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Abstract. Linear complexity is an important measure of the crypto-
graphic strength of key streams used in stream ciphers. The linear com-
plexity of a sequence can decrease drastically when a few symbols are
changed. Hence there has been considerable interest in the k-error linear
complexity of sequences which measures this instability in linear com-
plexity. For 2n-periodic sequences it is known that minimum number of
changes needed per period to lower the linear complexity is the same
for sequences with fixed linear complexity. In this paper we derive an ex-
pression to enumerate all possible values for the k-error linear complexity
of 2n-periodic binary sequences with fixed linear complexity L, when k
equals the minimum number of changes needed to lower the linear com-
plexity below L. For some of these values we derive the expression for the
corresponding number of 2n-periodic binary sequences with fixed linear
complexity and k-error linear complexity when k equals the minimum
number of changes needed to lower the linear complexity. These results
are of importance to compute some statistical properties concerning the
stability of linear complexity of 2n-periodic binary sequences.

Keywords: Periodic sequence, linear complexity, k-error linear
complexity.

1 Introduction

The linear complexity of a sequence is the length of the shortest linear feedback
shift register (LFSR) that can generate the sequence. The LFSR that generates a
given sequence can be determined using the Berlekamp-Massey algorithm using
only the first 2L elements of the sequence, where L is the linear complexity of the
sequence. The typical assumption in the analysis of the security of stream ciphers
is that the attacker has access to a part of the key stream and wants to use this
to predict the remainder of the key stream. Thus the problem of designing a
good stream cipher is reduced to the problem of designing a fast key stream
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generator whose output is hard to predict from a prefix of the the output. Hence
for cryptographic purposes sequences with high linear complexity are essential as
an adversary would then need large initial segments of the sequences to recover
the LFSRs that generate them using the Berlekamp-Massey algorithm.

A system is insecure if all but a few symbols of the key stream can be ex-
tracted. So for a cryptographically strong sequence, the linear complexity should
not decrease drastically if a few symbols are changed. If it did, an attacker could
modify the known prefix of the key stream and try to decrypt the result using
the Berlekamp-Massey algorithm. If the resulting sequence differed from the ac-
tual key stream by only a few symbols, the attacker could extract most of the
message. This observation gives rise to k-error linear complexity of sequences
introduced in [7]. The k-error linear complexity of a periodic sequence is the
smallest linear complexity achieved by making k or fewer changes per period. In
addition to having large linear complexity, cryptographically strong sequences
should, thus, also have large k-error linear complexity at least for small k.

Let S = (s0, s1, · · · , sT−1)∞ be a periodic binary sequence with period T . We
associate the polynomial S(x) = s0 + s1x+ · · ·+ sT−1x

T−1 and the correspond-
ing T -tuple S(T ) = (s0, s1, · · · , sT−1) to S. The relationship between the linear
complexity, denoted L(S), of S and the associated polynomial S(x) is given by

L(S) = T − deg(gcd(xT − 1,S(x))). (1)

Let wH(S) denote the Hamming weight of the T -tuple S(T ). For 0 ≤ k ≤ T , the
k-error linear complexity of S, denoted Lk(S), is given by

Lk(S) = min
E
L(S + E), (2)

where the minimum is over all T -periodic binary sequences E such that wH(E) ≤
k. Since we consider only 2n-periodic sequences, we use T = 2n and the obser-
vation

xT − 1 = x2n − 1 = (x− 1)2
n

(3)

for the rest of the paper.
Let merr(S) denote the minimum value k such that the k-error linear com-

plexity of a 2n-periodic sequence S is strictly less than its linear complexity.
That is

merr(S) = min{k : Lk(S) < L(S)}. (4)

Kurosawa et al. [3] derived the formula for the exact value of merr(S).

Lemma 1. For any nonzero 2n-periodic sequence S, we have

merr(S) = 2wH(2n−L(S)),

where wH(j), 0 ≤ j ≤ 2n − 1, denotes the Hamming weight of the binary repre-
sentation of j.

The counting function of a sequence complexity measure gives the number of
sequences with a given complexity measure value. Rueppel [6] determined the
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counting function of linear complexity for 2n-periodic binary sequences. Using
equations (1) and (3) it is straightforward to obtain the number of 2n-periodic
binary sequences with fixed linear complexity. For the rest of the paper let N (L)
and A(L) denote, respectively, the number of and the set of 2n-periodic binary
sequences with given linear complexity L, 0 ≤ L ≤ 2n. Rueppel [6] showed that

N (0) = 1 and N (L) = 2L−1 for 1 ≤ L ≤ 2n. (5)

Recently, using efficient algorithms to compute the linear complexity of pn pe-
riodic sequences over Fp, Meidl [4] obtained the counting function and the ex-
pected value for the 1-error linear complexity of 2n-periodic binary sequences.
Meidl and Venkateswarlu [5] extended these results to pn-periodic sequences over
Fp. Fengxiang and Wenfeng [1] used Meidl’s [4] approach of analyzing Games-
Chan algorithm to obtain the counting functions and gave the exact expression
for the expected value of the 2-error linear complexity of a random 2n-periodic
binary sequence with linear complexity 2n − 1.

In this paper we perform a more rigorous analysis of Games-Chan algorithm
to enumerate all the possible values of k-error linear complexity of sequences
in A(L) for k = 2wH(2n−L), that is when k is the minimum number of changes
needed to lower the linear complexity below L. For certain sets of these values, we
also derive the corresponding number of sequences in A(L) whose k-error linear
complexity equals the values in those sets. For the rest of the paper by kmin(L)
denote the minimum number of changes needed to lower the linear complexity
of sequences in A(L), that is kmin(L) = 2wH(2n−L).

2 Games-Chan Algorithm

In this section we describe the Games-Chan algorithm and list some results using
its analysis.

By Lemma 1 for any 2n-periodic sequence S with merr(S) = 2m, m ∈
{0, · · · , n}, the linear complexity L(S) can be uniquely expressed as

L(S) = 2n or L(S) = 2n −
m∑

i=1

2n−ri ,

where 0 < r1 < · · · < rm ≤ n.
The Games-Chan algorithm [2] is a fast algorithm for computing the linear

complexity of a 2n-periodic binary sequence. For any S ∈ A(L) with period
S(2n) = (s0, · · · , s2n−1), denote the left and right halves of S(2n) by

S(2n−1)
L = (s0, · · · , s2n−1−1) and S(2n−1)

R = (s2n−1 , · · · , s2n−1).

Let SL and SR denote the 2n−1 periodic sequences

SL = (s0, · · · , s2n−1−1)∞ and SR = (s2n−1 , · · · , s2n−1)∞. (6)
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Games-Chan Algorithm. Let S be 2n-periodic binary sequence.

(i) If S(2n−1)
L = S(2n−1)

R , then L(S) = L(SL).

(ii) If S(2n−1)
L �= S(2n−1)

R , then L(S) = 2n−1 + L(SL + SR).
(iii) Apply the above procedure recursively to the 2n−1-periodic binary sequence

SL in (i), or the 2n−1-periodic binary sequence SL + SR in (ii).

We make some observations and establish notation we use for the rest of the
paper. We note that the procedure of the Games-Chan algorithm as stated here
is executed a total of n times to compute the linear complexity of any S ∈ A(L).
In the ith step, i = 0, · · · , n− 1, the algorithm computes the linear complexity
of a 2n−i-periodic binary sequence. Let ψi(S), i = 0, · · · , n − 1, denote the
first period of the 2n−i-periodic binary sequence considered in the ith step of
the algorithm when run with input sequence S. Let ψi

L(S) and ψi
R(S) denote,

respectively, the left and right halves of ψi(S). Let mi(S) denote the total value
contributed to L(S) in the algorithm during the execution from the 0-th step to
the i-th step of the algorithm. For any two finite binary sequences, S and S′, of
same length let dH(S,S′) denote the Hamming distance between S and S′. We
slightly abuse the notation because we also use dH(S,S′) to denote the Hamming
distance between the first periods of S,S′ ∈ A(L). It is straightforward to derive
the following lemma from the Games-Chan algorithm.

Lemma 2. Let S be a 2n-periodic binary sequence. For any t integers r1, · · · , rt
such that 0 < r1 < r2 < · · · < rt ≤ n, we have

L(S) = 2n − (2n−r1 + 2n−r2 + · · · + 2n−rt) (7)

if and only if

ψu−1
L (S) = ψu−1

R (S) exactly when u ∈ {r1, · · · , rt}.
For any S ∈ A(L) where L is as in equation (7), the following properties of
vectors ψl(S), 0 ≤ l ≤ n, are straightforward to obtain.

P1: If l = ri − 1, for some i ∈ {1, · · · , t}, then wH(ψl(S)) = 2 · wH(ψl+1(S)).
P2: For any l �= ri−1, for all i ∈ {1, · · · , t}, we have wH(ψl(S)) ≥ wH(ψl+1(S)).

By Pl, 0 ≤ l ≤ n, denote the number of distinct possibilities, over all sequences in
A(L), for the 2n−l-vector during the l-th step such that the 2n−l−1-vector during
the (l + 1)-th step is fixed. It is straightforward to get the following properties.

P3: If l = ri − 1, for some i ∈ {1, · · · , t}, then Pl = 1.
P4: For any l �= ri − 1, for all i ∈ {1, · · · , t}, we have Pl = 22n−l−1

.

We also use the following result in the next section. It can be proved using the
procedure of Games-Chan algorithm and Lemma 2.

Lemma 3. Let S ∈ A(L) with L �= 0 represented as

L(S) = 2n − (2n−r1 + 2n−r2 + · · · + 2n−rt), (8)
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where 0 < r1 < r2 < · · · < rt ≤ n. Let S′ �= S be any other 2n-periodic
binary sequence such that ml−1(S) = ml−1(S′) for some l ∈ {1, · · · , n}. If
dH(ψl(S), ψl(S′)) �= 0, then

dH(S,S′) ≥ 2b · dH(ψl(S), ψl(S′)), (9)

where b, 1 ≤ b ≤ t, is the unique integer determined by the inequality rb ≤ l <
rb+1 assuming r0 = 0 and rt+1 = n+ 1.

3 Expression for kmin(L)-Error Linear Complexity

In this section we analyze the structure of the Games-Chan algorithm to derive
an expression to enumerate all possible values of kmin(L)-error linear complexity
of sequences in A(L) in terms the coefficients in the binary expansion of 2n −L.
We handle the case when 1 < L < 2n as the results are simple when L = 0 or
1 and as we already know the results when L = 2n [4]. We need the following
generalization of [1, Lemma 2] whose proof is similar to that of Lemma 2 in [1].

Lemma 4. For any sequence S = (s0, · · · , s2n−1)∞ ∈ A(L), we have L ≤ 2n −
2n−r, r = 1, · · · , n, if and only if

2r−1∑

i=0

sj+i·2n−r = 0 for j = 0, · · · , 2n−r − 1.

We prove an auxiliary result that is used in the main result of this section.

Lemma 5. Let S ∈ A(L) with 1 < L < 2n. Consider the representation of L as

L = 2n − (2n−r1 + 2n−r2 + · · · + 2n−rt), (10)

where r0 = 0 < r1 < r2 < · · · < rt < n + 1 = rt+1 and 1 ≤ t ≤ n − 1. Let
S′ be any 2n-periodic binary sequence such that dH(S,S′) = kmin(L) = 2t and
L(S′) = L2t(S). Define the two integers

l1 = min{i : 0 ≤ i ≤ n− 1 and mi(S′) �= mi(S)} (11)

and

l2 = min{i : 0 ≤ i ≤ n− 1 and dH(ψi
L(S), ψi

R(S)) = 2t−j

with rj ≤ i < rj+1}.
(12)

Then we have l1 = l2.

Proof. From Lemma 1 we know kmin(L) = 2t which implies L(S′) < L(S).
We note that there exists at least one integer i, 0 ≤ i ≤ n − 1, such that
mi(S′) �= mi(S) since otherwise L(S) = L(S′). Hence the set on the right hand
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side of equation (11) is not empty. From the procedure of the Games-Chan
algorithm and using the fact L(S′) < L(S) equation (11) implies

ψl1
L (S) �= ψl1

R (S) and ψl1
L (S′) = ψl1

R (S′). (13)

From equation (13) we get

dH(ψl1(S), ψl1(S′)) ≥ dH(ψl1
L (S), ψl1

R (S)). (14)

Let b be the unique integer determined by the inequality rb ≤ l1 < rb+1.
Since ψrt−1

L (S) = ψrt−1
R (S) and because the vectors considered during all the

steps, except the last one, of the Games-Chan algorithm have nonzero Ham-
ming weight, we have wH(ψrt−1(S)) ≥ 2. So using properties P1 and P2 we get
wH(ψl1+1(S)) ≥ 2t−b and thus

dH(ψl1
L (S), ψl1

R (S)) ≥ 2t−b. (15)

Now we show that dH(ψl1
L (S), ψl1

R (S)) = 2t−b. If not, from equation (15) we have
dH(ψl1

L (S), ψl1
R (S)) > 2t−b. By equation (14) this implies

dH(ψl1(S), ψl1 (S′)) > 2t−b. (16)

But from Lemma 3 we know dH(S,S′) ≥ 2b · dH(ψl1(S), ψl1(S′)), which implies
dH(ψl1(S), ψl1(S′)) ≤ 2t−b since dH(S,S′) = 2t. This contradicts inequality in
(16). Thus we have

dH(ψl1
L (S), ψl1

R (S)) = 2t−b. (17)

From equation (17) we know that the set on the right hand side of equation (12)
is not empty and l2 ≤ l1. By a denote the unique integer determined by the
inequality ra ≤ l2 < ra+1. Because there are a steps before the l2-th step where
the left and right halves are equal it is evident from equation (21) that altering
ψl2(S) such that ψl2

L (S) = ψl2
R (S) and propagating these changes to the 0-th

step of the Games-Chan algorithm will require exactly 2a · 2t−a = 2t changes in
S(2n). But if l2 < l1, forcing ψl2

L (S) = ψl2
R (S) will result in a 2n-periodic binary

sequence S′′ such that dH(S,S′′) = 2t and L(S′′) < L(S′). This contradicts the
fact that L(S′) = L2t(S). Thus we have l2 = l1. ��
Theorem 1. Let S ∈ A(L) with 1 < L < 2n. Consider the representation of L
as

L = 2n − (2n−r1 + 2n−r2 + · · · + 2n−rt), (18)

where r0 = 0 < r1 < r2 < · · · < rt < n+ 1 = rt+1 and 1 ≤ t ≤ n− 1. Define the
integer w = min{i : ri = n+ i− t, 1 ≤ i ≤ t+ 1}. Then Lkmin(L)(S) is 0 or is in
one of the two forms

Lj,l,C := 2n −
j−1∑

i=1

2n−ri − 2n−l + C, 1 ≤ j ≤ w − 1,

rj−1 ≤ l ≤ rj − 2, and 1 ≤ C ≤ 2n−l−1 − 1,

(19)

or
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Lw,l,C := 2n −
w−1∑

i=1

2n−ri − 2n−l + C,

rw−1 ≤ l ≤ rw − 3 and 1 ≤ C ≤ 2n−l−1 − 2t−w+1.

(20)

Proof. From Lemma 1 and equation (18) merr(S) = kmin(L) = 2t. The se-
quences in A(L) whose 2t-error linear complexity is 0 are those with exactly 2t

1s per period. For any other sequence S in A(L) we show that the 2t-error linear
complexity is in one of the forms as stated in the theorem.

Define the integer l as in equation (12). That is

l = min{i : 0 ≤ i ≤ n− 1 and dH(ψi
L(S), ψi

R(S)) = 2t−j

with rj ≤ i < rj+1}.
(21)

We already know that the set on the right hand side of equation (21) is not empty
due to the intermediate findings of Lemma 5. By b denote the unique integer
determined by the inequality rb ≤ l < rb+1. From the proof of Lemma 5 we know
that altering ψl(S) such that ψl

L(S) = ψl
R(S) and propagating these changes to

the 0-th step of the Games-Chan algorithm will require exactly 2t changes in
S(2n). We also see that it is necessary to alter ψl(S) so that ψl

L(S) = ψl
R(S) to

achieve the smallest linear complexity that can be obtained by making exactly
2t errors in S(2n) since the remaining n − l steps can only add a maximum of
2n−l−1 to the linear complexity of the modified sequence.

Note that l �= rj − 1, j = 1, · · · , t, since ψrj−1
L (S) = ψ

rj−1
R (S), j = 1, · · · , t.

Next we show that

∀ l + 1 ≤ i ≤ n− 1, wH(ψi(S)) = 2t−j with rj ≤ i < rj+1. (22)

If equation (22) does not hold, then let m be any integer such that l+ 1 ≤ m ≤
n − 1 and wH(ψm(S)) �= 2t−a where a is uniquely determined by the inequal-
ity ra ≤ m < ra+1. Since ψrt−1

L (S) = ψrt−1
R (S), we have wH(ψrt−1(S)) ≥

2. So using properties P1 and P2 we get wH(ψm(S)) ≥ 2t−a. This implies
wH(ψm(S)) > 2t−a since we assumed wH(ψm(S)) �= 2t−a. Again, using P1
and P2 we have wH(ψl+1(S)) > 2a−b · 2t−a = 2t−b which contradicts the fact
dH(ψl

L(S), ψl
R(S)) = 2t−b. Thus wH(ψm(S)) = 2t−a and so equation (22) holds.

To obtain the form of L2t(S) we consider two cases based on the value of w.

Case 1: w ≤ t
From the definition of w in the theorem statement it can be shown that n− ri =
t− i for i = w, · · · , t, which implies

L = 2n − (2n−r1 + · · · + 2n−rw−1 + 2t−w + 2t−w−1 + · · · + 20). (23)

From equations (18), (23) and Lemma 2 this means that the left and right halves
are equal from the (rw − 1)-th step to (n − 1)-th step of the execution of the
Games-Chan algorithm. Using the fact that n − rw = t − w, this implies that
the 2t−w+1-vector considered during the (rw − 1)-th step

ψrw−1(S) = (ψrw−1(S)0, · · · , ψrw−1(S)2t−w+1−1) = (1, · · · , 1) (24)
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is an all 1 vector. From the definition of w, equation (24) also implies that
wH(ψrw−2(S)) = 2t−w+1. That is

dH(ψrw−3
L (S), ψrw−3

R (S)) = 2t−w+1. (25)

By equation (25) and using the definition of l in equation (21) we have l ≤ rw−3.
We consider two cases based on the value of l.

Case 1a: rw−1 ≤ l ≤ rw − 3
We first note that this case occurs only when the binary expansion of L as
in equation (18) satisfies rw−1 ≤ rw − 3. Throughout this case we use the
fact that n − rw = t − w. From the definition of l in equation (21) we have
dH(ψl

L(S), ψl
R(S)) = 2t−w+1. We already know that making 2t−w+1 changes in

ψl(S) so that ψl
L(S) = ψl

R(S) is necessary to achieve the the smallest linear
complexity possible by making kmin(L) = 2t changes in S(2n). But we have to
decide for each of the 2t−w+1 positions where ψl

L(S) and ψl
R(S) differ, whether

the change should be made in ψl
L(S) or at the corresponding position in ψl

R(S).
In this case there is a unique of making these 2t−w+1 changes so that the linear
complexity of the 2n−l−1-periodic binary sequence with period equal to either
of the equal halves obtained by forcing ψl

L(S) = ψl
R(S) is as small as possible.

Next we describe a unique way of making these changes.
Let ψl+1(S′) = ψl

L(S) = ψl
R(S) be the 2n−l−1-vector obtained after forcing

ψl
L(S) = ψl

R(S) such that the linear complexity of the 2n−l−1-periodic binary
sequence with period ψl+1(S′) is as small as possible. The left and right halves
of the vectors considered are not equal from the rw−1-th step to the (rw − 2)-
th step of the Games-Chan algorithm when executed with input sequence S.
From equation (24) ψrw−1(S) is a 2t−w+1-vector with all 1s. Hence for all v =
rw−1, rw−1 + 1, · · · , rw − 2 due to the procedure of the Games-Chan algorithm
we have

2rw−v−1−1∑

j=0

ψv(S)i+j2t−w+1 = 1 for i = 0, · · · , 2t−w+1 − 1. (26)

Let pi, 0 ≤ pi ≤ 2n−l−1 − 1, i = 0, · · · , 2t−w+1 − 1, be the positions where
ψl

L(S) and ψl
R(S) differ. This means wH(ψl+1) = 2t−w+1 with 1s at positions

pi, i = 0, · · · , 2t−w+1 − 1. As equation (26) is valid for v = l + 1, this im-
plies that the mapping pi 	→ pi mod 2t−w+1 is one-one and onto since otherwise
wH(ψrw−1(S)) < 2t−w+1. Hence for each pi, i = 0, · · · , 2t−w+1 − 1, only one of
the choices, that is, changing ψl

L(S)pi or ψl
R(S)pi results in the 2n−l−1-vector

ψl+1(S′) that satisfies

2rw−l−2−1∑

j=0

ψl+1(S′)i+j2t−w+1 = 0 for i = 0, · · · , 2t−w+1 − 1. (27)

The contribution to L(S) during the first l − 1 steps of the algorithm is

(2n−1 + 2n−2 + · · · + 2n−l) −
w−1∑

i=1

2n−ri = 2n − 2n−l −
w−1∑

i=1

2n−ri .
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Thus the 2t-error linear complexity of S is of the form

L2t(S) = 2n − 2n−l −
w−1∑

i=1

2n−ri + C, (28)

where C is the linear complexity of the 2n−l−1-periodic binary sequence with
period ψl+1(S′). By equation (27) and Lemma 4 the value C in equation (28)
satisfies

C = L((ψl+1(S′))∞) ≤ 2n−l−1 − 2t−w+1. (29)

Also, ψl+1(S′) is not the all zero vector from the definition of l in equation (21),
which implies C ≥ 1. Thus from equations (28) and (29) L2t(S) is in the form
Lw,l,C given in equation (20).

Case 1b: rj−1 ≤ l ≤ rj − 2, 1 ≤ j ≤ w − 1
From the definition of l in equation (21) we have dH(ψl

L(S), ψl
R(S)) = 2t−j+1

Also, by equation (22) we have wH(ψrj−1(S)) = 2t−j+1. Since j �= w we have
n− rj > t− j and so ψrj−1(S) is not an all 1 vector. More specifically if

G = {g : ψrj−1(S)g = 0, g = 0, · · · , 2n−rj+1 − 1}
then

|G| = 2n−rj+1 − 2t−j+1. (30)

Using a similar argument as that in Case 1a we have

L2t(S) = 2n − 2n−l −
j−1∑

i=1

2n−ri + C, (31)

where C is the linear complexity of the 2n−l−1-periodic binary sequence with
period ψl+1(S′), which is equal to either of the equal halves obtained by forcing
ψl

L(S) = ψl
R(S) such that the lowest possible linear complexity is achieved. The

left and right halves of the vectors considered from the l-th step to the (rj −2)-th
step are not equal. So by equation (30) due to the procedure of the Games-Chan
algorithm we have

2rj−l−1−1∑

f=0

ψl(S)i+f2n−rj+1 = 0 for i ∈ G (32)

and

2rj−l−1−1∑

f=0

ψl(S)i+f2n−rj+1 = 1 for i ∈ {0, · · · , 2n−rj+1 − 1} −G. (33)

Let pi, 0 ≤ pi ≤ 2n−l−1 − 1, i = 0, · · · , 2t−j+1 − 1, be the positions where
ψl

L(S) and ψl
R(S) differ. This means wH(ψl+1(S)) = 2t−j+1. By equations (32)
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and (33), this implies that the mapping pi 	→ pi mod 2n−rj+1 is one-one since
otherwise wH(ψrj−1(S)) < 2t−j+1. We can see the mapping is not onto from
equation (30). Also, each element in G does not occur as the inverse image of
any element of the set {pi : i = 0, · · · , 2t−j+1}. We split the summation in
equation (32) into two separate summations involving terms exclusively from
ψl

L(S) or ψl
R(S). For each i ∈ G we have

ΣL(l, i) =
2rj−l−2−1∑

f=0

ψl
L(S)i+f2n−rj+1

and

ΣR(l, i) =
2rj−l−2−1∑

f=0

ψl
R(S)i+f2n−rj+1 .

(34)

For each i ∈ G, from equations (32) and (34) we know that ΣL(l, i)+ΣR(l, i) = 0
which implies ΣL(l, i) = ΣR(l, i) = 0 or ΣL(l, i) = ΣR(l, i) = 1. Note that
none of the terms involved in the summations of equation (32) can be al-
tered when forcing ψl

L(S) = ψl
R(S). Using these remarks it can be shown that

by making appropriate changes at one of the positions pi or pi + 2n−l−1, for
each i = 0, · · · , 2t−j+1 in ψl(S), we can only guarantee that wH(ψl+1(S′)) is
even by forcing ψl

L(S) = ψl
R(S). Thus the value C in equation (31) satisfies

1 ≤ C ≤ 2n−l−1 − 1. Hence L2t(S) is in the form Lj,l,C , 1 ≤ j ≤ w − 1, as in
equation (19).

Case 2: w = t+ 1
The proof in this case is similar to that for Case 1 and both forms in equations
(19) and (20) are identical.

This completes the proof of the theorem. ��

4 Counting Functions

In this section we derive expressions for the number of sequences in A(L) with
fixed kmin(L)-error linear complexity. We need the following generalization of
[1, Lemma 3].

Lemma 6. Let S ∈ A(L) such that 1 ≤ L ≤ 2n − 2r, r = 1, · · · , n − 1. Let S′

be a 2n-periodic binary sequence corresponding to the polynomial

S′(x) = S(x) +
g∑

t=0

xit ,

where 0 ≤ g ≤ 2r − 1 and it ∈ {0, · · · , 2n − 1}, t = 0, · · · , g. If the mapping
it 	→ it mod 2r is one-one, then we have L(S′) > L(S).
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Theorem 2. Let Nkmin(L)(C) be the number of sequences in A(L), 1 < L < 2n,
with fixed kmin(L)-error linear complexity C. Let L be represented as

L = 2n − (2n−r1 + 2n−r2 + · · · + 2n−rt),

where r0 = 0 < r1 < r2 < · · · < rt < n+ 1 = rt+1 and 1 ≤ t ≤ n− 1. Let Lj,l,C

be defined as in equations (19) and (20) and let w = min{i : ri = n+ i− t, 1 ≤
i ≤ t+ 1}. Then for 1 ≤ j ≤ w, if 1 ≤ C ≤ 2n−l−1 − 2n−rj+1 then

Nkmin(L)=2t(Lj,l,C) = 2ρ(j,l,C),

where

ρ(j, l, C) = 2n − 2n−l −
j−1∑

i=1

2n−ri +
w−j−1∑

i=0

(rw−i − rw−i−1 − 1)2t−w+i+1

+ (rj − l − 1)2t−j+1 + C − 1.

(35)

Also, Nkmin(L)=2t(0) = 2ρ(0), where ρ(0) =
∑w−2

i=0 (rw−i−rw−i−1−1)2t−w+i+1+
(r1−1)2t and Nkmin(L)=2t(C) = 0 for all C not in the form Lj,l,C as in equations
(19) and (20).

Proof. From equations (19) and (20) the kmin(L)-error linear complexity of
S ∈ A(L) is of the form

Lj,l,C = 2n −
j−1∑

i=1

2n−ri − 2n−l + C for 1 ≤ j ≤ w (36)

where rj−1 ≤ l ≤ rj − 2 (For l = rw − 2, there exist no positive values for
C in equation (20) and hence no valid values for Lw,l,C). We determine the
counting function for the number of sequences in A(L) with kmin(L)-error linear
complexity equal to each of the values Lj,l,C in equation (36) when 1 ≤ C ≤
2n−l−1−2n−rj+1. From the definition of l in equation (21) and by equation (22),
for any S ∈ A(L) if rj−1 ≤ l ≤ rj − 2 we know

wH(ψl+1(S)) = wH(ψrj−1(S)) = 2t−j+1. (37)

We consider two cases based on the value of w.

Case 1: w ≤ t
From equation (24) for any S ∈ A(L) the 2t−w+1-vector ψrw−1(S) is an all 1
vector.

Let D1(j, l, C) be the number of distinct 2n−l−1-vectors ψl+1(S) over all
S ∈ A(L) such that the 2n−rw+1-vector ψrw−1(S) is an all 1 vector. To de-
termine D1(j, l, C) we make the following observations.

(i) By equation (22) it is evident that during the execution of Games-Chan
algorithm form the l+ 1-th step to the (n− 1)-th step the Hamming weight
of the vectors considered does not change between two consecutive steps
except when going from the (ri −1)-th step to the ri-th step for i = j, · · · , t.
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(ii) Using (i) the procedure of the Games-Chan algorithm also implies that
over all sequences in A(L) for any integer a such that l + 1 ≤ a < rj or
ri ≤ a < ri−1 for some i ∈ {j, · · · , t}, the number of distinct vectors in the
a-th step that result in a fixed vector v in the (a+ 1)-th step is 2wH(v).

(iii) The definition of w implies n− rw = t− w.

From these observations and by using property P1 recursively we obtain

D1(j, l, C) =
w−j−1∏

i=0

(2rw−i−rw−i−1−1)2
t−w+i+1

(2rj−l−2)2
t−j+1

. (38)

Recall that ψl+1(S′) is the 2n−l−1-vector obtained by forcing ψl
L(S) = ψl

R(S)
so that the least linear complexity is achieved by making kmin(L) errors in
S(2n). Let D2(j, l, C), 1 ≤ C ≤ 2n−l−1 − 2n−rj+1, be the number of choices for
ψl+1(S′) such that the linear complexity of the 2n−l−1-periodic sequence with
period ψl+1(S′) is C. By equation (5), we have

D2(j, l, C) = 2C−1 for 1 ≤ C ≤ 2n−l−1 − 2n−rj+1. (39)

Over all S ∈ A(L), for a fixed ψl+1(S) = v with wH(v) = 2n−rw+1 and for a fixed
choice of ψl+1(S′) with L((ψl+1(S′))∞) = C, the number of possibilities, denoted
by D3(w, l, C), for ψl(S) such that ψl

L(S)+ψl
R(S) = v and dH(ψl(S), ψl+1(S′) |

ψl+1(S′)) = 2n−rw+1 is
D3(w, l, C) = 22t−j+1

, (40)

where ψl+1(S′) | ψl+1(S′) is the 2n−l-vector formed by concatenating two copies
of ψl+1(S′).

Let pi, 0 ≤ pi ≤ 2n−l−1 − 1, i = 0, · · · , 2t−j+1 − 1, be the positions where
ψl

L(S) and ψl
R(S) differ. From Cases 1a and 1b of the proof of Theorem 1 the

mapping pi 	→ pi mod 2n−rj+1 is one-one. Using this mapping and the condition
1 ≤ C ≤ 2n−l−1 − 2n−rj+1, by Lemma 6 for fixed ψl+1(S) and ψl+1(S′) each of
the 22t−j+1

possibilities for ψl(S) satisfies

L(ψl
L(S)) > C and L(ψl

R(S)) > C. (41)

By equations (38)-(41), using properties P3 and P4 recursively we obtain

N2t(Lj,l,C) = P0P1 · · · Pl−1D1(j, l, C)D2(j, l, C)D3(j, l, C). (42)

We have

P0P1 · · · Pl−1 =
j−1∏

i=1

(Pri−1 · · · Pri−2)(Prj−1 · · · Pl−1)

=

(
j−1∏

i=1

2
∑ ri−ri−1−1

z=1 2n−ri+z

)
2

∑ l−rj−1−1
z=0 2n−l+z

.

(43)
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By equations (38)-(41) and (43) a straightforward algebraic simplification of the
right hand side of equation (42) gives N2t(Lj,l,C) = 2ρ(j,l,C) with ρ(j, l, C) as in
equation (35). We note that the condition in equation (41) is necessary to avoid
double counting in determining the number of distinct possibilities for ψl(S) over
all S ∈ A(L) such that ψl+1(S) and ψl+1(S′) are fixed.

Case 2: w = t+ 1
In this case we note that the two possibilities for vectors in the (n−1)-th step of
the Games-Chan algorithm are 01 and 10. Using this it can be shown that the
expression for D1(j, l, C) in equation (38) holds for w = t + 1. The remaining
details are similar to those in Case 1.

To obtain N2t(0) we only have to count the number of S ∈ A(L) with wH(S) =
2t. By equation (22) and property P1 the expression for N2t(0) follows using an
argument similar to that for finding D1(j, l, C) as in equation (38).

This completes the proof of the theorem. ��

5 Conclusion

In this paper we studied the k-error linear complexity of 2n-periodic binary
sequences by performing a rigorous analysis of the Games-Chan algorithm. We
derived an expression for all the possible values of k-error linear complexities of
2n-periodic binary sequences with fixed linear complexity when k is the minimum
number of changes needed to the lower the linear complexity. For certain sets
of these values, we obtained the corresponding number of sequences with fixed
linear complexity and k-error linear complexity. Our results further research
in analyzing the stability of linear complexity of 2n-periodic binary sequences.
These results, however, have limited importance for practical cryptography in
part due to the restriction to 2n-periodic sequences.
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