.

The other cases to be treated are simpler and left to the reader. If m > 2, one
can argue similarly.

For positive integers a, b, p we define the graphs Gpa,b := Ka⊗ (Kb)p. Interpreting
complete graphs as embedded via the standard simplices in Euclidean space and using
the construction of the previous lemma, we get an embedding ψpa,b of Gpa,b in Rabp. We
denote the induced set of nodes in Rabp by R and the edge skeleton by T (omitting
indices). The following property will be crucial.

Lemma 5.7. There are additive circuits of size polynomial in a, b, p depending
uniformly on these parameters and performing the following tasks:

1. compute the map ψpa,b : [a]× [b]p → R and its inverse,
2. decide in which set of the partition Rabp = (Rabp \ T ) ∪ (T \ R) ∪ R a given

point in Rabp lies,
3. compute the end points of the (unique) edge segment of Gpa,b in which a given

point x ∈ T \R lies.
Proof. To compute ψpa,b is straightforward. For its inverse, as well as for parts

(2) and (3), note that the relevant information can be inferred from the signs of the
components xi of a given point in x ∈ Rabp. No multiplications, not even scalar ones,
are needed to perform these tasks!

5.2.3. Lower bound for reachability. We are going to show the PARadd-
hardness of REACHadd and #ccCSATadd. The next lemma tells us that it is sufficient
to do this for REACHadd.

Lemma 5.8. The problem REACHadd Turing reduces to #ccCSATadd.
Proof. Let X ⊆ Rn be given by an additive circuit C accepting X and suppose

s, t ∈ X. Consider the following subset X ′ of Rn+1:

X ′ := (X × {0}) ∪ ({s} × [0, 1]) ∪ ({t} × [0, 1]) ∪ (Rn × {1}).

There is an FPadd-machine, which takes as input a circuit C together with s, t ∈ Rn
and outputs an additive circuit C′′ deciding membership to X ′. It is easy to check
that s and t are connected in X if and only if X ′ has the same number of connected
components as X (and one less otherwise). The latter condition can be tested by
querying a #ccCSATadd-oracle twice, once with C and once with C′′.

Proposition 5.9. The problem REACHadd is PARadd-hard with respect to Tur-
ing reductions.

Proof. By Theorem 4.1(3) it is sufficient to prove that REACHadd is PSPACE-
hard. Thus let L ⊆ {0, 1}∞ be any language in PSPACE. Let M be a symmetric
Turing machine deciding membership in L with polynomial space bound function p(n)
(cf. §5.2.1). For fixed input length n let H ′n denote the restriction of the configuration
graph of M to the set of nodes Vn := Q× [p(n)]×Σp(n). To an input w ∈ {0, 1}n we
assign the initial configuration i(w) := (s, 1, (w1, . . . , wn, [, . . . , [)). We may assume
w.l.o.g. that there is exactly one accepting configuration f := (t, 1, ([, . . . , [)). Of
course, the cardinality of Vn is exponential in n. However, it is clear that the graph H ′n
can be succinctly represented by Boolean circuits of size polynomial in n.

Note that if (q, h, w), (q′, h′, w′) ∈ Vn are two configurations adjacent in H ′n,
then |h − h′| ≤ 1 and the Hamming distance of w and w′ is at most two. Let
δ2 = (p, ab, cd, q) be the transition between these configurations and w.l.o.g. h′ = h+1.
We introduce an additional node (δ, h, w̃), where w̃ is obtained from w by changing
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the hth entry to the one of w′. Thus the Hamming distances of both w, w̃ and w̃, w′

are at most one. We think of the node (δ, h, w̃) as lying in between the nodes (q, h, w)
and (q′, h′, w′). By this construction we obtain a modified configuration graph Hn on
the set of nodes V ′n := Q̃× [p(n)]×Σp(n) with the enlarged set of states Q̃ := Q ∪∆.
(Recall that ∆ is the set of transitions of M .) If (q, h, w) and (q′, h′, w′) are adjacent
in Hn, then the Hamming distance of w and w′ is at most one. Note that the graph
Hn can also be succinctly represented by Boolean circuits of size polynomial in n.

By enumerating symbols we may assume that Σ = [b] and Q̃ × [p(n)] = [a(n)]
with a polynomial function a(n). From the above observations we conclude that the
modified configuration graph Hn is a subgraph of the graph

Gn := G
p(n)
a(n),b := Ka(n) ⊗ (Kb)p(n)

defined in §5.2.2. We embed Gn in Ra(n)p(n)b with the construction of §5.2.2 using a
map ψn : Q̃× [p(n)]×Σp(n) → Rn with induced set of nodes Rn. We denote the edge
skeleton of this embedding by Tn, and denote by Sn the edge skeleton of the induced
embedding of the subgraph Hn of Gn.

By Lemma 5.7, membership in Tn can be decided by a uniform family of additive
circuits of size polynomial in n. It is now easy to see that also membership in Sn can
be decided by such a family (Cn) of additive circuits. In fact, we first find out whether
a given point x ∈ Ra(n)p(n)b lies in Rn or Tn. If x lies in Tn \Rn, then we compute the
end points y, z of the (unique) edge segment of Gn in which x lies. Furthermore, we
compute the inverse images η := ψ−1

n (y) and ζ := ψ−1
n (z). Due to Lemma 5.7 all this

can be done by a uniform family of additive circuits of size polynomial in n. Note that
x lies in Sn iff η and ζ are adjacent in the modified configuration graph Hn. Since
the latter can be succinctly described by Boolean circuits of size polynomial in n we
can test this in polynomial time.

Consider the map ϕ associating w ∈ {0, 1}n to (Cn, ψn(i(w)), ψn(f)). By con-
struction, w ∈ L iff the configurations i(w) and f can be connected in the modified
configuration graph Hn. This in turn is equivalent to the statement that the points
ψn(i(w)) and ψn(f) are connected by a path in the skeleton Sn defined by Cn. There-
fore, ϕ is a reduction from L to REACHadd.

In addition, it is obvious that the additive circuit Cn for Sn as well as the points
ψn(i(w)) and ψn(f) can be computed in polynomial time from w. This completes the
proof of the proposition.

Remark 5.10. From the above proof it follows immediately that the problems
REACHadd and #ccCSATadd restricted to closed input sets X remain complete for
PARadd and FPARadd, respectively.

5.2.4. Upper bound for reachability. In order to finish the proof of Theo-
rem 5.3, it remains to show the following lemma.

Lemma 5.11. The problem REACHadd is contained in PARadd and the problem
#ccCSATadd is contained FPARadd.

Proof. Let C be an additive circuit defining a set X. The computation of C can
be unwound to a linear decision tree. We define a graph G, whose nodes consist of
the accepting leaves of this tree, and whose edges join two different leaves µ and ν
iff the corresponding leaf sets Dµ and Dν touch each other, that is, Dµ ∩Dν 6= ∅ or
Dµ ∩Dν 6= ∅.

Let K1, . . . ,Kt be the connected components of the graph G. It is easy to see
that X has exactly t connected components, namely the sets of the form

⋃
ν∈Ki Dν
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for i ∈ [t]. (Use that leaf sets are convex and thus connected.) Therefore, the number
of connected components of X is equal to the number of connected components of the
graph G.

Of course, the graphGmay be exponentially large. However, it can be represented
by a weaker variant of the succinct representation discussed before. The nodes of G
can be encoded by a word in {0, 1}∞ encoding the corresponding path in the tree
(0 means branching to the left, 1 means branching to the right). For two such given
nodes µ, ν, we can decide in NPadd whether they are connected in G by guessing a
point x ∈ Rn and checking whether x ∈ Dµ ∩ Dν or x ∈ Dµ ∩ Dν . The latter can
be done as follows: we can easily write down the linear functions computed along
the path of µ, thus obtaining a description of Dµ by a system of linear inequalities.
A system describing the closure Dµ can be obtained from the one describing Dµ by
relaxing the occuring inequalites < to ≤.

As in the proof of Savage’s theorem we can decide in PARadd whether two nodes
of G are connected by a path as follows. Let the predicate PATH(µ, ν, i) express that
the nodes µ and ν are connected by a path of length at most 2i. Then we implement
PATH(µ, ν, i) by the recursive algorithm

for all nodes ω test whether PATH(µ, ω, i− 1) and PATH(ω, ν, i− 1)
using only polynomial space (compare [34, p. 149]). By applying this procedure for
every pair of nodes of G we can compute the number of connected components of G
and thus that of X in FPARadd.

Remark 5.12. Let p be a prime. Then the problem of counting the number
of connected components modulo p of a semi-linear set given by an additive circuit
is also FPARadd-complete with respect to Turing reductions. For showing this, we
only have to observe that the proof of Lemma 5.8 immediately extends to counting
mod p.

5.3. Euler characteristic and Betti numbers. The main results of this sec-
tion are the completeness results for EULERadd and BETTIadd(k) treated in §5.3.4
and §5.3.5. The following subsections prepare for the proofs.

5.3.1. Cell complexes and homology. We recall some notions from algebraic
topology [20, 33]. A cell of dimension k is a topological space homeomorphic to the
open k-dimensional unit ball int(Bk) := {x ∈ Rk | x2

1 + · · ·x2
k < 1}. The closed

unit ball will be denoted by Bk. Its boundary ∂Bk is homeomorphic to the (k − 1)-
dimensional unit sphere.

Assume that a topological Hausdorff space X is decomposed into a finite, disjoint
union of cells: X = ∪Ni=1Fi. The k-skeleton Xk is then defined as the union of the
cells of dimension at most k. The cell decomposition is called a finite cell complex iff
each cell Fi has a characteristic map, that is, a continuous map hi : Bk → X mapping
the boundary ∂Bk to Xk−1 and such that hi induces a homeomorphism of int(Bk)
with Fi. In this case, X is necessarily compact.

In the following, we assume that X is a compact, semi-linear subset of Rn decom-
posed into subsets Fi, i ∈ [N ], each described by a system

f1 = a1, . . . , fr = ar, g1 > d1, . . . , gs > ds,

where fi, gj are linear forms. Note that the Fi are bounded convex sets, which are open
in their affine closure aff(Fi). In particular, each Fi is a cell and ∂Fi is homeomorphic
to a sphere. It is easy to see that this cell decomposition of X is a finite cell complex
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if the following boundary condition is satisfied:

∀i, j ∈ [N ] Fi ∩ ∂Fj 6= ∅ =⇒ Fi ⊆ ∂Fj . (5.2)

This condition is equivalent to saying that the boundary ∂Fi of each cell is a union
of cells. Such cell complexes will be called semi-linear cell complexes in the sequel.

The following fact is well known [20, 33]. Let X be decomposed as a semi-linear
cell complex and denote by ck the number of the k-cells of this decomposition. Then
the Euler characteristic χ(X) can be computed as χ(X) =

∑n
k=0(−1)kck.

We remark that the decomposition into leaf sets given by a ternary additive
circuit may violate the boundary condition, which is a source of complications for our
investigations. (For a definition of ternary circuits, see §5.3.3.) For instance, consider
the triangle X decomposed into the vertices a := (0, 0), b := (2, 0), c := (0, 2) and the
open segments segments joining a with b, a with c, b with c, and a with (1, 1). Then
the boundary point (1, 1) of the open segment joining a with (1, 1) is not a vertex.

In order to define the cellular homology of a semi-linear cell complex, we first
need to recall some facts about orientation.

Recall that an ordered basis of a finite dimensional real vector space defines an
orientation of this space. Two ordered bases are said to have the same orientation iff
the transformation matrix sending one basis to the other has positive determinant.
By an orientation of an affine linear subspace A ⊆ Rn we understand an orientation
of its associated linear space L(A). An orientation of a convex subset F of Rn is
defined as an orientation of its affine hull aff(F ). It will be convenient to write
L(F ) := L(aff(F )).

Let A ⊆ Rn be given as the zero set of linear polynomials f1, . . . , fn−k in this
order. Extend the sequence f1 − f1(0), . . . , fn−k − fn−k(0) to a basis of the space of
linear forms such that that the corresponding dual basis (v1, . . . , vn) is a positively
oriented basis of Rn. Then (vn−k+1, . . . , vn) is a basis of the linear space L(A), which
we define to be positively oriented. We will say that this is the orientation of A
induced by f1, . . . , fn−k. (Note that this is well defined.)

Let now A be the convex hull of a convex subset F of Rn and assume that H is a
supporting hyperplane of F in A. That is, F lies on one side of H and that the closure
of F meets H. Then an orientation of F induces an orientation of H as follows: let y
be a vector pointing from H outward of F . Then we say that a basis v1, . . . , vn−1 of
L(H) is positively oriented with respect to the induced orientation iff y, v1, . . . , vn−1

is a positively oriented basis of L(A). (This is again well defined.)
Let now X = ∪Ni=1Fi be a semi-linear cell complex and assume that all the

cells Fi are oriented. Let Φk denote the set of k-cells and consider F ′ ∈ Φk and
F ∈ Φk+1. Assume that F ′ is contained in the closure of F . Then the affine hull of
F ′ is a hyperplane in the affine hull of F supporting the convex set F . Therefore, the
orientation of F induces an orientation on F ′ as explained above.

We define the incidence number [F, F ′] of F ∈ Φk+1 and F ′ ∈ Φk by

[F, F ′] =

 0 iff F ′ is not contained in the closure of F ,
1 if the orientation F induces on F ′ is the same as that of F ′,
−1 otherwise.

For k ≥ 0 the incidence matrix Ik is the matrix associated to Ik : Φk+1 × Φk → Z by
Ik(F, F ′) = [F, F ′].
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Let Ck be the Q-vector space having Φk as a basis. The boundary map ∂k : Ck+1 →
Ck is the Q-linear map defined for F ∈ Φk+1 by

∂k(F ) =
∑
F ′∈Φk

[F, F ′]F ′.

The image Bk := im∂k of ∂k is called the vector space of k-boundaries, and the kernel
Zk := ker ∂k−1 is called the space of k-cycles. The kth cellular homology vector space
is defined as Hk := Zk/Bk. It is well known [20, 33] that Hk is isomorphic to the
singular homology vector space Hk(X;Q). Therefore, bk(X) := dimHk is the kth
Betti number, which is independent of the cell decomposition and of the choice of
orientations for its cells. We have bk(X) = dimZk − dimBk = ck − ρk−1 − ρk, where
ρk := rank ∂k and ck = |Φk|.

5.3.2. Reduction to the compact case. The technical result developed in
this section will be needed in the upper bound proofs for the problems EULERadd

and BETTIadd(k). The purpose is to show that the closedness assumption on X can
be strengthened to compactness without loss of generality.

Let us first show that both closedness and compactness of a semi-linear set can be
checked within the allowed resources, that is, in additive polynomial time with access
to a #P-oracle. We write ‖x‖∞ := maxi≤n |xi| for x ∈ Rn.

Lemma 5.13. Both closedness and compactness of a set X given by an additive
circuit can be decided in P#P

add.
Proof. The boundedness of X ⊆ Rn can be expressed as follows:

∃R ∈ R ∀x (x ∈ X =⇒ ‖x‖∞ ≤ R).

Hence this property can be decided in Σ2
add. The closedness of X ⊆ R

n can be
expressed by:

∀y ∃ε ∀x (y 6∈ X,x ∈ X, ε > 0 =⇒ ‖x− y‖∞ ≥ ε).

Hence this property can be decided in Π3
add. Now use Corollary 4.6.

We recall a further notion from topology [20, 33]. A subspace A of a space X is
called a strong deformation retract of X if there is a continous map F : X× [0, 1]→ X
such that F (x, 0) = x, F (x, 1) ∈ A, and F (a, t) = a for all x ∈ X, a ∈ A and
t ∈ [0, 1]. It is a well-known fact that, if A is a strong deformation retract of X,
then the inclusion of A in X induces an isomorphism of the homology vector spaces
Hk(A;Q) ' Hk(X;Q). In particular, the spaces A and X have the same Betti
numbers.

Lemma 5.14. Let X ⊆ R
n be a closed semi-linear set given by an additive

circuit C. As usual, we denote by Dν the corresponding leaf sets. Then:
1. We can compute from C in FPadd a real number R > 0 such that

∀ν
(
Dν 6= ∅ =⇒ Dν ∩ [−R,R]n 6= ∅

)
. (5.3)

2. If R satisfies (5.3), then XR := X ∩ [−R,R]n is a strong deformation retract
of X.

Proof. 1. Each leaf set Dν is defined by a set of sign conditions for the values
computed by the circuit. On an input y ∈ Rn these values are of the form

z =
n∑
i=1

aiyi +
k∑
i=1

biαi + c,
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where α1, . . . , αk are the constants of C and the coefficients ai, bi, c are integers of
bit-size at most s := size(C). If Dν is not empty, Theorem 2.6 implies that there is
a point y ∈ Dν such that yi =

∑k
j=1 uijαj + wi, where the uij , wi are rationals of

bit-size at most L := (sn)c, c being some universal constant. Hence maxi |yi| ≤ R,
where R := 2L

(
1 +

∑k
j=1 |αj |

)
. Therefore, the bound R satisfies the condition (5.3).

Moreover, it is clear that R can be computed in FPadd from C.
2. Assume w.l.o.g. that X is not compact. Consider the one-point compact-

ification Ẋ of X, which is explicitly defined as follows. Let Sn ⊂ R
n+1 be the

n-dimensional sphere and N = (0, 0, . . . , 0, 1) ∈ Sn be its north pole. Projection from
N yields a homeomorphism between Sn−{N} and Rn×{−1}, and therefore a home-
omorphism between Sn−{N} and Rn. The closure Ẋ of the image of X in Sn (which
consists of attaching N to this image) is called a one-point compactification of X. The
decomposition into leaf sets of X becomes a cell decomposition of Ẋ, which can be
turned into a finite cell complex by refinement. The claim is now a consequence of the
following intuitive topological fact, whose formal proof is left to the reader. Let Y be
a finite cell complex and p be a vertex of Y . Assume that U is an open neighborhood
of p so small, that {p} is the only cell of the complex contained in U . Then Y \ U is
a strong deformation retract of Y \ {p}.

5.3.3. Universal cell decompositions. We adopt the notation Fs,n for the
universal cell decomposition for the parameters s, n, introduced in §4.1.

Lemma 5.15. If X ⊆ Rn is compact and a finite union of faces in Fs,n, then the
decomposition of X is a semi-linear cell complex.

Proof. It is obvious that the boundary condition (5.2) is satisfied.
Let C′ be an additive circuit defining the semi-linear set X ⊆ Rn. At the price of

at most doubling the size of the circuit, we can transform C′ into a ternary additive
circuit C, which branches according to the sign of intermediate results in a ternary
way (< 0, = 0, > 0) instead of branching in a binary way according to x ≥ 0 or x < 0.
Each (non-empty) leaf set Dν of C is described in the form

f1 = a1, . . . , fr = ar, g1 > d1, . . . , gs > ds,

where the fi − ai and gj − dj are the linear polynomials computed along the path
leading to the leaf ν. Note that the linear forms fi, gj have integer coefficients of
bit-size at most 2s, where s is the size of the circuit C. If the circuit uses only the
constants 0, 1, then ai, dj are also integers of bit-size at most 2s. In the general case,
however, ai, dj are real numbers. In the first case, each leaf set Dν is a union of faces
of Fs,n. Thus, {F ∈ Fs,n | F ⊆ X} is a refinement of the decomposition of X into
the leaf sets. By Lemma 5.15 this decomposition is a semi-linear cell complex if X is
compact.

Let X be a compact finite union of cells of Fs,n. To define (and compute) the
cellular homology groups of X we need to fix orientations on the cells F ∈ Fs,n. The
cellular homology groups are independent of the chosen orientations, so we will make
this choice in a convenient way as explained below.

By identifying a sequence (f1, . . . , fk) in (Hs,n)k with the sequence of coefficients
of f1, . . . , fk (in a fixed order), and using the lexicographical ordering, we may consider
(Hs,n)k as a totally ordered set. We can extend this order to the union H∞s,n of the
(Hs,n)k, for k ∈ N, by requiring that elements of (Hs,n)k are strictly smaller than
elements of (Hs,n)k

′
, for k < k′.

For F ∈ Fs,n let (f1, . . . , fn−k) be the smallest sequence in H∞s,n such that F is
contained in the zero set of f1, . . . , fn−k. Then k = dimF . We define the orientation



COUNTING COMPLEXITY CLASSES 27

of F as the orientation of aff(F ) induced by this smallest sequence (f1, . . . , fn−k)
(cf. §5.3.1).

In the sequel, F shall denote the union of the Fs,n, and H the union of the
Hs,n, over all s, n ∈ N, respectively. Recall that we encode the faces F ∈ F by
triples (s, n, x) ∈ N2 ×Qn with a rational point x ∈ F of bit-size at most (sn)c. Let
the incidence function I : F × F → {−1, 0, 1} by defined by I(F, F ′) := [F, F ′], if
F, F ′ ∈ Fs,n for some s, n and dimF = dimF ′ + 1, and I(F, F ′) = 0 otherwise.

Lemma 5.16.

1. The membership decision problem {(F, x) ∈ F × R∞ | x ∈ F} is in PH0
add.

2. The containement decision problem {(F, f) ∈ F × H | F ⊆ Z(f)} is in PH.
Here Z(f) denotes the zero set of the polynomials of the sequence f .

3. The closure containement problem {(F ′, F ) ∈ F × F | F ′ ⊆ ∂F} is in PH.
4. There is a function F → Q

∞ in FPPH mapping F to a positively oriented
basis of the linear space L(F ) associated with the affine hull of F .

5. The incidence function I : F × F → {−1, 0, 1} can be computed in FPPH.
Proof. 1. Let F ∈ Fs,n be given by the rational point x0 ∈ F . We have

x ∈ F ⇐⇒ ∀f ∈ Hs,n
(
sgnf(x) = sgnf(x0)

)
.

This condition is expressible in (Π1
add)0 ⊆ PH0

add, which shows the claim.
2. Replacing in the statement ∀x (x ∈ F ⇒ x ∈ Z(f)) the predicate “x ∈ F”

according to (1), we obtain a (Π1
add)0-statement. Since F and f are discrete, the

containement decision problem even belongs to the Boolean part of (Π1
add)0, and thus

to Π1 by [14] (cf. Remark 4.12).
3. Using (1), we can express “x ∈ F” by a (Π2

add)0-statement. Hence F ′ ⊆ ∂F
can also be expressed by a (Π2

add)0-statement. Since F, F ′ are discrete, this statement
is even in Π2.

4. Using (2), we see that the following condition is in Π2: (f1, . . . , fn−k) is the
smallest sequence in H∞s,n such that F is contained in the zero set of f1, . . . , fn−k.
The assertion follows now by Remark 2.11(ii).

5. For given F, F ′ ∈ Fs,n we first check in PH whether F ′ ⊆ ∂F and dimF ′ =
dimF − 1 using parts (3) and (4). Then we compute positively oriented bases
u1, . . . , uk+1 of L(F ) and v1, . . . , vk of L(F ′) in FPPH according to part (4). If F
and F ′ are represented by the rational points x and x′, respectively, then y := x′ − x
is a vector in L(F ) pointing from L(F ′) outside of F . The incidence number [F, F ′]
equals 1 iff the bases y, v1, . . . , vk and u1, . . . , uk+1 have the same orientation, which
can be checked in P.

We extend now what we have discussed before to the case, when there are real
constants.

Let s, n, ` ∈ N and η ∈ R`. By intersecting the universal cell decomposition
of Rn+` for the parameters s, n + ` with the hyperplane H(η) := {(x, y) ∈ Rn+` |
y = η}, we get a cell decomposition of Rn × {η}, which we identify with Rn. More
specifically, each face F ∈ Fs+`,n induces a face F (η) of this decomposition, defined by
F (η)×{η} := F ∩H(η), provided this intersection is non-empty. Note that each F (η)
is defined by putting sign conditions on all polynomials of the form a0 +

∑`
j=1 bjηj +∑n

i=1 aiXi, where
∑n
i=0 |ai|+

∑`
j=1 |bj | ≤ 2s. We write Fs,n(η) := {F (η) | F ∈ Fs,n}

and call this the universal cell decomposition of Rn for the parameters s, n and vector
of constants η ∈ R`. Moreover, we write F(η) for the union of the Fs,n(η) over all
s, n ∈ N.
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Most of the results shown so far in this subsection extend to this more general
notion of universal cell decompositions in a natural way. For instance, Lemma 5.15
extends immediately to Fs,n(η). A face F (η) ∈ F(η) is encoded by F ∈ F , which is
itself encoded by a small rational point.

Lemma 5.17. An analogue of Lemma 5.16 holds, where the complexity classes
PH0

add, FP, and PH have to be replaced by PHadd, FP/poly, and PH/poly, respectively.
The proof is a straightforward extension of the proof of Lemma 5.16. For instance,

for treating the closure containement problem {(F ′, F ) ∈ F(η) × F(η) | F ′ ⊆ ∂F}
one first shows that this problem is in PHadd. Then, since this is a discrete problem,
one concludes that it is in the Boolean part of PHadd, and thus in PH/poly by [14] (cf.
Remark 4.12).

5.3.4. Euler characteristic. The Euler characteristic χ(X) is a fundamental
invariant of a topological space.

Let EULERadd denote the following problem: given an additive circuit C defining
a closed semi-linear set X, decide whether X is empty and if not, compute its Euler
characteristic χ(X). Hence only circuits defining closed semi-linear sets are considered
to be admissible inputs.

Theorem 5.18. The problem EULERadd is FP#Padd
add -complete with respect to

Turing reductions.
Proof. We first show that EULERadd is #Padd-hard. Note that the problem

CSATadd introduced in §1.4 trivially reduces to EULERadd by the definition of the
latter problem. Hence NPadd ⊆ PEULERadd

add . Therefore, by Theorem 5.1, we have
DIMadd(1) ∈ PEULERadd

add .
It is now easy to design a Turing reduction from #CSATadd to EULERadd. On

input an additive circuit C, first decide whether X is finite using oracle calls to
DIMadd(1), and hence to EULERadd. If no, return ∞, otherwise return χ(X). Since
#CSATadd is #Padd-complete by Theorem 3.6, this proves the hardness.

It remains to prove that EULERadd is contained in FP#Padd
add . By Lemma 5.14,

we may restrict our discussion to additive circuits defining a compact semi-linear
set X ⊆ Rn. Assume that X is given by a ternary additive circuit C of size s using
the real constants η1, . . . , η`. Then each of the leaf sets of C is a union of faces in
Fs,n(η). Hence the decomposition of X into the faces F ∈ Fs,n(η) contained in X is
a semi-linear cell complex. If ck(C) denotes the number of k-cells of this cell complex,
we have χ(X) =

∑n
k=0(−1)kck(C).

Lemma 5.16 and its extension Lemma 5.17 imply that on input C and F ∈ Fs,n(η),
the property F ∈ Φk(C) can be tested in DPHadd. Therefore, ck(C) can be computed
from C in D#·PHadd, which is contained in FP#P

add by Corollary 4.6. This shows that
EULERadd belongs to FP#P

add.

5.3.5. Betti numbers. The kth Betti number bk(X) of a space X is defined as
the dimension of the kth (singular) homology vector space Hk(X;Q) (k ∈ N). The
Betti numbers modulo a prime p are defined by replacing the coefficient field Q by
the finite field Fp.

For k ∈ N, we define BETTIadd(k) to be the problem of computing the kth
Betti number of a closed semi-linear set given by an additive circuit. Recall that for
k = 0 this is just the problem of counting the number of connected components. The
problem of computing the kth Betti number modulo a prime p shall be denoted by
BETTIadd(k,mod p).

The goal of this section is the proof of the following result, extending Theorem 5.3.
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Theorem 5.19. For any k ∈ N and any prime p, the problems BETTIadd(k) and
BETTIadd(k,mod p) are FPARadd-complete with respect to Turing reductions.

The next lemma provides the lower bound part of the proof of Theorem 5.19.
Lemma 5.20. BETTIadd(k) and BETTIadd(k,modp) are FPARadd-hard with

respect to Turing reductions, for any k ∈ N and any prime p.
Proof. We will exhibit a Turing reduction from #ccCSATadd to BETTIadd(k).

Without loss of generality, we assume k > 0.
The suspension S(X) of a topological space X is defined as the space obtained

from the cylinder X×[0, 1] over X by identifying the points in each of the sets X×{0}
and X × {1}. Essentially, this is a double cone with basis X. It is well known that,
if X 6= ∅, the Betti numbers of S(X) and X are related as follows (cf. [20, 33]):

bk+1(S(X)) =
{
bk(X) if k > 0
b0(X)− 1 if k = 0. (5.4)

If X ⊆ Rn is given by an additive circuit, then we will use the following alternative
definition for the suspension

S1(X) := (X × [0, 1]) ∪ (Rn × {0}) ∪ (Rn × {1}),

which, if X 6= ∅, is homotopy equivalent to S(X) and therefore has the same Betti
numbers. Also,

bk(S1(∅)) =
{

0 if k > 0
2 if k = 0. (5.5)

This alternative definition of suspension has the advantage that it is easy to transform
an additive circuit describing X to one describing S1(X). Note that S1(X) is closed
if X is closed. If we iterate this construction k + 1 times starting with X ⊆ Rn, we
get a set Sk+1(X) ⊆ Rn+k+1, which satisfies, by (5.4) and (5.5),

bk(Sk+1(X)) = b0(S1(X))− 1 =
{

0 if X 6= ∅
1 if X = ∅.

This allows one to decide whether X = ∅ by one query to BETTIadd(k). If X = ∅
then we return 0. Otherwise, note that, by (5.4), b0(X) = bk(Sk(X))+1 (since k > 0)
and we may return b0(X) after another query to BETTIadd(k). Strictly speaking, this
is a reduction from the restriction of #ccCSATadd to closed input sets X. However,
this is sufficient by Remark 5.10.

The same reduction can be made for the Betti numbers modulo a prime. The
hardness follows in this case by appealing to Remark 5.12.

Before proving the upper bound, we make a short digression on space efficient
linear algebra. It is well known [32] that the rank of an N × N integer matrix A,
whose entries have bit-size at most L, can be computed by uniform Boolean circuits
with depth (logL + logN)O(1) (and similary for matrices over Fp). Using Borodin’s
result [6], this can be translated to a polylogarithmic space computation of the rank
of A by a Turing machine.

Similarly as for graphs, we will understand by a succinct representation of an
integer matrix A = (aij) a Boolean circuit B computing the matrix entry aij from the
index pair (i, j) given in binary. From the above discussion we conclude the following
lemma.
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Lemma 5.21. The rank of an N × N integer matrix A given in succinct rep-
resentation by a Boolean circuit B can be computed by a Turing machine with space
polynomial in logN , the depth of B, and the log of the maximal bit-size of the entries
of A.

We finish now the proof of Theorem 5.19 by showing the following upper bound.
Proposition 5.22. BETTIadd(k) and BETTIadd(k,mod p) are both contained

in FPARadd.
Proof. 1. We first prove that BETTI0

add(k) is in FPSPACE. Let the closed semi-
linear set X ⊆ R

n be given by an additive circuit C′, whose only constants are 0
and 1. By Lemma 5.14, we may assume w.l.o.g. that X is compact. We transform C′
into a ternary additive circuit C of size s as in §5.3.3. Consider the cell decomposition
of X induced by C. It is clear that each of its leaf sets is a union of faces in Fs,n.
Lemma 5.15 implies that the decomposition of X into the faces F ∈ Fs,n contained
in X is a semi-linear cell complex.

We put Φk(C) := {F ∈ Fs,n | dimF = k, F ⊆ X} and ck(C) := |Φk(C)| for
k ∈ N. Let ρk(C) denote the rank of the incidence matrix Ik(C) : Φk+1(C)×Φk(C)→
Z, (F, F ′) 7→ [F, F ′]. In §5.3.1 it was shown that the kth Betti number bk(X) of X
can be expressed as bk(X) = ck(C)− ρk−1(C)− ρk(C).

Lemma 5.16 implies that on input C and F , the property F ∈ Φk(C) can be tested
in PH. Therefore, ck(C) can be computed from C in # · PH ⊆ FPSPACE.

Thus it remains to show that for each k ∈ N, the function C 7→ ρk(C) can be com-
puted in FPSPACE. It follows from Lemma 5.16(5) that Ik(C)(F, F ′) can be computed
from C, F, F ′ in FPSPACE. Hence, by Borodin’s result [6], a succinct representation B
of the incidence matrix Ik(C) having depth polynomial in s can be computed from
C in FPSPACE. By Lemma 5.21, we can compute the rank ρk(C) from B by a Tur-
ing machine in space polynomial in s. Altogether, we get a computation of ρk(C) in
FPSPACE.

2. We now prove that BETTIadd(k) belongs to FPARadd. Assume that the
compact semi-linear set X ⊆ Rn is given by a ternary additive circuit C of size s using
the real constants η1, . . . , η`. Then each of the leaf sets of C is a union of faces in
Fs,n(η). Hence the decomposition of X into the faces F ∈ Fs,n(η) contained in X
is a semi-linear cell complex. The rest of the argument is based on Lemma 5.17 and
similar as before.

3. The case of positive characteristic can be settled similarly.
Corollary 5.23. BETTIadd(k) Turing reduces to EULERadd for some k ∈ N

iff PSPACE ⊆ P#P/poly. It does so with a constant-free reduction iff PSPACE ⊆ P#P.
Proof. This follows from Theorem 5.18, Theorem 5.19, and Corollary 4.11.

5.3.6. Some completeness results in the Turing model. The results of §4
and §5.1–§5.3 can be combined to show completeness results for natural geometric
problems in the discrete setting.

An additive circuit C whose only constants are 0 and 1 can be encoded in {0, 1}∞.
Thus, one may consider discrete versions EULER0

add and BETTI0
add(k), which are

defined as EULERadd and BETTIadd(k) respectively, but restricted to constant-free
circuits. Note that, since BP((Π3

add)0) = Π3 (cf. [14]), a corresponding version of
Lemma 5.13 holds, i.e., closedness and compactness of a set given by a constant-free
additive circuit can be decided in P#P.

For these discrete problems the following results hold.
Corollary 5.24. The problems EULER0

add and BETTI0
add(k), k ∈ N, are com-

plete with respect to Turing reductions in FP#P and FPSPACE, respectively. A similar
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statement holds for the computation of Betti numbers modulo a prime.
Proof. This could be shown by checking in detail the proofs of Theorem 5.18 and

Theorem 5.19. More elegantly, we can derive Corollary 5.24 from general principles
using the concept of Boolean parts. We then only need to check that the reductions
in the proofs of Theorem 3.6, Theorem 5.18, and Theorem 5.19 are constant-free. For
instance, EULER0

add ∈ BP((FP0
add)#P0

add) = FP#P according to Remark 4.12. For
the hardness note that

(FP0
add)#P0

add = (FP0
add)#CSAT0

add = (FP0
add)EULER0

add .

By taking Boolean parts und using Remark 4.12, we conclude FP#P = FPEULER0
add .

The statement about BETTI0
add(k) is proved similarly.

6. Summary. To facilitate the orientation of the reader, we have summarized
the results of this paper in Figure 6.1. There, an arrow denotes an inclusion, problems
in square brackets are Turing-complete for the class at their left, and problems in curly
brackets are many-one-complete for that class. The problems appearing in the figure
are defined in the list below. We note that the completeness of SAT, CSATadd, TSPR,
PMR, QBF, and DTRAO was already known.
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NPadd = PNP
add [SAT,TSPR,PMR] {CSATadd,DIMadd(d)}

D#Padd [#SAT,#TSPR,#PMR]

#Padd {#CSATadd}

FP
#Padd
add = FP

D#Padd
add = FP#P

add

[EULERadd]

FPARadd = FPPSPACE
add [#ccCSATadd,BETTIadd(k)]

PARadd = PPSPACE
add {DTRAO}

[QBF,REACHadd]

Fig. 6.1. Survey of main results.

SAT (Satisfiability) Given a propositional formula ϕ, decide whether there is an assign-
ment of Boolean values for the variables satisfying ϕ.

#SAT (Counting Satisfiability) Given ϕ as in SAT, count the number of satisfying assign-
ments.

QBF (Quantified Boolean Formulas) Given a quantified Boolean formula, decide whether
it is a tautology.

DTRAO (Digital Theory of the Reals with Addition and Order) Given a sentence in the
theory of the reals with addition and order, all of whose variables satisfy a constraint
of the form x = 0 ∨ x = 1, decide whether it is a tautology.



32 P. BÜRGISSER AND F. CUCKER

TSPR (Traveling Salesman) Given a complete graph G with real weights on the edges and
w ∈ R, decide whether there is a Hamilton circuit in G with weight at most w.
(The weight of a subgraph is the sum of the weights of its edges.)

#TSPR (Counting Traveling Salesman) Given G and w ∈ R as in TSPR, count the number
of Hamilton circuits in G with weight at most w.

PMR (Weighted Perfect Matching) Given a bipartite graph G with real weights on the
edges and w ∈ R, decide whether there is a perfect matching in G with weight at
most w.

#PMR (Counting Weighted Perfect Matchings) Given G and w ∈ R as in PMR, count the
number of perfect matchings in G with weight at most w.

CSATadd (Circuit Satisfiability) Decide whether the semi-linear set given by an additive
circuit is non-empty.

DIMadd(d) (Dimension) Given an additive circuit and d ∈ N, decide whether the dimen-
sion of the semi-linear set defined by the circuit is at least d.

REACHadd (Reachability) Given an additive circuit defining a semi-linear set X and two
points s, t ∈ X, decide whether s and t are in the same connected component of X.

#CSATadd (Point Counting) Given an additive circuit defining a semi-linear set X, com-
pute the number of points in X.

#ccCSATadd (Counting Connected Components) Given an additive circuit defining a semi-
linear set X, compute the number of connected components of X.

EULERadd (Euler Characteristic) Given an additive circuit defining a closed semi-linear
set X, decide whether X is empty and if not, compute its Euler characteristic.

BETTIadd(k) (Betti Numbers) Given an additive circuit defining a closed semi-linear
set X, compute the kth Betti number of X.

7. Open questions. We present some selected open problems.
Problem 7.1. In this paper, we prove completeness with respect to Turing

reductions. Do we also have completeness with respect to parsimonious reductions?
For instance, how about the completeness of #TSPR in D#Padd?

Problem 7.2. What is the complexity to deciding connectedness of a semi-
linear set given by an additive circuit?

Problem 7.3. In this paper we proved that computing the torsion-free part of
the homology of semi-linear sets is FPARadd-complete. Is the complexity of computing
the torsion part of this homology also FPARadd-complete?
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[2] J. L. Balcázar, J. D. az, and J. Gabarró, Structural Complexity I, Springer Verlag, 1988.
[3] M. Ben-Or, Lower bounds for algebraic computation trees, in Proc. 15th ACM STOC, Boston,

1983, pp. 80–86.
[4] L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and Real Computation, Springer,

1998.
[5] L. Blum, M. Shub, and S. Smale, On a theory of computation and complexity over the real

numbers, Bull. Amer. Math. Soc., 21 (1989), pp. 1–46.
[6] A. Borodin, On relating time and space to size and depth, SIAM J. Comp., 6 (1977), pp. 733–

744.
[7] P. Bürgisser, Completeness and Reduction in Algebraic Complexity Theory, vol. 7 of Algo-

rithms and Computation in Mathematics, Springer Verlag, 2000.
[8] , Cook’s versus Valiant’s hypothesis, Theoret. Comp. Sci., 235 (2000), pp. 71–88.
[9] , Lower bounds and real algebraic geometry, in Algorithmic and Quantitative Real Alge-

braic Geometry, S. Basu and L. Gonzales-Vega, eds., vol. 60 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, AMS, 2003.



COUNTING COMPLEXITY CLASSES 33

[10] P. Bürgisser, M. Clausen, and M. Shokrollahi, Algebraic Complexity Theory, vol. 315 of
Grundlehren der mathematischen Wissenschaften, Springer Verlag, 1997.

[11] P. Bürgisser and F. Cucker, Counting complexity classes for numeric computations II:
Algebraic and semialgebraic sets. In preparation.

[12] F. Cucker and D. Grigoriev, On the power of real Turing machines over binary inputs,
SIAM J. Comp., 26 (1997), pp. 243–254.

[13] F. Cucker, M. Karpinski, P. Koiran, T. Lickteig, and K. Werther, On real Turing
machines that toss coins, in Proc. 27th ACM STOC, Las Vegas, 1995, pp. 335–342.

[14] F. Cucker and P. Koiran, Computing over the reals with addition and order: Higher com-
plexity classes, J. Compl., 11 (1995), pp. 358–376.

[15] F. Cucker and M. Matamala, On digital nondeterminism, Mathematical Systems Theory,
29 (1996), pp. 635–647.

[16] H. Fournier and P. Koiran, Are lower bounds easier over the reals?, in Proc. 30th ACM
STOC, 1998, pp. 507–513.

[17] , Lower bounds are not easier over the reals: Inside PH, in Proc. ICALP 2000, LNCS
1853, 2000, pp. 832–843.

[18] H. Galperin and A. Wigderson, Succinct representation of graphs, Information and Control,
56 (1983), pp. 183–198.

[19] J. v. z. Gathen, Parallel arithmetic computations: a survey, in Proc. 12th Symp. Math. Found.
Comput. Sci., Bratislava, no. 233 in LNCS, 1986, pp. 93–112.

[20] A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.
[21] N. Karmarkar, A new polynomial time algorithm for linear programming, Combinatorica, 4

(1984), pp. 373–395.
[22] L. Khachijan, A polynomial algorithm in linear programming, Dokl. Akad. Nauk SSSR, 244

(1979), pp. 1093–1096. (In Russian.) English translation in Soviet Math. Dokl. 20:191-
194,1979.

[23] K.-I. Ko, Complexity of Real Functions, Birkhäuser, 1991.
[24] P. Koiran, Computing over the reals with addition and order, Theoret. Comp. Sci., 133 (1994),

pp. 35–47.
[25] , A weak version of the Blum, Shub & Smale model, J. Comp. Syst. Sci., 54 (1997),

pp. 177–189.
[26] H. Lewis and C. Papadimitriou, Symmetric space-bounded computation, Theoret. Comp. Sci.,

19 (1982), pp. 161–187.
[27] K. Meer, Counting problems over the reals, Theoret. Comp. Sci., 242 (2000), pp. 41–58.
[28] S. Meiser, Point location in arrangements of hyperplanes, Information and Computation, 106

(1993), pp. 286–303.
[29] F. Meyer auf der Heide, A polynomial linear search algorithm for the n-dimensional knap-

sack problem, J. ACM, 31 (1984), pp. 668–676.
[30] , Fast algorithms for n-dimensional restrictions of hard problems, J. ACM, 35 (1988),

pp. 740–747.
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