Acta Math., 193 (2004), 73-104
© 2004 by Institut Mittag-Lefller. All rights reserved

Counting congruence subgroups

by
DORIAN GOLDFELD ALEXANDER LUBOTZKY and LASZLO PYBER
Columbia University Hebrew University Hungarian Academy of Sciences
New York, U.S.A. Jerusalem, Israel Budapest, Hungary

0. Introduction

Let k be an algebraic number field, O its ring of integers, S a finite set of valuations of k

(containing all the archimedean ones), and Os={z€k|v(z)>0 for all v¢S}. Let G be

a semisimple, simply-connected, connected algebraic group defined over k with a fixed

embedding into GL4. Let I'=G(0Ogs)=GNGL4(Og) be the corresponding S-arithmetic

group. We assume that I' is an infinite group (equivalently, [],.s G(k.) is not compact).
For every non-zero ideal I of Og let

I'(I)=Ker(I' = GL4(Os/I)).

A subgroup of T is called a congruence subgroup if it contains I'(I) for some I.

The topic of counting congruence subgroups has a long history. Classically, con-
gruence subgroups of the modular group were counted as a function of the genus of
the associated Riemann surface. It was conjectured by Rademacher that there are only
finitely many congruence subgroups of SLa(Z) of genus zero. Petersson [Pe] proved that
the number of all subgroups of index n and fixed genus goes to infinity exponentially as
n—»00. Dennin [De] proved that there are only finitely many congruence subgroups of
SLy(Z) of given fixed genus and solved Rademacher’s conjecture. A quantitative result
was proved by Thompson [T] and Cox-Parry [CP] who showed (among other interesting
results) that

lim genus(A) _ i,
[SL2(Z):A] 12
where the limit goes over congruence subgroups A of SLy(Z) with index going to oco. It
does not seem possible, however, to accurately count all congruence subgroups of index
at most r in SLa(Z) by using the theory of Riemann surfaces of fixed genus.
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Following [Lu], we count congruence subgroups as a function of the index. For n>0,
define
Cn(I') = #{congruence subgroups of I of index at most n}.

THEOREM 1. There exist two positive real numbers a_=a_(I') and a,=0 () such

that for all sufficiently large positive integers n,

n(log n/loglogn)a. < Cn (F) < n(log n/loglogn)ay .

This theorem is proved in [Lu], although the proof of the lower bound presented there
requires the prime number theorem on arithmetic progressions in an interval where its
validity depends on the GRH (generalized Riemann hypothesis for Dirichlet L-functions).
By a slight modification of the proof and by appealing to a theorem of Linnik [Lil], {Li2]
on the least prime in an arithmetic progression, the proof can be made unconditional.
Such an approach gives, however, poor estimates for the constants.

Following [Lu] we define

log C,(T)

— log C,,(T) .
—s-n\/ = lim —=—"2
i A)

()= lim

n—oo (n)

and a_(T")

where \(n)=(logn)?/loglogn.

It is not difficult to see that a, and a_ are independent both of the choice of the
representation of G as a matrix group and of the choice of S. Hence a4 depend only on
G and k. The question whether o, (I')=c_(T") and the challenge to evaluate them for
'=SL2(Z) and other groups were presented in [Lu]. Here we prove:

THEOREM 2. We have o, (SLy(Z))=a_(SLa(Z))=1(3-2v/2)=0.0428932....

The proof of the lower bound in Theorem 2 is based on the Bombieri-Vinogradov
theorem [Bol, [Dal, [V], i.e., the Riemann hypothesis on the average. The upper bound,
on the other hand, is proved by first reducing the problem to a counting problem for
subgroups of abelian groups and then solving that extremal counting problem.

In the case of a number field, we will, in fact, show a more remarkable result: the
answer is independent of @! Here, we require the GRH (generalized Riemann hypothesis)
[W] for Hecke and Artin L-functions, which states that all non-trivial zeros of such L-

functions lie on the critical line.

THEOREM 3. Let k be a number field with Ting of integers O. Let S be a finite set
of primes, and Og as above. Assume the GRH for k and all cyclotomic extensions k((;)

with | a rational prime and (; a primitive l-th root of unity. Then

. (SL2(0s)) = a_(SL2(0s)) = 1 (3—2v2).
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The GRH is needed only for establishing the lower bound. It can be dropped in
many cases by appealing to a theorem of Murty and Murty [MM] which generalizes the
Bombieri-Vinogradov theorem cited earlier.

THEOREM 4. Theorem 3 holds unconditionally if the field k is contained in a Galois
extension K such that either

(a) g=Gal(K/Q) has an abelian subgroup of index at most 4 (in particular, if k is
an abelian extension), or

(b) [K:Q]<42.

The proof of the upper bound is very different from the proof of the lower bound.
For a group A, we denote by s,.(A) the number of subgroups of A of index at most r.
A somewhat involved reduction process is applied to show that the problem of finding
the upper bound is actually equivalent to an extremal counting problem of subgroups of
finite abelian groups (see §5) which is given in Theorem 5. A sharp upper bound for that
counting problem follows from the case R=1 of the following theorem.

THEOREM 5. Let R>1 be a real number and let d be a fized integer 21. Suppose
that A=Cy, xCyy%...xCy, is an abelian group such that the orders z1,x2,...,z¢ of its
cyclic factors do not repeat more than d times each. Suppose that r|A|R<n for some
postitive integers r and n. Then as n tends to infinity, we have

sr(A) K pOrHeNitn)

where v=(/R(R+1) —R)2/4R2.

In an earlier version of this paper, Theorem 5 was proved in a similar manner, but
only for R=1. The more general case was proved in an early version of [LuN]. We thank
the authors of [LuN] for allowing us to include the general version here.

The above results suggest that for every Chevalley group scheme G, the upper
and lower limiting constants a4 (G(Og)) are equal to each other, and depend only on
G and not on 0. In fact, we can make a precise conjecture, for which we need to
introduce some additional notation. Let G be a Chevalley group scheme of dimension
d=dim G and rank {=rk(G). Let »=|®"| denote the number of positive roots in the
root system of G, and let R=R(G)=(d—1)/2l=3/l. We see that if G is of type A; (resp.
B,,Ci, Dy, Gs, Fy, Eg, E7, Eg) then R:%(l+1) (resp. 1,1,1-1,3,6,6,9,15).

CONJECTURE. Let k, O and S be as in Theorem 3, and suppose that G is a simple
Chevalley group scheme. Then

2
a (G(0s)) =a_(G(Os)) = (v R(}Z—;? -R) '
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The conjecture reflects the belief that “most” subgroups of H=G(Z/mZ) lie between
the Borel subgroup B of H and the unipotent radical of B. We prove here the lower
bound of the general conjecture (under the same assumptions as in Theorems 3 and 4).
In our earlier version this was done only for Galois extensions, but it was observed in an
earlier version of [LuN] that a small modification of the argument works in the general
case. We thank the authors of [LuN] for allowing us to make these small modifications
here.

This paper gives a complete proof of the upper bound for the case of SL2, based on
the known detailed classification of subgroups of SLy(F,) for finite fields F, of order g.
We also give a partial result towards the upper bound in the general case. The upper
bound is proved in full for every field k in [LuN]. The reader is also referred to a more
general version there when G is not assumed to be split.

THEOREM 6. Let k, @ and S be as in Theorem 3. Let G be a simple Chevalley
group scheme of dimension d and rank I, and R=R(G)=(d—1)/2l. Then
(a) assuming the GRH or the assumptions of Theorem 4,

(VREB+D) -R’ 1
@-(G(0s)) > 4R? ~ 16R?’

(b) there exists an absolute constant C such that

(VR(R+1) —R)’
4R? '

a.(G(0s))<C

Remark. As the upper bound is proved in full in [LuN] (i.e., C=1 in part (b)), we
omit in this paper the proof of part (b) of Theorem 6.

COROLLARY 7. There exists an absolute constant C such that for d=2,3, ...,

1 1
(1-0(1)) 775 S @-(SLa(Z)) <+ (SLa(Z)) < C -
This greatly improves the upper bound o, (SL4(Z))< 2d? implicit in [Lu] and settles
a question asked there.

As a byproduct of the proof of Theorem 5 in §6 we obtain the following result.

COROLLARY 8. The subgroup growth of SLq4(Zp) is at least nf, i.e.,

o log $,,(SLa(Z;)) S
n—oo logn
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where

c=(3-2v2)d?*-2(2-v2),
and where Z, denotes the ring of p-adic integers.

The counting techniques in this paper can be applied to solve a novel extremal
problem in multiplicative number theory involving the greatest common divisors of pairs
(p—1,p'—1), where p and p’ are prime numbers. The solution of this problem does not
appear amenable to the standard techniques used in analytic number theory. Considering
this problem first was crucial for obtaining Theorem 5.

THEOREM 9. For n—oo0, let

M(n) =max{ H ged(p—1,p’ —1) | P is a set of distinct primes where H pSn}.
»,p'EP pEP
Then we have
logM(n) 1

lim —2 ) = =
noeo An) 4

where A(n)=(logn)?/loglogn.

The paper is organized as follows.

In §1, we present some required preliminaries and notation.

In §2, we introduce the notion of a Bombieri set, which is the crucial ingredient
needed in the proof of the lower bounds. We then use it in §3 and §4 to prove the lower
bounds of Theorems 2, 3, 4 and 6. We then turn to the proof of the upper bounds.
In §5, we show how the counting problem of congruence subgroups in SLy(Z) can be
completely reduced to an extremal counting problem of subgroups of finite abelian groups;
the problem is actually, as one may expect, a number-theoretic extremal problem—see
86 and §7, where this extremal problem is solved. The upper bounds of Theorems 2, 3,
and 4 are then deduced in §8. Finally, in §9 we prove Theorem 9.

The results of this paper are announced in [GLNP].

The authors would like to thank J.-P. Serre and the referees for the many comments
which helped to improve the exposition of this paper.

1. Preliminaries and notation

Throughout this paper we let

_ logn _ (logn)?
in)= loglogn and ()= loglogn’
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All logarithms in this paper are to base e. If f and g are functions of n, we will say that
f is small with respect to g if

o 08 f(n)
n—oo log g(n)

We say that f is small if f is small with respect to n{™). Note that if f is small, then
multiplying C,(T') by f will have no effect on the estimates of o, (T") or a_(I'). We may,
and we will, ignore factors which are small.

Note also that if £(n) is a function of n (bounded away from 0) which is small with
respect to n, i.e., loge(n)=o(logn), then

o 10g Cn.s(n) (F)

nll)n;o —\m) =a, () (1.1)
and
. lOg Cne(n) (F) _
n%—m——a_(F). (1.2)

The proof of (1.1) follows immediately from the inequalities

o 10gCu(T) _ — 1ogCre(n)(T)
O TNm ST am

 Tm log Cre(n)(I') A(ne(n))

n—oo  A(ne(n)) A(n) <a;(T)1=a. ().

Here, we have used the fact that

= Alne(n)

n—oo )\(n) =1

which is an immediate consequence of the assumption that ¢(n) is small with respect
to n. A similar argument proves (1.2).
It follows that we can, and we will sometimes indeed, enlarge n a bit when evaluating
Cr(T), again without influencing o, or a_. Similar remarks apply if we divide n by e(n).
The following lemma is proved in [Lu] in a slightly weaker form, and in its current
form is proved in [LuS, Proposition 5.1.1}.

LEMMA 1.1. (“Level versus index”) Let I" be as before. Then there exists a constant
c¢>0 such that if H is a congruence subgroup of T of index at most n, then H contains

I(m) for some m<cn, where meZ, and by I'(m) we mean I'(mQOg).



COUNTING CONGRUENCE SUBGROUPS 79

COROLLARY 1.2. Let v,(T)=_r _1 $n(G(Os/mOs)), where for a group H, s,(H)
denotes the number of subgroups of H of index at most n. Then we have

— log v, (T . logy,(T
a+(r):nan§o_g)\ZT§) and o (I')= lim _g)\%z%
n—0o0

Proof. By Lemma 1.1, C,,(T')< 7 (T) for some c¢>0. It is also clear that v,(I")<
nCy,(T). Since c is small with respect to n, Corollary 1.2 follows by arguments of the
type we have given above. |

The number of elements in a finite set X is denoted by #X or |X|. The set of
subgroups of a group G is denoted by Sub(G).

2. Bombieri sets

We introduce some additional notation. Let a and ¢ be relatively prime integers with
¢>0. For >0, let P(z;q,a) be the set of primes p with p<z and p=a (mod ¢). For
a=1, we set P(z,q)=P(x;q,1). We also define

Haiga)= Y, logp.

pEP(z;9,a)

If f(z) and g(x) are arbitrary functions of a real variable x, we say that f(z)~g(x)

w 1@

oo g(z)

as r—oo if
=1.

Define the error term
E(z;q,a)=9%(x;q,a)— ad
b 8 bR 51 ¢(q)7
where ¢(q) is Euler’s function. Then Bombieri proved the following deep theorem
[Bo], [Dal.

THEOREM 2.1. (Bombieri) Let A>0 be fized. Then there exists a constant c(A)>0

such that

T
E max max |E(y;q,a)| <c(A) =75
Ve oy VSE (@9=1 (log z)

for £>3.

This theorem shows that the error terms max(, 41 E(7;q,a) behave as if they
satisfy the Riemann hypothesis in an averaged sense.
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Definition 2.2. Let £>>3. A Bombieri prime (relative to z) is a prime ¢<+/z such
that the set P(z, ¢) of primes p<z with p=1 (mod q) satisfies

z

max |[E(y;q, )| € ———.
Jex P VIS G tog 27
We say that P(z,q) is a Bombieri set (relative to x).

Remark. In all the applications in this paper, we do not really need g to be prime,
though it makes the calculations somewhat easier. We could work with ¢ being a
“Bombieri number”.

LEMMA 2.3. Fiz 0<9<3. Then for z sufficiently large, there exists at least one
Bombieri prime q (relative to x) in the interval

e

logz Sgsat

Proof. Assume that

xz
I;lsa‘;:( ‘E(y, q, 1)| > ¢(q)(log .’1:)2

for all primes 2¢/log z<q<z¢, i.e., that there are no such Bombieri primes in the interval.
In view of the trivial inequality, ¢(¢)=g—1<gq, it immediately follows that

1 loglo
ze/log z<g<ze SF g z¢/log x<q<z°q ellog

say, for sufficiently large z. This follows from the well-known asymptotic formula [Ld]
for the partial sum of the reciprocal of the primes

1 1
E :_: b L
24 loglog Y + +O<logY)

as Y—=o00. Here b is an absolute constant. This contradicts Theorem 2.1 with A>8

provided z is sufficiently large. a

LEMMA 2.4. Let P(z,q) be a Bombieri set. Then for = sufficiently large,

I T

#P(@0- H@logz| 2@ g2
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Proof. For a real number 6, define |#] to be the largest integer ¢ such that t<68. We
have

¥(n;q,1)—Fd(n—1;q,1)
Z Z logn

pEP(z,q) n=2

1 ¥(z; g, 1)
—Zﬂ(" a1 (logn log(n+1))+1°g(txj+l)

log(1+1/n)  ¥(z;q,1) . 1 _ 1
_219( n;q, lognlog(n+1)+ log z (734, 1) logz log(|z]+1) /"

It easily follows that

Iz q,1 1 1 1
1- 258 — Y ST S—
Z log z ‘ Zﬂ g1 n(logn)? o ’q’l)(logac log(x—l-l))

peP(x,q)

By the property of a Bombieri set, we have the estimate

n

5@ S

#(q)(log z)?

'ﬂ(n; q,1)—

for n<z. Since

(102 z log(alc—l- 1)) - 1:;)?0(1:(;@1) - O(x(lolg z)? ) ’

the second expression on the right-hand side of the above equation is very small and can

be ignored. It remains to estimate the sum

Z ¥(n;g,1 log llog )

This sum can be broken into two parts, the first of which corresponds to n<z/(logz)?,
which is easily seen to be very small, and so can be ignored. We estimate

1 n 1
Z ﬁ(n;q,l)m= Z #(q) n(logn)?

2/(log 2)*<n<z =/ (ogp<n<a®

+O< > gaes? s

2/(1og 2y <<z
1 z
= +0( )
2/(108%;Sn<z #(q)(logn)? 7\ 4(g)(log )?

3z
= 2 ¢(q)(log )2’
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which holds for z sufficiently large and where the constant % is not optimal. Hence

2 k)
perey 08T ¢(q)(log z)
say. Since
z x
¥z;q,1)— < )
54150 < gy
Lemma 2.4 immediately follows. |

3. Proof of the lower bound over Q

In this section we consider the case of k=Q and O=2Z.

Fix a real number 0< gg < % It follows from Lemma 2.3 that for £— oo there exists
a real number ¢ which converges to gy, and a prime number g~z? such that P(z,q) is a
Bombieri set.

Define

P=Hp.

pEP(z,q)

It is clear from the definition of a Bombieri set that

log P ~ L _gle

#(q)
and from Lemma 2.4 that

z zl—e

L=#P(o9)~ gtz ~ Togz

Consider T'(P)=ker(G(Z)—G(Z/PZ)), which is of index at most P4™ in I'. Note
that for every subgroup H/T'(P) in I'/T'(P) there corresponds a subgroup H in I' of index
at most P4m& in T,

By strong approximation

I/T(P)=G(Z/PZ)= [[ G(F,).

pEP(x,q)

Let B(p) denote the Borel subgroup in G(F,). Then

log #B(p) ~ 1 (dim G+1k(G)) log p,
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where rk(G) denotes the rank of G as an algebraic group. But
log #G(Fp) ~ dim(G) log p.
It immediately follows that (for p—o0)
log [G(Fp): B(p)] ~ % (dim G—1k(G)) log p,
and, therefore,
log [G(Z/PZ): B(P)] ~ 3 (dim G—rk(G)) log P,
where B(P)<G(Z/PZ) is
B(P)= H B(Fp).

pEP(x,q)
Now B(p) is mapped onto (F;‘)rk(G) and, hence, is also mapped onto (Z/qZ)™(¢)
since #F=p—1 and p=1 (mod g). So B(P) is mapped onto

(Z/qZ)™L,
where 1
x z
L=#P(z,q)~ &(q)logx ~ logz’

For a real number 6, define [] to be the smallest integer ¢t such that 6<t. Let
0<o<1.

We will now use Proposition 6.1, a basic result on counting subspaces of finite vector
spaces. It follows that B(P) has at least

qa(l—a) rk(G)2L240O(rk(@) L)
subgroups of index equal to
1= gl [G(2/PZ): B(P)].
Hence, for x— o0,

log #{subgroups} = (¢(1—0) 1k(G)2L*+O(tk(G) L)) log g
2—2p

~0o(1—0)1k(G)? —

(log 22 plog z,

while

logt=[ork(G)L]log g+ 5 (dim G—1k(G))log P

1-¢

Nrk(G)af

. 1—
o plogz+1(dimG—1k(G))z" ~*

= (ootk(G)+3(dim G —1k(G)))z' 2



84 D. GOLDFELD, A. LUBOTZKY AND L. PYBER

and
loglogt~(1—p)log.
It is clear from the estimate for log: above that given any index n>>0 we can choose x
such that log:~logn. We compute
log #{subgroups} o(1-0)1k(G)%pz*~2¢/log z
(log(index))?/log log(index) ((cotk(G) +3(dim G—1k(G))) ml—é’)z/(l —o)logz
a(1-0)o(1-0)rk(G)?
((co—13)1k(G)+1 dim G)2

as T—00.
We may rewrite
o(1—a)o(1—p) tk(G)? _ o(l—o)o(l—p)
(((fg—%)rk(G)-i-%dimG)2 (00+R)?

¥

where

dim G—rk(G)
21k(G)
Now, for fixed R, it is enough to choose ¢ and g so that

o(1-0)e(1—0)
(o0o+R)?

R=

is maximized. This occurs when

p=0=+/R(R+1)—R,
in which case we get

o(1-0)e(1-0) _ (VREFT) ~R)"

(co+R)? 4R?
Actually, we choose go to be y/R(R+1) —R. Then we can take g to be asymptotic
to go as z tends to infinity. Note that

(vVR(R+1) —R)? _ 1
4R? 16R?

holds for all R>0. This follows from the easy inequality /R(R+1) —Rg%. It is also
straightforward to see that \/R(R+1) —R converges to 2 as R—oo. Hence

(VR(R+1)-R)® 1
4R? 16R2’

In the special case when R=1, we obtain the lower bound of Theorem 2. For a

simple Chevalley group scheme over Q, this gives the lower bound in Theorem 6.
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4. Proof of the lower bound for a general number field

To prove the lower bounds over a general number field we need an extension of the
Bombieri-Vinogradov theorem to these fields, as was obtained by Murty and Murty [MM].

Let us first fix some notation:

Let k be a finite extension of degree f over Q, K its Galois closure of degree d,
g=Gal(K/Q), and Oy the ring of integers in k. For a rational prime q and z€R, we will
denote by ﬁK(x,q) the set of rational primes p=1 (mod ¢), where p splits completely
in K and p<z. Let

peﬁK(zﬂ])

and .
Ex(z,q) —VK(-'L'»Q)_W-

We shall show that the following theorems follow from Murty and Murty [MM].
THEOREM 4.1. Let K be a fized finite Galois extension of Q. Assume the GRH

(generalized Riemann hypothesis) for K and all cyclotomic extensions K({;) with | a

rational prime and {; a primitive l-th root of unity. Then for every 0<g<% there exists

a number X=X(K, p) (X depends on K and g) such that if t>X, one can find a rational

prime q satisfying

0
log x

(a)

<g<zy

d'¢(q)logz |~ d'¢(q)(log z)?’

(b) 7hi‘K("Ea q) -

- xr
() 5 Bx v OIS gy tog e

where d'=[K:Q]/t and t denotes the degree of the intersection of K and the cyclotomic
field Q(¢q) over Q.

Remark. In fact, the GRH gives a stronger result than what is stated in Theorem 4.1.
For example, it can be shown that for every prime g<z'/2 the error terms in parts (b)
and (c) take the form O(z'/2log(gz)) (see [MMS] for a more precise bound). Theorem 4.1
is stated in this special form because it can be proved unconditionally in some cases.

THEOREM 4.2. Theorem 4.1 can be proved unconditionally for K if either

(a) g=Gal(K/Q) has an abelian subgroup of index at most 4 (this is true, for ex-
ample, if k is an abelian extension), or

(b) [K:Q]<42.
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THEOREM 4.3. Theorem 4.1 is valid unconditionally for every K with the additional
assumption that 0<p<1/n, where n is the marimum of 2 and d*—2, and where d* is
the index of the largest possible abelian subgroup of g=Gal(K/Q). In particular, we may
take n=d*—2 if d*>4, and n=2 if d*<4.

Proof of Theorems 4.1-4.3. For any £>0 and A>0, under the assumptions of The-
orem 4.1 or Theorem 4.2 (a), Murty and Murty [MM] prove the following Bombieri

E max max

q<x1/2_£(a,q)=1 y<z
=

theorem: 1
z
Wc(y,q,a)—l—G—l %ﬂ'(y)‘«@;}v- (4.1)

Here C denotes a conjugacy class in g, w(y):ngy 1,

ﬂ-C(Iaq,a): Z 1

pP<Z
(p.K/Q)=C
p=a (mod q)
p unramified in K

and (p, K/Q) denotes the Artin symbol.

In fact, under the assumption of the GRH, equation (4.1) holds, but without assum-
ing the GRH they showed that (4.1) holds when the sum is over g<z'/17¢, where 7 is
defined as follows: Let

d*:m}}nmﬁx [g: H]|w(1). (4.2)

The minimum here is over all subgroups H of Gal{KX/Q) satisfying
(i) HNC#w;
(ii) for every irreducible character w of H and any non-trivial Dirichlet character x,
the Artin L-series L(s, w®Yx) is entire.
Then the maximum in (4.2) is over the irreducible characters of such H’s.
Now
d*-2, ifd*>4,
" { 2,  ifd*<4.

We need their result for the special case when C is the identity conjugacy class.
In this case, |C|/|g|=1/d’ and 7c(y,q,1)=7«(y, q). So for proving Theorem 4.3 we can
take for H an abelian subgroup of smallest index, and then H satisfies assumption (i)
and (ii). (Recall that abelian groups satisfy (AC)—the Artin conjecture, i.e., L(s, w®Xx)
are entire—see [H, §3]).

For Theorem 4.2 {a), again take H to be the abelian subgroup of index at most 4.
It satisfies (i) and (ii), and this time 5=2.
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For Theorem 4.2 (b), going case by case over all possible numbers d<42, one can
deduce by elementary group-theoretic arguments that every finite group g of order d <42
has an abelian subgroup of index at most 4, unless d=24 and g is isomorphic to the
symmetric group Sy. But for this group, Artin [H, §3] proved Artin’s conjecture in 1925.
Moreover, every irreducible character of Sy is of degree at most 4. Thus for g=S54 we
have d*=4, and so n=2.

The proofs of Theorems 4.1-4.3 follow now in the same manner as in §2. O

~ Using Theorems 4.1-4.3, we can now prove the lower bounds of Theorems 3 and 4
just as in §3. Note that for every prime pE'ISK(a:, q) we may take an ideal 7=n(p) in Ok
with [{Og:7]=p and 7NZ=pZ. Let

P= H 7(p).

PEPK (,q)
Then, since z— 00, we may choose g and g (using Theorem 4.1) so that

xT €T

dplg)

1-e I z zl—e
=[P, q)l~ do(q)log = ~ dlogzr

log {O: P] ~

and

co/py= I co/mm)= [l c@/wo).

PEPK (,q) pEPL(2,q)

We can now take for every rational prime p673k (x,q), the Borel subgroup B(p) as in §3
and define

B(P)= [] B(»).

PEPx(2,q)

Then B(P) is mapped onto (Z/qZ)™(%)L and
log [G(O/P): B(P)] ~ 1(dim G—1k(G)) log [O: P].

Thus, by a computation similar to the one in §3 (note that the d’s cancel in this compu-

tation}, we can show that

o (CO) > (vVR(R+1) —R)z_

4R

The lower bounds of Theorems 3, 4 and 6 are now also proved. We now turn to the proof
of the upper bounds.
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5. From SL; to abelian groups

In this section we show how to reduce the estimation of a,(SL2(Z)) to a problem on
abelian groups.

Corollary 1.2 shows us that in order to give an upper bound on ., (T} it suffices to
bound 5,(G(Z/mZ)) when m<n. Our first goal is to show that we can further assume
that m is a product of different primes. To this end let M =[] p, where p runs through
all the primes dividing m.

We have an exact sequence

1— K —G(Z/mZ) = G(Z/Z) — 1,

where K is a nilpotent group of rank at most dim GG. Here, the rank of a finite group G
is defined to be the smallest integer r such that every subgroup of G is generated by r
elements (see [LuS, Window 5, §2]).

LEMMA 5.1. Let 1-K—-UL—1 be an eract sequence of finite groups, where
K is o solvable group of derived length | and of rank at most r. Then the number of

supplements to K in U (i.e., of subgroups H of U for which w(H)=L) is bounded by
|U|3r2+lr.

Proof. See [LuS, Corollary 1.3.5]. O

COROLLARY 5.2. 5,(G(Z/mZ))<m/f (dimG)loglogms ((Z /7)), where f'(dim G)
depends only on dimG.

Proof. Let H be a subgroup of index at most n in G(Z/mZ) and let L=n(H)<
G(Z/mZ). Thus L is of index at most n in G(Z/mZ). Let U=7"1(L), so every subgroup
H of G(Z/mZ) with n(H)=L is a subgroup of U. Given L (and hence also U) we have
the exact sequence 1-K U -5L—1, and by Lemma 5.1, the number of H in U with
n(H)=L is at most |U|"/("), where [ is the derived length of K, r<dimG is the rank
of K and f(r)<f(dimG), where f is some function depending on r and independent
of m (say f(r)=3r?+r). Now |U|<m%™C and K being nilpotent is of derived length
O(loglog |K|). We can, therefore, deduce that

sn(G(Z/mZ)) < mcdim(G)f(dim G)(log log m+log dim G)Sn(G(Z/TTLZ))

for some constant ¢, which proves our claim. O

Corollary 1.2 shows us that in order to estimate . (G(Z)) one should concentrate
on 5,(G(Z/mZ)) with m<n. Corollary 5.2 implies that we can further assume that m
is a product of different primes. So let us now assume that mznl‘f:lqi, where the g;
are different primes, and so G(Z/mZ)~[];_, G(Z/¢:Z) and t<(1+0(1)) log m/log log m.
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We can further assume that we are counting only fully proper subgroups of G(Z/mZ),
i.e., subgroups H which do not contain G(Z/q;Z) for any 1<i<t, or equivalently, the
image of H under the projection to G(Z/¢;Z) is a proper subgroup (see [Lu]). Thus H
is contained in [['_, M;, where M; is a maximal subgroup of G(Z/g;Z).

Let us now specialize to the case G=SLy, and let g be a prime.

Maximal subgroups of SLy(Z/gZ) are conjugate to one of the following three types
of subgroups (see [Lg, Theorems 2.2 and 2.3, pp. 183-185]).

(1) B=By—the Borel subgroup of all upper triangular matrices in SLo.

(2) D=D,, D} —subgroups of dihedral type of order 2(¢—1) or 2(g+1) (inverse
images of dihedral maximal subgroups of PSL2(Z/qZ)). To simplify our notation we
denote these groups by D,. The group D, is equal to N(Tj), the normaliser of a split
or non-split torus Ty (a cyclic group of order g—1 or ¢g+1). The group 7 is either the
diagonal subgroup, or is obtained as follows: Let F 2 be the field of order ¢, F;Z acts on
F,2 by multiplication. The latter is a 2-dimensional vector space over F,. The elements
of norm 1 in F%; induce the subgroup T, of SLy(F,).

(3) A=A,—a subgroup of SLy2(Z/gZ) which is of order at most 120.

There are only boundedly many conjugacy classes of each type. Also, the number of
conjugates of every subgroup is small, so it suffices to count only subgroups of SL2(Z/mZ)
whose projection to SL2(Z/gZ) (for ¢|m) is inside either B, D or A.

Let SC{qi, ..., ¢:} be the subset of the prime divisors of m for which the projection of
H isin Ay, and let S be the complement to S. Let m=]] qe5 9 and H be the projection
of H to SLy(Z/mZ). Thus H is a subgroup of index at most n in SLy(Z/MZ), and the
kernel N from H— H is inside a product of |S| groups of type A. As every subgroup of
SL2(Z/qZ) is generated by two elements, H is generated by at most 2logm/loglogm<
2logn/loglogn generators. Set k=|2logn/loglogn+1| and choose k generators for H.
By a lemma of Gaschiitz (cf. [FJ, Lemma 15.30]) these k generators can be lifted up to
give k generators for H. Each generator can be lifted up in at most |N| ways, and N
is a group of order at most 120151120t <120'08/leglogn  We, therefore, conclude that
given H, the number of possibilities for H is at most 12020logn)*/(log log ")2, which is small
with respect to nt(™,

We can, therefore, assume that S=¢ and all the projections of H are either into
groups of type B or type D.

Now, By, the Borel subgroup of SL2(Z/gZ), has a normal unipotent cyclic subgroup
U, of order gq. Let now S be the subset of {q1,...,¢:} for which the projection is in B,
and let S be the complement. Then

H< ] By x[] Da-

q€S qes
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Let H be the projection of H to [T,es(Bq/Uq) X1 14e5 Dg- The kernel is a subgroup of

the cyclic group U=[] .5 U;. By Lemma 5.1 we know that given H, there are only a

q€s
few possibilities for H. We are, therefore, led to counting subgroups in

L=]][(Bs/Us) x ] Da-

qes qes

Let F now be the product

II(E%/LQ)><I]:T;,
qeS qes
and for a subgroup H of L we denote HNE by H.
Our next goal will be to show that given H in E, the number of possibilities for H
is small. To this end we first formulate two easy lemmas, which will be used in the proof

of Proposition 5.6 below. This proposition will complete the main reduction.

LEMMA 5.3. Let H be a subgroup of U=U,xU,. For i=1,2, set H;=m;(H), where
; 1s the projection from U to U;, and HY)=HNU,;. Then
(i) H? is normal in H; and H,/H?~ Hy/HY with an isomorphism ¢ induced by the
inclusion of H/(HYx HY) as a subdirect product of H;/H? and Hy/HY;
(if) H s determined by
(a) H; for i=1,2;
(b) H? for i=1,2;
(c) the isomorphism ¢ from H,/HY to Hy/HY.

Proof. See [Su, p. 141]. O

Definition 5.4. Let U be a group and V a subnormal subgroup of U. We say that V
is copolycyclic in U of colength [ if there is a sequence V=V, V1 <...<V;=U such that
Vi/Vi_1 is eyclic for every i=1,...,1.

LEMMA 5.5. Let U be a group and F o subgroup of U. The number of subnormal
copolycyclic subgroups V of U containing F and of colength 1 is at most |U:F|'.

Proof. For I=1, V contains [U,U]F, and so it suffices to prove the lemma for the
abelian group U=U/[U,U]F and F={e}. For an abelian group U, the number of sub-
groups V with U/V cyclic is equal, by Pontrjagin duality, to the number of cyclic sub-
groups. This is clearly bounded by |U|<|U:F|. If [>1, then by induction the number
of possibilities for V| as in Definition 5.4 is bounded by |U: F|'~1. Given V;, the number
of possibilities for V is at most |Vi: F|<|U: F| by the case {=1. Thus, V has at most
|U: F|' possibilities. O
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PROPOSITION 5.6. Let D=Dix...xD,, where each D; is a finite group with a
cyclic subgroup T; of index 2. Let T=Tyx...xTs (and thus |D:T|=2%). The number
of subgroups H of D whose intersection with T is a given subgroup L of T is at most
iDI82282'

Proof. Set F,:Hj% D;. We want to count the number of subgroups H of D
with HNT=L. Let L;=projg(L), i.e., the projection of L to F;, and L;1=L;NFit1,
so that f/i+1§Li+1. Let H; be the projection of H to F;. Given H, the sequence
(Hy=H, Hs, ..., H,) is determined, and, of course, vice versa. We will actually prove that
the number of possibilities for (H, ..., Hy) is at most |D|322".

Assume now that H;,; is given. What is the number of possibilities for H,? Well,
H; is a subgroup of F;=D; x F;,; containing L;, whose projection to F;; is H;;1, and its
intersection with Fj.q, which we will denote by X, contains IN/i+1. By Lemma 5.3, H; is
determined by H;y1, X, Y, Z and ¢, where Y is the projection of H; to D;, Z=H;ND;
and ¢ is an isomorphism from Y/Z to H;;1/X. Now, every subgroup of the group D; is
generated by two elements, so the number of possibilities for Y and Z is at most |D;|?
each, and the number of automorphisms of Y/Z is also at most |D;|2.

Let us now look at X: X is a normal subgroup of H;,; with H;1,/X isomorphic
to Y/Z, so it is meta-cyclic. Moreover, X contains I:i“. So by Lemma 5.5, the number
of possibilities for X is at most |Hy1:Liyq|?.

Now |Hip1:Liy1|<|Hip1: Liy1)-|Liz1: Liv1|. We know that

|Hix1: Lia| = [projp,,,(H) :projp,, (L) < |H: L] <2°
and
|Lit1: Liv1]=|projp,, (Li): Fir1NLs| <[ Dy
SO, lHi+1ZZi+1'<28'Di|.
Altogether, given H;,; (and L, and hence also the L;’s and L;’s), the number of

possibilities for H; is at most |D;|322°. Arguing now by induction, we deduce that the
number of possibilities for (H, ..., H,) is at most |D[8225" as claimed. O

Let us now get back to SLy: Proposition 5.6 implies, in the notation given before
Lemma 5.3, that when counting subgroups of

L= H(Bq/Uq) X H Dy,
qeSs qeg

we can instead count the subgroups of

E= H(Bq/Uq) x H 1q,

ges qeS
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where Ty is a torus in SLy(Z/9Z) (so that Ty is a cyclic group of order ¢—1 or ¢+1, while
B, /Uy, is a cyclic group of order g—1).

A remark is needed here: Let H be a subgroup of index at most n in SLy(Z/mZ)
which is contained in X =] .5 By x[[,c5 Dq and contains Y=[] s Uy x][,c5{e}. By
our analysis in this section, these are the groups which we have to count in order to
determine a,(SL2(Z)). We proved that for counting them, it suffices for us to count
subgroups of Xo/Y, where Xo=[] ges Ba % 11 qc5 Tq- Note though that replacing H with
its intersection with Xy may enlarge the index of H in SL2(Z/mZ). But the factor is at

most
21ogm/log logm _ ml/log logm < nl/log }ogn.

As n—oo, this factor is small with respect to n. By the remark made in §1, we can
deduce that our original problem is now completely reduced to the following extremal
problem on counting subgroups of finite abelian groups:

Let P_={q1,...,¢:} and P,={q,...,q}- } be two sets of (different) primes and let
P=P_UP,. Put

t t’
f(n)=sup{sr(X) ’ X=]] Co-r xHCq;H},
=1 i=1

where the supremum is over all possible choices of P_, P, and r such that

and where C,, denotes the cyclic group of order m. The discussion above implies the
following result:

PROPOSITION 5.7. We have

— log f(n)

m

[ 7% (SLz(Z)) = n—i—)oo _A(’I’L—)—_

6. Counting subgroups of p-groups

In this section we first give some general estimates for the number of subgroups of finite
abelian p-groups which will be needed in §7. As an application we obtain a lower bound
for the subgroup growth of uniform pro-p-groups (see definitions below).

For an abelian p-group G, we denote by €2;(G) the subgroup of elements of order
dividing p’. Then Q;(G)/Q4_1(G) is an elementary abelian group of order, say, p** called
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the ith layer of G. We call the sequence A; > A2>...2 A, the layer type of G. It is clear

that this sequence is decreasing.
Denote by

L,

the p-binomial coefficient, i.e., the number of v-dimensional subspaces of a A-dimensional

vector space over Z/pZ.
The following result holds (see [LuS, Proposition 1.5.2]).

ProOPOSITION 6.1. (i)

A
pu(A—u) < [ J gpupu()\——u)_
v P

mel,),

is attained for v=|3A|, in which case

(i)

[ A} — p,\2/4+0(,\)
v P

as A—00.
The starting point is the following well-known formula (see [Bul).

PROPOSITION 6.2. Let G be an abelian p-group of layer type A 2Ag ...2 A,
number of subgroups of layer type v1 210>... is

Hp”i+1(>\i—w) [)‘i Vit ] .
i>1 Vi=Viyi ],
(In the above expression we allow some of the v; to be 0.)

We need the following estimate.
PROPOSITION 6.3.
[0 < [ o+ 0 [)\i —Vit1 ] <pr [0,
i>1 i>1 Vi—Vit1 1y i>1
Proof. By Proposition 6.1 we have
[ [’\i ~Vit1 ] <[+ e gt )= ) i
P

i>1 Vi—Vit1 i>1

The

=p" HpVi-}—l(Ai_Vi)p(Vi‘Vi—l—l)()\i_‘/i) =p HpVi(Ai_Vi)‘

i1 i1

The lower bound follows in a similar way.
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COROLLARY 6.4. Let G be an abelian group of order p* and layer type M1 2>...2 A,
Then |G| 1,5, P*/4<|Sub(G)[<|G? 15, p*/* holds.

Proof. Considering subgroups H of layer type [3A1]|>|3A2]>..., we obtain that
[Sub(G)| 2[5, pM/AC= /2D > p=r T p*i/4, which implies the lower bound.

On the other hand, for any fixed layer type vy >v2 > ..., the number of subgroups H
with this layer type is at most

P [T O <G T P74
i>1 i1
The number of possible layer types v1 212 2... of subgroups of G is bounded by the
number of partitions of the number «, and hence it is at most 2°<|G|. This implies our
statement. U

Let us make an amusing remark which will not be needed later.

If G is an abelian p-group of the form G=C;, xC;,x...xCy,, then it is known
(see [LuS, §1.10]) that |End(G)|=]]; 4>, 8cd(z;,zx). Noting that [, ;;gcd(z;, k)=
[T p™ we obtain that

|G|~ [End(@)|% < | Sub(G)| < |G?|End(G)| /4.

These inequalities clearly extend to arbitrary finite abelian groups G.

For the application of the above results to estimating the subgroup growth of
SL4(Z,) we have to introduce additional notation. For a group G let G* denote the
subgroup generated by all kth powers. For odd p a powerful p-group G is a p-group with
the property that G/GP is abelian. (In the rest of this section we will always assume
that p is odd; the case p=2 requires only slight modifications.) The group G is said to
be uniformly powerful (uniform, for short) if it is powerful and the indices |G”i: G”iﬂl
do not depend on i as long as i<e, where p°® is the exponent of G.

Now let G be a uniform group of exponent p¢, where e=2i, with d generators. Then
GF'isa homocyclic abelian group of exponent p* with d generators (i.e., it has layer type
d,d,...,d with ¢ terms) [Sh].

Consider subgroups H of GP' of layer type v, v, ...,v (i terms). The number of such
subgroups is at least p**(¢=*) by Proposition 6.3. The index n of such a subgroup H
in G is p®t{4=)i Hence the number of subgroups of index n in G is at least n<,
where z=v(d~v)/(2d—v). Substituting v=|d(2—v/2)| we see that = can be as large as
(3—2v2)d—(v2-1).

Let now U be a uniform pro-p-group of rank d, i.e., an inverse limit of d-generated

finite uniform groups G. Then we see that for infinitely many n we have s,(G)>
n(3-2v2)d-(v2-1)
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Now SL4(Z,) is known to have 2 finite-index uniform pro-p-subgroup of rank d?—1
(see [DDMS, Theorem 5.2]). This proves the following result.

PROPOSITION 6.5. The subgroup growth of SL4(Z,) is at least n®, i.e.,

m log s,(SL4(Z,))
n—00 logn

where c=(3-2v2)d*-2(2-+/2).

Note that for a pro-p-group P of rank d we have lim,_, log(s,(P)/logn)<d,
[LuS, Chapter 4.1]. Hence we have lim,, o, log s,(SL4(Z,))/logn<d?—1.
B. Klopsch proved [K] that if G is a residually finite virtually soluble minimax group

Zc

b

of Hirsch length h(G), then its subgroup growth is of type at least n(G)/7. By using the
above argument one can improve this to n(3-2V2DR(@)-(vVZ-1),

7. Counting subgroups of abelian groups

The aim of this section is to solve a somewhat unusual extremal problem concerning the
number of subgroups of abelian groups. The result we prove is the crucial ingredient
in obtaining a sharp upper bound for the number of congruence subgroups of SLa(Z).
Actually we prove a slightly more general result, which will be used in [LuN] to obtain
similar bounds for other arithmetic groups.

We will use Propositions 6.2 and 6.3 in conjunction with the following simple (but

somewhat technical) observations.

PRrROPOSITION 7.1. Let R>1 and let C,teN be fired. Consider pairs of sequences
{A\i} and {vi} of non-negative integers such that A<t for all i and 3,5, (RXi+v;)<C.
Under these conditions the mozimal velue of the expression

AL =) ui-w)
i1
can be attained by a pair of sequences {N;} and {v;}, i=1,2,...,r, such that
i) MzXz..2A, 22221 and A\ 2y; for all i
(il) M=Aa=...=h_1=1;
(iii) for some 0<b<r—1 we have vi=y=..=yy=vpy1+1=...=vp_1+1. If A=t
then also v.€{v1,1n—1}.

Proof. Suppose that the maximum of A({\}, {v}) is attained by a pair {\;}, {v;} of
sequences of non-negative integers. Deleting pairs with ;=0 does not change the value
of A({A\}, {v}), hence we can assume that all »;>1. If A\;<v; for some j, then we can
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delete \; and v; from the sequences, and in this way the value of A({A}, {v}) increases,
a contradiction. Hence we have that \;>v; for all i. By relabelling the indices we can
further assume that vy >19>... 20, 21.

Now, if 7 is a permutation of {1,2,...,7}, it is clear that the maximum of 3}, A, ;v
(and hence of A({\r¢;)}, {r:})) is achieved for permutations 7 such that Ar(1)>Ar(2)2
2 Ar(ry. By the maximality of the pair {\;}, {v;} it now follows that A\; >Xa>...2 A,
as well, proving (i). We shall call a pair of sequences {\;} and {v;} satisfying (i) good.

Let j be the smallest index such that we have t>\; > ;41 >1 (if there is no such j
then (ii) holds).

Assume that A\j 1 =...=X;1x and A\j4x>Aj4k41 O j+k=r. The condition v; Zv;,x
implies that v;((A;+1)—v;) +v1k((Ajre —1) =v4) 205 (A —v5) H 4k (Nipk —vjgr). I
Aj+k=Vj+i then (by deleting some terms and relabelling the rest) we can replace our
sequences by another good pair for which 7,5, A; is strictly smaller and the value of
A({A\:},{vi}) is the same. Otherwise, replacing A; by A\;j+1 and Aj4x by Ajix—1 we
obtain a good pair of sequences for which {);} is lexicographically strictly greater and
for which A({\;}, {v;}) is at least as large (and hence maximal).

It is clear that by repeating these two types of moves we eventually obtain a good
pair {A;}, {v;} satisfying (ii) as well.

Now set 8=v1+vo+...+vr_1. Then

Zyi(/\i_yi) =t,B—(V%+...+V3‘1)+UT(AT—VT).

i>1

It is clear that if the value of such an expression is maximal, then the difference of
any two of the v; with j<r—1 is at most 1. Part (iii) follows. O

PROPOSITION 7.2. Let xy1,x9,...,T; be positive integers such that at most d of the

x; can be equal. Then
i t
[I=> (%)
] ed
=1

Proof. If, say, z; is the largest among the z; then z;>t/d. By induction we can
assume that [[._, z;>((t—1)/ed)*"'. Then

ﬁx,>z e AR 2 A
bl YT dAdN\ ed T Ted\ ed

(@) (F) - () e ()

as required. O
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The main result of this section is the following theorem.

THEOREM 7.3. Let R>1 be a real number and d be a fixed integer 21. Let n and r
be positive integers. Let G be an abelian group of the form G=Cyp, x Cy, X ... x Cy,, where
at most d of the z; can be equal. Suppose that r|G|R<n holds. Then the number of
subgroups of order <r in G is at most nOTo™)  where y=(1/R(R+1) —R)2/4R2.
In particular, if R=1 then y=%(3-2v2).

Proof. We start the proof with several claims.

Cramm 1. t<(1+0(1)}i(n).

Proof. By Proposition 7.2 we have (t/ed)*<n. This easily implies the claim. O
CLAIM 2. In proving the theorem, we may assume that t=~l(n).

Proof. For otherwise every subgroup of G can be generated by yl(n) elements, and
hence |Sub(G)|< |G| ™ LnH ), 0

Now let a(n) be a monotone increasing function which goes to infinity sufficiently
slowly. For example, we may set a(n)=loglogloglogn.

Let G, denote the Sylow p-subgroup of G and let AY >\ > ... denote the layer type
of Gp. Loosely speaking, we call any layer of some G, a layer of G. We call such a
layer essential if its dimension X! is at least I(n)/a(n). Clearly the essential layers in G,
correspond to the layers of a certain subgroup E, of G, (which equals €;(G,) for the
largest i such that AY>1(n)/a(n)). Let us call E=]]  E, the essential subgroup of G.

CLAIM 3. Given ENT we have at most n°™) (i.e., a small number) of choices

for a subgroup T of G.

Proof. 1t is clear from the definitions that every subgroup of the quotient groups
Gp/Ep, and hence of G/E, can be generated by less than [(n)/a(n) elements. Therefore
the same is true for 7/(TNE). This implies the claim. O

By Claim 3, in proving the theorem, it is sufficient to consider subgroups T of E.

Let v denote the exponent of E. Then E is the subgroup of elements of order
dividing v in G. Now v is the product of the exponents of the E,, hence the product of
the exponents of the essential layers of G. It is clear from the definitions that we have
v!m/a(M) < and hence v<(logn)*™). Using well-known estimates of number theory [R]
we immediately obtain the following result.

CLAM 4. (i) The number z of different primes dividing v is at most

log v < a(n)loglogn
loglogv — logloglogn
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(ii) The total number of divisors of v is at most v</1°8108v L (logn)ce(n)/logloglogn

for some constant ¢>0.
CLAIM 5. |G: E|>(logn)(1te()t,

Proof. Consider the subgroup Ei=ENC,,. It follows that E® is the subgroup of
elements of order dividing v in C,,. Set e;=|E'| and h;=x;/e;. It is easy to see that
E=[],5, E, and hence |G: E|=[];5, hi. O

By Claim 4 (ii) for the number s of different values of the numbers e; we have
s=(logn)°™). We put the numbers z; into s blocks according to the value of ;. By our
condition on the x; it follows that at most d of the numbers h; corresponding to a given
block are equal. Hence altogether ds of the h; can be equal. Using Proposition 7.2 we
obtain that |G: E|>][,, hi>(t/eds)".

Since sd=(logn)°!) and by Claim 2, t>v(log n/loglogn), we obtain that |G: E|>
(log n)(1+o()? a5 required.

Let us now choose a group G and a number 7 as in the theorem for which the number
of subgroups T<E of order dividing r is maximal. To complete the proof it is clearly
sufficient to show that this number is at most n(v+o(1)in),

Denote the order of the corresponding essential subgroup E by f, and the index
|G: E| by m.

Using Propositions 6.2 and 6.3 we see that apart from an n°¢(™)_factor (which we
ignore) the number of subgroups T' as above is at most

H H prf M=) (7.1)

plf i>1

for some v? and A7, where {A'},{vF} is a pair of sequences for every p, [T, 1L pr
divides f, and Hp Hi>1 p” divides r. Assuming that ffr is fixed together with the
upper bound ¢ for all the A? and u?, let us estimate the value of the expression (7.1).

By Proposition 7.1, a maximal value of an expression like (7.1) is attained for a
choice of the A and v (for the sake of simplicity we use the same notation for the new
sequences) such that for every p there are at most 3 different pairs ( p}‘zp, p"f ) equal to,
say,

("), (pp*) and (p7,p*),

where pf <7P<t and pP<t for all p.
Exchange the pairs equal to the first type for pairs equal to (pt, p*”). We obtain an
expression like (7.1) such that the ratio of the two expressions is at most

[I[I»"<n

p i1
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If now there are, say, a® pairs with (p*7, p*¥) equal to (p?, p*"), then take 3P to be
the largest integer with 2°”<p®” and set 37=|log, p|. (Note that for every p there is at
most one pair of the form (p™, p*5).)

Consider the expression

H 9B WP (t—pP) 9B G (TP —13) (7.2)
P

Its value may be less than that of (7.1), but in this case their ratio is bounded by
(222)°n (where 2 is the number of primes dividing v). Hence this ratio is at most

2(2+o(1))l(n)2a(n) log log n/log log log n < n(2+o(1))l(n)a(n)/log loglogn __ no(l(n))'

To prove our theorem it is sufficient to bound the value of (7.2) by n(Y+o()Un),

It is clear that the value of (7.2} is equal to the value of

H vk (Ae—vk) (7_3)

k>1

for appropriate sequences {\;} and {x} which both have }° (8P+037) terms and for
which Mg, g <t and also

H 2R AV LR e, Z (RAk+vi) < log(rfR). (7.4)

k>1 k>1

More precisely, the sequence {A;} has Ep (P terms equal to t and 37 terms equal
to 7P for every p, while {u} consists of uP repeated 3P times and uh repeated 5} times
each (in the appropriate order).

By Proposition 7.1 the expression (7.3) attains its maximal value for some sequences
{Ax} and {v;} such that all but one of the A\g, say A\,y1, are equal to ¢t and we have
n=we=..=p=14+1vp11=...=1+v, for some b<a.

Consider now the expression

H vk (Ak—vk) (7.5)

E>1
where

t=A=..=X, (A;,1=0)
and v, =vi=vy=...=v, (v,,,=0).

It easily follows that the value of (7.3) is at most 22t times as large as the value of
(7.5) and 22°=n°((™) Hence it suffices to bound the value of (7.5) by n(y+e(m)i(m),
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To obtain our final estimate let y=22, w=m!/* (where m=|G:E|), and set z=yw.

For some constants between 0 and 1 we have y=2z¢ and vj=ct. Then w=z'"¢=
y(l—g)/g'

Note that the condition (7.4) implies 2°4F+9) =y oty Rt < fR We have n>r(mf)%>
y7tyf*wk and hence log n>t(logy)(R+0o+R(1-0)/0).

By Claim 5 we have w>(logn)!*°(1). Hence

1—
(1+o(1))loglogn < logw = —Q—Q log y.

Therefore

(logn)? _ t2(logy)*(R+o+R(1-0)/0)?
loglogn = (1—0)/0)logy

(1+0(1))

1—p\2
=(1+0(1))2(log y) <R+U+RTQ) Tf_g
The value of (7.5) is y“*(t~?%), which as we saw is an upper bound for the number of

subgroups R (ignoring an n°{("))_factor). Hence
t?0(1—0)logy
t(logy)(R+o+R(1-g)/0)*0/(1-0)

o(l-0)(1-p)/e
(R+o+R(1-0)/0)?

o(l-g)o(l-0)
(R+00)?

log (number of subgroups T')
(logn)?/loglogn

< (1+0(1))

= (14o(1))
=(1+0(1))
As observed in §3, the maximum value of o(1—0)p(1—0)/(R+00)? for o,0€(0,1) is 7.
The proof of the theorem is complete. 0

By using a similar but simpler argument, one can also show the following result.

PROPOSITION 7.4. Let G be an abelian group of arder n of the form
G=Cy xCp,x...xCy,, where x1>x2>...>14.

Then [Sub(G)|<n(/16+0NUR) - This bound is attained if x;=ti for all 3.

Combining this result with an earlier remark, we obtain that n{1/4+e()Hn) j5 the
maximal value of [, ; ged(z;,x;), where the z; are different numbers whose product is

at most n.
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Note that [Sub(G)| is essentially the number of subgroups T of order |/|G] |
(see [Bu] for a strong version of this assertion). Hence Proposition 7.4 corresponds
to the case R=1 and r~n'/3 of Theorem 7.3.

8. End of the proofs of Theorems 2, 3 and 4

Theorem 2 is actually proved now: the lower bound was shown as a special case of R=
R(G)=11in §3. For the upper bound, we have shown in Proposition 5.7 how a, (SL2(Z)) is
equal to lim,,_, . (log f(n)/A(n)) (see Proposition 5.7 for the definition of f(n)). But The-
orem 7.3 implies, in particular, that f(n) is at most n(rT°(1){") where 7=%(3—2\/§).
This proves that o, (SLz(Z))<+~ and finishes the proof.

The proof of Theorem 3 is similar, but several remarks should be made: The lower
bound was deduced in §4. For the upper bound, one should follow the reductions made
in §6. The proof can be carried out in a similar way for SLy((©) instead of SLy(Z), but
the following points require careful consideration.

(1) One can pass to the case that m is an ideal, which is a product of different
primes m; in O, but it is possible that O/m; is isomorphic to O/x;. Still, each such
isomorphism class of quotient fields can occur at most d times when d=[k: Q).

(2) The maximal subgroups of SLy(F,) when F, is a finite field of order q (¢ is a
prime power, not necessarily a prime) are the same B, D and A as described in (1), (2)
and (3) of §5.

The rest of the reduction can be carried out in a way similar to §5. The final
outcome is not exactly as f(n) at the end of §5, but can be reduced to a similar problem
when f(n) counts s,(X) when X is a product of abelian cyclic groups, with a bounded
multiplicity. Theorem 7.3 covers also this case and gives a bound to f (n), which is the
same as for f(n). Thus o, (SL2(0))<y=1(3-2v2).

We finally mention the easy fact that replacing O by Og when S is a finite set of
primes (see the introduction) does not change a. or a_. To see this, one can use the
fact that for every completion at a simple prime 7 of O, G(O) has polynomial subgroup
growth, and then use the well-known techniques of subgroup growth and the fact that

G(0)=G(0s)x ][ c(0x)
€S \Veo
to deduce that a(G(0))=a(G(Ds)).

Another way to see it, is to observe that G(@s) is a quotient of G ((5), and hence
. (G(0))2a+{(G(Og)). On the other hand, the proof of the lower bound for a(G(O))
clearly works for G{Og). Theorem 3 is, therefore, now proved, as well as Theorem 4
(since we have not used the GRH for the upper bounds in Theorem 3).
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9. An extremal problem in elementary number theory

The counting techniques in this paper can be applied to solve the following extremal
problem in multiplicative number theory.

For n—o0, let

t
M;(n) = max H gcd(a,-,aj)‘0<t, a1 <as<...<a €4, Haisn},

14,5 <t i=1

My(n)= max{ H ged(p—1,p'—1) | P is a set of distinct primes where H P< n}
p,p'EP peP

We shall prove the following theorem, which can be considered as a baby version of
Theorem 2 (compare also to Theorem 7.3). Note that Theorem 9.1 immediately implies
Theorem 9.

THEOREM 9.1. Let A(n)=(logn)?/loglogn. Then

log Mi(n) —— logMa(n) 1

lim —————=1i

e Am)nbe Am) &

Proof. Recall that if a1,az,...,a:€Z and G=Cy xCy, X ...xCy, is a direct product
of cyclic groups, then by §7,

|GI™|End(G)|* < ISub(G)| < |GI*[End(G)]*/*

and

|[End(G)|= H ged(ai, a;).
1€4,5<t
Proposition 7.4 implies that
— logMi(n) 1
— <K -
60 An) T4
It is clear that Ma(n)< M;j(n), so to finish the proof it is enough to obtain a lower bound
for My(n).

Now, for z— 00 and z¢/logr<q<z? (with 0<Q<%) choose
P=P(z,q)={p<z|p=1 (mod g)}

to be a Bombieri set relative to x, where ¢ is a prime number (a Bombieri prime). By
Lemma 2.4 we have the asymptotic relation #P(x,q)~z/¢(q)logz. In order to satisfy
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the condition Hpe,p p<n, we choose z~gqlogn. Without loss of generality, we may choose
g=1? for some 0<p< —5— It follows that

zl7e~logn, logz~

loglog B T (1—p)logn
- and #P=#P(z,q)~ #(q)log = loglogn

Consequently,

H gcd(p—l,pl—l) > q(#P)2 > (xg)(l—g)2(logn)z/(loglogn)zN eg(l—g)(logn)z/loglogn'
p,p'€P

Let now p tend to %, and the theorem is proved. a
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