
Counting Distinct Elements in a Data Stream

Ziv Bar-Yossef1⋆, T.S. Jayram2, Ravi Kumar2, D. Sivakumar2, and
Luca Trevisan3⋆⋆

1 Computer Science Division, Univ. of California at Berkeley, Berkeley, CA 94720.
zivi@cs.berkeley.edu

2 IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120. {jayram,
ravi, siva}@almaden.ibm.com

3 Computer Science Division, Univ. of California at Berkeley, Berkeley, CA 94720.
luca@cs.berkeley.edu

Abstract. We present three algorithms to count the number of distinct
elements in a data stream to within a factor of 1 ± ϵ. Our algorithms
improve upon known algorithms for this problem, and offer a spectrum
of time/space tradeoffs.

1 Introduction

Let a = a1, . . . , an be a sequence of n elements from the domain [m] =
{1, . . . , m}. The zeroth-frequency moment of this sequence is the number of
distinct elements that occur in the sequence and is denoted F0 = F0(a). In this
paper we present three space- and time-efficient algorithms for approximating
F0 in the data stream model.

In the data stream model, an algorithm is considered efficient if it makes
one (or a small number of) passes over the input sequence, uses very little
space, and processes each element of the input very quickly. In our context,
a data stream algorithm to approximate F0 is considered efficient if it uses only
poly(1/ϵ, log n, log m) bits of memory, where 1 ± ϵ is the factor within which F0
must be approximated.

Let ϵ, δ > 0 be given. An algorithm A is said to (ϵ, δ)-approximate F0 if for
any sequence a = a1, . . . , an, with each ai ∈ [m], it outputs a number F̃0 such
that Pr[

∣∣∣F0 − F̃0

∣∣∣ ≤ ϵF0] ≥ 1−δ, where the probability is taken over the internal
coin tosses of A. Two main parameters of A are of interest: the workspace and
the time to process each item. We study these quantities as functions of the
domain size m, the number n of elements in the stream, the approximation
parameter ϵ, and the confidence parameter δ.

There are several reasons for designing algorithms for F0 in the data stream
model. Counting the number of distinct elements in a (column of a relational)
table of data is a fairly fundamental problem in databases. This has applications
⋆ Part of this work was done while the author was visiting IBM Almaden Research

Center. Supported by NSF Grant CCR-9820897.
⋆⋆ Work supported by a Sloan Research Fellowship and an NSF Career Award.

J.D.P. Rolim and S. Vadhan (Eds.): RANDOM 2002, LNCS 2483, pp. 1–10, 2002.
c⃝ Springer-Verlag Berlin Heidelberg 2002

2 Z. Bar-Yossef et al.

to estimating the selectivity of queries, designing good plans for executing a
query, etc.—see, for instance, [WVT90,HNSS96]. Another application of count-
ing distinct elements is in routing of Internet traffic. The router usually has very
limited memory, but it is desirable to have the router gather various statistical
properties (say, the number of distinct destination addresses) of the traffic flow.
The number of distinct elements is also a natural quantity of interest in several
large data set applications (eg., the number of distinct queries made to a search
engine over a week).

Flajolet and Martin [FM85] designed the first algorithm for approximating
F0 in the data stream (or what was then thought of as a one-pass) model.
Unfortunately, their algorithm assumed the existence of hash functions with
some ideal properties; it is not known how to construct such functions with
limited space. Alon, Matias, and Szegedy [AMS99] built on these ideas, but used
random pairwise independent hash functions [CW77,WC79] and gave an (ϵ, δ)-
approximation algorithm for ϵ > 1; their algorithm uses O(log m) space. For
arbitrarily small ϵ, Gibbons and Tirthapura [GT01] gave an algorithm that used
S = O(1/ϵ2 ·log m) space and O(S) processing time per element; Bar-Yossef et al.
[BKS02] gave an algorithm that used O(1/ϵ3·log m) space (and time per element)
but that had some other nice property required for their application. Cohen
[Coh97] considered this problem in the context of graph-theoretic applications;
her algorithm is similar in spirit to that of [FM85,AMS99]; specifically, it has
a high-level viewpoint similar to the first algorithm in this paper. However, the
implementation is very different, and does not yield a o(m) space algorithm.

One of the drawbacks of the algorithms of [GT01,BKS02] is that the space
and time are the product of poly(1/ϵ) and log m. Even with modestly small
constants in the O notation and ϵ = 0.01, the space required might be prohibitive
in certain applications (eg., a router with very little memory or a database
application where the frequency estimation is required to be piggy-backed on
some other computation). This leads to the question of whether it is possible to
obtain space/time upper bounds that are poly(1/ϵ) + log m. In this paper we
achieve this, modulo factors of the form log log m and log(1/ϵ).

Results. We give three algorithms with different space-time tradeoffs for approx-
imating F0. Each of our algorithms is an improvement over any of the existing
algorithms in either space or processing time or both.

We will state the bounds for our algorithms in terms of ϵ and log m (suppress-
ing the dependence on n). This is without loss of generality: If indeed m < n, it
is clearly advantageous to have an algorithm whose bounds depend on log m and
not on log n. If, on the other hand, m > n, we can employ a simple hashing trick
(with O(log(m + n)) space and time per element) that reduces the description
of each stream element to O(log n) bits. Thus we will assume for the rest of the
paper that log m = O(log n). We will also assume that there exists ϵ0 < 1 such
that the accuracy parameter ϵ given to the algorithms is at most ϵ0. (Note that
this is, in fact, the interesting case. We make this assumption explicit only so
that we may abbreviate max{1/ϵ, ϵ0} by 1/ϵ.)

Counting Distinct Elements in a Data Stream 3

The following table summarizes our results. The Õ notation suppresses
log(1/ϵ) and log log m factors. For simplicity, the dependence on δ, which is
a multiplicative factor of log(1/δ) for both space and time, is also dropped.

Algorithm Space Time/element
1, Thm. 1 O(1/ϵ2 · log m) Õ(log m)
2, Thm. 2 Õ(1/ϵ2 + log m) Õ(1/ϵ2 · log m)
3, Thm. 3 Õ(1/ϵ2 + log m) Õ(log m) [amortized]

A lower bound of Ω(log m) was shown in [AMS99]. It is also easy to show an
Ω(1/ϵ) lower bound by a reduction from the “indexing” problem in the one-way
communication complexity model. An interesting open question is to obtain an
algorithm with space bound (1/ϵ) · polylog (m), or a lower bound of Ω(1/ϵ2).

2 The First Algorithm

Our first algorithm is a generalization of the algorithm of [FM85,AMS99] to
work for any ϵ > 0.

To make our exposition clearer, we first describe an intuitive way to look
at the algorithm of [FM85,AMS99]. This algorithm first picks a random hash
function h : [m] → [0, 1]. It then applies h(·) to all the elements in a and
maintains the value v = minn

j=1 h(aj). In the end, the estimation is F̃0 = 1/v.
The algorithm has the right approximation (in the expectation sense) because
if there are F0 independent and uniform values in [0, 1], then their expected
minimum is around 1/F0. Of course, the technical argument in [AMS99] is to
quantify this precisely, even when h is chosen from a pairwise independent family
of hash functions.

In our algorithm, we also pick a hash function h : [m] → [0, 1], but we keep
the t = O(1/ϵ2) elements ai on which h evaluates to the t smallest values. If we
let v be the t-th smallest such value, we estimate F̃0 = t/v. This is because when
we look at F0 uniformly distributed (and, say, pairwise independent) elements of
[0, 1], we expect about t of them to be smaller than t/F0. The formal description
is given below.

Theorem 1. There is an algorithm that for any ϵ, δ > 0, (ϵ, δ)-approximates F0
using O(1/ϵ2 · log m · log(1/δ)) bits of memory and O(log(1/ϵ) · log m · log(1/δ))
processing time per element.

Proof. We pick at random a pairwise independent hash function h : [m]→ [M],
where M = m3. Note that, with probability at least 1− 1/m, h is injective over
the elements of a.

Let t = ⌈96/ϵ2⌉. Our algorithm maintains the t smallest distinct values of
h(ai) seen so far. The algorithm updates (if necessary) this list each time a new
element arrives. Let v be the value of the t-th smallest such value when the entire
sequence has been processed. The algorithm outputs the estimation F̃0 = tM/v.

4 Z. Bar-Yossef et al.

The algorithm can be implemented in O(1/ϵ2 · log m) space, since the hash
function h requires O(log m) space, and each of the t = O(1/ϵ2) values to be
stored requires O(log m) space. The t values could be stored in a balanced binary
search tree, so that each step can be implemented in O(log(1/ϵ) · log m) time
(rather than O(1/ϵ2 · log m) which would be necessary if the elements are stored
as a list).

We can assume that 1/M < ϵt/(4F0). Since F0 ≤ m, M = m3, and t ≥ 96/ϵ2,
the condition is satisfied as long as m ≥

√
ϵ/24. Let b1, . . . , bF0 be the distinct

elements of a.
Let us first consider the case F̃0 > (1+ϵ)F0, i.e., the case when the algorithm

outputs a value above (1+ ϵ)F0. This means the sequence h(b1), . . . , h(bF0) con-
tains at least t elements that are smaller than tM/(F0(1+ ϵ)) ≤ (1− ϵ/2)tM/F0
(using the fact ϵ ≤ 1). Each h(bi) has a probability at most (1−ϵ/2)t/F0+1/M <
(1 − ϵ/4)t/F0 (taking into account rounding errors) of being smaller than
(1 − ϵ/2)tM/F0. Thus, we are in a situation where we have F0 pairwise in-
dependent events, each one occurring with probability at most (1 − ϵ/4)t/F0,
and at least t such events occur. Let Xi, i = 1, . . . , F0, be an indicator r.v. corre-
sponding to the event “h(bi) < (1− ϵ/2)tM/F0”. Clearly, E[Xi] ≤ (1− ϵ/4)t/F0.
Let Y =

∑F0
i=1 Xi. It follows E[Y] ≤ (1 − ϵ/4)t and by pairwise independence,

Var(Y) ≤ (1−ϵ/4)t. The event that the algorithm outputs a value above (1+ϵ)F0
occurs only if Y is more than t, and therefore the probability of error is:

Pr[Y > t] ≤ Pr[|Y − E[Y]| > ϵt/4] ≤ 16 · Var[Y]/(ϵ2t2) ≤ 16/(ϵ2t) ≤ 1/6,

using Chebyshev’s inequality.
Let us consider now the case in which the algorithm outputs F̃0 which is below

(1−ϵ)F0. This means the sequence h(b1), . . . , h(bF0) contains less than t elements
that are smaller than tM/(F0(1 − ϵ)) ≤ (1 + ϵ)tM/F0. Let Xi be an indicator
r.v. corresponding to the event “h(bi) ≤ (1 + ϵ)tM/F0”, and let Y =

∑F0
i=1 Xi.

Taking into account rounding errors, (1 + ϵ/2)t/F0 ≤ E[Xi] ≤ (1 + 3ϵ/2)t/F0,
and therefore E[Y] ≥ t(1 + ϵ/2) and Var[Y] ≤ E[Y] ≤ t(1 + 3ϵ/2), as before.
Now, F̃0 < (1− ϵ)F0 only if Y < t, and therefore the probability of error is:

Pr[Y < t] ≤ Pr[|Y − E[Y]| ≥ ϵt/2] ≤ 4 · Var[Y]/(ϵ2t2) ≤ 12/(ϵ2t) < 1/6

Thus, the probability that the algorithm outputs F̃0 which is not within (1 ± ϵ)
factor of F0 is at most 1/3 + 1/m. As usual, this probability can be amplified to
1− δ by running in parallel O(log(1/δ)) copies of the algorithm, and taking the
median of the resulting approximations.

3 The Second Algorithm

The second algorithm is based on recasting the F0 problem as estimating the
probability of an appropriately defined event. The main idea is to define a quan-
tity that can be approximated in the data stream model and that, in turn, can
be used to approximate F0.

Counting Distinct Elements in a Data Stream 5

Theorem 2. There is an algorithm that for any ϵ, δ > 0, (ϵ, δ)-approximates
F0 using Õ((1/ϵ2 + log m) · log(1/δ)) bits of memory. The processing time per
data item is Õ(1/ϵ2 · log m · log(1/δ)). (The Õ notation suppresses log(1/ϵ) and
log log m factors).

Proof. We take advantage of the fact that the algorithm of [AMS99] can be used
to provide a rough estimate of F0; namely, it is possible to obtain an estimate
R such that 2F0 ≤ R ≤ 2cF0, where c = 25, with probability at least 3/5. In
addition, R may be assumed to be a power of 2. Our algorithm will implement the
AMS algorithm on one track of the computation, and keep track of some extra
quantities on another. In the sequel, we will add 2/5 to the error probability,
and assume that we have an estimate R that meets this bound.

Let b1, . . . , bF0 denote the F0 distinct elements in the stream a, and let B
denote the set {b1, . . . , bF0}. Consider a completely random map h : [m]→ [R],
and define r = Prh[h−1(0) ∩ B ̸= ∅] = 1− (1− 1/R)F0 . We first show that if R
and F0 are within constant multiples of each other, then approximating r is a
good way to approximate F0.

Lemma 1. Let c = 25 and let ϵ > 0 be given. Let R and F0 satisfy 1/(2c) ≤
(F0/R) ≤ 1/2. Then if |r − r̃| ≤ γ = min{1/e− 1/3, ϵ/(6c)}, then F̃0, defined by

F̃0 =
ln(1− r̃)

ln(1− 1/R)

satisfies
∣∣∣F0 − F̃0

∣∣∣ ≤ ϵF0.

Proof. Since R ≥ 2F0, we have R ≥ 2, therefore 1/R ≤ 1/2, and so 1 − 1/R ≥
e−2/R (since 1−x ≥ e−2x for x ≤ 1/2). Hence r = 1−(1−1/R)F0 ≤ 1−e−2F0/R.
Since F0/R ≤ 1/2, we have r ≤ 1−1/e. By definition, γ ≤ 1/e−1/3, so we have
r+γ < 2/3 and 1/(1−(r+γ)) < 3. Also for R > 1, we have −1/ ln(1−1/R) ≤ R.

For a continuous function f , |f(x)− f(x + ϵ)| ≤ ϵ
∣∣∣supy∈(x,x+ϵ) f ′(y)

∣∣∣. Let-
ting f(x) = ln(1−x), we obtain |f(x)− f(x̃)| ≤ |x− x̃| /(1−max{x, x̃}). There-
fore,

∣∣∣F0 − F̃0

∣∣∣ =
|ln(1− r)− ln(1− r̃)|
− ln(1− 1/R)

≤ R |r − r̃|
1− (r + γ)

≤ 3Rγ ≤ 3 · (2cF0) · ϵ
6c

= ϵF0.

Our idea is to approximate r by using hash functions h that are not totally
random, but just random enough to yield the desired approximation. We will
pick h from a family H of hash functions from [m] into [R], whose choice we
will spell out shortly. Let p = Prh∈H[h−1(0) ∩ B ̸= ∅]. For i = 1, . . . , F0, let Hi

denote the set of hash functions in H that map the i-th distinct element bi of B
to 0. Note that p = |

⋃
i Hi| / |H|, thus our goal is to estimate this union size. By

inclusion–exclusion, we have

6 Z. Bar-Yossef et al.

p =

(
∑

i

Pr
h∈H

[h ∈ Hi]

)

−

⎛

⎝
∑

i<j

Pr
h∈H

[h ∈ Hi ∩Hj]

⎞

⎠

+

⎛

⎝
∑

i<j<k

Pr
h∈H

[h ∈ Hi ∩Hj ∩Hk]

⎞

⎠− · · ·

Let Pℓ denote the ℓ-th term in the above series. For any odd t > 0, we know
that

t−1∑

ℓ=1

(−1)ℓ+1Pℓ ≤ p ≤
t∑

ℓ=1

(−1)ℓ+1Pℓ.

Our key observation is that if picking h ∈ H yields a t-wise independent hash
function, then we know precisely what each Pℓ is, and we have

t−1∑

ℓ=1

(−1)ℓ+1
(

F0

ℓ

)
R−ℓ ≤ p ≤

t∑

ℓ=1

(−1)ℓ+1
(

F0

ℓ

)
R−ℓ. (1)

On the other hand, via binomial expansion we know that

r = 1−
(

1− 1
R

)F0

=
F0∑

i=1

(−1)i+1
(

F0

i

)
R−i,

whence we have for odd t that
t−1∑

ℓ=1

(−1)ℓ+1
(

F0

ℓ

)
R−ℓ ≤ r ≤

t∑

ℓ=1

(−1)ℓ+1
(

F0

ℓ

)
R−ℓ. (2)

From Equations (1) and (2), it follows that both p and r are sandwiched inside
an interval of width

(F0
t

)
R−t ≤ (eF0/(tR))t ≤ (1/5)t, which, with a choice of t =

⌈lg(2/γ)/ lg 5⌉ implies that |p− r| ≤ γ/2. Recall that γ = min{1/e−1/3, ϵ/(6c)},
where c = 25.

Finally, we will show how to produce an estimate p̃ of p such that |p− p̃| ≤
γ/2, so that |p̃− r| ≤ γ, and we can apply Lemma 1.

The idea is to pick several hash functions h1, . . . , hk from a family H of t-wise
independent hash functions. For a sequence HR = (h1, . . . , hk) of hash functions
from [m] into [R], define the estimator

X(HR) =
1
k

∣∣{j | h−1
j (0) ∩B ̸= ∅}

∣∣ .

Clearly, E[X(HR)] = p. If k = O(1/γ2) = O(1/ϵ2) is suitably large, then by
Chebyshev’s inequality, we can show that Pr[|X(HR)− p| > γ/2] ≤ 1/20.

Each hash function can be described by s = O(t log m) bits. Instead of picking
the k hash functions independently from H, we will pick them pairwise indepen-
dently; this requires only 2s bits (assuming 2s ≥ k) that we dub the “master
hash function.” The idea is that we will keep only the master hash function;

Counting Distinct Elements in a Data Stream 7

as each element ai of the stream is processed, we will construct each of the k
hash functions in turn and compute whether it maps ai to 0. Extracting the
description of each hash function hj from the master hash function can be done
easily in space O(s) and time O(s log s). Alternatively, we could use a master
hash function of O(s log k) bits with the ability to extract each hash function in
space and time O(s log k).

Lastly, we spell out how we handle the issue that we don’t know R to begin
with. Recall that R will be available to us through the AMS algorithm only
after the stream has been processed. Thus, at the end of the stream, we need
the ability to compute the estimator X(HR) for each R = 1, . . . , log m. Here we
use the fact that for standard hash functions where the size of the range [m] is
a power of 2, extracting the least significant z bits, 1 ≤ z ≤ log m, gives a hash
function with range [2z]. Thus, for each hash function hj , we will maintain not
just one bit indicating whether h−1

j (0) ∩ B ̸= ∅, but we will keep track of the
largest z such that for some element b in the stream, hj(b) had z least significant
bits equal to zero.

To complete the correctness argument, note that the error probability is
bounded by the error probability of the application of the AMS algorithm, which
is 2/5, plus the error probability of the estimation, which is 1/20. Thus, with
probability at least 11/20, the algorithm produces an estimate F̃0 of F0 such
that

∣∣∣F0 − F̃0

∣∣∣ ≤ ϵF0. Repeating this O(log 1/δ) times and taking the median
reduces the error probability to δ.

Let us summarize the space and time requirements:

1. Storing the master hash requires space either O(s log s) = O(log(1/ϵ) · log m ·
(log log(1/ϵ) + log log m)) or O(s log k) = O(log2(1/ϵ) · log m).

2. Storing the number of trailing zeros for each hash function needs
O(k log log m) space, which is O(1/ϵ2 · log log m) bits.

3. To process each item of the stream, the time required is dominated by ac-
cessing the master hash function k times, and is therefore Õ(1/ϵ2 · log m),
suppressing log log m and log(1/ϵ) factors.

4 The Third Algorithm

The algorithm in this section is a unified and improved version of two previous
algorithms: one due to Bar-Yossef et al. [BKS02] and one due to Gibbons and
Tirthapura [GT01].

Theorem 3. There is an algorithm that for any ϵ, δ > 0, (ϵ, δ)-approximates F0

using S = Õ((1/ϵ2 + log m) log(1/δ)) bits of memory (suppressing log(1/ϵ) and
log log m factors). The processing time per data item is O(S) in the worst-case
and O((log m + log(1/ϵ)) log(1/δ)) amortized.

Proof. For a bit string s ∈ {0, 1}∗, we denote by trail(s) the number of trailing
0’s in s.

8 Z. Bar-Yossef et al.

Let b1, . . . , bF0 the F0 distinct elements in the input stream a1, . . . , an. Let
B = {b1, . . . , bF0} and for each i ∈ [n], let Bi = B ∩ {a1, . . . , ai}.

The algorithm picks a random pairwise independent hash function h : [m]→
[m]; we will assume that m is a power of 2. For t = 0, . . . , log m, define ht :
[m] → [2t] to be the projection of h on its last t bits. The algorithm finds the
minimum t for which r =

∣∣h−1
t (0) ∩B

∣∣ ≤ c/ϵ2, where c = 576. It then outputs
r · 2t.

In order to find this t, the algorithm initially assumes t = 0, and while
scanning the input stream, stores in a buffer all the elements bj from the stream
for which ht(bj) = 0. When the size of the buffer exceeds c/ϵ2 (say, after reading
ai) the algorithm increases t by one. Note that ht+1(bj) = 0 implies ht(bj) = 0.
Therefore, the algorithm does not have to rescan a1, . . . , ai in order to obtain
h−1

t+1(0) ∩ Bi; rather, since h−1
t+1(0) ⊆ h−1

t (0), the algorithm will simply extract
it from the buffer, which contains h−1

t (0) ∩ Bi. At the end of the execution we
are left with the minimum t for which the buffer size (i.e.,

∣∣h−1
t (0) ∩B

∣∣) does
not exceed c/ϵ2.

Up to this point, this is a simpler exposition of the Gibbons–Tirthapura
algorithm. We further improve the algorithm by storing the elements in the
buffer more efficiently. Instead of keeping the actual names of the elements,
we keep their hash values, using a second hash function. Specifically, let g :
[m]→ [3 · ((log m + 1) · c/ϵ2)2] be a randomly chosen pairwise independent hash
function. Note that since we apply g on at most (log m + 1) · (c/ϵ2) distinct
elements, g is injective on these elements with probability at least 5/6. For each
element bj stored in the buffer, we need to store also the largest number t for
which ht(bj) = 0 (which is basically trail(h(bj))); we use this value during the
extraction of h−1

t+1(0)∩Bi from h−1
t (0)∩Bi. In order to do this succinctly, we keep

an array of balanced binary search trees T of size log m+1. The t-th entry in this
array is to contain all the elements bj in the buffer, for which trail(h(bj)) = t.

We start by analyzing the space and time requirements of the algorithm. The
space used by the algorithm breaks down as follows:

1. Hash function h: O(log m) bits.
2. Hash function g: O(log m + log(1/ϵ)) bits.
3. Buffer T : O(log m) bits for the array itself, and O(1/ϵ2 ·(log(1/ϵ)+log log m))

for the elements stored in its binary search trees (because we always store at
most O(1/ϵ2) elements, and each one requires O(log(1/ϵ) + log log m) bits).

The total space is, thus, O(log m + 1/ϵ2 · (log(1/ϵ) + log log m)).
The worst-case running time per item is O(log m + (1/ϵ2) · (log(1/ϵ) +

log log m)), because this is the number of steps required to empty the buffer
T . The amortized running time per item is, however, only O(log m + log(1/ϵ))
because each element is inserted at most once and removed at most once from
the buffer T .

We next prove the algorithm indeed produces a 1 ± ϵ relative approximation
of F0 with probability at least 2/3.

Counting Distinct Elements in a Data Stream 9

One source of error in the algorithm is g having collisions. Note that for a
given stream a1, . . . , an and a given choice of h, the at most (log m + 1) · (c/ϵ2)
elements on which we apply g are totally fixed. Since the size of the range of g
is thrice the square of the number of elements on which we apply it, and since g
is pairwise independent, the probability that g has collisions on these elements
is at most 1/6. We thus assume from now on that g has no collisions, and will
add 1/6 to the final error.

For each t = 0, 1, . . . , log m, we define Xt =
∣∣h−1

t (0) ∩B
∣∣; i.e., the num-

ber of distinct elements in the stream that ht maps to 0. Further define for
each such t and for each j = 1, . . . , F0, Xt,j to be an indicator random vari-
able, indicating whether ht(bj) = 0 or not. Note that E(Xt,j) = Pr[ht(bj) =
0] = 1/2t and Var[Xt,j] ≤ E[Xt,j]. Therefore, E[Xt] =

∑
j E[Xj,t] = F0/2t and

Var[Xt] =
∑

j Var[Xj,t] ≤ E[Xt] (the latter follows from the pairwise indepen-
dence of {Xt,j}j).

Let t∗ be the final value of t produced by the algorithm; that is, t∗ is the
smallest t for which Xt ≤ c/ϵ2. Note that the algorithm’s output is Xt∗ · 2t∗

.
If t∗ = 0, then it means that F0 ≤ c/ϵ2, in which case our algorithm computes

F0 exactly. Assume, then, that t∗ ≥ 1. We write the algorithm’s error probability
as follows: (in the derivation we define t to be the t for which 12/ϵ2 ≤ F0/2t <
24/ϵ2; note that such a t always exists).

Pr
[
∣

∣

∣
Xt∗ · 2t∗

− F0

∣

∣

∣
> ϵF0

]

= Pr
[
∣

∣

∣

∣

Xt∗ − F0

2t∗

∣

∣

∣

∣

> ϵ
F0

2t∗

]

=

=
log m
∑

t=1

Pr
[
∣

∣

∣

∣

Xt −
F0

2t

∣

∣

∣

∣

> ϵ
F0

2t
| t∗ = t

]

· Pr[t∗ = t]

=
log m
∑

t=1

Pr
[

|Xt − E[Xt]| > ϵE[Xt] | Xt ≤
c
ϵ2

, Xt−1 >
c
ϵ2

]

· Pr
[

Xt ≤
c
ϵ2

, Xt−1 >
c
ϵ2

]

≤
t−1
∑

t=1

Pr [|Xt − E[Xt]| > ϵE[Xt]] +
log m
∑

t=t

Pr
[

Xt ≤
c
ϵ2

, Xt−1 >
c
ϵ2

]

≤
t−1
∑

t=1

Var[Xt]
ϵ2E2[Xt]

+ Pr
[

Xt−1 >
c
ϵ2

]

≤
t−1
∑

t=1

1
ϵ2E[Xt]

+ E[Xt−1] · ϵ
2

c

=
t−1
∑

t=1

2t

ϵ2F0
+

F0

2t−1
· ϵ

2

c
≤ 2t

ϵ2F0
+

F0

2t
· 2ϵ2

c
≤ 1

ϵ2
· ϵ

2

12
+

24
ϵ2

· 2ϵ2

576
=

1
6
.

Thus, the total error probability is 1/3, as required. As before, this probabil-
ity can be amplified to 1 − δ by running in parallel O(log(1/δ)) copies of the
algorithm, and outputting the median of the resulting approximations.

References

[AMS99] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximat-
ing the frequency moments. Journal of Computer and System Sciences,
58(1):137–147, 1999.

10 Z. Bar-Yossef et al.

[BKS02] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming algo-
rithms, with an application to counting triangles in graphs. In Proceedings
of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
623–632, 2002.

[Coh97] E. Cohen. Size-estimation framework with applications to transitive closure
and reachability. Journal of Computer and System Sciences, 55(3):441–453,
1997.

[CW77] L. Carter and M. Wegman. Universal classes of hash functions. In Proceed-
ings of the 9th ACM Annual Symposium on Theory of Computing, pages
106–112, 1977. Journal version in Journal of Computer and System Sci-
ences, 18(2) 143–154, 1979.

[FM85] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data
base applications. Journal of Computer and System Sciences, 31:182–209,
1985.

[GT01] P. Gibbons and S. Tirthapura. Estimating simple functions on the union
of data streams. In Proceedings of the 13th ACM Symposium on Parallel
Algorithms and Architectures, pages 281–291, 2001.

[HNSS96] P.J. Haas, J.F. Naughton, S. Seshadri, and A.N. Swami. Selectivity and
cost estimation for joins based on random sampling. Journal of Computer
and System Sciences, 52(3), 1996.

[WC79] M. Wegman and L. Carter. New classes and applications of hash functions.
In Proceedings of the 20th IEEE Annual Symposium on Foundations of
Computer Science, pages 175–182, 1979. Journal version titled “New Hash
Functions and Their Use in Authentication and Set Equality” in Journal
of Computer and System Sciences, 22(3): 265-279, 1981.

[WVT90] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor. A linear-time prob-
abilistic counting algorithm for database applications. ACM Transactions
on Database Systems, 15(2):208–229, 1990.

