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Abstract

In its full generality, motion analysis of crowded objects

necessitates recognition and segmentation of each moving

entity. The difficulty of these tasks increases considerably

with occlusions and therefore with crowding. When the ob-

jects are constrained to be of the same kind, however, par-

titioning of densely crowded semi-rigid objects can be ac-

complished by means of clustering tracked feature points.

We base our approach on a highly parallelized version of

the KLT tracker in order to process the video into a set of

feature trajectories. While such a set of trajectories pro-

vides a substrate for motion analysis, their unequal lengths

and fragmented nature present difficulties for subsequent

processing. To address this, we propose a simple means

of spatially and temporally conditioning the trajectories.

Given this representation, we integrate it with a learned ob-

ject descriptor to achieve a segmentation of the constituent

motions. We present experimental results for the problem of

estimating the number of moving objects in a dense crowd

as a function of time.

1 Introduction

This work addresses the problem of segmenting mov-

ing objects in video of dense crowds. While our motivating

problem is that of counting humans in crowd footage, our

approach also has applications to more general groups of

objects such as herds of animals or migrating cells. We only

require that the crowd be homogeneous, i.e., composed of

different instances of the same object class.

The phenomenon of crowding gives rise to a number of

challenges. Foremost is the problem of occlusion – both

inter-object and self-occlusion. The high incidence of oc-

clusion precludes the use of standard techniques such as

blob detection and tracking based on background subtrac-

tion. Another problem is that of the large number of in-

dependent motions. Existing motion segmentation meth-

ods (see for example [20, 24]) are only designed for small

numbers of groups (e.g., less than 10) with relatively large,

Figure 1. Example of a dense crowd. Our goal

is to count the number of moving objects in

video sequences such as this.

feature-rich regions of support in the image. Frames from

a crowd video, in contrast, may contain dozens of errati-

cally moving, feature-impoverished objects. Compounding

this problem further is the fact that independent object mo-

tions frequently require more than two successive frames

to emerge, whereas the majority of motion segmentation

methods – both feature based [21] and direct (optical flow

based) [8] – only operate on pairs of frames.

The approach we propose to address these problems is

based on clustering a rich set of extended tracked features

and does not require background subtraction. As we make

intensive use of low level feature tracking, we have devel-

oped a highly parallel version of the KLT tracker [18, 1]

which enables us to efficiently populate the spatiotemporal

volume with a large set of feature trajectories. An initial

pitfall of this step, however, is that the resulting tracks are

often fragmented and noisy, thereby making it difficult to

cluster them by object. To this end, we propose a condi-

tioning algorithm to smooth and extend the raw feature tra-

jectories. We then cluster the conditioned trajectories into

candidate object using local rigidity constraints and a sim-

ple object model learned from a small set of training frames

labeled only with the ground truth object count.



The organization of this paper is as follows. In Section 2

we discuss related work in the areas of motion segmentation

and object tracking. We describe our approach to tracking

and segmentation in Section 3. Our experimental results on

three different real-world datasets are presented in Section

4. Finally we conclude in Section 5.

2 Related Work

Motion segmentation is a commonly applied pre-

processing step for further analyses such as structure from

motion, video texture description, robust optical flow com-

putation and object segmentation. For rigid objects, com-

mon approaches include two frame RANSAC [19] or, pro-

vided that clean, extended feature tracks are available, batch

factorization methods [4, 6]. When trying to segment more

complex objects, such as articulated ones [27], methods

based on local affine invariants [15] show some promise on

small numbers of slowly deforming objects.

For the special case of human beings, an abundant liter-

ature describes means of finding persons in video footage

[16, 23], or even in still frames [25, 11]. Nonetheless,

most of these methods have difficulties dealing with dense

crowds, though some have proven successful given a dozen

persons [28]. Other works take a very different view

wherein the crowd is its own entity or even a texture [12],

in order to deduce its density [13, 2].

As our motivation is that of counting moving objects,

the problem we want to solve is not a conventional tracking

problem, even though the solution we propose makes use of

a low-level feature tracker. For example, we do not plan to

solve tracking through occlusions [7], which frees us from

complex manual inputs such as initializations [3, 17] or in-

tricate model definitions [9]. Moreover, the notion of “ob-

ject” is very subjective as both a crowd and its constituents

are objects. Therefore, our algorithm needs to learn some-

thing about the objects we wish to count.

Finally, the setting of our experiments is that of a surveil-

lance camera viewing a crowd from a distant viewpoint, but

zoomed in, such that the effects of perspective are mini-

mized. In a more general setting one can use the calibration

method presented in [10]. Contrary to existing methods of

counting persons, we do not require overhead views [14],

networks of cameras [26] or pre-knowledge of the tracked

objects [5].

3 Our Approach

3.1 Feature Tracking

3.1.1 Background

The KLT algorithm [18] is a feature tracking algorithm we

choose for its simplicity and practical effectiveness. The

driving principle behind the KLT tracker is to determine the

motion parameters (e.g., affine or pure translation) of local

windows W from an image I to a consecutive image J . The

centers of such windows define the tracked features.

Given a window W , the affine motion parameters A and

d are chosen to minimize the dissimilarity :

ǫ =

∫

W

[J(Ax + d) − I(x)]
2
w(x)dx (1)

where w is a weight function, usually chosen to be constant

or Gaussian. It is commonly assumed that only the trans-

lation d matters between two frames, hence leading to the

equation:

Zd = e (2)

where

Z =

∫

W

g(x)g⊤(x)w(x)dx

e =

∫

W

[I(x) − J(x)]g(x)w(x)dx

with

g(x) =

[

∂
∂x

J(x)
∂
∂y

J(x)

]

Equation (2) will have a reliable solution if the second mo-

ment matrix Z is full rank. Practically, the good windows

are chosen to be the ones leading to a Z whose minimal

eigenvalue is above a threshold. Once this eigenvalue drops

below that threshold, the feature track is terminated.

In its original form, KLT runs until no more initial fea-

tures can be tracked and avoids features less than ρ pixels

apart (we choose ρ = 4 pixels).

3.1.2 Increased Efficiency

The KLT tracker requires several parameters, among them,

the size of the window. In order for KLT to avail of good

features generated by windows of different scales and as-

pect ratios, we need a meaningful comparisons of dissimi-

larities corresponding to different windows. We choose to

normalize the dissimilarities by the area of their supporting

windows. By definition of our parameters, this is equivalent

to choosing a uniform weight w(x) = 1
|W| in Equation 1,

where |W| is the area of the window W .

Consequently, when trying to determine the quality of

two different windows W and W ′ centered on a same fea-

ture, we simply need to compare the eigenvalues of the nor-

malized matrices Z
|W| and Z′

|W′| . The resulting simplification

is that we only need to associate one window with each fea-

ture. The complexity of running KLT is therefore the same

as with only one set of windows. We also introduce a speed

improvement by using integral images, as used in [22], in

order to compute the different matrices Z supported by dif-

ferent window sizes.



Figure 2. Illustration of feature respawning

for the sequence shown in Figure 1. The ver-

tical axis represents time and each colored

line represents the trajectory of a feature for-

ward in time. The red dots represent the local

maxima of the distance from a point to the

closest trajectory, and hence the centers of

the “holes” among the trajectories.

Another important aspect of this approach is that when

tracking a crowd of similar objects, our version of KLT can

run through sample training frames first, in order to deter-

mine the parameters leading to the best windows. Later,

during execution time, only the optimal sets of parameters

need to be used. Those usually represent less than 5% of the

possible parameter sets. This is an important step as the op-

timal window sizes depend on the object class; for example

a weakly textured object requires bigger windows.

3.1.3 Feature Re-Spawning

After some time, KLT loses track of features for the fol-

lowing reasons: inter-object occlusion, self-occlusion, exit

from the picture, and appearance change due to perspective

and articulation. Therefore, new features need to be created.

The common implementation of KLT simply re-creates

features at every frame. This can be computationally inten-

sive and inefficient because weak features can be renewed

and tracked, despite being uninformative. We propose to re-

spawn features only at specific locations in space and time

and then propagate them forward and backward in time.

If we instantiate the tracker at a frame and allow it to

run, the spatio-temporal volume fills with tracks of features

as shown in figure 2. The populated space contains empty

regions which are the ideal places for re-spawning features.

However, for computational reasons, we cannot recreate

features in each of these holes; moreover, some holes are

obviously bigger and consequently require more attention.

We propose the following approach: each hole center is

given a weight corresponding to its distance to the closest

neighboring trajectory. The frame at which we should re-

spawn features is simply the weighted average of the times

at which the centers are located. Figure 2 contains an ex-

ample with 50 frames, and the best frame for re-spawning

features occurs at time 20.

3.2 Trajectory Conditioning

In practice, the KLT tracker gives us a set of trajectories

with poor homogeneity: the trajectories do not necessarily

end and begin at the same times, occlusions can result in

trajectory fragmentation, and a feature can lose its strength

resulting in less precise tracks. In order to have an improved

set of features, we condition the data, both spatially and

temporally.

We consider that even though each trajectory was com-

puted independently, it is influenced by its spatial neigh-

bors. The algorithm described in Figure 3 considers the

propagation of a box1 along a trajectory and it is applied

to each raw trajectory in the video sequence. Initialization

is performed by computing the centroid of the coordinates

of all the trajectories present inside the box at the time the

trajectory begins.

This algorithm is slightly more complicated than the

propagation of an averaging kernel along the trajectory be-

cause the smoothing occurs even after the original trajectory

is dead. The resulting output is therefore a set of smoother,

extrapolated and less fragmented trajectories.

3.3 Trajectory Clustering

In order to determine the number of objects at a given

time t, the features present at that time are going to be

clustered into plausible objects, and the number of result-

ing clusters will simply give the answer. Even though an

instant t is considered, the whole life of the features has to

be considered for partitioning: two objects might be close

at one instant, hence looking like one entity, but might part

later, resulting in the impossibility for their features to be

grouped together. We will therefore focus our attention on

a time window centered on t (we chose a half-width of 200

frames in our implementation).

At each time step, the present features form the nodes

of a connectivity graph G, whose edges indicate possible

membership to a common object. The problem is now an

instance of graph partitioning with binary edge weights that

can be solved using cues and techniques we now describe.

1The diameter of the neighborhood box is chosen to be 4ρ, with ρ de-

fined at the very end of Section 3.1.1. This decision is motivated by the

following: trajectories cannot be closer than ρ by definition. Therefore,

choose the next order, 2ρ as a radius of proximity, hence 4ρ as a diameter.



(a) (b) (c) (d)

Figure 3. (a) Illustration of conditioned trajectory at time t with coordinates indicated by diamond

symbol. Empty circles indicate feature trajectories that do not continue past t, while filled circles

continue to time t+1 according to the depicted individual displacement vectors. The next coordinate

of the conditioned trajectory is computed via the displacement vector, shown as a dotted arrow,

obtained by averaging the vectors inside the box centered on the diamond. This process is carried

out for all trajectories in the sequence, and is run forward and backward in time. The result is a set

of longer, smoother trajectories with reduced fragmentation. (b) shows an example of a detail of a

crowd sequence on which features are tracked (c) and then conditioned (d).

3.3.1 Connectivity Graph

The set of trajectories we are dealing with is so heteroge-

neous in length, type and amount of overlap that common

approaches, like the shape interaction matrix [4], are unus-

able for clustering. This section demonstrates how cues on

the shape can prune many connections in our connectivity

graph G, hence simplifying its partitioning.

We will use the following notations: τ
i refers to the track

of feature i and τ
i(t) refers to the homogeneous coordinates

(τ i
x(t), τ i

y(t), 1)⊤ of the feature i at time t. Finally, ‖.‖2

refers to the L2 norm.

First, let us assume a bounding box of the objects in our

crowd is known: a box, as small as possible, able to contain

every possible instance of the object. Formally, the width

and height of this box are defined as follows:

w = max
(τ i,τ j)∈Object2

(

max
t∈Time

|τ i
x(t) − τ

j
x(t)|

)

h = max
(τ i,τ j)∈Object2

(

max
t∈Time

|τ i
y(t) − τ

j
y(t)|

)

By definition, two trajectories that cannot be put into such a

box at one point of their lifetime cannot belong to the same

object.

Similarly, let us define the articulation factor for an ob-

ject:

φ = max
(τ i,τ j)∈Object2

(

max
t∈Time

‖τ i(t) − τ
j(t)‖2 − min

t∈Time
‖τ i(t) − τ

j(t)‖2

)

It simply defines the variation through time of the distance

between two features, hence how “loose” their connection

is. This factor depends on the object kind as well as its

movement: for example, for a rigid object under pure trans-

lation, φ = 0.

By definition of these three parameters, if two trajecto-

ries τ
i and τ

j do not comply to one of the three conditions:

∀t, |τ i
x(t) − τ

j
x(t)| ≤ w

∀t, |τ i
y(t) − τ

j
y(t)| ≤ h

max
t∈Time

‖τ i(t) − τ
j(t)‖2 − min

t∈Time
‖τ i(t) − τ

j(t)‖2 ≤ φ

(3)

then, these two trajectories do not belong to the same object.

Therefore, the conditions in Equation (3) are necessary for

grouping τ
i and τ

j together.

We will detail in Section 4 how we obtain these parame-

ters (w, h, φ).

3.3.2 RANSAC-based Merging

While we do not assume a prior on the objects, assuming

that they behave rigidly in some of their parts/limbs can lead

to an initial grouping.

If several features share a rigid motion in 3D, then

the motion of their 2D orthographic projections is affine.

Therefore, we assume that if 2D features share an affine

movement during their whole life span, they then belong to

a rigid part of an object, and consequently to a common ob-

ject. Mathematically, we assume that a set T of features τ
i



has a 3D rigid motion if it exists a family of 3 × 3 homoge-

neous affine motion matrix Mt→t′ such that ∀τ
i ∈ T and

∀(t, t′) ∈ Time2:

‖Mt→t′ · τ
i(t) − τ

i(t′)‖2 = 0 (4)

Nonetheless, because of the noise present during the

KLT tracking, this assumption needs to be relaxed. In Sec-

tion 3.1.1, ρ was defined as the minimum distance between

two features but it can also be interpreted as the distance

below which ambiguity disappears between features. The

condition in Equation (4) can now be relaxed as the follow-

ing sufficient condition for grouping trajectories in a set T :

‖Mt→t′ · τ
i(t) − τ

i(t′)‖2 ≤ ρ (5)

To determine these rigid clumps T , RANSAC is applied

to sets of trajectories existing on the studied time window

and connected in the connectivity graph G. By consider-

ing triadic connections, the corresponding affine motions

through time are computed via least square minimization

and tested with potential inliers on Equation (5).

At this point of the feature clustering, we have clumps

containing one or several features belonging to a common

rigid motion, as well as possible connections between fea-

tures, defined in the connectivity graph G. Empirically, we

found that the number of clumps is usually between 20%
and 40% of the number of features.

3.3.3 Agglomerative Clustering

Finally, the features are agglomeratively clustered into in-

dependent objects. At each iteration, the two closest sets T
and T ′ are considered and if all their features are linked to

each other in the connectivity graph G, they are merged to-

gether. Otherwise, the next closest sets are considered. We

proceed until all the possible pairs have been analyzed.

4 Experiments

4.1 Implementation

We implemented our algorithm in C++ for the KLT part,

and Matlab for the clustering side. We name it ALDENTE,

as it is an ALgorithm for DEtermining the Number of

Trackable Entities.

A final point we need to clarify is how we obtain the

bounding box parameters w and h as well as the articula-

tion factor φ. For the sake of simplicity, we only want the

training data of the algorithm to be as simple as a video

footage associated with its ground truth number of objects

through time. Therefore, when given the training data, the

algorithm simply sweeps though the possible sets (w, h, φ)
and keeps the one leading to the minimal error when exe-

cuting our tracking/clustering approach.

USC LIBRARY CELLS

# frames 900 1000 200

characteristics
320× 240,

MPEG, 15 fps

640×480,
DV, 30 fps

320×240,
JPEG seq.

KLT time 1 min 6 min 4 min

Clustering time 20s 42s 16s

# features/frame

before conditioning
60 602 610

# features/frame

after conditioning
67 737 717

Feature duration

before conditioning
138 128 24

Feature duration

after conditioning
160 162 52

Optimal (w, h, φ) 50,60,50 100,180,45 50,50,20

Average error (#) 0.8 2.7 24

Average error (%) 10 6.3 22

Figure 4. Summary of the results

4.2 Datasets

Our approach was tested on three different datasets:

1. USC. The dataset from [28]: an elevated view of a

crowd consisting of zero to twelve persons.

2. LIBRARY. Our dataset consists of an elevated view of

a crowd of twenty to fifty persons. The background is

never completely visible.

3. CELLS. A red blood cell dataset: fifty to a hundred

blood cells are moving at different speeds. The cells

are blobs changing shapes through time, sometimes

occluding each other and having different speeds.

The ground truth for the number of objects has been de-

termined by several human operator at certain frames of the

data, by looking at the previous and next frame to determine

how many objects moved.

Table 4 summarizes some characteristics of this data and

obtained results. Figures 5,6,7,8 show a summary of the

analysis through time as well as some close-ups on certain

results

4.3 Analysis

As shown in Table 4, conditioning increases the life

of the features and hence the average number of features

present in a frame. An interesting result appears with the

optimal sets of parameters (w, h, φ). The found optimal sets

are close to what is expected: the bounding box parameters

have dimensions very close to the size of the objects we

count (e.g. vertical box for the persons, and square ones for

the cells).

The cell dataset presented difficulties not so much be-

cause of the lack of good features to track but because of



the poor frame rate leading to some untrackable cells. We

nonetheless captured the global variation in the number of

cells, as shown in Figure 5c.

5 Discussion and Conclusion

Multi-body motion segmentation algorithms have relied

thus far on certain assumptions made on the scene, on the

objects, or on their number. In an attempt to free these com-

mon approaches from complicated parameter tuning, we ex-

perimented a new way of segmenting motions generated by

multiple instances of an object in a crowd.

We introduced some enhancements to the KLT tracker

in order to extract a large set of features from the video

footage. After proposing a conditioning technique for fea-

ture trajectories, we introduced a trajectory set clustering

method to identify the number of moving objects in a scene.

With respect to the encouraging results we obtained, we

propose to extend our method in order to identify a more

complex model, in appearance and motion, of the objects.

We also plan to investigate combining our approach with

static object counting methods. Further improvement will

include autocalibration (at least to correct the perspective)

and discrimination of the background from the objects, in

order to have the method work for handheld camera.
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(a) (b) (c)

Figure 5. Number of objects through time estimated by our algorithm (solid blue) compared to ground

truth (dashed red). Error bars indicate one standard deviation of the ground truth labels determined

by several human operators. (a) USC (b) LIBRARY (c) CELLS.

(a) (b) (c) (d)

Figure 6. Results of clustering on the USC dataset: (a) and (b) show good performances on several

persons while sometimes persons are merged as shown in (c) and (d).

(a) (b) (c)

Figure 7. Results of clustering on the LIBRARY dataset shown in (a) and (b). (c) shows a close-up

with good clustering except for two persons on the left that were standing up and not exhibiting any

motion.

(a) (b) (c)

Figure 8. Additional examples of clustering results on the LIBRARY (a,b) and CELLS dataset (c).


