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COUNTING FACES AND CHAINS IN POLYTOPES AND POSETS
Margaret M. Bayerl and Louis J. BiEEeral

ABSTRACT. The purpose of this paper is to provide an overview of a
class of problems concerning the enumeration of faces in convex
polytopes or general trianguliated spheres, and of chains in certain
related posets. The degree to which we refine the objects being
counted may vary; for example, we may count the number of chains
consisting of k different faces of a given poelytope, or we may
instead ask for the number of chains of faces having dimensions
given by a prespecified k-set of integers. Throughout, the unify-
ing problem will be to determine all the affine linear relations
satisfied by the numbers in question. The best known of atl such
relations is the Euler equation, fg-f§+f2 = 72, which relates

the number of vertices, edges and 2-faces of any 3-polytope.
While the paper is mostly expository, sections 4, 6 and 7

discuss new results., A 1isting of the section headings follows.
1. f-vectors of convex polytopes

2. Dehn-Sommerville equations

3. Spanning the Euler hyperplane and the Dehn-Sommerville

space
. Labeled simplicial complexes

Some other proofs of hS = hg

Affine span for completely balanced spheres
Eulerian poset compiexes
Concluding remarks

-
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1. f-VECTORS OF CONVEX POLYTOPES. By a convex polytope P we mean the

convex hull of a finite point set in a real Euclidean space. Equivalently, P
can be defined as the bounded intersection of finitely many closed half-spaces.
By a face F of P we mean the intersection of P with a hyperplane having
the property that P is contained in one of its closed half-spaces. Thus, the
empty set is always a face of P, and we call P a face of P {whether or
not it arises in the above manner}. All other faces will be called proper
faces; and they are finite in number. Each face of a polytope P is again a

polytope.

1Partia1iy supported by NSF grant MCS81-02353 at Cornell University.



We define the dimension of a polytope P, dim P, to be the dimension of
aff(P), its affine hull, and say that P 1is a d-polytope if dim P =d. In
this case each face of P, except P itself, has dimension less than d. For
each 1 = -1,0,1,...,d-1, let fi(P) denote the number of i-dimensional faces
of P. In particular, f_g(P} =1 counts the empty face, fO(P) is the num=-
ber of vertices, f}(P) is the number of edges and fd-1(P) is the number of
facets of P, We denote by f(P) the vector (f_](P),fO{P),...,fd_1(P)), catled
the f-vector of P. For a comprehensive treatment of the theory of convex poly-
topes and, in particular, of f-vectors see [153, [23] or [34]. For a survey of
the latter topic which includes a discussion of the more recent results, see [29].

Let f(Pd} denote the set of all f-vectors of d-polytopes. There is
considerable interest in describing the set f(Pd) exactly, but this remains
unsettied in general, However, we can describe aff(f{Pd)) and certain
inequalities satisfied by each f ¢ f(Pd). First, each f ¢ f(Pd} satisfies

the Euler Equation

d
- - + = - ~ 10
fo = Fp Ffpmeee 2Ty =1 - (D)%

and, further, this equation specifies the affine hull, namely
aFF(F(PT)) = (T fgeeesTqy)t Ty = 1 Fp o Fp teee =1 = (1))
-'Eg U’-n-, d"‘} . —1 s D -‘ P, -

(We will give a proof of the latter assertion in Section 3.)
The inegualities are somewhat harder to describe. To this end, consider

the moment curve in rd given by x{t} = (t,tz,t3,...,td)

and choose real
numbers t, <ty < ... <R, with n > d. Define €{n,d) to be the convex

)}. While the actual polytope chtained by

hull of V = {x(ti),x(tz},...,x(tn

this procedure depends on the choices of the ti's, it is known that its
combinatorial structure, in particular, its f-vector, is independent of the
ti‘s. We use the symbol C(n,d) to refer to this combinatorial type. (In
general, when we refer to a polytope, we will be concerned oniy with its
combinatorial type, that is, its face lattice.) It is easily seen that C{n,d)

is a simplicial d-polytope, that is, each facet (and thus, each proper face} is

a simplex (an (r-1)-polytope having just r vertices}.



One of the most remarkable properties of the polytope C({n,d) is that it
is neighborly, that is, each pair of vertices forms an edge of C(n,d). In
fact, for k = 1,...,[d/2], the convex hull of any k-subset of V 1is a face
of C{n,d). (Here [x] denotes the largest integer less than or equal to X )
Thus among all d-polytopes with n vertices, C{n,d) clearly has the maximum
number of i-faces for 1 = 0,1,...,0d/2]-1. That <C(n,d) has the maximum
number of i-faces, among all d-polytopes with n vertices, for all 1 is the

content of the Upper Bound Theorem, first formulated by Motzkin [36] and proved

hy McMuiien [31]. Thus we have that for all d-poiytopes P with n vertices

f{PY < f{C{n,d)).

Since the number of i-faces of C{n,d) 1is known for each 1 as a function of
n and d, this gives upper bounds for each fé(P} in terms of n = fO(P}
{and d), and thus inequalities which must be satisfied for each f ¢ f{Pd).
By the above discussion we have

£ ) = (1)

0,1,...,[d/2]-1. See [23] or [34] for a general expression for the

t

for i
remaining coordinates of f{C(n,d)) and its derivation.

A compliete description of f{Pd) has remained elusive for general d.
There do not seem to be aven reasonable conjectures as to a final set of
conditions. However, if one restricts to the case of simplicial polytopes,
then the situation is considerably better understood. In fact, the set f(PS)
of all f-vectors of simplicial d-polytopes is completely known, being specified
entirely by a list of linear equations, Tinear inequalities and nonlinear
inequalities. We will describe these in turn, First note that by the ysual
polyhedral polarity [23], to each d-polytope P there correspends another
d-polytope P* which has the property that fi(P) = fd—%-i(?*)' In particu-
lar, when P is simplicial, then P* 1is simple, that is, gach vertex is on
precisely d facets. Thus, describing f(Pg) is equivalent to describing

the f-vectors of all simple d-polytopes. Further, one proves the Upper Bound



Theorem by first showing that the maximum number of faces must occur in
simplicial polytopes, and then proving the Upper Bound Theorem for simplicial

polytopes.

First, we note that sach f ¢ f(Pg) satisfies the Dehn-Sommerville

Equations

for k = -1,0,1,...,d=-1. The equation Eﬁ} is just the tuler equation., It

is known that [{d+1}/2] of these equations are independent, and they

completely determine aff(f(?i}). Thus the dimension of aff{f{Pg)} is

[d/2]. W4e treat these guestions in detail in sections 2 and 3.

To be able to describe the remaining conditions, we must apply a change of
variables to the space of f-vectors, first used by Sommerville [40], which
recasts the Dehn-Sommervilie equations in a particularly simple ferm, [f
f = f(P) for a d-polytope P, then we define the h-vector of P to be the

vector hiP} = (hO,h],...,h where for each i

o

L qyimdded
n, = é (-1) (d-ijfé,]‘

Hote that hO(P) = 1 since f_1{9) = 1, (Also, note the dependence of h on

d = dim P.} These relations can be inverted to give

it .
Fo=y (47

I %0 a-3-1 )"

it

Thus fj is a non-negative linear combination of hg,...,h and so an

L
inequality of the form h(P) < h(P') implies the corresponding inequality

f(P) < F(P'}., In fact, the proof of the Upper Bound Theorem proceeds by
showing h(P) < h{C{n,d)) for the simplicial d-polytopes with n vertices.
In terms of the h-vector of P, the Dehn-Sommerville equations become

; dei? for i = 0,1,...,0d/2]. {See [34] or [35] where our h,, corre-

sponds to their gi(P).)
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Let h(Pg) denote the set of h-vectors of simplicial d-polytopes. By the
above discussion, knowing h(Pg) is equivalent to knowing f(Pg). We can now
describe the set of linear inequalities satisfied by all f ¢ f{ng. They were

first proposed hy McMullen and Waikup in the form of a Generalized Lower Bound

Conjecture, which stated that hi+1 >h,, for 1= 0,1,...,[d/23-1. Thus, in

1

light of the Dehn-Sommerville equations, these inequalities impiy that the

h-vector must be unimodal., In terms of the f.'s, h, Z_hi implies a lower

i i+

bound on fi as a tinear function of the fj‘s for j <1 < [d/2]; these

lower bounds imply the lower bounds given in the so-called Lower Bound Theorem

proved hy Barnette [6] (see [351).
To complete the description, we must establish a Tast bit of notation.

For positive integers h and 1, we note that h can always be written

() (1) ()

> eea P n, >3 > 1. (Choose n, to be the Targest integer

uniquely in the form

where n, .
i n?-I

n-;
with h 2_(.‘), etc.) Define the ith pseudopower of h to be

i
; n, +1 n, o+ n.+1
n? =<€:i>'+(151 )*"'*(ji )'

put 097 = 0 for all .

We state the nonlinear inequalities on the components of the h-vector (and
thus the f-vector) together with the earlier conditions in the form of a
characterization of h(Pg}.

THEOREM {MCMULLEN'S CONDITIONS). An integer vector h = (hO’hI""’hd)
is the h-vector of a simplicial convex d-polytope if and only if the following

threa conditions hold:

(1} hi =hd—1, 1 20,15-~'3Ed/2])
(i1) hey 2 ho, i =0,1,...,[4/2]-1, and
(1i1) hy =1 and h, . -h < (hi—hi“1)<1>, i=1,...,0d/2]-1.

This characterization was conjectured in 1971 by McMullen [33], [34], and

proved by him for d ¢ 5 and for the case of d-polytopes having n vertices
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where d < n < d+3. The sufficiency of these conditions was proved by Billera
and Lee [11], [12]; the proof of necessity was given by Stantey [47]. The
proof of sufficiency depends heavily on insights provided by earlier work of
Stanley [43] in which the Upper Bound Theorem was extended to general triangu-
lations of spheres by means of techniques of commutative algebra. The proof of
necessity extends this eariier work, introducing powerful new techniques from
algebraic geometry. See [10] and [50] for overviews of these deveiopments.
Throughout the paper we will use the following notational conventions. N

will denote the set of natural numbers. A point 7z ¢ NrH will have coordi-

nates {20,z¥,...,2?}. If z,we Nr+1, the fnequality z {w means z, < w,

for 0 <% (r. If further for some 1, z, < Wi we will write z <{ w. For
re N write <> = {0,1,...,r=-1}. For S c <r>, we sometimes denote <r>\S
by S. It is convenient to assign the foillowing values to binomial coefficients:

My =0 if n<o, (1) =0 if ne -, (D) =land (0) =0 if 0 <n <.

?. DEHN-SOMMERVILLE EQUATIONS. In 1905 Dehn conjectured the existence of
[d/27 Ttinear relations on the f-vectors of simpliciai d-polytopes. These
equations, which form part of the McMullen conditions, were discovered and
proved by Sommerville in 1927 [40]. They were largely forgotten until Kiee
reproved them in 1963 in a more general context [26]. They are referred to as
the Dehn-Sommerville equations. We give here Sommerville's original proof.
First we need the definition of an interval in the face lattice of a polytope.
et F

and F, be i- and k-faces, respectively, of a d-polytope P,

1 2
and suppose F] E.Fg' (Here we allow FE ={ or F2 = P,) Define the inter-
val [FE’FZJ to be the set of faces G of P such that Fq cGc F2.
[F],ng is ordered by inclusion, and is isomorphic to the face lattice of a
{k-1-1)-polytope. We will assume the Euler relation helds for any polytope.
{See [23] for a proof.)

THEQREM 2.1. Oehn-Sommerville Equations. If f(P} = (f_1,fg,...,fd_1)

is the f-vector of a simplicial d-polytope P, then for -1 <k {d-2,



d

fk =

] ..
delwi j+1
("}) (i(-i-] }fj°

it I

Jj=k

PRODF. Let F be a k-face of P, and write PF for the (d-k-1}-

polytope with face lattice [F,P]. Applying Euler's formula to PF we get

d-k-2 .
N EILRREN (R

If we sum this eguation over all k-faces of P we get

K .
F(P)y = 1 (-1 (P
k =1 dim F=k "

The i-faces of PF correspond to ({k+i+1}-faces of P containing F. So

f.(Pc) = the number of pairs Fk E_Fk+3+}
dim F=k
dim G=k+i+l
where F s a k-face, and Fk+1+] is a (k+i+1)-face of P. Now, since P
simplicial, 6 s a (k+i+1)-simplex and fk(G) - (k:iTZ). So
d-k-2 . ,
d-k-i o k+i+2
Ry = 1D (ki
‘ i=-l dim eksis] KT
d-k-2 o
d-k-1 k+i+2y
= L, e (Cat Main (P
d-1 .
= del~j j+1
= L CUTT GG ™. o
J_
Note that fuler's formula is the Dehn-Sommerville equation with k = -1.

The equation for k = d-2 is 2fd_2 = dfd‘i' This simply says that each

is

(d-2)-face is on exactly two facets, and each facet has exactly d (d-2)-faces.

Sommerville noted that in terms of the h-vector of a polytope the

Dehn-Sommerville equations have a very nice form.

COROLLARY 2.2, If h(P) = (hg’h}""’hd) is the h-vector of a simplicial

d-polytope P, then for 0 {r < d, hr = hd—r'



PROOF. tLet Eg be the Dehn-Sommerville equation:

For 0 <r <d we take the following Tinear combination of the equations:

Eizg (-1)1(3:;]E§_]. On the left-hand side we get

[t i

id-i _ r
CENTGIG L = (N

On the right-hand side we get

r ; d-1 .. r : d .o
IR G IR it CHB LS S P S N S G DAt AL
$=0 j=1-1 VI s j=1 J
Isi 1
: d-j R ipdeiy 3
= 7 (-1 T (=10,
320 J-1 ip d=r/ i
We use the identity I?zﬂ (*?)i(?)(izm) { !)n(tTn) to simplify the right-
hand sum:
j . i . . .
iod=1y,3y _ s=1,jy,d=-]%s d-]
PN TGy = L (1T )= ]
iZp d=r’t siﬂ s r d=r-j
So the right-hand side of §5_ (-)T(47)Ed o s
d Li=0 d-r’/ i1
d , . d-r .
d- d- d-j d- r
T = IO = g
j=0 j=0

. . d : =
Thus the combination of Ek gives hr = hd-r' 0

Since hD =1, we see immediately that at most [d/2] of the hj, and
thus of the fi’ can be independent. It is easy to show that the equations
hr = hé-r
we will do this by showing that the affine span of the f-vectors of simplicial

are actually eguivalent to the equations Ei. In the next section

d-polytopes is determined by the eguations hr = hd-r' Although Sommerville
observed this form of the equations, he did not realize the significance of the
h-vector, which was extremely important in the discovery and proof of the
McMullen conditions (see [34], [45], [47] and [12]). Since the links of sim-
plices in homology spheres are again homology spheres, Sommerville's proof of

the Dehn-Sommerville equations extends to this more general case as well.



3, SPANNING THE EULER HYPERPLANE AND THE DEHN~SOMMERVILLE SPACE., In zhis
section we describe some operations on convex polytopes and their effect on the
f- and h-vectors, We use these to give simple direct proofs that the Euler
equation and the Dehn-Sommervilie equations are the only affine linear
equations satisfied by the f-vectors of convex polytopes and simplicial convex
polytopes, respectively, Note first that for any d-polytope O, the Luler
equation is equivalent to the relation hd(Q) = 1,

If 0§ is a d-polytope, the pyramid on @, P(Q}, 1is the convex (d+1)}-
polytope formed by taking the convex hull of (Q with a point not in the affine

span of . In terms of f-veciors we have

F(P(0) = £,(Q) + f,

;4 (@) for < d-d

and

£,P(Q)) =1+ 1 (0),
with the convention that fj(Q) =0 if j < -1. {(See [23, §4.2].) The
following is due to Sommerville [40].

PROPOSITION 3.1. For any d-polytope Q,

PROOF. Since the Euler equation for P{Q) gives hd+?(P(Q}) = 1,
we need show hf(P(Q)) = hé(Q) for i <d. Since P(0Q) 1is a {d+})-polytope,

if 1 <4,

SIS CID

-
—
)
——
Fawl
et
pe—
3
13l s )

i=0

(NG (@ + ()]

1
1 Foer e

j=9

()

.. . i-1 .. .
j=j, d+l-] ! -j-l, d=j
1) gy (@4 320 (1) a2 0y

3]
T Y

j=0

S
(DI (@ = hp@). o

M
f O

i=0
Note that P(Q) 1is not simplicial unless Q@ is itself a simplex since Q
is a facet of P(Q). In this case P{Q) 1is again a simplex, and we get by

induction
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COROLLARY 3.2, If §Q 1is a simplex then

h{Q) = (1,1,....1). 0]

For a d-polytope @, the bipyramid over 0, B(Q}, 1is defined to be the
convex ({d+1)-polytope formed by taking the convex hull of 0 with a line
segment which meets Q in a relative interior point of each. For example, the
bipyramid over an interval is a square and the hipyramid over a square is an

octahedron. For the f-vectors, we have [23, §4.3]

fi(B(Q)) fi(Q) + 2f§“}(0) for 1 < d-i

and

it

F,(B(0)) = 2f, 1 (0).

In terms of h-vectors, we have the following

PROPOSITION 3.3. For any d-polytope Q,

h(B(Q)) = (h(Q),0) + (0,h(Q)).

PROOF, Again, hd+3(B(Q)) =1 = hé(O), 50 we must show hi(B(D)) =

hé(Q} + hi—ICQ} for i < d. By the proof of Proposition 3.1,

i
e

h, (B(Q)) (0N = 28 ()]

j=0 _
i . :
= h,(0) + j};{) (-1 {§:§$Z§§>fj-z(0)

ho(Q) + hy 1 (0). O

i

Note that if Q is simplicial, then so is B{Q). For example, since the
h-vector of the interval is (1,1), that of the square is (1,2,1} = (1,1,0) +
(0,1,1), and that of the octahedron is (1,3,3,1) = (1,2,1,0) + (0,1,2,1).
While we do not in this section make use of the bipyramid operation, it will
prave useful later on.

To define the final operation, let Q be a simplicial d-polytope and F
a proper face of Q. If H s a ((d-1)-dimensional) hyperplane containing 0
in one of its closed half spaces, then a point X ¢ H is said to be beneath
H if it is on the same side of H as ¢, and beyond H otherwise. Now

let F1""’Fk be all the facets {(d-1)-dimensional faces) of ( which



1
contain F. let x be a point which is beyond the hyperplanes generated by

these ?i’s and beneath the hyperplanes generated by any other facets. (A
noint X g Q0 sufficiently close to the centroid of F will do.) Define the

stellar subdivision of the face F in Q, st(F,0), to be the (simplicial)

d-polytope which is the convex hull of Qu {x}. ({(See [18] where this opera-
tion is described for nonsimplicial O as well.)

To describe st{F,0) combinatorially, let a be the boundary compiex of
G, and let o be the set of vertices of F. Then the boundary complex of

st(F,Q} is the complex st(o,r), the stellar subdivision of simplex o in

&, where
st{g,A) = {(Avo) v §1ao'ikﬂg.

Here Ao = [t ¢ alt 7 o}, 2kyo is the link of ¢ in 4, defined by

Rkﬁd = {1 ¢ Aix no=0, tvaoeal,

ag is the complex of proper subsets of o, X denotes the complex consisting
of {x} and @ and « denotes the join of simpiicial complexes. (See [18].)
The complex lkag is also the boundary complex of a polytope, the one
whose face lattice is isomorphic to the interval [F,Q] in the face lattice of
0. This polytope will be of dimension k-1 if dim F = d-k; let n([¥,0l)
denote its h-vector. For vectors a = (ag,a},...,ak), b = (bﬁ,b],..-,b ),

2
*h = i i i = r\*‘i
let a*bh (cg,c1,...,ck+£) denpote their convolution, where C; Li=0 ajbi«j'
The follawing is proved in [28; Proposition 2.10.1].
LFMMA 3.4, If 0Q is a simplicial d-polytope and F 1is a (d-k)-face of
Q, then

h(st(F,0)) = h(Q) + {0,1,1,....1,0)*h([F,0]).
. A

e

d-k+2

We wish to appiy this when Q 1is a simplex. In this case, IF,0] is the

face lattice of a (k-1)-simplex, and so

h{iF:QE) = (.! !Ts"'slr)'
k
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S0 when Q is a simplex and F is a (d-k)-face of (, we have

h(st(F,0)) = h(Q) + (0,1,...,1,0)*(1,...,1).
St
d-k+2 k

We denote the polytopes st(F,Q) in this case by Ti; they are all the

simplicial d-polytopes with d+2 vertices (see [23, §6.1]). For convenience,

iat Tg dengte the d-simplex.

PROPOSITION 3.5. For 0 < k < [d/21,
R(T) = (1,2,3,0 00 koKl kel kil kGl 3,2,1)

PROOF. It is enocugh to note in the expression above for h{st(F,0)) that
R(Q) = (1,1,...,1)

and  {0,1,...,1,00%(1,...,1) ds just the vector of (reverse} diagonal sums of

the matrix
d-k+2
r - ~
g 1 ....1 0
‘l - - 8 ‘I O
k » a L)
6 1 .... 1 ©

starting in the upper left corner, i.e. 0, 0+1, O+1+1, etc. O

We can now prove

THEOREM 3.6. The f-vectors of the simplicial d-polytopes Tg,
0 < k < [d/2] span the Dehn-Sommerville subspace, that is, the set

(F(TH]0 < & < [4/2])

is affinely independent.
PROOF. Since f_1{Ti) =1 for each k, it is enough to show the matrix
of these f-vectors has full row rank. But since the transformation from f to

h 1is invertible, it is enough to consider the matrix of h-vectors, By

Proposition 3.5, this matrix is
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6 % et eed amed
]
L] L ek nd p—)

*

T2

g%
PO S T % T

.

.

.

.

.

PR

LI ¥% ]

[AS L A L N B AV

[F% ]

W[d/2i+. L3
and it is easily seen to have independent rows. [
To demonstrate a basis for the Euler hyperplane, we introduce another

class of polytopes., Define Ti’r to be the r-fold pyramid over the (d-r}-

poiytope T8, where 0 ¢r <d-2 and 1 <k E% (d-r)] (that is, the

result of performing the pyramid operation r times, beginnning with Ti“r).
These polytopes constitute all the d-polytopes with d+Z vertices {see [23;
§6.13). It is straightforward, using Propositions 3.1 and 3.5 to write down

the vectors h(Tg’r). However, for our purposes, we need consider only the

case k =1,

THEOREM 3.7. The f-vectors of the d-polytopes Ti*', 0 < r < d-2,

together with that of the d-simpiex Tg, span the Euler hyperplane.
PROOF. Again, it is enocugh to show that the matrix of h-vectors has full
row rank. 8y Propositions 3.1 and 3.5, this matrix (with h{?g) first) is

sasily seern to he
T 1 v e e v oo 1
To. .. ]
1

| I

b eed et e

- »

»

1
2
12 2

e e e e 201 .0
We conclude that the Euler relation is the only linear relation holding
for f-vectors of all polytopes. For similar results for general Eulter-like

relations, see [39].

4, LABELED SIMPLICIAL COMPLEXES.
DEFINITIONS. We start with some definitions pertaining to simplicial

complexes.
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tet A be a simplicial complex with n vertices, VisVgseaesV Asso-

ciated with A 1is its Stanley-Reisner ring A&. Take the polynomial ring in
n indeterminates corresponding to the vertices: K[xz,xz,...,xﬂ]. {We will
assume throughout that K 1is the field of rational numbers, although much of

what we do works for more general fields.) Define the support of a ragnomial
r.

m = H?=1 x}.1 to be supp(m) = {v,: ry > 0}. Let I, bethe ideal generated
by those monomials m whose supports are not faces of A. Then fthe Stanley-
Reisner ring of A 1is Aﬁ = K[xl,...,xn]/la. Note that as a K-vector space,

A& is generated by those monomials m whose supports are faces of A.

&

let A he 2 ¥-algebra. An N-grading of A 1is a decomposition of Az

a direct sum of K-vector spaces A = EEENAi’ suych that ¥ i,j ¢ N, AiAj E-Ai+j'

{(Throughout this paper, | will denote direct sum.} More generaily, if M

-

is a commutative moncid with operation +, A s M-graded if A = Lne Am

with AmAn < A Y m,n ¢ M. We will assume our graded rings A are finitely

m+n
generated K-algebras, so that each graded piece Am is a finite-dimensional
K-vector space, and that AG = K. In this case, AgAm = KAm = Am for all
me M. So A is an M-graded K-vector space. We can then define the Hilbert
function of A to be H(A,m) = dim A for me M. In the case where

we define a generating function for the Hilbert function as follows.
rel

W= Nr+1

Llet tO’t]’EZ""’tr be indeterminates and for z = (ZU’ZT’ZZ""’Zr) e N
2., 2 z
1,72

1 t2 .
H(A,z)tz. The Hilbert series of AA contains important

Z
write tz = tODt

P(Ast) = EzﬁNr+1

combinratorial information about A.

.trr. Then the Hilbert (or Poincaré) series for A s

A labeling of a simplicial complex & s a partition of the vertex set of
& into subsets: V(a) = Yy u ..oV V.. The vertices in V. are said to be
labeled 1i. If the labeling is such that each maximal face of a contains

exactly one vertex from such Vi’ then A 1is said to be completely balanced

[46]. In this case A is a pure simplicial r-complex, that is, a simplicial
complex in which every maximal face has r+l vertices. Maximal faces are then

called facets.
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A éombinatoria11y interesting class of simpiicial complexes comes from
partially ordered sets {posets). We assume all posets have least and greatest
a2lements, 0 and f. For P a finite poset, we form a simplicial complex
A(P): A(P) has as vertices the elements of P {except 0 and f), and a set of
elements {X]’XZ""’Xk} is a face of A(P)} if and only if 6 < xc(!) <
XU(Z) < uus £ xc(k) <1 for some permutation o of {1,2,...,k}. We call

simplicial complexes arising in this way poset complexes. If we wish to stress

the poset giving rise to the complex, we call a(P) the order complex of P.

We give here a characterization of poset complexes due to Stanley [46]. A
cycle of length ¥ of a complex A s a sequence of vertices
_ . s | . -
VisVoseeesVyaVy g Vi allowing repetitions, where lvi’vi+}} is an edge of

a and no pair of vertices occurs twice in the same order. Such a cycle has a

triangular chord if for some 1, {Vi’vi+2} (subscripts modulo k) is an edge

of aA. A simplicial complex A 1is the order complex of a finite poset if and
only if (i) any minimal set of vertices not forming a face of A has two ele-
ments; and {ii) every odd cycle of A has a triangular chord (that is, the
l-skeleton of A 1is a comparability graph [20]).

A poset P is called ranked if for every x ¢ P all maximal chains up to

A

X, 0<%, < .00 <%, = %, have the same length k+1. We then call k the

0 k
rank of x, written r{x). We make the convention r(a) = -1 and define
r{P} to be r(i}. (Note that this rank function corresponds to the usual rank
function shifted down by 1: it corresponds to the usual rank in P\{ﬁ}.) A
labeling of the vertices of aA(P) with the ranks of the corresponding elements
in P makes A(P) completely balanced, since every maximal chain contains
exactly one element of each rank. Conversely, if P s any finite poset whose
order complex is complietely balanced then every maximal chain in P has the
same length, so P is ranked.

If A is a simplicial compiex labeled by 0,1,2,...,r, define, for each

r+]

7z = (ZO"“’Zr) e N, fz(A) to be the cardinality of the set &, = {o e a:

‘c n Vii = 2y for each i, 0 <1 < r}. Then the total number of j-faces of
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A s fj(A} = ) fZ(A). In the case where the labeling makes &
z
12;=34]
completely balanced, we adopt a notation that will prove useful later. In this
case, fz(ﬁ} =0 unless z, <1 for all i, Write Z = supp z = {i: z; = 1}
i = = M = ¥ £

and define Ay = A, and fz(a) fz(&}, then fé(g) ) fT\a). If A
Toir+l>
| Ti=j+1

is completely balanced, we define hs(a) in analogy to h;:

ng(a) = 1 (-nlst=IT
TS

?(A).

tetting d = r+1, it is easy to check that

-
fum g

Sed> i
1S]=1

Because of the relationships between the numbers f. and fi’ hs and hi’

S
we will refer to the vectoers (fs)$i<d> and (hS)Si<C§> as the extended
f-vector and h-vector.

If P is a poset of rank d ({i.e., r(i) =d), then a{P) is

compietely balanced with Tabels {0,1,...,d-1}, For T = {i,,...,1}

i i

{0,1,...,d=1}, fT(A(P)} is the number of chains of P of the form 0 < X
. i

< uen £ Xék <1, where r(xj} = j, In this case we will often write fY(P) =
f?(A(P)), and ﬁS(P} = hS(A(P)).

An important special case of ranked poset complexes occurs when P is the
lattice of faces of a convex d-polytope (. (Here our choice of rank function
leads to r(P) = dim Q.) In this case a(P) 1is the complete barycentric sub-
division of the polytope Q and is itself a convex polytope [18]. Each vertex
of A(P) corresponds to a face of (), its label being the dimension of that
face. Here, fT(P) is the number of chains of faces of (Q having precisely
the dimensions in T. In particular fi(Q) = f{i}(P}, sg information on the
extended f-vector of P will yield information on f{Q}. In the remainder of

this paper, especially in section 7, we will extend the methods and results of

sections 2 and 3 to the study of extended f-vectors.
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Anocther labeled complex associated with Q 1is the minimal subdivision

s{Q) discussed in [7; section 2.5]. It is the result of performing stellar
subdivisions on all the non-simplex faces of 0 in order of decreasing
dimension and so by [18] is a simplicial polytope. Vertices of o(Q) are
labeled 0 if they are vertices of (; otherwise they are labeled with the
dimension of the face that they subdivide. This is not a balanced labeling
{e.g. each original edge has two vertices with 0 Tlabels and there are no
vertices with label 1), but the results of this section will apply here.
Another way to describe the complex o{(0Q) is as follows. If VQ is the
sat of vertices of 0, then the vertex set V of o{G) is
V.ou {v?: F a nonsimplex face of @}

Q

s are new symbols. Each v ¢ ¥ is labeled with the appropriate

1

F
dimension. Let

where the v

¢=F0cF]CF2c”.CFk

be a chain of faces of Q; a simplex in o{(QG) can be defined as follows. Let

?i, 0 <i <k be the largest face in the chain which is a simplex. Then

F.u v yesesVe |
1 Fi Fy

is a simplex in o{0Q); by considering all chains we obtain all simplices in
s{Q)}. For example, if Q 1is the pyramid over a square base, o(Q) is an
poctahedron with gne vertex labeled 2, the rest labeled 0.

We now describe an Nr+]~grad§ng on the ring AA associated with a
complex A Tlabeled by 0,1,...,r. If the generator x in AA corresponds

to a vertex v of A with Tabel i, Tlet the degree of x {deg x} be e,

the ith unit vector in N?+}. Multiplication of monomials in A resyits in

A
addition of degrees in Nr+}. So if we write (AA}Z for the subspace of AA

P+

Thus

spanned by monomials of degqree z ¢ N, then (Aa)z(ﬁa}w-i (A

A)z+w‘

A defines a grading on AA' Staniey [46] derives the Hilbert

= T
A R (A
function of AA with respect to the Nr+§-grading. {Although he states the
proposition for balanced complexes the proof uses only the fact that the

complex is Tabeled.)



PROPOSITION 4.1. (Stanley). If A& 1is a simplicial complex labeled by

0,1,.0.4,r, then for all we Nr+7,

r wlwl
HA W) = T L Foa) n( ) o
. 2eNT BT g V3T

Recall that we use the conventions (B} =0 if n <0, {‘?) =0 if
ns -, and (1) =1
Let us apply Proposition 4.1 in the case where A s completely

balanced. In this case fZ(A) =0 if z,> 1 for some 1. On the other

wi—1

hand the product H?:g ( ) is nonzero if and only if z < w and, for ail

Z.-1
i
i, 2, = 0 if and oniy if W, = 0. Together these mean that the term
W, -1
f{a) H?ze ( ! ) is nonzero if and only if z 1is given by

z§—§
T if w, 2_1

0 if w, = 0.

For this z, I_j (:j:{) =V, so HALW) = Fle) = fo o (e).

AN EXACT SEQUENCE FOR SPHERES. This subsection proves that a certain
sequence of graded vector spaces associated with a homology sphere is exact.
The exact sequence is given without proof by Danilov [171, who referred to a
related result of Kouchnirenko [27]. The proof here is based on that of
Kouchnirenke. The exact sequence enables us to prove generalizations of the
Dehn-Sommerville equations for labeled simplicial spheres.

Any set L of faces of a simplicial compiex determines a complex L con-
sisting of ail faces of elements of L. Recall that for ¢ a face of a
complex 4 the link of o in & is tko={recatvno=0 vuoaecal;

define the star of ¢ 1in K tobe star,o = {t e 42 oc zj. Then star o

is the join lkac-]cf = {tvopt e ko op = o}. Also define the boundary of
Ag)' = star o\star,o = {7 ¢ star,ot o g <}, A (d-1)-
dimensional complex A 1is said to be a homology (d-1)-sphere if for each

starAE to be {star

k-face o € 4, RkAc is a {d-k-2)-dimensional complex having the rational

homolegy of a (d-k-2)-sphere, -1 <k <d-i.
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let & be a homology (d-1}-sphere, and let AA be its Stanley-Reisner ring.
As a vector space basis for AA we choose the set of monomials whose supports
are faces of A, Let M be the semigroup of all moncmials in {x],xz,...,xﬂ}
{n = fo(g}}, including the "empty" monomial 1, with standard monomial
muitiplication. Then A& is an M-graded algebra, and if suppm is a face of
A, we write Aﬁ{m} for the subspace of AA generated by m.

Let aj be the set of j-faces of 4 {-1 < j < d-1), and for o« Aj,

o= [V, V. seeasvs by Tet A= K[x, L%, s....x. 1. Define C, = .

Cj with componentwise multiplication is then a K-algebra. A typical element

of C. is written {2 } .
J g oe&j

m o in Cj; are the elements (qcm}cgéi, where ¥, g, e K and g, =0 uniess

For m e M the homogeneous elements of degree

o
supp m < o. If we write Cj(m) for the set of homogensous elements of degree
i e = ¥ d I ! . ol < R
m in Cj’ then Cj LM Cj(m), and for m,n e M, Cj{m) Cj(n) M_Cj(mn), S0
this defines an M-grading of Cj' Note that Cj(m) = 0 for J < dim{supp m}.

If A and B are M-graded vector spaces and g: A » B is a linear trans-

formation, we say ¢ 1is homogeneous with respect to M (or M-homogeneous or 4

hamomorphism of M-graded vector spaces) if VW€M g(Am} E.Bm' In the context

defined above, a linear transformations g: C§ > 53-]

is M-homogeneous if
g(C(m)) = € 4 (m).

THEOREM 4.2, For A a homology {(d-1)-sphere, AA, Cj and M defined
as above, there exist M-homogeneous linear transformations B such that the

sequence

> C > 0

is exact.

PROOF., First we define aj, 0 <j <d-1. To simplify notation write
m = (0,...,0,m0,...,0}, the element of Cj with monomial m in the o
component and zeros elsewhere. As a K-vector space, Cj has basis
{mg: G € by, supp m c o}. MWe define the o' component (o' ¢ Aj_]} of

aj(mg) by analogy to the differential on the ordered chain complex of a.
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Assume the vertices of A are ordered once and for all VisVpseeesV o Write
g = [V, WV, seeesv. }owith i <y <l <l IF o' 2o and dim o’ = 3-1
iy 1y ]j ¢ 1 3 —
then o' = {v, ,v; ,eeasvy PNvy }o In this case, define s{g,o') = (-1)%
0 1 J
If o'z 0 let s(o,0') = 0. Now define the o' component of ai{mo) to be

s{oyo'im, if supp me of
(6§(m0))gs ) 0, otherwise.
This map is clearly M-homogeneous,
Next we show the exactness of the sequence 0> A, Cyoy > +oo > Lo~ C_;
> 0 (by showing that the sequence "restricted to each m ¢ M" 1is exact. Let

me M, m# 1; let o =suppm, k =dimoe. AL m we get the sequence

Ed_}(m) hd quzim) T oaaw F Ck+](m) > Ck(m) > [} or

(4.3} ) Km » Km o> wes > km » Km -~ O,
Tg&d-? TE&dwz Tsak+}
o= o=t ast

The proof that this part of the sequence is exact will also produce the map
By Aé(m) = Km » Cd-l(m}'

We claim that the restricted sequence (4.3} is a chain complex isomorphic
to the relative chain complex C(starﬂc)fﬂ((starag)') over K. Cj(m) is gener-
ated as a K-vector space by elements mt, where =t ¢ Aj, g T Such ¢ are
precisely the j-dimensional elements of star&c\(starﬂg)'; thus they form a
basis for Cj(stayég)/cj({st&rbg) Y.

We use this correspondence to define the linear map 93: Cj(m) >

Cé(starAg)/Cj((star a)*} such that g.(mz) = ¢; this map is clearly invert-

A J
ible. We want the following square to commute:
°]
C.{m > C. m
5(m o
93 93-1
Y Y
4

Cj(starAc)/Cj((starAc)') > Cj“}(starAg}/Cj_1((starac)').
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Here o, means ajicj{m), and d; s the differential of the relative chain

complex. But the 63 were defined precisely to make this diagram commute. We

have
QJ_‘[ (Bj(m‘ﬂ)} = gJ_]( EZ S(T’T }m'tl)
T €A 4
j-1
supp met'ct
= S S("fsfg)‘t‘°
€1€&j_]

supp mex'cr

On the other hand,

dj(gj{mr)) = dj(f) =7 sleae')e’s

the summation being over =<' ¢ staréa\(starag)’ with dim ¢' = j-1. By the

preceding paragraph this shows gj”§ ° B, = dj °g,.

J J
So gj is an isomorphism between chain complexes. By [24; Corollary
2.18.1217,
— - K if j = d-l
H.{star o,{star o}"} = H, {1k o} =
J A avn ! J=k-12""4 0 else.

Thus for j < d-2, Im(aj+3!C§+1(m)) = Ker(aj‘ﬁj(m)}. Now we are ready to
define o, Let z be a generator of Hd_](gfg?zg}{starag}‘), SO 9831(23
generates Ker(ad”};Cd_i(m)). Define ad(qm) = Qg;11(z}, q e K. Then
ad{Aﬁ(m) is an injection and Im(adsAA(m)) = Ker(ad_]lcd”](m)). So for

me M, ms 1, and k = dim supp m, the sequence

0+ AA(m} > Cd_](m) P eee > Ck+1(m) > Ck(m) + 0

is exact.

Now we deal with the case m =1, for which supp m =@ < ¢ for all faces

+ of A. We want exactness of the sequence

0 - Aﬂ(]) > Cd_I(]) > Cd-2(1) e CO(T) > C_}(E) + 0

ar
K+ K+ 0.

&

tEAd~? zaadmg T€

0+K- 7 K+ 7 K+ vna =

B 2t

Just as before we get an isomorhism between C(1) and a simplicial chain
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complex. Let C(a) be the simplicial chain complex associated with A, and
augment C{a} with Co(ﬁ) i C“}(A) =X+ 0 (here e{v) =1 for all vertices
vl Cj(E} is generated by {11: T € aj}; a basis for Cj(A) is just éj’
So if we define 93(11} = ¢ for 0 <J {d-1, then the same calculation as

in the previous case shows that the square

J A
¢, > ¢ (M)
93 93-1
d.
Cls) 5T (a)
jle -1 (8

20
Coll) > c_](z)
% ER
v £ ¥
cg(a) S c_1ia}

it

commutes, We have 60(31) 1 for all 1 ¢ hgs SO

g (g(1)) = a4 (1) =1 = elz) = elgy1 ).
Now ﬁiié} =0 for 1 # d=1 so the sequence

Cd-i(]) > Cd_z(l) S Co(l} > Cm](l} - 0

is exact. Finally we define o,(1). He know Ker{ad_]|Cd_}(1)} = Hy_,(0) = K
let z be a generator of ﬁd“](a), and for g e K define ad(q) = qg;11(z}.

As in the case m# 1 we get that the sequence
O+A‘5(1) +Cd-—1“} Ry —>CG(]) —>C_-I(§) =+ 0

is exact.

Since the maps B, are homogeneous,

= 7 ' _
Im aj LneM Im{ajICj(m)) and Xer aj ZmeM Ker(aj'Cé(m)),

so the exactness of the restricted sequences implies the exactness of the



sequence

%4 04-1 % =

> Cy4 1 > ee > €y > €, > 0. 11

REMARK. Consider the exact sequence restricted to m, where ¢ = supp ™

is a k-face of A. Then by the additivity of vector space dimension dimxAA(m}

i

d-1 d-1-] .. . .
§j=k {-1) “dquCj(m). Now dTmKAA(m} =1 and d1mxcj(m} = I{T € Ayt O g_r}*

J
= f ikac). Recall that ik&c has the homology of a {d-k-2)-sphere. The

jwk—l(
equation on dimensions Jjust says

d-1 . d-k-2 .
d-1- dek=1-2
1= 1 T ke = T D) 174 (ak o) or
\..E"‘k 1—";
d-k-2 .
L L B Dt NTICIR
i20

This is equivalent to Euler's formula for Xkégi multiplying it by (-E}d“k

we get

d

k-2
d=k-1
1 - (-1) = ¥
i=0

(-1)7, (2k o).

GRADINGS ON RINGS. We show that by assigning certain gradings to the
rings AA and Cj the exact sequence of Theorem 4.2 will give interesting
numerical criteria for spheres, We continue to denote by M the semigroup of
monomials in X1aXpsaensXps Let M' be a commutative monoid, and let
st M > M be a monoid homomorphism. Assume further that ¢'](x) is finite

for every x ¢ M'. Then we can decompose the rings associated with a

simplicial complex A as follows:

A = A = 3 Km),
4 sz' Q(X) XEM' (m égl(x) )

C. = C. = T ) . .
J XEM‘ J(X) xéM‘ (me¢-1(x) J(m))

The finiteness condition above allows us to define the Hilbert functions with

respect to M'; for x ¢ M
H(A,,x) = dimA, (x), H(Cj,X) = dimKCj(X)-

The maps 3y of Theorem 4.2 are homogeneous with respect to this grading by
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M', so the exact sequence gives

d-1 X

KA ) = 7 (0% e, 0.
J..-
We apply this in the case where A is a labeled homology (d-1}-sphere,

Moo= §?+1, and ¢ is the degree map defined prior to Proposition 4.1 (¢ 1s
induced by the labeling of the vertices of the sphere}. In this case it is
convenient to write the relation in terms of Hilbert series (in r+1 variables

(tﬁ"“’tr} = t):

d-1 doloi
PALt) = T (-0 Te(C,,t),
A 2 g J
J==
where, by Proposition 4.1, the left hand side can be written
r wi-l .
P(ALE) = ] o) m o, Ot
r+l zZ<w i=0 i
we N -

Now we wish to compute P(Cj,t). Recall that Cj =7 Ag, the summation
being over all j-faces o of A. AG inherits the Nr+] grading in the
obvious way, and P(Cj,t) =7 P{Ad,t). Now AU is 3just the polynomial ring
in variables corresponding to the vertices of . For 0 <1 < r, let

Z ; since dim o

n V.
!"1

j, o has j+1 vertices, so 2:;0 z, = j*i.

2,
3

The coefficient of t" 1in the series 1/H;;O (T-ti) is the number of

monomials of degree w in Ag. So
P(Cj,t) = 7 P(Aa,t) = ¥ ¥ P(Ac,t)
o3 Z s)
dim g=] Toz,=j+l oeh,
r Z;
= 7 fla) 1 (-t
z i=0
E z.=j+1
r o k+zi-l K
= Tooofa) nm (] e,
5 z is0 k=0 z. -1 i
E ziz3+3

So the relation on Hilbert series becomes



r wi-i W
: ;oo f(a)y m ()t
r+1 z<w z i=0 25 1
we N -
d N r -] k+2.-—-’§
fal d_., } k
= oen® o ) n (3, D
i=0 Z€Nr%1 i=0 k=0 i
: z;=]

By equating cecefficients we get

THEOREM 4.4, Let A be a homology (d-1)-sphere with vertices labeled by

[0,1,.00sr}. Then for all we N
roow, -l d-jz, rooow.tz, -1
ora) n (=0 e Sty n (G ). o
2w 5 4=0 HTU Zen™H 2 4=0 ( 23~

An alternate proof of Theorem 4.4 has been suggested {(privately) by
Staniey. It is based on a result of his [48; Theorem 7.1} and avoids the
use of the exact sequence of Theorem 4.2. We feel that this sequence is
of independent interest, apart from the current appiication.

COROLLARY 4.5, The f-vector of a homology (d-1}-sphere satisfies the
Behn-Sommerville equations:

d-1

_ dwj-1,3+1
fy = jék (-1} (k+1}fj, -1 <k < d-2.

PROOF. We apply Theorem 4.4 to the case r = 0, but we must be careful
with notation. Conventionally the f-vector of a sphere & is f{a} =
(fg’fi""’fd,1)’ where fi is the number of faces of dimension i. In the
vector-subscripted notation f(i)(A) is the number of faces of cardinality 1,

S0 f{f)(a) = f. 9. With this translation, Theorem 4.4 with w = (g+!) and

q >0 gives
q A= d-j-1,q+1+4]
(4.6) RGPS I G A G L
k=0 j=0
For q = -1 the theorem gives the Euler equation {which is the

Dehn-Sommerville equation for k = -1): 1 = ?§"11 (-I)d'j'}fj. We now use

1-3“’_"...
(4.6) and induction to prove the Corollary. Assume the kth Dehn-Sommerviiie

equation holds for -1 < k < g-1 {g > 0). By (4.6)
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d-1 . : q-1
d-j=1 q+l+j, q
fo= 1 (-1} UL - D (Of
q jig 3 7Ly KK
d-1 . . g-1 d-1
- d=j-1, 04143 dej-1,3+1
R R At AL B R G P FAO L
(by the induction hypothesis)
d-1 C.oq . d-1 q-1
. T d-j-1 ¢ J*+1yr9 d=j-1 i+
= 1 (1) LGt - 0 (1) PG (0f
ito Lo kKT T L Lo Uk# j
d~1 d-1
~-j=1,3+ -j-1,3+
- 1T = et
j=0 §=q
. . . : : X m+1+]
The next-to-last equality follows from the combinatorial identity ("
= Lk 0 (ii%l(f} which, in turn, follows easily by considering an (m+1+j)-set

partitioned into a {j+1)-set and an m-set. []
REMARK, Conversely, the equaticns (4.6) are implied by the

Dehn-Sommerville eguations as follows:

q d-
1 G I
L k!,
k=0 =

d-j] 3+1
-1) (k+§)

it

o~

g
);O (f,

ORI

o

(A}

—ad
[ ]
<

d-j-1,qg+1+]
PG R G 9
j=0

The following corollary has been proved for certain classes of poset complexes
in {147 and [49]. Further results for these complexes are derived in Section 7.
CORCLLARY 4.7. If 4 is a completely balanced homology (d-1)-sphere, then
for all S 5_{8,1,...,d-1}
d-17
CILUIEN

or, equivalently, for all S,
hg(a) = h_(8).
PROOF. Apply Theorem 4,4 to A with we Nd such that Wy <1 for

att  i.



d-1 wi~1 d-zzi d-1 wi+2€-?
(4.8) Tof{ay m ()= T (-1 f(a) m | ).
i 2 =0 BT zend 27 a0 0 7!
wi-i wi+z.~1
Now (0 1) =" 1 ) =0 if w =1 and z; = 0. On the left-hand side,

. Z,-
i i

then, the only nonzero term is fw. For the right-hand side note that fZ(A)
=0 if z » 1 for some . So the vectoers 2z making nonzero contribution

on the right hand side are those for which w < 2 < (1,1,...,1). For such
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d1 Mt Y
z, ni=O{ , .1 | s the product of terms (5 ) =1 (when 2z, = 1) and terms
i
(:1) = 1 (when Z; =W, = 0}. So (4.8) says for all w < (1,1,...,1),
! d«zzi
F ) = 3 1) TE ()

wlz<(1,1,..0,1)

In the notation introduced earlier for compietely balanced complexes this says

that for all S ¢ 10,1,...,d=1}

d-171 ¢

fla) = T (1) Ha).
T

Se Te <d>

Now substituting the resulting expression for fS(A) into the definition

of hS(A) we get:

Is]-iT]
h = (-1 fo(a
) = 10 1) H(8)

Sy ST eyl )

TS UsT
= 1 M)d'lsl'm fula) 7 ()i
Ue<d> Telns
If Un S =2 g’ ETCUHS (_1)’-” — “_}'}'UHSI = 0, s
ng(a) = 5 (04SN ey < )

Ues 3

Similarly, the eguations hS(A) = h_(a) imply the equations

5
)d'lTl fT(A)‘ Assume hs{a) = h_(a}. Then

foa) = 1 (-1 <

SEN
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SRl Lt NS S SR CLLS SENOY
T_:_:_S TES UE:{
d-1T
-7 om0
Ue <d> T=SuU
If SuU#{0,1,...,d=1} then 7§ T enile s
T>5ul Fa
- Ve {Sul)
d-17 _ . _ _
(09T e (a) = §omgla) = Db (a) = T ohyla) = fgla)e O
TS TER us3 U Ve s
We note here that the Dehn-Sommerville equations in the form hi = h

d-1i

follow immediately from the equations hs = h_ and the fact that
S

My = Lysy=i N

A Gorenstein complex is the join of a homology sphere with a simplex (141,

[447. If a 1is a completely balanced Gorenstein complex, then the homology
sphere is itself a completely balanced complex {as is the simplex -- on a
disjoint set of labels)., If S 1is the label set for the homology sphere and
T e {0y...,d=1} then it follows from Corcliary 4.7 that
0 if Tg5S
ne(a) =
hS\T(A) if Tc S,

Corollary 4.7 can also be obtained by ring thecretic techniques as in
[517. Alternatively, in the case of certain poset complexes, Staniey has given
an elementary proof using the Mobius function [49]. We describe these proofs
in the next section.

Finally, we state for completeness the result of applying Theorem 4.4 when
A = o(0), the minimal subdivision of the d-polytope Q. The proof is fairly
direct and can be found in [7]. Recall that the label set is {0,1,...,d=1},
although the label 1 never appears.

COROLLARY 4.9, Let Q0 be a d-polytope and A = o{Q). Llet

W= (Mgsewosyq) ¢ N be such that w =0 and w <1 for 122. Then

d-rz, 2,
fla)r = 1 (1) (w1)fz(a). o
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5. SOME QTHER PROOFS OF hS = hg

In this section we describe other approaches to the proof of Corollary &.7
in general or for special cases. He attempt here to give the flavor of the
arguments and refer to the literature for important detailis.

Suppose first that A 1is a completely balanced homology (d-1)-sphere. We
sketch a ring theoretic proof of Corollary 4.7 based on a proof of hé = hd-i
for Gorenstein complexes given by Stanley in [517. We assume here the termin-
ology of [46].

By [46; Corollary 4.2], AA has a system of parameters GO""’ﬁd—1 which

H

is homogeneous in the nd grading on AA {d

the ith unit vector in Nd. Thus the ring B = AQ/(GO""’ed—l) innerits an

r+1); in fact, deg By = €

Nd grading; by [46; Proposition 3.2 and proof of Theorem 4.4] we have that

B = B. (direct sum) where dimK BS = hS’ BS'B? c BSUT if SnT=290

ZS_c_:_<(i> S

and B.sB. = 0 otherwise. let 8+

M B

= ESc<d> S; then since AA is Gorenstein

S#0)
(e.g. [44], [51]), it follows that the subspace

C={xeB:xB, =0}

has K-dimension 1 [51].
SECOND PROOF OF COROLLARY 4.7. First we recall that h<d>(a) = hd(a) =]
by the Euler relation for A. Thus B<d> + 0. But B<d>'BS = 0 for atl

S+ §, so B = ;3 since dimKC =1, B = (.

<d» {d>
We next claim that if T e <d> and X7 € ST’ X1 # 0, then XT'B<d>\T + 0.
Since B@ = K, if the claim fails for some T, we must have T # <d>., Suppose
T is a maximal set for which XT'B<d>\? = 0 for some Xp € B?, Xy # 0. For
R c <dAT, R# 4, and Xp € BR, XyXq € STuR so if XqXp # 0, then by the
maximality of T we have XTXRB<d>\(TuR) # 0. But XRB<d>\(TUR} < B(d)\T con-
tradicting XT'B<d>\T = 0, Thus we conclude X?BR = 0 for each R ¢ <dnT. On
the other hand, if R a T # @, then XTgR =0 as well. 5o XTB+ =0, i.e.,

X1 € £ =8 But Xp € B?, T % <d>, and so Xy € BT n B(d) =}y this con-

<d>’
tradiction proves the claim.
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Now, for each S < <d> we have a pairing of K-vector spaces

Bg x Begovs > Begy = K

defined by ring multiplication, which gives us a linear map

By » HomK(B<d>\S,K).

The claim allows us to conclude that this map is an injection, and so for
alt §,

d1mK BS L dim

K 8<d>\S’
completing the proof. [

Suppose now that A s a shellable completely balanced homology {d-1)-
sphere, i.e. there is an ordering 0y 5Tgsse 0y of all the {d-1)-simplices of
A so that for 2 <1 <k, (c] Yoy ¥ oees U ci_}) n ooy is a nonempty union of
{d-2)-faces of ;. The following interpretation of the hS(A) for shellable
completely balanced A 1is a special case of [46; Proposition 3.37, which
extends the interpretation of h, in [31].

PROPOSITION 5.1. Let A be a completely batanced (d-1)-complex, and
SUPPOSE 0y 3 Tpseess0y is a shelling of A. For each i, 1 <1 <k, define
s to be the unique minimal face of o, not contained in o) Y oy U ees U Oy o
Let S, be the subset of {0,1,...,d-1} which labels <,. Then for any
S {0,1,...,d-1}, ho(a) is the number of i for which S, =5. ]

To prove Corollary 4.7 in the special case of shellable completely balanced
homology spheres (these are always spheres; for example, barycentric subdivi-
sions of polytopes [18], [16]) we need the fact that if OpsesesO) is a shell-
ing of a homology sphere 4, then so is O asers0y [28; Proposition 3.3.117].
Then if T is the unique minimal face of oy not contained in o1 U eee U 05 _po

then gi\xi has the same property for Op U eee U0y If Ty nas label set

Si then oi\ri has label set <d>\Si and so

he = ‘{i: gi = S}t

]

= |{i: 85 =5} = hg,
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the first equality coming from the shelling Oy s v o307y the last from the

shelling TpsesesTye
Finally, we wish to prove the equations hS = hg for an interesting class

of poset complexes. Recall that the Mobius function of a poset P is an

0 if x{fvy,

(x,y) =0 if x <z [21]. A ranked

j¢]

integer-valued function p on PxP defined by pn{x,y)
pi(x,x} =1 for all x and ZKiXEZ n
poset P is said to be Eulerian if its Mobius function satisfies u{x,y)
= {“1)r(y)-r(x) for all x £y in P, (Recall 0,1 « P.) We will write u,
when confusion may arise as to the appropriate poset.

For any ranked poset P, we have u{P) = g?(é,?) = y{a) - 1, where x{2)
js the Euler characteristic of the complex a = a{P}, and it follows that

d-1T} d-1
hoo(a) = 7 (-1) fo{a) = (1) u(P),
<d> T
c{d>

where d = r{P) = r(?). (See, for example, [21] or [46].) By considering the

"rank-selected” sub-poset

Pg = [0,1} v {x ¢ P: r{x) ¢ S}

for S c <d>, we obtain

Sj-1
ng(a) = (-1 Nueg),
where p(?s) = Hp {6,?). By [4; Lemma 4.6] we can write
S

N I L TCRA O EE
AR

r(x%)qs

~

where the sum ranges over chains Xg = 0 < X Caen <Xy <1 in Pg (k > 0)
and p = pp ON the right hand side.
Now suppose P is Eulerian; we show hS(A(P)) = hg(a(?)). The following

oroof is due to Stanley [49; Proposition 2.2]. We have, with A = AP}

el
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ng(n) = (=113 u(pg)
RIS LR Y (6 LI P SR D
X <o "<Xk
r(xi)qS

~

S enlslt (1) krr(1)-r(0)

x1<...<xk
r(xi)gs

ity yIThe )

TS

hz(a)

{recall the convention that r(a) =173,

We will treat the case of Fulerian posets in detail in section 7 where we
will find all the linear relations holding among the numbers fs(a). The face
lattice of a convex polytope is an Eulerian poset [30], [38]. We will, in fact,
get all the linear relations holding for the chain numbers of an arbitrary

convex polytope.

6. AFFINE SPAN FOR COMPLETELY BALANCED SPHERES

We consider in this section the question of whether the equations given by
Corollary 4.7 are the only linear relations on the extended f-vector which hold
for all competely balanced homology spheres. We give an affirmative answer by
exhibiting a set of completely balanced simplicial polytopes whose extended
h-vectors span the space determined by the relations hS = hg along with the
trivial reiation h¢ = 1.

We will define an operation that subdivides a face of a completely balanced
complex, resulting in another such complex. This notion of a completely
balanced stellar subdivision is then used to create the desired basis in the
same way that we produced a basis for the Dehn-Sommerville space in Section 3 by

performing stellar subdivisions on a simplex. To this end, we define a class of

polytopes to play the role of simplices.
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Suppose in Rd we have ¢ wmutuaily orthogonal segments, {vi,wi]
{0 <1 <d-1}, that intersect at a single point interior to each of the
segments. The convex hull of these segments is a simplicial polytope, called

the d-crosspolyiope Qd or just Q (see [23; §4.3]). Alternatively, Q 1s

the polar to the d-cube, and its boundary complex can be viewsed as the order
complex of the rank d poset having 2 elements of each rank, any two elements
of different rank being comparable.

For 0 <k <d-1, the k-faces of ( are determined by sets F of k+i
of the points {v;} u {w;} where no pair {viow;} ds in Fo In particular,
the facets consist of exactly one element from each pair {vi,wi}, 0 <1 < d-t.
Thus, the sets V. = {vy,w} (0 < < d-1) partition the vertices of @,
making Q a completely balanced simp]iciai complex. For S ¢ {0,1,...,d«1},

the S-labeled faces of Q are the sets {y,: 1« S} where y, eV, = {visw}-

There are clearly Zist such sets, i.e., fS(Q} = 2ESi. Also,
he(Q) = 3 (“g)tsl-me(Q)
s TcS
TeS

for all S g_{0,¥,..,,d-}}. This makes the crosspolytope the completely
balanced analog of the simplex, which, as we have seen has hi =1 for all
i, 0<i <d.

Suppose F is a j-face of Q labeled by some subset X E_{D,],...,d—T}
(1x] = j+1). Then szF is a complex whese facets consist of exactly one
element from each V., for i ¢ {0,1,,..,d-T\X. So ikQF is itself a {d-j-1}
-crosspolytope with vertices labeled by [0,1,.00,d=-T]0 X,

For a compietely balanced complex A, we define the completely balanced

subdivision of a face o« A as follows. Suppose a is labeled with
0,1,...,r and suppose for ease of exposition that o has iabel set
{0,1,0005k}, k< r. Define a4 = st{c,A), the usual stellar subdivision

of complexes discussed in Section 3. Assign the new vertex introduced in By

the label 0. If k > 0, Ag is not completely balanced; there will be a
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unique edge having two vertices with label 0. Denote this edge by I and
define Ay = st(co,ao). Label the new vertex in A witha 1; if k > 1, then
there is a unique edge with two vertices labeled 1. Continuing this process,
the final complex in the sequence, A, will be completely balanced, and we
define this complex to be the desired subdivision of o in A. A proof that
this procedure is well-defined is included in the proof of Theorem 3.1 in fol.
It is ciear from this definition that if 4 1is the boundary complex of a
simplicial polytope, then so is A

To view this subdivision another way, consider first the case k = r. Let
A be the {(boundary complex of the) (r+l)-crosspolytope and choose a maximal
simplex & ¢ A; o 1is completely labeled with 0,1,...,r. Then &, is the
complex (a\c) v (A\&), where we identify the corresponding faces of o and
5. In the case k < r, take A to be a (k+1)-crosspolytope, o e A a
k-simplex (with labels 0,1,...,k). The balanced subdivision Ay is the union
of A\g and (E\&)-zkAc = (ﬁ-xkAc)\G, again identifying the corresponding
faces of o and o. See [9] for details.

Now let Q be the d-crosspolytope. (For the remainder of this section,
when we refer to a (simplicial) polytope Q we will mean its boundary complex;
faces of Q will be considered as sets of vertices.) For each subset X c <d>,
Yz @, let Px denote the completely balanced simplicial polytope which
resylts from a completely balanced subdivision of a face of Q having label set
X. Note that if |X| =1 then P* =0,

THEOREM 6.1. For each S ¢ <d>,

¥ 1 if SnX=9 or Xc
hS(P ] =
2 otherwise,.

PROOF. Suppose |X| = k+#1 and let F be the face of Q which is
subdivided, Let ﬁ he the {k+1)-crosspolytope; F' a facet of a tabeled
by X; and @' = a-ku?. By the above discussion (with 5 = 5 and g = F')
the faces of PX are either faces of @ not containing F or faces of Q'

not containing F'; faces of the latter type get vertices with labels in X



from é, the others from ikQF.

Thus for any T c {0,,....d-1},

FL(PR) = FL(VF) + fp (K F) (P (@) = fp (PP,

{Here f Ft)} = 1 denotes the number of faces of the simplex F' having

TnX(
label set T X} If X g T then fT{Q\F) = fT{Q); if X< T then

£ (O\VF)

1

£r(Q) = fr(akgf)Ty(F)
Fr(0) = fp g (2kgf)-

it

1oif Xc T
So if we write (X < T) = , then we get
0 if XgfT

—h
i
———
e
S
1

= £+ Fpy g (kP (Frog (@) = Try(FY) = x(X e T))

So

Py - 1 (nlslTle o)
=S

5 (_I)isl-iri{ziTE+2!€i”2|?\xl#gfr\xix(x - 1),

) TES -
Now ¥ {-!)IS"iTtZlTJ =13
Tes
(_})i5f~!T|2[T\XI _ g ; (_1)ls|—iul~lv§2!vi
Tes UsSnX VeS\K
kéxvnw”“W‘=UAﬂ“”xanann
n
and -
-;"ES (_]){5““121?\)(1%()( A T)
) sy 1 (enlsIEREVRIVE Lo c s,
- Ve SAX -
So
he(P) = 2 - x(50 X =9) - x(XcS)

{:1 if SnX=9¢ or Xc S

2 else,



36

(Note that when X} >0 we cannot have Sn X =0 and Xc S simultan-

eously.) [
let Cd be the set of all completely balanced homology (d-1)-spheres and
d
d 2 d
(hS(C )} the set of the vectors (hs{a))sc<d> e N for A e C .

THEOREM 6.2. dim aff(h(c?)) = 4= 4,

PROGF. For all A« Cd we have h@ =1 and [(by Corollary 2.4)

hs{a) = hg(a) for S < {0,1,...,d-1}. These are clearly independent linear

d-lé

equations, and there are 2 1 of them, so dim aff hS(Cd)_i Zd - (Zd'}+E}

= Zd'}-i. The rest of the proof will consist in showing the other inequality by
d-1

demonstrating 2 affinely independent vectors in hS(Cd).

We first define a lexicographic order on the subsets of {0,1,...,d-1} as
follows., If § = {s},...,sk}, s; < Sp Caww <5y and T o= [tyseeestynhs

Ct, <. <t then S ¢ T if k < k' or if k = k' and for some

2 kl’

i <k, Sj < tg’ while for 1 < j, S; = ti‘ In this ordering S < T if and

only if $> T, so the complement of the nth subset is the (Ed-n+§)st subset,

Now define a (2d"§x2d'1) matrix A with columns indexed by the first
Zd"é subsets of {0,1,...,d-1} in increasing order, and the rows indexed by
the Tast 2977 subsets of [0,1,...,d-1} arranged in decreasing order, If 5
is one of the first Zd’! subsets and X s one of the last 2dﬂ1 subsets,
then the (X,$) entry in A is
y 1 if SaX=@ or Xc S
ax,s T2 hS(P ) - {:8 else,

where PX is given by Theorem 6.1. HNote that for X and S within the range
defined, S ¢ X, so X i_S.

The matrix A is lower triangular with ones along the diagonal. To see
this, Tet 1 ¢q <n <2977, andlet % be the (2%-q#1)st set (the set
indexing row gq) and S the nth set. Then X is the qth set, so X < s.
This implies S z_?, i.e., Sn X# @ So ax, =0. The diagonal eiements

of A are ag¢* 1. Thus, rank A = Zd'}. This says that the polytopes PX,

d-1

as X ranges over the last 2 subsets of {0,$,...,d-1}, have affinely
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(S ranges over the first 291 Subsets of

{0,1,...,d=1}}). But then their complete h-vectors (hS(PX))S~<d> must be

d-1_

independent vectors (hs) e N
affinely independent. Thus dim aff h(Cd) > 2 1: combined with the othar
inequality, this gives the desired result. (J

Since the basis constructed for the proof of Theorem 6.2 actually consists
of polytopes, we have the following.

COROLLARY 6.,3. The dimension of the affine span of the extended h-vectors
of completely balanced simplicial d-polytopes is 2dh1-1.

We note, finally, that various nonlinear conditions are known to hold for
the extended h-vectors of the more general balanced Cohen-Macaulay complexes
[467. 1In particular, it is known that if A 1is such a complex, then hs(a) =
fS(A), where A 1is another labeled compiex having the property that each
simplex has at most one vertex of each label. We call a complex having this
property colored, and note that it need not be a pure complex, i.e., maximal
simplices may bhe of different sizes.

Conversely, if A is any colored complex, then fS(A) = hS(A) for some
completely balanced simplicial Cohen-Macauiay complex A, in fact for a sheillable
completely balanced complex., We sketch a proof of this originally suggested by
Bjarner. Order the faces of A by cardinality, starting with ¢ and
continuing with the vertices (in any order}, and so on. Suppose dim A = r.
Define r+t new vertices, labeled O,1,...,r, and define a complex A on
these new vertices plus those of A. The maximal faces of A will be
{r+1)-sets consisting of a face A of A augmented by those new vertices whose
labels do not appear on the vertices of A. Call this facet a*., The order on
A defines an order on the maximal faces of A which is easily seen to be a
shelling order. In fact, the minimal face of A* not in the union of those
facets preceding a* is A, and so we get hS(A) = fS(A) by a direct applica-
tion of Proposition 5.1.

[t seems to be a difficult problem to characterize numerically the extended

f-vectors of colored complexes. It seems necessary to have such a characteriza-
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tion before one could hope to extend McMullen's conditions to a characterization

of the extended h-vectors of completely balanced polyhedral complexes.

7. EULERIAN POSET COMPLEXES. In this section we take a further Took at a
special class of completely balanced complexes: the order complexes of Eulerian
posets. Recall that a poset P is called Eulerian if for every x <y in P,
p{x,y) = (“})r(y)-r{x}. Wwe shalil see that this means that Euler's formula holds
for intervals in the poset, and so, in particular, the order compiexes of these
posets are Eulerian manifolds [26].

THEOREM 7.1. Let P be an Eulerian peset of rank d, and
S< {0,1,..0,d-1} IF {i,k} £ Sw {-1,d} and S contains no i such that

i ¢ j <k, then
k-1

(13T ) = £ - ()T

j=1+1

PROOF. Llet C be a chain in P with rank set S. Let x be the element
of € with rank i (0 if i =-1), and y the element with rank k (1 if
i =d). For i <J <k write fj(x,y) for the number of rank j elements of
P between x and y. Since P is Eulerian, p{x,y) = (-I)k'i, and we use

the fact that | {x,z}) = 0 to get

x<z<y M

(T = (k) =

Z M(st}
x<z<y

. {_¥)r(z)—i
x<z<y

-~ 1 e

j=1 x<z<y
r{z)=]

(=137 5, ().

1]
t
1y

j=1i

Then, since fi(x,y) =1 we get a form of Euler's equation:

PR bl RGPl SCNYE
j=i+l
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Summing over all S-chains C we get {here x and vy depend on C)

, k-1 .
P - ()T = DI )
£ an S-chain j=1+]

juin] o
= 7 (-1 ) f5(69)
j=14] ¢ an S-chain
k-1 .
B j-i-1
= Z ("1) fSUj(P)' D

The motivating example of an Eulerian poset is the face Tattice of a
polvtope [30], [38]., For arbitrary polytopes, the equations of this theorem are
the analogs of the Dehn-Sommerviile equations, which hold for the f-vectors of
simpticial polytopes. Note that taking S = g, i=-1, k=d, the equation
given by Theorem 7.1 is Euler's formula.

We now analyze the dependencies among the variables fS given by the
equations of Theorem 7.1.

PROPOSITION 7.2. For d > 1, let Yd

be the set of subsets S ¢
{0,1,...,d-2} such that $ contains no two consecutive integers. Then for all
T {0,1,...,d-1} such that Ty v9, there is a nontrivial Tinear relation
expressing fT(P) in terms of fS(P), S ¢ wd, which holds for all Eulerian
posets P of rank d. The cardinaiity of ?d is Cyqo the dth Fibonacci
number (cd =C4 Ty O 7 1, Cy = 2).

PROOF. Order the subsets of {0,1,...,d-1} by increasing cardinality, and
within cardinality lexicographicaily. Thus, if 5 = {51’52"“’Sk} and
y = {VT’VZ"“’Vk'}’ then S ¢V if and only if either k < k' or k = k'
and for some J, 1 <] <k, 53 < Vg while for 1 <1 < 3§, S5 = Yy 1f
T ¢ Yd then for some k, 1 <k <d, {k-1,k} ¢ Tu {d}. Llet S= T™Nk-1},
and i =max|[j e Tu {-1}: J < k-1}. Then Theorem 7.1 for these 3, i and k

says

() + (P01 - (D).

fT(P) = (“])k-ijvj
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All the subscripts appearing on the right-hand side of this equation are less
than T 1in the lexicographic order. Repeating the process for any subscript

not in Yd we eventually get the desired linear relation.

d

To compute lwdi, note that any element S of ¥  is one of two types:

either d-2 ¢S or d-Z ¢ S. In the first case S ¢ Yd"1; in the second case
d-3 ¢ ¥, so S\[{d-2} ¢ W2, Thus !Wd' = ‘Td'}l + 'Wdﬂzi; it is easy to see
{W]f =1, ’?2' = 2, so the proposition is proved. [

Adding the relation f¢ =1 we get that the dimension of the affine span

of the extended f-vectors of Eulerian posets is at most cd-1. in fact, this
upper bound is the actual dimension, and its value gives us a hint as to the
proof. We need to exhibit 4 affinely independent extended f-vectors; it
turns out we can do this within the class of d-polytopes. Since Cq = C4o17C4-2

we try to use bases for aff fs(Pd']) and aff f (Pd"z) to create a basis for

5
aff fS(Pd). To do this we use the operations of taking the pyramid and

bipyramid over a polytope. We will use the convention that the symbol P alone
stands for the "0O-dimensional™ polytope, i.e., a single point. An ordered
string or word made up of the symbols B and P, and ending in P, stands for
the polytope obtained by taking successive pyramids and bipyramids over P in

the order indicated by the word. {Alternatively, one could consider the first

P to denote taking the pyramid over the empty polytope.) Thus P2 = PP 1is an

2 is a square and 82P2 is an octahedron. We

choose to write words ending in P2 to avoid redundancy, since BP = Pz.

interval, P3 is a triangle, B8P

Cleariy the dimension of the polytope is one less than the Tength of the word.

d

PROPOSITION 7.3, For d > 1, Tlet g be the set of d-polytopes named by

2 and contain no two

words of length d+1 in B and P that end in P
adjacent B's. The extended f-vectors of elements of Qd are affinely indepen-

dent, and Qd contains ¢, elements.

d
SKETCH OF PROOF. First we count the elements of Qd. Consider the two
types of words in Qd: those beginning with P and those beginning with B.

Words of the first type are of the form PQ', where Q' 1is any word in Qd—1.
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Words of the second type must start with BP (since 82 is not allowed) and

+hus are of the form BPQ", where Q" 1is any word in anz. 50 sgd, = ‘Qd-}l +

igd—?
i

’Q}! = i{PE}i =1, {QZI = '{P3, B?Z}’ = 2, we get !Qé’ = Cye

;; i.e., the cardinality of Qd satisfies the Fibonacci recursion. Since

The proof that the extended f-vectors of elements in Qd are independent
is difficult because the effect on the extended f-vector of taking a pyramid or
bipyramid is not easily described. It is relatively easy, however, to describe

the faces of a pyramid or bipyramid in terms of the faces of the original poly-

tope. In particular, all the faces of a polytope in Qd are in {u?;; 91) u

lo,P}, which we will call Md#z. {(Recall P is a single point.) The idea of

the proof is to work with the Cq*Cy matrix Ad, whose typical entry is aQM

where for ( ¢ Qd, M e Md, aQM js the aumber of faces of ( of combinatorial

type M. One can find an invertible transformation that takes Ad to the

matrix whose rows are the vectors (fS(Q)) d for Q¢ Qd. Given this it

Sev
suffices to show Ad is non-singular. The proof of this latter fact makes
crucial use of the recursive construction of Qd. it consists in exhibiting

row and column operations that have the following effect.

sbifted

Then rank A9 = rank 291 4 rank pd-2 . 'Qd']i + igd“zl = 'Qd' = cy. So the
extended f-vectors of the elements of Qd are affinely independent. For
complete details, see [9]. O

Together Propositions 7.2 and 7.3 give us the following result.

THEOREM 7.4, For d > 1

dim aff{(fc(P) : P is an Eulerian poset of rank d}

)S_g<d>'

= dim aff{(fS(P))%i<d>: P is a d-polytopel = <y

where Cq is the dth Fibonacci number. O
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In particular, the extended f-vectors of Eulerian posets (or polytopes) are
contained in a proper subspace of the affine span of the extended f-vectors of
completely balanced homology spheres. In other words the equations hS = hg
for Eulerian posets are dependent on the equations given by Theorem 7.1.

Already at dimension 4, the f-vectors of polytopes have not been
characterized. The results of this section show that the extended f-vectors of
4-polytopes are determined linearly by the values of fO’fl‘fE and f{0,2§ |
(here we have dropped the set brackets on f{i}’ because it coincides with
f, in the original f-vector).

It is interesting to note here that for simplicial polytopes (and hence for
simple poiytopes) the extended f-vector is linearly determined by the usual
f-vector, and so the affine hull of these remains [d/2]-dimensional. To see
this, suppose that § = {i],...,is}, s 2> 2, iE < iz Cuns £ 15 < d. Then for
a simplicial d-polytope P,

(7.5) f5(P) = fiS(P>-fS\{is}(riS>,

where Tis denotes the 1S~dimeasiona1 simplex. Thus the difference between
Cd“} and [d/2] can be thought of as a crude indication of how special simplii=-
cial (or simple) polytopes are.

Further, by an extension of the usual argument of "pulling vertices” [23;
p. 807, one can show that, for a fixed number of vertices, the number of chains
(for any dimension set) will be maximized by a simplicial polytope. Thus by
{7.5) and the Upper Bound Theorem, we get that, for d-polytopes with n ver-

tices, the numbers fS(P) are simultaneously maximized (for all §) by the

cyclic polytope C{n,d}.

8. CONCLUDING REMARKS. The results on f-vectors and extended f-vectors
surveyed in this paper serve to make combinatorial distinctions among different
classes of complexes. The f-vectors of simplicial d-polytopes span a [d/2]-
dimensional affine subspace of the Euler hyperplane (the (d-1)-space spanned by

the f-vectors of all d-polytopes). The extended f-vectors of the (complete
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barycentric subdivisions of) simplicial d-poiytopes still have dimension

[d/2]. They are properly contained in the (cd-l)-dimensional space spanned

by the extended f-vectors of rank d Fulerian posets {alternatively, of
complete barycentric subdivisions of arbitrary d-polytopes). This in turn is a
subspace of the (2d~¥)-dimen510ﬂa¥ space determined by the extended f-vectors
of completely balanced homology (d-1)-spheres,

Determining affine dimensions is the first step towards the goal of
characterizing the f-vectors of these classes of complexes. The characteriza-
tion of the f-vectors of simplicial polytopes was motivated by the particular
form h% = hd_i of the Dehn-Sommerville equations. It is natural,therefore, to
look at the generalizations of the Dehn-Sommerville equations surveyed in this
paper for clues towards nonlinear conditions on the numbers of chains. Of pri-
mary interest is characterizing the extended f-vectors of arbitrary d-polytopes.
Perhaps what is needed is a change of variables from the fS’ which will put
the equations of Theorem 7.1 into a simple form (the transformation to the
extended h-vector does not do this).

part of the motivation for considering axtended f-vectors is to derive
information on the original f-vectors themselves. The linear equations obtained
do not help with this problem. We mention here a conjecture which attempts to
generalize the Dehn-Sommerville equations in another way.

CONJECTURE, If f{(P) = (fg’f§""’fdu1) i5 the f-vector of a d-polytope

P, then for 0 <k <d-2

d-1 . -
del-3,3+1
szjg-k (‘}) (kﬂ)fj'

The inequality helds for & = d-2 and, equivalently, for k = d-3. The
conjecture is true for polytopes of dimension < 4; for simple polytopes (and,
of course, simplicial polytopes, for which the relations are equalities); and
for prisms on simplicial polytopes. If the inequalities hold for some poliytope,
then they hold for the pyramid and bipyramid over that polytope. (For details

see [8].) Note that Theorem 3.7 says that the f-vectors of all d-polytopes are
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spanned by f-vectors of {(r-fold) pyramids over simplicial {d-r)-polytopes and
simplicial d-polytopes. All such polytopes satisfy the inequalities of the
conjecture. Thus, the conjecture 3¢ related to the following question: <can
the f-vector of any polytope be written as a 1inear combination of the f-vectors
of simplicial polytopes and the f.yectors of pyramids over simplicial pol ytopes
with nonnegative coefficients on the latter?

A resolution of the conjecture would be relevant to the question of charac-
terizing the f-vectors of d-polytopes. We note that the f-vectors of
3-polytopes are characterized by the inequality of the conjecture and its

"nolar" (obtained by interchanging fi with fd—%-ﬁ)’ the inequalities

d+1

fo2 (1+§), and the Euler equation [23; p. 190]. That is

3 - - —
FPY) = [(Fpfpsfp)t forfy#fa = 2 fa2 4 28, 3fpC2f 3 < 2.}
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