Counting Crossing Free Structures

Victor Alvarez Karl Bringmann Radu Curticapedn Saurabh Ray

Abstract

Let P be a set ofn points in the plane. A crossing-free structure Bris a straight-edge
planar graph with vertex set iR. Examples of crossing-free structures include trianguatof
P, and spanning cycles d?, also known as polygonalizations & among others. There has
been a large amount of research trying to bound the numbeuabf structures. In particular,
bounding the number of triangulations spannedfbiias received considerable attention. It is
currently known thaeveryset ofn points has at mos2(30") and at leas(2.43") triangulations.
However, much less is known about the algorithmic problemooiting crossing-free structures
of a given setP. For example, no algorithm for counting triangulations mo¥wn that, on all
instances, performs faster than enumerating all triartiguig. In this paper we develop a general
technique for computing the number of crossing-free stmest of an input seP. We apply the
technique to obtain algorithms for computing the numberriahgulations and spanning cycles
of P. The running time of our algorithms is upper boundedB¥*), wherek is the number of
onion layersof P. In particular, we show that our algorithm for counting mggulations is not
slower thanO(3.1414"). Given that there are several well-studied configuratidmpemts with at
least2(3.464") triangulations, and some even wit{8") triangulations, our algorithm is the first
to asymptotically outperform any enumeration algorithmsfach instances. In fact, it is widely
believed that any set of points must have at lea§4(3.464") triangulations. If this is true, then
our algorithm is strictly sub-linear in the number of tria@tions counted. We also show that
our techniques are general enough to solverélstricted triangulation counting problemvhich
we prove to belW[2]-hard in the parameter. This implies a “no free lunch” result: In order
to be fixed-parameter tractable, our general algorithm makgton additional properties that are
specific to the considered class of structures.

1 Introduction

Let P be a set of points on the plane. A crossing-free structure define®bgr onP, is a straight-
edge planar graph whose vertex seRisExamples of such crossing-free structures are triarignkat
spanning cycles, matchings, spanning trees, etc. One c¢aralia ask: what are upper and lower
bounds on the number of such structures over all possitdeo$etpoints on the plane. Or giveR,
how can the number of such geometric objects be computedsddreh for bounds has spawned a
large amount of research over almost 30 years, startingamithpper bound of03” on the number
of crossing-free graphs on every setngfoints, see [2]. This bound implies that the sizeathclass

of crossing-free structures can be upper-bounded’™dwith ¢ € R depending on the particular class.

*Fachrichtung Informatik, Universitat des Saarlandesyarez@cs.uni-saarland.de. Partially Supported by
CONACYT-DAAD of México.

fMax-Planck-Institut fir Informatikisbringma@mpi-inf .mpg.de.

i[Fachrichtung Informatik, Universitat des Saarlandes;ticapean@cs.uni-saarland.de

$Max-Planck-Institut fir Informatiksaurabh@mpi-inf .mpg.de.

Since then, research has focused on tightening the uppeloaed bounds orc. For example, in
the case of spanning cycles, it is currently known thét< ¢ < 54.55, see [3] for the upper bound
and [4] for the lower bound. Thus, every setropoints has at leas2(4.6”) and at mosiO(54.55")
spanning cycles. For triangulations, [5] provides the lbark 30, and [6] providesc > 2.4. The
interested reader can visit [7, 8] for an up-to-date list ofitds on other classes of crossing-free
structures. The references therein gather the modermhistall listed bounds.

The second question on crossing-free structures, meutiabeve, is of algorithmic flavor since
we consider the problem @bmputingthe number of crossing-free structures of a particularsdias
a giveninput setP. This problem is closely related to that of sampling crogshee structures of
the class uniformly at random, that is, ff spans, say spanning cycles, we want to sample every
spanning cycle with probability/¢. A first approach to the counting problem would be to prodaite
elements of the class, using methods for enumeration, amdsilmply count the number of elements.
This has the obvious disadvantage that the total time sp#inbey at best, linear in the number of
elements counted. By the first part, this number is alwayomsptial in the input size. Thus an
important question is whether we can count crossing-freetires of a given class in time sub-linear
in the number of elements counted.

In this paper we focus on counting the elements of two pdaialasses of crossing-free structures
defined over a given sé&. The first class,Fr, is the class of triangulations &f. The second class,
Fc, is the class of spanning cycles @Bf also known as polygonalizations Bt

To state the main results of our paper, we need to define thennoft anonion layerof P. The
formal definition will be given in the next section, but irttuely, kK onion layers meak nested convex
sets. Thus every point set has at least one onion layérsa.

Theorem 1. Let P be a set oh points withk onion layers. The number of triangulations@ftan be
computed in im@ (k2g(n/k)") = n°%), whereg(x) = ((x3 + 3x + 2x +2)/2) x. Sincek < [1],
this bound never exceed¥3.1414").

Theorem 2. Let P be as before. The number of spanning cycle8 oén be computed in®) time.

Fork = O(1), our results yield algorithms that have polynomial runniinge in n, regardless of
the cardinalitie§.F¢| and|F7|. Thm. 2 gives in particular a partial answer to Problem 16¢f [

As stated before, for every setopoints,|F| can be lower-bounded Ky(2.4"), but it is widely
believed that this bound can be improvedp,/12") ~ Q(3.464"). If this stronger bound is true, the
algorithm of Thm. 1 would count triangulations in tind®3.1414") = o(|F7]), thus answering one
of the aforementioned open questions in the positive. Thergé layout of our algorithms is similar
to the one found in [16] where these ideas have been usedtiaripgtion problems.

The running times of both algorithms can be stated@¥, for some functionf that does not
depend om. With regard to parameterized complexity, it is natural $& d these runtimes can be
improved tof (k) - n°1), thus proving that our problems belongABT, the class of fixed-parameter
tractable problems. However, our techniques are geneoaigirnto solve harder problems, such as the
restricted triangulation counting problenGiven P and a set of admissible edg€sas input, count
the triangulations of that use only edges froma. We prove the following hardness result:

Theorem 3. The restricted triangulation counting problem ig[2]-hard if the parameter is consid-
ered to bek, the number of onion layers &f. This result even holds for the problem of deciding the
existenceof a restricted triangulation.

The book [10] is a standard reference for parameterized lxityptheory and defines the classes
FPT and W[2]. For now, it suffices to say that the separati®BT # W/[2] is widely believed

2

and indicates that we may have to exploit the particularctire of the problems in order to obtain
fixed-parameter tractable algorithms for counting cras$iee structures.

The rest of the paper is organized as follows: In Section 2imveduce our general framework.
In Section 3 we will formally introduce the terminology andfithitions needed to prove Thm. 1. In
Sections 4 and 5, we prove Thm. 2 and 3. We finish in Section 6 saine conclusions.

2 General framework

In this section, we describe the central ideas of our cograilgorithms. This section aims at an
intuitive description and will thus abstain from technidaitails, which will be given in the next two
sections, where the ideas are demonstrated with two cenapgtiications.

Let P be a set of points and suppose that we want to count triangulation®. & setS of non-
crossing edges is calledsaparatorif the union of edges i$ splits cony{P) into at least two regions.
Suppose that there exists a set of separafonsth the following properties: (1) every triangulation
T of P contains a unique separatre S, and (2) we can enumerate the member§ oWith a set
of separatorsS, the triangulations oP can be counted as follows: For eahe S, let R?, R3,...,

R? be the regions of corfw) \ S. Recursively compute the number of triangulatio of each

R?. The number of triangulations containifyis thenN°> = []'_, N?, and the total number of
triangulations ofP is simply > 5. N°. Of course, in the recursion, a set of separators is required
in eachR,.S, and the efficiency of the algorithm depends heavily on tl@oehofS. One well-known
family of separatorsS for triangulations is the set of T-paths of a set of pointg, [4d]. In Section 3,

we introduce another set of separators for counting trikztigns.

For now, let us move on to a slightly more complicated counpinroblem. Suppose we want to
count crossing-free matchings spanned by the point seteQiny matching can be completed to a
triangulation by adding edges, we could try the techniqueslder counting triangulations. Take any
setS of separators. For each € S, count the matchings in triangulations containifigand finally
add this up over alb € S. In any matchingVl that can be completed to a triangulation containtiig
each vertex irf is either unmatched, or it is matched to a vertex within soﬁ’ﬁeor it is matched to
another vertex irs. We canannotateeach separatd¥ with this information. When counting, for each
S € S, we iterate over all annotations §f and take care to be consistent with the current annotation
when recursing into the subproblems.

This simple algorithm fails because some matchifysould contain several, say, > 1, sepa-
rators and would thus fool our algorithm to couvitexactly sy, times. This is no problem #y; = s
were constant over all matchings, but we are not aware of @eingf separators§ with this property.

However, there is a different way to ensure that each majdkioounted exactly once: we embed
each matchingV into a unique triangulatio™ 2 M. Given a familyS of separators for the trian-
gulations ofP, we associate a unique € S to each matching. For concreteness, let us associate to
eachM the constrained delaunay triangulation (CDYY' constrainedto containM. Under standard
non-degeneracy assumptions, there is a unique CDT for &ewy giet of mandatory edges. We revise
our algorithm as follows: Whenever we recurse, in each saidem we only count matchingh/
with S € AM. If this last condition can be satisfied locally in each sobjfgm, i.e., choices in one
subproblem do not depend on choices in others, we are donée KdheveryS admits such a locality
condition, some do as we will see later.

The annotations required for countimgatchingsare not very complicated, but for many other
counting problems, they are. An example of more involvedotations is given in Section 4, where
we consider the problem of counting spanning cycles.

The techniques we described are fairly general and can deapp several counting problems.

The choice of separator structures and annotations depentise specific problem and affects the
efficiency of the algorithm. We start now by demonstratingtéchnique for counting triangulations.

3 Counting triangulations

Let P be a set ofh points on the plane. Let cof¥) denote the convex hull a? and letoconv(P)
denote its boundary. We define the onion layersdds follows: the first onion layeP() of P is

P N dconP). Fori > 1, the ith onion layerP() of P is defined inductively a® N dconP \
U};i P(f)). By “number of onion layers oP”, we mean the number of non-empty onion layergPof
For anyp € P, let/(p) denote the index of the onion layer to whiglbelongs. Let us label the points
p € P with distinct labels in{1, ..., n} such that if¢(p) < ¢(q) thenp also receives a label smaller
thang. This is clearly possible. Figure 1(a) shows the onion layém set ofl7 points and the labels
assigned to them. From now on we will refer to the point®diy their labels.e., we will think of P
as the sef{1, ..., n} and when we sayp' € P”, we will mean the point with labep.

6x" 8'1:517 T
‘ | 7.:/:,15,:121/3/,?1'2 »9 |
R
e 4
(a) Four onion layers (b) R andR’ are thesn-regions(x, y)

Figure 1

Let T be any triangulation oP. Forp € P\ PW), let snt(p) be the smallest neighbor gfin
T. Observe that any such poipthas at least one neighbgrsuch that/(q) < ¢(p) and therefore
snt(p) < p. If p € P, we setsnt(p) = p. WhenT is clear from context, we will just writen(p)
instead ofsnt(p). We denote byn-path;(p) the unique patlp = ag, a1, ..., am in T such that for
each0 < j < m, we have that; ;1 = sn(a;) andsn(a,,) = a,. We will also direct this path from
ap towardsa,,, and call this the direction oflescent since/(-) decreases along the path. Note that
any sn-path consists of at most one point from each onion layer aacigely one point from the first
onion layer.

Let (p, q) be some edge i and suppose thah-patHp) ends ap’ € P(Y) andsn-path(q) ends
in ¢ € P, There are two paths iif from p’ to ¢’ alongdconv P), one in the clockwise direction
and the other in the counter-clockwise direction. Each e$éhpaths along with the ed{e, g) and
the twosn-paths starting ab and g respectively, defines a region within cqft). We call these two
regions thesn-regions of(p, q). See Figure 1(b). Given arsn-region R, we refer to the number of
triangles in any triangulation ok as thesizeof R. This is well defined since the number of triangles
is the same regardless of the triangulation chosen.

Let ab be an edge oficonv(P). Observe that in any triangulation, cdi®) is one of the
sn-regions of(a, b), the other region being empty. In any triangulatiérof P, there is precisely one
triangle apb that the edgeb belongs to. LeR,, be thesn-region of(a, p) that does not contaiapb
and similarly letR,,;, be thesn-region of(p, b) that does not contaiapb.

3.1 The algorithm

The main idea of our algorithm is as follows. We can easilymarate all the pointg such that the
triangleapb appears in some triangulation. This is just the@elf pointsp such that the trianglepb

is free of other points oP. For every elemenp of @, suppose that we can enumerate ¢ghgathsp

of p over all triangulations oP. For ever pail(p, p), let 7, , be the set of triangulations that contain
the triangleapb and in whichp is the sn-path ofp. If, for each such pair that we can obtain, we can
compute|7,,,|, then we are done, since each triangulatio® @fiust contain precisely one pd, p),
adding the numbers over all pairs gives us the total numbgianigulations.

Let us fix a pair(p, p) for which we would like to comput¢7, ,|. The pair already defines the
regionsR,, and R, for all triangulations in7, ,. Observe that any triangulation if, , contains a
triangulationT,, of R,, and a triangulatior7,;, of R, each of which satisfy the following
sn-constraint: for each edgéq, r) in p there is no edgég, s) in the triangulation (eithe,, or Tpp)
such thats < r. Furthermore, putting together any pair of triangulatidis and T, each satisfying
the constraint, and the triangd@b gives a triangulation iff, ,. This observation follows from the fact
thatp is ansn-path ofp in any triangulation of7,, , and allows us to separately compute the number
of (sn-constraint satisfying) triangulation$,, of R,, and /N, of R,, whose product giveg/, ,|.

The numbersV,, and N, are computed recursively. We will maintain that at any painthe
recursion we are dealing with an-region of some edge. This is certainly true in the beginsinge
we start with ansn-region of the edgab and also in the next step since we recursesmnegions
defined by the edgds, p) and(p, b) respectively. At any point, let us say that we are dealindy ait
sn-regionR defined by an edgg, y) and letp, andp, be thesn-paths starting at andy respectively.

We recurse almost exactly as we did before: we enumeratetloé gointsz such that the triangle
xzy lies within R and is free of other points d® contained inR, see figure 1(b). Furthermore, we
ensure that iz happens to be a point in eithgg or p,, and(z, t) is an edge in thagn-path, then
both 2 and b are smaller thart. This way, we do not violate then-constraint. For each such
we enumerate the portions ef-paths starting at that lie within R. See Figure 1(b). Each such
path splits the regiork into regionsR,, and R, which aresn-regions defined byx, z) and(z, y)
respectively. Each of the regiorf&, and R,, have sizes smaller thaR. Recall that the size of a
region is the number of triangles required to triangulatel ke recursion bottoms out when the size
is < 1 - in which case we know that there is exactly one trianguhatidblote that even though we
enumerate only the portions of the-paths ofz that lie within R, these portions implicitly define the
entire sn-path ofz. This is because such a portion either ends at a point on 8teofifon layer in
which case it is the entiren-path, or at a pointv on eitherp, or p,. The direction of descent along
thatsn-path, starting atv, is then the remaining portion of thse-path ofz.

One detall is still missing. How do we enumerate the portmirthe sn-paths ofz that belong to at
least one triangulation a®? Well, we will not do it, instead, we enumerate a supersettigpwhich
aredescendingn the sense that they startaand each successive point is in a strictly smaller layer
(layer with a smaller index). Again, we only enumerate theipn of such paths that lie insid@ since
the rest is implicitly defined. For any descending path tlegisdhot really belong to any triangulation
of R, at least one of the regiorfg or R, has no triangulations satisfying the-constraint. This will
be detected somewhere down the recursion where we will nableefind anyz satisfying thesn-
constraint. At that point, we retuthas the number of triangulations. Thus the algorithm stiltkgo
There is one other ingredient that we add for efficiency: meatmn. Whenever we compute the
number of triangulations of a certasn-region that satisfy then-constraint dictated by ther-paths
defining the region, we store it in a hash table (or any othta staucture). Consideraall graphin
which each node represents anregion and there is a directed edge from a redioto a regionR’

if from R we make a recursive call . The number of egdes in this graph is an upper bound on the
running time of the algorithm since, because of memoizatioredge igraversedmore than once.

We will now prove an upper bound on the number of edges in thegph. Each call from a
region R to a regionR’ can be charged to a triple of descending paths - two defiRiragd a third
that, along with a triangle, splitR into two regions, one of which i&’. The triples(p1, p2, p3) that
are produced in the algorithm have the property that onceptatles merge in the direction of descent,
they never split again. This is ensured by the fact that wg enumerate the portions of the third
descending path within the regighand the rest is implicitly defined, as noted before. higbe the
portion of p, that does not have any point in common with and letp} be the portion ops that does
not have any point in common with eithgy or p,. The descending paths, p, andp} are vertex
disjoint, and along with some additional information theympletely describe, p» andps. The
additional information that is required is whether, and whe, merges withp;, and whether, and
where,p; merges with one of the other paths.Afhask onion layers, then each descending path has
length at mosk and therefore there are at mdstvays thatp, may merge withp;, and at mosgk
ways ps may merge with one gy or p. Therefore, ifU is an upper bound on the number of triples
of vertex disjoint descending paths, th#@kr U is an upper bound on the number of trip(gs, p2, p3)
as described above, and hence also an upper bound on theguimné of the algorithm.

3.2 Number of vertex-disjoint triples of descending paths

Each descending path uses at most one vertex from every tayen Letn; = |P()| be the size
of the i onion layer. Let us count how many ways there are for anyetrflpaths to use at most
one vertex each from this layer. There is one way for each efptths to skip this onion layer.
There aren; ways of choosing one point among thewhich may then be used by any of the paths.
This gives3n; ways for the three paths. There 6(1’9) ways to choose two points, and any two
of the paths may use them. This giveg}) ways for the three paths. Finally there) ways
of choosing three points, and there are three (not six) way$hke three paths to use one of these
vertices. This is because these paths are non-crossingr glarves, and therefore the clockwise order
of these paths along amiconvP () that intersects all three of them is the same for eadthe overall
number of ways in which at most three points can be used frenfttiayer is thereforéef(n;), where
F(x) = 1 4 3x + 62021 4 3x0D02),

The number of triples of vertex disjoint descending pathihésefore at most/ =]_[,.k:1 f(n;).
Since eachn; is a positive integer, and the functidf-) is log-concave, as can be checked,Xor 1,
the above product is maximized when eagchs equal ton/ k. This give an upper bound 6{n/k)* =
g(n/k)", whereg(x) = f(x)/*. Now, g(x) is maximized for some value of betweer0 and1 and
is a decreasing function for > 1. Since each onion layer except th€ one must have at least
three points, we havé/ = O(g(3)"). The fact that thex*" onion layer may have less than three
points makes only a difference of a constant factor. Theeefloe running time of our algorithm is
O(k?g(3)") = O(3.1414"). This concludes the proof of Thm. 1.

Often the number of onion layers can be much smaller than #eémum possiblg n/3]. For
example, Dalal [11] has shown thatrifpoints are chosen uniformly at random from a disk, then the
expected number of onion layers of the resulting point séx(is*/3).

4 Counting spanning cycles

In this section we give an algorithm for counting crossirgefspanning cycles of a point gt We
start by defining a suitable family of separator.

4.1 Triangular Path

We assume again th& hask onion layers. For every point € P (on layer P() which is not the
first layer) we fix in advance a ray, which emanates fronp and does not intersect the interior of
cony P().

For any triangulation” of P there is a unique triangla, = p, g1, g> adjacent tp and intersect-
ing pp. Let g, be the smaller of; andg,. Clearly g, lies in a layer lower than the one containing
p. Letpg, p1, ..., pr be the sequence so thaf = p, piy1 = qp, VO < i < k, andp, lies on the
first layer. We callP,(T) := J; A, thetriangular pathof p w.r.t. T and we callp, thelast pointof
P,(T). See figure 2(a).

P,(T) is uniquely defined for any triangulation. Moreover, fortitist triangulations7; and
To, Po(T1), Pp(T>) are either identical or they intersect properly: idie the first position where
A, (T1) # Ap(T2), then those two triangles intersect, as they both are aufjgog, intersectp,
and have interiors free of points i

Before we continue, we describe constrained Delaunayguiations, which will be needed in
our algorithm.

4.2 Constrained Delaunay Triangulation

A constrained Delaunay triangulation (CDTY° of S is a Delaunay triangulation constrained to
include a given set ahandatory edgeS. More formally, it is the triangulatior’” containingS such
that no edges in T \ S is flippable in the following sense: 1&t;, A, be triangles sharing. The edge
e is flippable if and only ifA = A; U A, is convex, and replacing with the other diagonal of\
increases the smallest angle of the triangulatio/ of

The CDT is unique if the points are non-cocircular, which isasonable assumption for counting
crossing-free structures, as they do not change when perguthe point set slightly.

We are now ready to describe our algorithm.

4.3 The Algorithm

Instead of counting spanning cycles, we couratted and orientedgpanning cycles. Given any cycle,
we make it rooted by designatingstarting vertexand we make it oriented by assigning @enta-
tion- clockwise or counter-clockwise. We then number the vestia the cycle fronl to n, beginning
at the starting vertex, and continuing along the assignextion. We also direct the edges along this
direction. This way, each spanning cycle is counted exaatliimes. At the end we divide b¥n to
get the required number. In the remainder, we use the ternyala for rooted an oriented spanning
cycles.

Given a HamCycleH let A" be the CDT ofH. We annotate\” as follows:

e each vertew of A" is annotated witlfpos,, prev,, next,), wherepos, is the number assigned
to v in H, prev, is the vertex lying immediately beforein H, and next, is the vertex lying
immediately aftew in H.

e each edge in A" is annotated with a bib. that indicates whether belongs toH or not.

The annotated\ will be denoted byA". Let S be a separator contained ik that splits
conV(P) into regionsRy, ... R;. SeparatolS inherits the following information frondA"': each vertex
v € S inherits pos, from AH. If prev, and next, are present ir§, then this information is also
inherited. Ifprev, is absent irS thenv is annotated with the index 1 < i < t, of the regionR; that

prev, falls in. The same holds farext,. Each edge of S carries the annotation it has ik"’. The
separatots of A" thus annotated will be denoted By .

We say that an annotated constrained Delaunay triangalaiegal if and only if it is identical
to A", for some HamCyclé{. Since there is a one-to-one correspondence between HaesCGyw
legal constrained Delaunay triangulations, our goal isotnt the latter.

Our algorithm is essentially the same as for counting tugetgons: instead o$n-paths we use
annotated triangular paths. We start with an eadlgen ocon P), and enumerate the set of poipts
such that the trianglepb is free of other points oP. For each suclp, the triangleapb along with the
triangular path starting at forms a separator, see figure 2(b). We enumerate such sagaaad all
possible annotations for each one of them. Each such aedateparator splits co(®) into smaller
regions in which we recurse. In each recursive sub-problentount (legal) annotated constrained
Delaunay triangulations consistent with the annotatedrsepr.

(a) Triangular pathP, starting in onion layeP™. Onion(b) In the first call of the algorithm, the triangular path
layers are shown in dashed?, can be extended to a shown in dark gray is created. It divides the problem
triangulationT, in such a cas€, will be unique forT. into regionsR; U R3 andR». A call for the latter creates

the triangular path shown in light gray. Annotations are
not shown for simplicity.

Figure 2

The reason for which we use triangular paths instead of sigmgpaths is the following: no edge
in a separator, formed by a triangular path, lies on the bayndf more than one sub-problem. This
allows us to verify flippability of edges separately in eagh-problem. If an edge belonged to more
than one sub-problem, then the flippability of this edge walépend on the choices made in each
sub-problem, thus introducing dependency between thésprablems.

As in the case for counting triangulations, we usemoization The running time as before is
dominated by the number of triples of annotated trianguédh® The size of each triangular path is
O(k), thus there are at mosf(¥) triangular paths. There are at ma${¥) annotations per triangular
path, as can be easily checked. Hence there:8f¢ annotated triangular paths, anf8(¥) triples
of annotated triangular paths. The overall running timenissn®%) which concludes the proof of
Thm. 2.

5 Deciding existence of restricted triangulations id/V[2]-hard

Let P be a set oh points withk onion layers and lef be some set of “admissible” edges spanned by
P. We say that a triangulatioit of P is restrictedw.r.t E if T C E. In this section, we consider the
following restricted triangulation existence probler®n input(P, E), decide whether there exists a
triangulation ofP that is restricted w.r.tE. This also defines a counting problem in the natural way,
and the existence problem is trivially reducible to the ¢mgnproblem.

The restricted triangulation existence problem was prdeebe NP-complete in [13, 12]. We
observed that both reductions are actually parsimonioosgtty implying # P-completeness of the
restricted triangulatiomountingproblem. So far all reductions involving restricted triafagions rely
heavily on the ability to specify the s& If E is instead fixed to the set of all edges spannedby
we obtain the problem of countirgl triangulations ofP, which we believe to bgtP-complete as
well. Note that the corresponding existence problem igarin this case.

In this section, we parameterize the restricted triangaiatounting/existence problems kythe
number of onion layers dP. Observe that the counting algorithm presented in Sectmande easily
adapted to solve the counting problem, and thus the existprablem, in timen®%). This, along
with Thm. 3, means that our algorithmic framework is generaugh to solve &V/[2]-hard problem
and therefore does not admit a general improvement to restiof the formf (k) - n°1) under the
assumptionFPT # W/2]. Still, it might be possible to count crossing-free struetuof particular
classes (other than restricted triangulations) in tiife) - n°() by exploiting the structure of the class.

In the remainder of this section, we turn our attention toghemeterized existence problem to
prove Thm. 3. Our proof is by reduction from tharameterized hitting set problemwhich is proven
to be W[2]-hard in [10]. An instancé of this problem is formed by numbernsm, k € N, along with
setsSy, ..., Sm C [n], wherek is the parameter, arfd] := {0, ..., n— 1}. The output toA is “yes” iff
there is a set! C [n] of size at mosk, such thatH N S; # () for everyl < i < m.

In our reduction, several gadgets are used to transformstanceA of the hitting set problem
to an instanceG4 = (P, E) of the restricted triangulation existence problem. Theucidn is an
fpt-reductionin the sense of [10], that is, it maps every instadcgith parametek to an instances 4
with O(k) onion layers. Each gadget is given by a set of points Wifh) onion layers, along with a
set of admissible edges. The basic gadget ipthe shown in Fig. 3:

Definition 1. A pipe Q with n states and length > 8(n — 1) consists of pointg; ... p, g1 ... g; with
pt =(t,0),q: = (t,1)andaseSUF U LyU...U L,_; of admissible edges. The individual sets are
defined as follows:

a0,t = {Pt, Qt+1}, bo,: = {Qt+1,Pt+1}
fori>1: aj+ = {pt. Gesai}, bi,t = {qesai, Pes+1}
forie[n]: Li={ai1,...,ai)—w, bi1, ... bjj—w—_1} Withw = 1fori =0andw = 4/ else

S={{pr g4} [0<t <4(n-1)}U{{pr,q} |0 < t <4(n-1)}
F={{pipisi} i <BBU{qiqiva} |i<I}

Intuitively speaking, each sét, for i € [n], forms azig-zag line where edges of the formy ; are
the “zigs”, and edges of the foriy ; are the “zags”. Itis clear that in any triangulati@nof a pipe
Q, exactly one zig-zad;, for i € [n], is contained, since different zig-zags lines crosd.; I€ T, we
say that@ “carries” the value in T. The edges of the sét allow to complete a triangulation of a
pipe once a zig-zag is chosen.

A pipe will always be “horizontal”, i.e., it will not turn inry other direction. Thus we will
also have “wires”, which run between pipes. Wires are pipik two states. As such, they can be
stretched by arbitrary factors, and bent by arbitrary aglile increasing their length only (1).
This is shown in Fig. 3. For wires, we relabel the valQemnd1 by false andtrue respectively.

The remaining gadgets are defined as follows, their coresstnan be found in the appendix:

e An or-gadgetis connected to input wired/;, W,, and an output wirdVs, as shown in Fig. 4.
If one of W; or W, carriestrue, thenWs may carrytrue. If Wj carriestrue, then at least one
of Wy or W5 must carrytrue.

Figure 3: (Top) A pipe with 2 states and = 9. Thick black edges constitufe, thick
grey edges constitutg, thin edges are zig-zaky, and dashed edges are zig-2ag
This pipe is also a wirglBottom) A strechted and bent wire with a terminal.

Figure 4. The or-gadget. The grey edges frdfy to W; are “transfer edges”. An
analogous set of edges is also present fibirto Ws, but suppressed in this figure to
improve legibility.

e A terminal-gadgetcan be attachted to a witd/, replacing its “end part” as exemplified in the
bottom part of Fig. 3. It admits a valid triangulation If¥ carriestrue

e A tester-gadgetfor / att is connected to a pip@, betweerw; ; andb; ;, and has an output wire
W, see Fig. 5a. IQ carriesi, W may carrytrue. If W carriestrue, @ must carryi.

e A crossing-gadgetallows an input wireV to intersect a pip&), leaving it as an output wire
W. The value carried by is not influenced by. If V carriestrue, thenW may carrytrue.
If W carriestrue, thenV must also carryrue.

As shown in Fig. 5bV enters the crossing-gadget from the top. Between pgingsdg;, 1, a
new pointr is added. For alp, adjacent tag;,; via somea-edgea; ,, the edges; , is replaced
by a; , = {pu, r} and{p,;1, r}. Latter edge is shown dashed in Fig. 5b.

In the area betweea;(.'u andb; ,, the wireV is prolonged td/V;, as shown in Fig. 5c¢ foi = 0.
All wires W; are stretched by a factar. Thisa is chosen small enough to ensure that, for all
the grey edges shown in Fig. 5¢ do not intersect eiml,‘.)gror bj u.

Finally, the wiresWy, ..., W,_1 are connected to a chain of or-gadgets, as shown in Fig. 5hb.

To describe how the gadgets fit together, recall that annnstd of the parameterized hitting
set problem is formed by numbersm, k € N, along with setsSy, ..., S, C [n], wherek is the
parameter. We create, in polynomial time, an insta@ge= (P, E) of sizepoly(n, m) that hasO(k)
onion layers and admits a triangulation w.i&.iff A admits a hitting set of size k. The mapping
A — Gy will clearly be polynomial-time computable, and thus anrgduction.

In the construction, we start with parallel pip&s, ..., Q, of n states each, and of length poly-
nomial in m andn, as shown in Fig. 6. Pip&; lies above piped; 1. Let Q; be a pipel < i < k,
and letS; = {s;j1,...s;,+} C [n] be a set of instancd. We define thestripe B; ; as a set ot testers
attached taQ; that check ifQ; carries any of the values of st The stripeB; 1 ; will lie in the same

10

Pty

W

Figure 5: (@) The tester-gadget farat t. Q is modified by shifting, fork > 0, all
pr+k andq, « to the right until the trianglé€r, p:1, q,,) is oriented counterclockwise.
(b) A crossing between pip@ and wireW. (c) Details atWWj.

fesiiar
Q S Ly 5 6 5 7

pipe
By " Bio
wire

crossing

% ||

Do
=)
o
ot
~

By terminal BQ,Q

Figure 6: InstanceGa produced from instancd of the parameterized hitting set
problem withn = 8, k =2 and$; = {2,5,6}, S, = {5, 7}.

vertical slab as3; ;. The testers oB; ; are connected to a chain of or-gadgets that lies betwees pipe
Qi, Qiy1. Fori < k, the output of the last or-gadget By ; is carried toB; ; by a crossing-gadget,
see Fig. 6. For = k, the last or-gadget iB; ; is connected to a terminal-gadget instead.

We now define thélock B; as the union of the stripeB, ;, ..., Bij. The blocksBy, ..., B, are
arranged horizontally in such a way that the points in s&iBg;, ..., Bim, With 1 < i < k, are
aligned by theiry-coordinates.

Finally, P is defined to be the set of points of all the gadgets involved. ddfine the set
of edges, we first include the admissible edges from all gadgeolved. Then, the empty spaces
between gadgets are then triangulated arbitrarily, aditiage edges tf. Having setG, = (P, E),
we can now complete the proof of Thm. 3 by using the followiagnina, whose proof can be found
in the appendix:

Lemma 1. G4 hasO(k) onion layers and admits a triangulation #f admits a hitting set of siz€ k.

6 Conclusions

Our more important open questions at this moment are: (L}rigd that every set of points contains
at least2(3.464") triangulations? (2) Is it possible to compute the numberiahgulations, and of

11

spanning cycles, of a given point g8in polynomial time? These questions look at the moment very
challenging.

It would be very interesting to practically compare our aidon for counting triangulations with
the ones presented in [1, 14, 15]. While we suspect that garighm will be fast in practice, it
remains to be verified experimentally.

References

[1] V. Alvarez, K. Bringmann, S. Ray Simple Sweep Line Algorithm for Counting TriangulatidPeprint,
2011.

[2] M. Ajtai, V. Chvatal, M.M. Newborn, E. SzemerédCrossing-free subgraph#nnals Discrete Math.
12:9-12,1982.

[3] M. Sharir, A. Sheffer, E. WelzICounting Plane Graphs: Perfect Matchings, Spanning Cyelad Kaste-
leyn’s TechniqueManuscript, 2011.

[4] A.Garcia, M. Noy, J. Tejel.ower bounds on the number of crossing-free subgrapkg agfomputational
Geometry: Theory and Applicatiord$:211-221, 2000.

[5] M. Sharir, A. ShefferCounting Triangulations of Planar Point Setlectr. J. Combl18:1:P70, 2011.

[6] M. Sharir, A. Sheffer, E. WelzlOn Degrees in Random Triangulatigi&roc. 26th ACM Symp. on Com-
putational Geometry, 297-306, 2010.

[7] A. Sheffer,Number of plane graphs: http://www.cs.tau.ac.il/"sheffeounting/PlaneGraphs.html
[8] E. DemaineSimple Polygonizations: http://erikdemaine.org/polggation/
[9] http://maven.smith.edu/ orourke/TOPP/P16.html#Problb
[10] J. Flum, M. GroheParameterized Complexity Theo&pringer, ISBN 978-3-540-29952-3, 2006.
[11] K. Dalal, Counting the onionRandom Struct. Algorithm&4:2:155-165, 2004.

[12] A. Schulz,The Existence of a Pseudo-triangulation in a given Geom&raph Proc. 22nd European
Workshop on Computational Geometry, 17—-20, 2006.

[13] E. L. Lloyd, On triangulations of a set of points in the plarieroc. 18th Annual Symp. on Foundations
of Computer Science, 228-240, 1977.

[14] Oswin AichholzerThe path of a triangulationProceedings of the fifteenth annual symposium on Com-
putational Geometry - SOoCG '99. 14-23, 1999.

[15] S. Ray, R. SeidelA simple and less slow method for counting triangulationd fon related problems
Proceedings of the 20th European Workshop on Computati&aaietry - EuroCG '04. 2004.

[16] E. Anagnostou, D. CorneiRolynomial-time instances of the minimum weight triangjala problem
Computational Geometry: Theory and Applicatio®%:247-259, 1993.

12

A Omitted proofs in Section 5

We prove that each of the gadgets fulfills its specification.

Or-gadget: First claim: Assume wlog thatl, carriestrue in some triangulatior?”. We construct a
triangulation as follows: Add the transfer edge$1atto T, as shown in Fig. 4. Then triangulate
W3 by Lie. Triangulate the middle part of the or-gadget by thick eddes$/V; carriesfalse,
this already suffices, else additionally include the thidges inlV;.

Second claim: IfiV; carriestrue, the transfer edges from eith&v; or W, say W>, must be
present in the triangulation. I, carriedfalse, it can includeL . only up to edges, since all
following edges intersect transfer edges. But then, the goit fails to be part of a triangle.

Terminal: If W carriestrue, the terminal is already triangulated. W¥ carriesfalse, the grey point
fails to be part of a triangle.

Tester: First claim: Assume? carriesi in some triangulation/: Since no grey edges in the tester
intersectL;, they can be added t6, and W can thus be triangulated ty,,..

Second claim: Given some triangulatidn in which W carriestrue, all grey edges must be
presentinT. Butfor all j # i, there is an edge € L; in Q that intersects both; ; andb; ; and
all grey edges, and therefoee¢ T. ThenL; ¢ T for all j # i, forcing L; C T.

Crossing: First claim: LetT be a triangulation in whicl® carriesi and V carriestrue. Include the
grey edges atV;, triangulateW; to carry true and leave the or-gadget chain wittue at W.

Second claim: Assum&V carriestrue in a triangulation7. Then, by correctness of the or-
gadget, some wirdV; must carry true. But then, the grey edges shown in Fig. 5c toeist
present atV;. Thus,V must carry true.

A triangulation is also possible ¥ and W carry false: AssumeQ@ carries/ in T and would
thus containa; , = {pu, q++1}, for someu, if the crossing were not present. Instead of
aj,u, We includea; , = {p,, r} and{p,y1,r} into T. This ensures that the parallelogram
(pu, Pu+1, g¢+1, r) has the diagondlp,+1, r}, shown dashed in Fig. 5b and Fig. 5c.

Proof. [of Lemma 1] Consider the number of differeptcoordinates ofP. This is an upper bound
for the number of onion layers d?. The pipes contribut@k different y-coordinates. Every other
gadget feature®(1) different y-coordinates. Each wire can be stretched and bent @{th) extra
length, and give®(1) different y-coordinates. Since the points in stripBsy, ..., B; ,, are aligned
by y-coordinates, each sét := B;; U ... U B; ,, has O(1) different y-coordinates. This totals to
2k + O(k) = O(k) differenty-coordinates for all points if.

Given a hitting set = {x, ..., x¢}, we construct a triangulation that uses only edges ffam
For everyi < k, makeQ; carry x;. For everyj < m, pick someh(j) € {1,..., k} with x,;y € S;. In
stripe By j» triangulate the output wire of the tester fqf;) to carrytrue. Triangulate all following
or-gadgets to outputue, possibly passing crossing gadgets, until the termin#.a$ reached, which
can then be triangulated.

On the other hand, the valués= {xi, ..., x, } carried byP, ..., P, in any valid triangulation of
G, form a hitting set: Since every terminal is triangulated, wire of every block3; must carrytrue
at some place. Thus, the output of some or-gadg#} must carrytrue. Consider the first or-gadget
that fulfills this, and say it lies in stripBy,;) ;. It must be connected to a tester that outgute. This
impliesx,;y € S;andH N S; # 0. [

13

