
Counting Crossing Free Structures

Victor Alvarez∗ Karl Bringmann† Radu Curticapean‡ Saurabh Ray§

Abstract

Let P be a set ofn points in the plane. A crossing-free structure onP is a straight-edge
planar graph with vertex set inP . Examples of crossing-free structures include triangulations of
P , and spanning cycles ofP , also known as polygonalizations ofP , among others. There has
been a large amount of research trying to bound the number of such structures. In particular,
bounding the number of triangulations spanned byP has received considerable attention. It is
currently known thateveryset ofn points has at mostO(30n) and at leastΩ(2.43n) triangulations.
However, much less is known about the algorithmic problem ofcounting crossing-free structures
of a given setP . For example, no algorithm for counting triangulations is known that, on all
instances, performs faster than enumerating all triangulations. In this paper we develop a general
technique for computing the number of crossing-free structures of an input setP . We apply the
technique to obtain algorithms for computing the number of triangulations and spanning cycles
of P . The running time of our algorithms is upper bounded bynO(k), wherek is the number of
onion layersof P . In particular, we show that our algorithm for counting triangulations is not
slower thanO(3.1414n). Given that there are several well-studied configurations of points with at
leastΩ(3.464n) triangulations, and some even withΩ(8n) triangulations, our algorithm is the first
to asymptotically outperform any enumeration algorithm for such instances. In fact, it is widely
believed that any set ofn points must have at leastΩ(3.464n) triangulations. If this is true, then
our algorithm is strictly sub-linear in the number of triangulations counted. We also show that
our techniques are general enough to solve therestricted triangulation counting problem, which
we prove to beW [2]-hard in the parameterk . This implies a “no free lunch” result: In order
to be fixed-parameter tractable, our general algorithm mustrely on additional properties that are
specific to the considered class of structures.

1 Introduction

Let P be a set ofn points on the plane. A crossing-free structure defined byP , or onP , is a straight-
edge planar graph whose vertex set isP . Examples of such crossing-free structures are triangulations,
spanning cycles, matchings, spanning trees, etc. One can naturally ask: what are upper and lower
bounds on the number of such structures over all possible sets of n points on the plane. Or givenP ,
how can the number of such geometric objects be computed. Thesearch for bounds has spawned a
large amount of research over almost 30 years, starting withan upper bound of1013n on the number
of crossing-free graphs on every set ofn points, see [2]. This bound implies that the size ofeachclass
of crossing-free structures can be upper-bounded bycn, with c ∈ R depending on the particular class.

∗Fachrichtung Informatik, Universität des Saarlandes,alvarez@cs.uni-saarland.de. Partially Supported by
CONACYT-DAAD of México.

†Max-Planck-Institut für Informatik,kbringma@mpi-inf.mpg.de.
‡Fachrichtung Informatik, Universität des Saarlandes,curticapean@cs.uni-saarland.de
§Max-Planck-Institut für Informatik,saurabh@mpi-inf.mpg.de.

1

Since then, research has focused on tightening the upper andlower bounds onc . For example, in
the case of spanning cycles, it is currently known that4.6 ≤ c ≤ 54.55, see [3] for the upper bound
and [4] for the lower bound. Thus, every set ofn points has at leastΩ(4.6n) and at mostO(54.55n)
spanning cycles. For triangulations, [5] provides the bound c ≤ 30, and [6] providesc ≥ 2.4. The
interested reader can visit [7, 8] for an up-to-date list of bounds on other classes of crossing-free
structures. The references therein gather the modern history of all listed bounds.

The second question on crossing-free structures, mentioned above, is of algorithmic flavor since
we consider the problem ofcomputingthe number of crossing-free structures of a particular class for
a given input setP . This problem is closely related to that of sampling crossing-free structures of
the class uniformly at random, that is, ifP spans, sayt spanning cycles, we want to sample every
spanning cycle with probability1/t. A first approach to the counting problem would be to produceall
elements of the class, using methods for enumeration, and then simply count the number of elements.
This has the obvious disadvantage that the total time spent will be, at best, linear in the number of
elements counted. By the first part, this number is always exponential in the input size. Thus an
important question is whether we can count crossing-free structures of a given class in time sub-linear
in the number of elements counted.

In this paper we focus on counting the elements of two particular classes of crossing-free structures
defined over a given setP . The first class,FT , is the class of triangulations ofP . The second class,
FC , is the class of spanning cycles ofP , also known as polygonalizations ofP .

To state the main results of our paper, we need to define the notion of anonion layerof P . The
formal definition will be given in the next section, but intuitively, k onion layers meank nested convex
sets. Thus every point set has at least one onion layer, sok ≥ 1.

Theorem 1. LetP be a set ofn points withk onion layers. The number of triangulations ofP can be
computed in timeO(k2g(n/k)n) = nO(k), whereg(x) = ((x3 +3x2 +2x +2)/2)

1
x . Sincek ≤

⌈

n
3

⌉

,
this bound never exceedsO(3.1414n).

Theorem 2. LetP be as before. The number of spanning cycles ofP can be computed innO(k) time.

For k = O(1), our results yield algorithms that have polynomial runningtime in n, regardless of
the cardinalities|FC | and|FT |. Thm. 2 gives in particular a partial answer to Problem 16 of [9].

As stated before, for every set ofn points,|FT | can be lower-bounded byΩ(2.4n), but it is widely
believed that this bound can be improved toΩ(

√
12

n
) ≈ Ω(3.464n). If this stronger bound is true, the

algorithm of Thm. 1 would count triangulations in timeO(3.1414n) = o(|FT |), thus answering one
of the aforementioned open questions in the positive. The general layout of our algorithms is similar
to the one found in [16] where these ideas have been used for optimization problems.

The running times of both algorithms can be stated asnf (k), for some functionf that does not
depend onn. With regard to parameterized complexity, it is natural to ask if these runtimes can be
improved tof (k) · nO(1), thus proving that our problems belong toFPT , the class of fixed-parameter
tractable problems. However, our techniques are general enough to solve harder problems, such as the
restricted triangulation counting problem: GivenP and a set of admissible edgesE as input, count
the triangulations ofP that use only edges fromE . We prove the following hardness result:

Theorem 3. The restricted triangulation counting problem isW [2]-hard if the parameter is consid-
ered to bek , the number of onion layers ofP . This result even holds for the problem of deciding the
existenceof a restricted triangulation.

The book [10] is a standard reference for parameterized complexity theory and defines the classes
FPT andW [2]. For now, it suffices to say that the separationFPT 6= W [2] is widely believed

2

and indicates that we may have to exploit the particular structure of the problems in order to obtain
fixed-parameter tractable algorithms for counting crossing-free structures.

The rest of the paper is organized as follows: In Section 2, weintroduce our general framework.
In Section 3 we will formally introduce the terminology and definitions needed to prove Thm. 1. In
Sections 4 and 5, we prove Thm. 2 and 3. We finish in Section 6 with some conclusions.

2 General framework

In this section, we describe the central ideas of our counting algorithms. This section aims at an
intuitive description and will thus abstain from technicaldetails, which will be given in the next two
sections, where the ideas are demonstrated with two concrete applications.

Let P be a set ofn points and suppose that we want to count triangulations ofP . A setS of non-
crossing edges is called aseparatorif the union of edges inS splits conv(P) into at least two regions.
Suppose that there exists a set of separatorsS with the following properties: (1) every triangulation
T of P contains a unique separatorS ∈ S, and (2) we can enumerate the members ofS. With a set
of separatorsS, the triangulations ofP can be counted as follows: For eachS ∈ S, let RS

1 , RS
2 ,...,

RS
t be the regions of conv(P) \ S . Recursively compute the number of triangulationsNS

i of each
RS
i . The number of triangulations containingS is thenNS =

∏t
i=1N

S
i , and the total number of

triangulations ofP is simply
∑

S∈S NS . Of course, in the recursion, a set of separators is required
in eachRS

i , and the efficiency of the algorithm depends heavily on the choice ofS. One well-known
family of separatorsS for triangulations is the set of T-paths of a set of points, see [14]. In Section 3,
we introduce another set of separators for counting triangulations.

For now, let us move on to a slightly more complicated counting problem. Suppose we want to
count crossing-free matchings spanned by the point set. Since any matching can be completed to a
triangulation by adding edges, we could try the technique used for counting triangulations. Take any
setS of separators. For eachS ∈ S, count the matchings in triangulations containingS , and finally
add this up over allS ∈ S. In any matchingM that can be completed to a triangulation containingS ,
each vertex inS is either unmatched, or it is matched to a vertex within someRS

i , or it is matched to
another vertex inS . We canannotateeach separatorS with this information. When counting, for each
S ∈ S, we iterate over all annotations ofS , and take care to be consistent with the current annotation
when recursing into the subproblems.

This simple algorithm fails because some matchingsM could contain several, saysM > 1, sepa-
rators and would thus fool our algorithm to countM exactlysM times. This is no problem ifsM = s

were constant over all matchings, but we are not aware of any set of separatorsS with this property.
However, there is a different way to ensure that each matching is counted exactly once: we embed

each matchingM into a unique triangulationT ⊇ M. Given a familyS of separators for the trian-
gulations ofP , we associate a uniqueS ∈ S to each matching. For concreteness, let us associate to
eachM the constrained delaunay triangulation (CDT)∆M constrainedto containM. Under standard
non-degeneracy assumptions, there is a unique CDT for any given set of mandatory edges. We revise
our algorithm as follows: Whenever we recurse, in each subproblem we only count matchingsM
with S ⊆ ∆M . If this last condition can be satisfied locally in each subproblem, i.e., choices in one
subproblem do not depend on choices in others, we are done. While not everyS admits such a locality
condition, some do as we will see later.

The annotations required for countingmatchingsare not very complicated, but for many other
counting problems, they are. An example of more involved annotations is given in Section 4, where
we consider the problem of counting spanning cycles.

The techniques we described are fairly general and can be applied to several counting problems.

3

The choice of separator structures and annotations dependson the specific problem and affects the
efficiency of the algorithm. We start now by demonstrating the technique for counting triangulations.

3 Counting triangulations

Let P be a set ofn points on the plane. Let conv(P) denote the convex hull ofP and let∂conv(P)
denote its boundary. We define the onion layers ofP as follows: the first onion layerP(1) of P is
P ∩ ∂conv(P). For i > 1, the i th onion layerP(i) of P is defined inductively asP ∩ ∂conv(P \
⋃i−1

j=1 P
(j)). By “number of onion layers ofP”, we mean the number of non-empty onion layers ofP .

For anyp ∈ P , let ℓ(p) denote the index of the onion layer to whichp belongs. Let us label the points
p ∈ P with distinct labels in{1, ... , n} such that ifℓ(p) < ℓ(q) thenp also receives a label smaller
thanq. This is clearly possible. Figure 1(a) shows the onion layers of a set of17 points and the labels
assigned to them. From now on we will refer to the points ofP by their labelsi.e., we will think of P
as the set{1, ... , n} and when we say “p ∈ P”, we will mean the point with labelp.

9

1

3

4
5

6

8

10
11

7 13

12

15

14

17

16

2

(a) Four onion layers

9

2

1

3

4
5

6

8

10
11

7 13

12

15

14

17

16
x

y

x ′

y ′

R

R ′

z

(b) R andR ′ are thesn-regions(x , y)

Figure 1

Let T be any triangulation ofP . For p ∈ P \ P(1), let snT (p) be the smallest neighbor ofp in
T . Observe that any such pointp has at least one neighborq such thatℓ(q) < ℓ(p) and therefore
snT (p) < p. If p ∈ P(1), we setsnT (p) = p. WhenT is clear from context, we will just writesn(p)
instead ofsnT (p). We denote bysn-pathT (p) the unique pathp = a0, a1, ... , am in T such that for
each0 ≤ i < m, we have thatai+1 = sn(ai) andsn(am) = am. We will also direct this path from
a0 towardsam and call this the direction ofdescent sinceℓ(·) decreases along the path. Note that
anysn-path consists of at most one point from each onion layer and precisely one point from the first
onion layer.

Let (p, q) be some edge inT and suppose thatsn-path(p) ends atp′ ∈ P(1) andsn-path(q) ends
in q′ ∈ P(1). There are two paths inT from p′ to q′ along∂conv(P), one in the clockwise direction
and the other in the counter-clockwise direction. Each of these paths along with the edge(p, q) and
the twosn-paths starting atp andq respectively, defines a region within conv(P). We call these two
regions thesn-regions of(p, q). See Figure 1(b). Given anysn-regionR , we refer to the number of
triangles in any triangulation ofR as thesizeof R . This is well defined since the number of triangles
is the same regardless of the triangulation chosen.

Let ab be an edge on∂conv(P). Observe that in any triangulation, conv(P) is one of the
sn-regions of(a, b), the other region being empty. In any triangulationT of P , there is precisely one
triangleapb that the edgeab belongs to. LetRap be thesn-region of(a, p) that does not containapb
and similarly letRpb be thesn-region of(p, b) that does not containapb.

4

3.1 The algorithm

The main idea of our algorithm is as follows. We can easily enumerate all the pointsp such that the
triangleapb appears in some triangulation. This is just the setQ of pointsp such that the triangleapb
is free of other points ofP . For every elementp of Q, suppose that we can enumerate thesn-pathsρ
of p over all triangulations ofP . For ever pair(p, ρ), let Tp,ρ be the set of triangulations that contain
the triangleapb and in whichρ is thesn-path ofp. If, for each such pair that we can obtain, we can
compute|Tp,ρ|, then we are done, since each triangulation ofP must contain precisely one pair(p, ρ),
adding the numbers over all pairs gives us the total number oftriangulations.

Let us fix a pair(p, ρ) for which we would like to compute|Tp,ρ|. The pair already defines the
regionsRap andRpb for all triangulations inTp,ρ. Observe that any triangulation inTp,ρ contains a
triangulationTap of Rap and a triangulationTpb of Rpb, each of which satisfy the following
sn-constraint: for each edge(q, r) in ρ there is no edge(q, s) in the triangulation (eitherTap orTpb)
such thats < r . Furthermore, putting together any pair of triangulationsTap andTpb, each satisfying
the constraint, and the triangleapb gives a triangulation inTp,ρ. This observation follows from the fact
thatρ is ansn-path ofp in any triangulation ofTp,ρ and allows us to separately compute the number
of (sn-constraint satisfying) triangulationsNap of Rap andNpb of Rpb whose product gives|Tp,ρ|.

The numbersNap andNpb are computed recursively. We will maintain that at any pointin the
recursion we are dealing with ansn-region of some edge. This is certainly true in the beginningsince
we start with ansn-region of the edgeab and also in the next step since we recurse onsn-regions
defined by the edges(a, p) and(p, b) respectively. At any point, let us say that we are dealing with an
sn-regionR defined by an edge(x , y) and letρx andρy be thesn-paths starting atx andy respectively.

We recurse almost exactly as we did before: we enumerate the set of pointsz such that the triangle
xzy lies within R and is free of other points ofP contained inR , see figure 1(b). Furthermore, we
ensure that ifz happens to be a point in eitherρx or ρy , and(z , t) is an edge in thatsn-path, then
both a andb are smaller thant. This way, we do not violate thesn-constraint. For each suchz ,
we enumerate the portions ofsn-paths starting atz that lie withinR . See Figure 1(b). Each such
path splits the regionR into regionsRxz andRzy which aresn-regions defined by(x , z) and(z , y)
respectively. Each of the regionsRxz andRzy have sizes smaller thanR . Recall that the size of a
region is the number of triangles required to triangulate it. The recursion bottoms out when the size
is ≤ 1 - in which case we know that there is exactly one triangulation. Note that even though we
enumerate only the portions of thesn-paths ofz that lie withinR , these portions implicitly define the
entiresn-path ofz . This is because such a portion either ends at a point on the first onion layer in
which case it is the entiresn-path, or at a pointw on eitherρx or ρy . The direction of descent along
thatsn-path, starting atw , is then the remaining portion of thesn-path ofz .

One detail is still missing. How do we enumerate the portionsof thesn-paths ofz that belong to at
least one triangulation ofR? Well, we will not do it, instead, we enumerate a superset of paths which
aredescendingin the sense that they start atz and each successive point is in a strictly smaller layer
(layer with a smaller index). Again, we only enumerate the portion of such paths that lie insideR since
the rest is implicitly defined. For any descending path that does not really belong to any triangulation
of R , at least one of the regionsRxz orRzy has no triangulations satisfying thesn-constraint. This will
be detected somewhere down the recursion where we will not beable find anyz satisfying thesn-
constraint. At that point, we return0 as the number of triangulations. Thus the algorithm still works.
There is one other ingredient that we add for efficiency: memoization. Whenever we compute the
number of triangulations of a certainsn-region that satisfy thesn-constraint dictated by thesn-paths
defining the region, we store it in a hash table (or any other data structure). Consider acall graph in
which each node represents ansn-region and there is a directed edge from a regionR to a regionR ′

5

if from R we make a recursive call toR ′. The number of egdes in this graph is an upper bound on the
running time of the algorithm since, because of memoization, no edge istraversedmore than once.

We will now prove an upper bound on the number of edges in the call graph. Each call from a
regionR to a regionR ′ can be charged to a triple of descending paths - two definingR and a third
that, along with a triangle, splitsR into two regions, one of which isR ′. The triples(ρ1, ρ2, ρ3) that
are produced in the algorithm have the property that once twopaths merge in the direction of descent,
they never split again. This is ensured by the fact that we only enumerate the portions of the third
descending path within the regionR and the rest is implicitly defined, as noted before. Letρ′2 be the
portion ofρ2 that does not have any point in common withρ1, and letρ′3 be the portion ofρ3 that does
not have any point in common with eitherρ1 or ρ2. The descending pathsρ1, ρ′2 andρ′3 are vertex
disjoint, and along with some additional information they completely describeρ1, ρ2 andρ3. The
additional information that is required is whether, and where, ρ2 merges withρ1, and whether, and
where,ρ3 merges with one of the other paths. IfP hask onion layers, then each descending path has
length at mostk and therefore there are at mostk ways thatρ′2 may merge withρ1, and at most2k
waysρ′3 may merge with one ofρ1 or ρ2. Therefore, ifU is an upper bound on the number of triples
of vertex disjoint descending paths, then2k2U is an upper bound on the number of triples(ρ1, ρ2, ρ3)
as described above, and hence also an upper bound on the running time of the algorithm.

3.2 Number of vertex-disjoint triples of descending paths

Each descending path uses at most one vertex from every onionlayer. Letni = |P(i)| be the size
of the i th onion layer. Let us count how many ways there are for any triple of paths to use at most
one vertex each from this layer. There is one way for each of the paths to skip this onion layer.
There areni ways of choosing one point among theni which may then be used by any of the paths.
This gives3ni ways for the three paths. There are

(

ni
2

)

ways to choose two points, and any two
of the paths may use them. This gives6

(

ni
2

)

ways for the three paths. Finally there are
(

ni
3

)

ways
of choosing three points, and there are three (not six) ways for the three paths to use one of these
vertices. This is because these paths are non-crossing planar curves, and therefore the clockwise order
of these paths along any∂convP(i) that intersects all three of them is the same for eachi . The overall
number of ways in which at most three points can be used from the i th layer is thereforef (ni), where
f (x) = 1 + 3x + 6x(x−1)

2 + 3x(x−1)(x−2)
6 .

The number of triples of vertex disjoint descending paths istherefore at mostU =
∏k

i=1 f (ni).
Since eachni is a positive integer, and the functionf (·) is log-concave, as can be checked, forx ≥ 1,
the above product is maximized when eachni is equal ton/k . This give an upper bound off (n/k)k =
g(n/k)n, whereg(x) = f (x)1/x . Now, g(x) is maximized for some value ofx between0 and1 and
is a decreasing function forx ≥ 1. Since each onion layer except thekth one must have at least
three points, we haveU = O(g(3)n). The fact that thekth onion layer may have less than three
points makes only a difference of a constant factor. Therefore the running time of our algorithm is
O(k2g(3)n) = O(3.1414n). This concludes the proof of Thm. 1.

Often the number of onion layers can be much smaller than the maximum possible⌈n/3⌉. For
example, Dalal [11] has shown that ifn points are chosen uniformly at random from a disk, then the
expected number of onion layers of the resulting point set isΘ(n2/3).

4 Counting spanning cycles

In this section we give an algorithm for counting crossing-free spanning cycles of a point setP . We
start by defining a suitable family of separator.

6

4.1 Triangular Path

We assume again thatP hask onion layers. For every pointp ∈ P (on layerP(i) which is not the
first layer) we fix in advance a rayρp which emanates fromp and does not intersect the interior of
conv(P(i)).

For any triangulationT of P there is a unique triangle∆p = p, q1, q2 adjacent top and intersect-
ing ρp . Let qp be the smaller ofq1 andq2. Clearlyqp lies in a layer lower than the one containing
p. Let p0, p1, ... , pr be the sequence so thatp0 = p, pi+1 = qpi , ∀ 0 ≤ i < k , andpr lies on the
first layer. We callPp(T) :=

⋃

i ∆pi the triangular pathof p w.r.t. T and we callpr the last pointof
Pp(T). See figure 2(a).

Pp(T) is uniquely defined for any triangulation. Moreover, for distinct triangulationsT1 and
T2, Pp(T1),Pp(T2) are either identical or they intersect properly: leti be the first position where
∆pi (T1) 6= ∆pi (T2), then those two triangles intersect, as they both are adjacent to p, intersectρp
and have interiors free of points inP .

Before we continue, we describe constrained Delaunay triangulations, which will be needed in
our algorithm.

4.2 Constrained Delaunay Triangulation

A constrained Delaunay triangulation (CDT)∆S of S is a Delaunay triangulation constrained to
include a given set ofmandatory edgesS . More formally, it is the triangulationT containingS such
that no edgee in T \S is flippable in the following sense: let∆1,∆2 be triangles sharinge. The edge
e is flippable if and only if∆ = ∆1 ∪ ∆2 is convex, and replacinge with the other diagonal of∆
increases the smallest angle of the triangulation of∆.

The CDT is unique if the points are non-cocircular, which is areasonable assumption for counting
crossing-free structures, as they do not change when perturbing the point set slightly.

We are now ready to describe our algorithm.

4.3 The Algorithm

Instead of counting spanning cycles, we countrooted and orientedspanning cycles. Given any cycle,
we make it rooted by designating astarting vertex, and we make it oriented by assigning anorienta-
tion- clockwise or counter-clockwise. We then number the vertices in the cycle from1 to n, beginning
at the starting vertex, and continuing along the assigned direction. We also direct the edges along this
direction. This way, each spanning cycle is counted exactly2n times. At the end we divide by2n to
get the required number. In the remainder, we use the term HamCycle for rooted an oriented spanning
cycles.

Given a HamCycleH let∆H be the CDT ofH. We annotate∆H as follows:

• each vertexv of ∆H is annotated with(posv , prevv , nextv), whereposv is the number assigned
to v in H, prevv is the vertex lying immediately beforev in H, andnextv is the vertex lying
immediately afterv in H.

• each edgee in ∆H is annotated with a bitbe that indicates whethere belongs toH or not.

The annotated∆H will be denoted by∆̄H . Let S be a separator contained in∆H that splits
conv(P) into regionsR1, ...Rt . SeparatorS inherits the following information from̄∆H : each vertex
v ∈ S inherits posv from ∆̄H . If prevv andnextv are present inS , then this information is also
inherited. Ifprevv is absent inS thenv is annotated with the indexi , 1 ≤ i ≤ t, of the regionRi that

7

prevv falls in. The same holds fornextv . Each edgee of S carries the annotation it has in̄∆H . The
separatorS of ∆H thus annotated will be denoted bȳ∆H

S .
We say that an annotated constrained Delaunay triangulation is legal if and only if it is identical

to ∆̄H , for some HamCycleH. Since there is a one-to-one correspondence between HamCycles and
legal constrained Delaunay triangulations, our goal is to count the latter.

Our algorithm is essentially the same as for counting triangulations: instead ofsn-paths we use
annotated triangular paths. We start with an edgeab on∂conv(P), and enumerate the set of pointsp

such that the triangleapb is free of other points ofP . For each suchp, the triangleapb along with the
triangular path starting atp forms a separator, see figure 2(b). We enumerate such separators and all
possible annotations for each one of them. Each such annotated separator splits conv(P) into smaller
regions in which we recurse. In each recursive sub-problem we count (legal) annotated constrained
Delaunay triangulations consistent with the annotated separator.

p0
p1

ρp0

ρp1

p2

ρp2
p3

(a) Triangular pathPp starting in onion layerP(4). Onion
layers are shown in dashed.Pp can be extended to a
triangulationT , in such a casePp will be unique forT .

a b

p

R2

R3

R1

(b) In the first call of the algorithm, the triangular path
shown in dark gray is created. It divides the problem
into regionsR1 ∪ R3 andR2. A call for the latter creates
the triangular path shown in light gray. Annotations are
not shown for simplicity.

Figure 2

The reason for which we use triangular paths instead of simple sn-paths is the following: no edge
in a separator, formed by a triangular path, lies on the boundary of more than one sub-problem. This
allows us to verify flippability of edges separately in each sub-problem. If an edge belonged to more
than one sub-problem, then the flippability of this edge would depend on the choices made in each
sub-problem, thus introducing dependency between these sub-problems.

As in the case for counting triangulations, we usememoization. The running time as before is
dominated by the number of triples of annotated triangular paths. The size of each triangular path is
O(k), thus there are at mostnO(k) triangular paths. There are at mostnO(k) annotations per triangular
path, as can be easily checked. Hence there arenO(k) annotated triangular paths, andnO(k) triples
of annotated triangular paths. The overall running time is thusnO(k), which concludes the proof of
Thm. 2.

5 Deciding existence of restricted triangulations isW [2]-hard

LetP be a set ofn points withk onion layers and letE be some set of “admissible” edges spanned by
P . We say that a triangulationT of P is restrictedw.r.t E if T ⊆ E . In this section, we consider the
following restricted triangulation existence problem: On input(P ,E), decide whether there exists a
triangulation ofP that is restricted w.r.t.E . This also defines a counting problem in the natural way,
and the existence problem is trivially reducible to the counting problem.

8

The restricted triangulation existence problem was provento beNP-complete in [13, 12]. We
observed that both reductions are actually parsimonious, directly implying #P-completeness of the
restricted triangulationcountingproblem. So far all reductions involving restricted triangulations rely
heavily on the ability to specify the setE . If E is instead fixed to the set of all edges spanned byP ,
we obtain the problem of countingall triangulations ofP , which we believe to be#P-complete as
well. Note that the corresponding existence problem is trivial in this case.

In this section, we parameterize the restricted triangulation counting/existence problems byk , the
number of onion layers ofP . Observe that the counting algorithm presented in Section 3can be easily
adapted to solve the counting problem, and thus the existence problem, in timenO(k). This, along
with Thm. 3, means that our algorithmic framework is generalenough to solve aW [2]-hard problem
and therefore does not admit a general improvement to runtimes of the formf (k) · nO(1) under the
assumptionFPT 6= W [2]. Still, it might be possible to count crossing-free structures of particular
classes (other than restricted triangulations) in timef (k)·nO(1) by exploiting the structure of the class.

In the remainder of this section, we turn our attention to theparameterized existence problem to
prove Thm. 3. Our proof is by reduction from theparameterized hitting set problem, which is proven
to beW [2]-hard in [10]. An instanceA of this problem is formed by numbersn,m, k ∈ N, along with
setsS1, ... ,Sm ⊆ [n], wherek is the parameter, and[n] := {0, ... , n− 1}. The output toA is “yes” iff
there is a setH ⊆ [n] of size at mostk , such thatH ∩ Si 6= ∅ for every1 ≤ i ≤ m.

In our reduction, several gadgets are used to transform an instanceA of the hitting set problem
to an instanceGA = (P ,E) of the restricted triangulation existence problem. The reduction is an
fpt-reductionin the sense of [10], that is, it maps every instanceA with parameterk to an instanceGA

with O(k) onion layers. Each gadget is given by a set of points withO(1) onion layers, along with a
set of admissible edges. The basic gadget is thepipe, shown in Fig. 3:

Definition 1. A pipe Q with n states and lengthl > 8(n − 1) consists of pointsp1 ... pl , q1 ... ql with
pt = (t, 0), qt = (t, 1) and a setS ∪ F ∪ L0 ∪ ...∪ Ln−1 of admissible edges. The individual sets are
defined as follows:

a0,t = {pt , qt+1}, b0,t = {qt+1, pt+1}
for i ≥ 1 : ai ,t = {pt , qt+4i}, bi ,t = {qt+4i , pt+1}

for i ∈ [n] : Li = {ai ,1, ... , ai ,l−w , bi ,1, ... , bi ,l−w−1} withw = 1 for i = 0 andw = 4i else

S = {{p1, q1+t} | 0 ≤ t ≤ 4(n − 1)} ∪ {{pl−t , ql} | 0 ≤ t ≤ 4(n − 1)}
F = {{pi , pi+1} | i < l} ∪ {{qi , qi+1} | i < l}

Intuitively speaking, each setLi , for i ∈ [n], forms azig-zag line, where edges of the formai ,t are
the “zigs”, and edges of the formbi ,t are the “zags”. It is clear that in any triangulationT of a pipe
Q, exactly one zig-zagLi , for i ∈ [n], is contained, since different zig-zags lines cross. IfLi ⊆ T , we
say thatQ “carries” the valuei in T . The edges of the setS allow to complete a triangulation of a
pipe once a zig-zag is chosen.

A pipe will always be “horizontal”, i.e., it will not turn in any other direction. Thus we will
also have “wires”, which run between pipes. Wires are pipes with two states. As such, they can be
stretched by arbitrary factors, and bent by arbitrary angles, while increasing their length only byO(1).
This is shown in Fig. 3. For wires, we relabel the values0 and1 by false andtrue respectively.

The remaining gadgets are defined as follows, their correctness can be found in the appendix:

• An or-gadget is connected to input wiresW1,W2, and an output wireW3, as shown in Fig. 4.
If one ofW1 or W2 carriestrue, thenW3 may carrytrue. If W3 carriestrue, then at least one
of W1 orW2 must carrytrue.

9

p1

q1

Figure 3: (Top) A pipe with2 states andl = 9. Thick black edges constituteF , thick
grey edges constituteS , thin edges are zig-zagL1, and dashed edges are zig-zagL0.
This pipe is also a wire.(Bottom) A strechted and bent wire with a terminal.

...

...

...

e

W1

W2

W3

Figure 4: The or-gadget. The grey edges fromW2 to W3 are “transfer edges”. An
analogous set of edges is also present fromW1 to W3, but suppressed in this figure to
improve legibility.

• A terminal-gadget can be attachted to a wireW , replacing its “end part” as exemplified in the
bottom part of Fig. 3. It admits a valid triangulation iffW carriestrue

• A tester-gadgetfor i at t is connected to a pipeQ, betweenai ,t andbi ,t, and has an output wire
W , see Fig. 5a. IfQ carriesi , W may carrytrue. If W carriestrue, Q must carryi .

• A crossing-gadgetallows an input wireV to intersect a pipeQ, leaving it as an output wire
W . The value carried byQ is not influenced byV . If V carriestrue, thenW may carrytrue.
If W carriestrue, thenV must also carrytrue.

As shown in Fig. 5b,V enters the crossing-gadget from the top. Between pointsqt andqt+1, a
new pointr is added. For allpu adjacent toqt+1 via somea-edgeai ,u, the edgeai ,u is replaced
by a′i ,u = {pu , r} and{pu+1, r}. Latter edge is shown dashed in Fig. 5b.

In the area betweena′i ,u andbi ,u, the wireV is prolonged toWi , as shown in Fig. 5c fori = 0.
All wires Wi are stretched by a factorα. Thisα is chosen small enough to ensure that, for alli ,
the grey edges shown in Fig. 5c do not intersect eithera′i ,u or bi ,u.

Finally, the wiresW0, ... ,Wn−1 are connected to a chain of or-gadgets, as shown in Fig. 5b.

To describe how the gadgets fit together, recall that an instanceA of the parameterized hitting
set problem is formed by numbersn,m, k ∈ N, along with setsS1, ... ,Sm ⊆ [n], wherek is the
parameter. We create, in polynomial time, an instanceGA = (P ,E) of sizepoly(n,m) that hasO(k)
onion layers and admits a triangulation w.r.t.E iff A admits a hitting set of size≤ k . The mapping
A 7→ GA will clearly be polynomial-time computable, and thus an fpt-reduction.

In the construction, we start with parallel pipesQ1, ... ,Qk of n states each, and of length poly-
nomial inm andn, as shown in Fig. 6. PipeQi lies above pipeQi+1. Let Qi be a pipe,1 ≤ i ≤ k ,
and letSj = {sj ,1, ... sj ,t} ⊆ [n] be a set of instanceA. We define thestripeBi ,j as a set oft testers
attached toQi that check ifQi carries any of the values of setSj . The stripeBi+1,j will lie in the same

10

...

a‘0,t

pt

qt+1qt
qt+1

W
W

V

Q

r

b0,t

W1 W0

W0

V

...

...

...

...
...

...

OROR

qt

pt pt+1

b0,tb1,t

a‘0,t

a‘1,t

pt-3 pt-2

r

(c)(b)(a)

...

ai,t

pt

qu

pt+1

r

bi,t

Q r

pt+1

Figure 5: (a) The tester-gadget fori at t. Q is modified by shifting, fork > 0, all
pt+k andqu+k to the right until the triangle(r , pt+1, qu) is oriented counterclockwise.
(b) A crossing between pipeQ and wireW . (c) Details atW0.

Q1

B1,1

B2,1

B1,2

B2,2

Q2

2 5 6 5 7

5 7

OR

terminal

crossing

pipe

wire

tester

OR

OR OR OR

OR

OROR

2 5 6

Figure 6: InstanceGA produced from instanceA of the parameterized hitting set
problem withn = 8, k = 2 andS1 = {2, 5, 6}, S2 = {5, 7}.

vertical slab asBi ,j . The testers ofBi ,j are connected to a chain of or-gadgets that lies between pipes
Qi ,Qi+1. For i < k , the output of the last or-gadget inBi ,j is carried toBi+1,j by a crossing-gadget,
see Fig. 6. Fori = k , the last or-gadget inBi ,j is connected to a terminal-gadget instead.

We now define theblockBj as the union of the stripesB1,j , ... ,Bk,j . The blocksB1, ... ,Bm are
arranged horizontally in such a way that the points in stripes Bi ,1, ... ,Bi ,m, with 1 ≤ i ≤ k , are
aligned by theiry -coordinates.

Finally, P is defined to be the set of points of all the gadgets involved. To define the setE
of edges, we first include the admissible edges from all gadgets involved. Then, the empty spaces
between gadgets are then triangulated arbitrarily, addingthese edges toE . Having setGA = (P ,E),
we can now complete the proof of Thm. 3 by using the following lemma, whose proof can be found
in the appendix:

Lemma 1. GA hasO(k) onion layers and admits a triangulation iffA admits a hitting set of size≤ k .

6 Conclusions

Our more important open questions at this moment are: (1) is it true that every set ofn points contains
at leastΩ(3.464n) triangulations? (2) Is it possible to compute the number of triangulations, and of

11

spanning cycles, of a given point setP in polynomial time? These questions look at the moment very
challenging.

It would be very interesting to practically compare our algorithm for counting triangulations with
the ones presented in [1, 14, 15]. While we suspect that our algorithm will be fast in practice, it
remains to be verified experimentally.

References

[1] V. Alvarez, K. Bringmann, S. Ray,A Simple Sweep Line Algorithm for Counting Triangulations, Preprint,
2011.

[2] M. Ajtai, V. Chvátal, M.M. Newborn, E. Szemerédi,Crossing-free subgraphs, Annals Discrete Math.
12:9–12, 1982.

[3] M. Sharir, A. Sheffer, E. Welzl,Counting Plane Graphs: Perfect Matchings, Spanning Cycles, and Kaste-
leyn’s Technique, Manuscript, 2011.

[4] A. Garcı́a, M. Noy, J. Tejel,Lower bounds on the number of crossing-free subgraphs ofKn, Computational
Geometry: Theory and Applications16:211-221, 2000.

[5] M. Sharir, A. Sheffer,Counting Triangulations of Planar Point Sets, Electr. J. Comb.18:1:P70, 2011.

[6] M. Sharir, A. Sheffer, E. Welzl,On Degrees in Random Triangulations, Proc. 26th ACM Symp. on Com-
putational Geometry, 297–306, 2010.

[7] A. Sheffer,Number of plane graphs: http://www.cs.tau.ac.il/˜sheffera/counting/PlaneGraphs.html

[8] E. Demaine,Simple Polygonizations: http://erikdemaine.org/polygonization/

[9] http://maven.smith.edu/ orourke/TOPP/P16.html#Problem.16

[10] J. Flum, M. Grohe,Parameterized Complexity Theory, Springer, ISBN 978-3-540-29952-3, 2006.

[11] K. Dalal, Counting the onion, Random Struct. Algorithms,24:2:155–165, 2004.

[12] A. Schulz,The Existence of a Pseudo-triangulation in a given Geometric Graph, Proc. 22nd European
Workshop on Computational Geometry, 17–20, 2006.

[13] E. L. Lloyd, On triangulations of a set of points in the plane, Proc. 18th Annual Symp. on Foundations
of Computer Science, 228–240, 1977.

[14] Oswin Aichholzer,The path of a triangulation, Proceedings of the fifteenth annual symposium on Com-
putational Geometry - SoCG ’99. 14–23, 1999.

[15] S. Ray, R. Seidel,A simple and less slow method for counting triangulations and for related problems,
Proceedings of the 20th European Workshop on ComputationalGeometry - EuroCG ’04. 2004.

[16] E. Anagnostou, D. Corneil,Polynomial-time instances of the minimum weight triangulation problem,
Computational Geometry: Theory and Applications,3:5:247–259, 1993.

12

A Omitted proofs in Section 5

We prove that each of the gadgets fulfills its specification.

Or-gadget: First claim: Assume wlog thatW2 carriestrue in some triangulationT . We construct a
triangulation as follows: Add the transfer edges atW2 toT , as shown in Fig. 4. Then triangulate
W3 by Ltrue . Triangulate the middle part of the or-gadget by thick edges. If W1 carriesfalse,
this already suffices, else additionally include the thick edges inW1.

Second claim: IfW3 carriestrue, the transfer edges from eitherW1 or W2, sayW2, must be
present in the triangulation. IfW2 carriedfalse, it can includeLfalse only up to edgee, since all
following edges intersect transfer edges. But then, the grey point fails to be part of a triangle.

Terminal: If W carriestrue, the terminal is already triangulated. IfW carriesfalse, the grey point
fails to be part of a triangle.

Tester: First claim: AssumeQ carriesi in some triangulationT : Since no grey edges in the tester
intersectLi , they can be added toT , andW can thus be triangulated byLtrue .

Second claim: Given some triangulationT , in whichW carriestrue, all grey edges must be
present inT . But for all j 6= i , there is an edgec ∈ Lj in Q that intersects bothai ,t andbi ,t and
all grey edges, and thereforec /∈ T . ThenLj * T for all j 6= i , forcingLi ⊆ T .

Crossing: First claim: LetT be a triangulation in whichQ carriesi andV carriestrue. Include the
grey edges atWi , triangulateWi to carrytrue and leave the or-gadget chain withtrue atW .

Second claim: AssumeW carriestrue in a triangulationT . Then, by correctness of the or-
gadget, some wireWi must carry true. But then, the grey edges shown in Fig. 5c mustbe
present atWi . Thus,V must carry true.

A triangulation is also possible ifV andW carry false: AssumeQ carriesi in T and would
thus containai ,u = {pu , qt+1}, for someu, if the crossing were not present. Instead of
ai ,u, we includea′i ,u = {pu , r} and {pu+1, r} into T . This ensures that the parallelogram
(pu , pu+1, qt+1, r) has the diagonal{pu+1, r}, shown dashed in Fig. 5b and Fig. 5c.

Proof. [of Lemma 1] Consider the number of differenty -coordinates ofP . This is an upper bound
for the number of onion layers ofP . The pipes contribute2k different y -coordinates. Every other
gadget featuresO(1) different y -coordinates. Each wire can be stretched and bent withO(1) extra
length, and givesO(1) different y -coordinates. Since the points in stripesBi ,1, ... ,Bi ,m are aligned
by y -coordinates, each setCi := Bi ,1 ∪ ... ∪ Bi ,m hasO(1) different y -coordinates. This totals to
2k + O(k) = O(k) differenty -coordinates for all points inP .

Given a hitting setH = {x1, ... , xk}, we construct a triangulation that uses only edges fromE :
For everyi ≤ k , makeQi carryxi . For everyj ≤ m, pick someh(j) ∈ {1, ... , k} with xh(j) ∈ Sj . In
stripeBh(j),j , triangulate the output wire of the tester forxh(j) to carrytrue. Triangulate all following
or-gadgets to outputtrue, possibly passing crossing gadgets, until the terminal ofBt is reached, which
can then be triangulated.

On the other hand, the valuesH = {x1, ... , xk} carried byP1, ... ,Pk in any valid triangulation of
GA form a hitting set: Since every terminal is triangulated, the wire of every blockBj must carrytrue
at some place. Thus, the output of some or-gadget inBj must carrytrue. Consider the first or-gadget
that fulfills this, and say it lies in stripeBh(j),j . It must be connected to a tester that outputstrue. This
impliesxh(j) ∈ Sj andH ∩ Sj 6= ∅. �

13

