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1. Introduction

The large N duality between open and closed topological strings, which was first

formulated for local conifold transitions [17], has been extended in various directions. It

has been shown to be valid for more general toric geometries, leading to the definition of

the topological vertex [2], a cubic field theory that computes the all genus amplitudes of

open and closed topological strings on any non-compact toric Calabi-Yau threefold. The

large N duality has also been extended in [29] to a simple orientifold theory, namely the

orientifold of the conifold.

In this paper we propose a generalization of the large N correspondence of [29] for more

complicated orientifolds. Namely, we find that the partition function of closed topological

strings on the orientifold (including unoriented contributions and oriented contributions

from the covering space) is equivalent in the large N limit to the Chern-Simons partition

function on the threefold after a geometric transition. The IP1’s that were invariant under

the involution, becoming IRIP2’s in the orientifold, give SO(N) - or Sp(N) - Chern-Simons

theory on the S3’s resulting from the geometric transition. One has also to add instanton

contributions localized on the fixed locus of a torus action on the deformed geometry.

This is a highly non-trivial proposal, as more complicated orientifolds involve instan-

ton contributions to the Chern-Simons partition function. Moreover, for more general

orientifolds, the geometry of the covering space becomes quite different from the one of the

resulting orientifold. It is not obvious at all that both the oriented and unoriented contribu-

tions to the closed topological strings partition function are encoded in the Chern-Simons

setup. But it turns out to be true in the examples we consider.

We also find that the closed topological string amplitudes on the orientifolds of the

type we describe below can be also computed with the topological vertex introduced in

[2], by using a prescription that takes into account the involution of the target. We

explicitly prove that this prescription is equivalent to the large N Chern-Simons dual.

This prescription extends the general formalism of the topological vertex to include the

case of orientifolds.

To test our result we compute the unoriented contributions on the closed topological

strings side using the unoriented localization techniques developed in [13]. This computa-

tion does not rely on large N duality at all, consequently providing an independent check of

our proposal. In [29] it was found that only unoriented maps with one crosscap contribute

to the partition function. However, in the general case, we find that configurations with

two crosscaps, that is Klein bottles, do contribute as well.

1



To make the proposal more concrete we focus on a particular geometry in this paper.

We consider a noncompact Calabi-Yau threefold X whose compact locus consists of two

compact divisors each isomorphic to a del Pezzo surface dP2 and a rational (−1,−1) curve

that intersects both divisors transversely. The divisors do not intersect each other. We

will equip X with a freely acting antiholomorphic involution I and consider an orientifold

of the theory obtained by gauging the discrete symmetry σI, where σ is a worldsheet

antiholomorphic involution. The geometry is described in more detail in section 3.

The partition function of the closed topological A-model with this geometry as target

space will sum both over maps from orientable worldsheets to X (with the Kähler param-

eters identified by the involution set equal) as well as over non-orientable worldsheets to

the orientifolded geometry.

The orientifolded geometry allows a local geometric transition that will be described

in detail in section 3. This amounts to contracting two IP1’s and an IRIP2 and replace them

by three S3’s. We conjecture that the dual open string model will consist of a system of

Chern-Simons theories supported on the three spheres, with U(N1) and U(N2) groups on

the spheres corresponding to the contracted IP1’s and SO(N3) - or Sp(N3) - group on the

sphere corresponding to the contracted IRIP2. The new ingredient is that the Chern-Simons

theories will be coupled by cylindrical instantons.

The paper is organized as follows. Section 2 summarizes general results for A-model

topological strings on an orientifold. Section 3 describes in some detail the particular ge-

ometry and the geometric transition on which we will focus in this paper. In section 4 we

compute explicitly the Chern-Simons amplitude obtained after the geometric transition.

Section 5 presents the unoriented localization computation, and shows that it gives exactly

the same contributions for the one and two crosscaps instanton configurations. We then

propose our prescription based on the topological vertex in section 6, proving its equiva-

lence to the Chern-Simons computation. Finally, in section 7, we point out some possible

extensions of our results to more complicated situations.

2. A-model Topological Strings on an Orientifold

2.1. Type IIA superstrings and topological strings on an orientifold

It is a well-known fact that, when type IIA theory is compactified on a Calabi-Yau

manifold X , the resulting four dimensional theory is N = 2 supergravity with h1,1(X)

vector multiplets ti. The N = 2 prepotential that governs the effective action of the
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vector multiplets, F0(ti), can be computed by the genus zero free energy of the A-model

topological strings with the Calabi-Yau as target space (see [20] for a review of topological

strings and related issues). Higher genus free energies Fg(ti) of the topological string

theory also play a role in the four dimensional supergravity theory, and compute higher

curvature couplings involving the graviphoton [7,6].

One way to break N = 2 supersymmetry down to N = 1 is to consider an orientifold

of the theory. The orientifold is defined by combining an involution symmetry I on the

Calabi-Yau X with an orientation reversal diffeomorphism σ on the worldsheet Σ. In

the context of type IIA superstrings, the orientifold is only well defined if the involution

is anti-holomorphic. Furthermore, the worldsheet diffeomorphism has to be orientation

reversal [1,13,8]. The resulting theory in four dimensions has N = 1 supersymmetry, and

h1,1
− (X) out of the h1,1(X) N = 2 vector multiplets become N = 1 chiral multiplets in

four dimensions, where h1,1
− (X) is the number of harmonic (1, 1) forms on X which have

−1 eigenvalue under I (see [8] for a description of the spectrum of massless modes in four

dimensions).

These considerations hold in the context of A-model topological strings as well: A-

model topological strings possess a worldsheet orientation reversal symmetry when accom-

panied with an anti-holomorphic involution of the target space [1]. It is thus possible to

consider A-model topological strings on an orientifold defined as above. The twisted sector

of the topological string amplitude on the orientifold includes amplitudes for unoriented

Riemann surfaces. Recall that a closed, non-orientable Riemann surface is characterized

by its genus g and by the number of crosscaps c, which can be one or two (crosscaps can

be traded for handles when the number of crosscaps is higher than two). For example,

the surface with g = 0 and c = 1 is the real projective plane IRIP2, while the surface with

g = 0 and c = 2 is the Klein bottle. It was shown in [1] that the superpotential of the

h1,1
− (X) chiral multiplets is given by the IRIP2 amplitude of the topological string theory.

As far as we know, the topological amplitudes involving more handles or crosscaps do not

have an interpretation in the N = 1 supergravity theory.

Generally speaking, one could consider type IIA superstrings on a non-compact ori-

entifold, with D-branes and orientifold planes [1]. In this paper we will only consider type

IIA superstrings without D-branes or orientifold planes (albeit our approach could proba-

bly be generalized to these cases). This means that the anti-holomorphic involution must

have no fixed points. Moreover, as the parent theory has no D-branes, to compute the

superpotential we only need to consider A-model closed topological strings.
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2.2. Structure of the topological string amplitudes

Roughly speaking, the free energy of A-model closed topological strings counts the

number of holomorphic maps from the worldsheet to the target space, weighted by a factor

of e−A where A is the area of the embedded curve. In the context of orientifolds, the par-

tition function of topological strings sums over holomorphic maps in two different sectors:

the “untwisted” and the “twisted” sectors. The former consists of usual holomorphic maps

from orientable worldsheets to the covering space, i.e. the non-compact Calabi-Yau three-

fold without the involution. The latter consists of equivariant maps f : Σ → X satisfying

the equivariance condition

f ◦ σ = I ◦ f, (2.1)

where I is the antiholomorphic involution acting on X , and σ : Σ → Σ is the orientation

reversal diffeomorphism of the Riemann surface which is needed in order to construct the

orientifold action. Notice that, if Σ has genus zero, the action of σ is given by z → −1/z̄.

The relevant maps in the twisted sector are then the maps which are compatible with the

orientation reversal diffeomorphism on the worldsheet and the anti-holomorphic involution

on the target space, and descend to holomorphic maps from non-orientable worldsheets to

the orientifold.

The structure of the total free energy of the A-model is then

F(X/I, gs) = F(X/I, gs)or + F(X/I, gs)unor, (2.2)

where gs is the string coupling constant. In this equation, F(X/I, gs)or is the contribu-

tion of the untwisted sector, and F(X/I, gs)unor is the contribution of the twisted sector.

Moreover, we have [18,29]

F(X/I, gs)or =
1

2
F(X, gs) =

1

2

∞∑

d=1

∞∑

g=0

∑

Q

1

d

ng
Q

(q
d
2 − q−

d
2 )2−2g

e−dQ·t. (2.3)

Here, F(X, gs) is the free energy of the covering X of X/I, after suitably identifying the

Kähler classes in the way prescribed by the involution I, and we have written it in terms of

Gopakumar-Vafa invariants ng
Q [18]. The notation is as follows: t = (t1, · · · , tn) denotes the

set of Kähler parameters of X after identification through the involution, Q = (Q1, · · · , Qn)

is an n-uple of integer numbers that label integer two-homology classes, and q = egs .

The unoriented contribution in (2.2) comes from holomorphic maps from closed non-

orientable Riemann surfaces to the orientifold X/I. The Euler characteristic of a closed
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Riemann surface of genus g and c crosscaps is χ = −2g + 2 − c where c is the number of

crosscaps. We then have

F(X/I, gs)unor = F(X/I, gs)
c=1
unor + F(X/I, gs)

c=2
unor, (2.4)

which corresponds to the contributions of one and two crosscaps. Following the arguments

in [18] we expect the structure

F(X/I, gs)
c=1
unor = ±

∑

d odd

∞∑

g=0

∑

Q

ng,c=1
Q

1

d
(q

d
2 − q−

d
2 )2g−1e−dQ·t,

F(X/I, gs)
c=2
unor =

∑

d odd

∞∑

g=0

∑

Q

ng,c=2
Q

1

d
(q

d
2 − q−

d
2 )2ge−dQ·t,

(2.5)

where ng,c
Q are integers. The ± sign in the c = 1 free energy is due to the following:

the target space anti-holomorphic involution does not fully specify the unoriented part

of the free energy on the orientifold, since we have to make a choice for the sign of the

crosscaps. Depending on this choice, we will have the two different signs for c = 1. This

corresponds to the choice of SO or Sp group in the gauge theory dual. This remaining

choice is also easily understood on the mirror symmetric side [1]. For the conifold, the

B-model mirror symmetric description involves two orientifold 5-planes. The two choices

of signs for crosscap states correspond on the mirror symmetric side to the two following

choices for the charges of the O5-planes: +− and −+ [1]. A similar story holds for more

complicated orientifolds. Notice as well that the sum over multicoverings d in (2.5) is only

over odd integers. In the case of c = 1 this follows from an elementary geometric argument,

since there are no even multicoverings (see [29,1]). For c = 2 there is no such a simple

argument, but our explicit computations both in Chern-Simons theory and in localization

of unoriented instantons indicate that only odd multicoverings contribute.

3. Geometric Transitions

3.1. Orientifold of the resolved conifold and its geometric transition

In [29] it was proposed that in the large N limit, closed topological strings on the

orientifold of the conifold are dual to SO(N)/Sp(N) Chern-Simons theory on S3, where

the choice of gauge group is related to the choice of sign for the crosscaps. Since this is

the starting point for our discussion, let us review in some detail the results of [29].
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We start with a theory of topological open strings on the deformed conifold defined

by z1z4 − z2z3 = µ. The conifold contains an S3, and if we wrap 2N branes on the three-

sphere, the spacetime description of the open topological string theory is Chern-Simons

theory on S3 with gauge group U(2N) and at level k (the level is related to the open string

coupling constant). We now consider the following involution of the geometry

I : (z1, z2, z3, z4) → (z̄4,−z̄3,−z̄2, z̄1) (3.1)

that leaves the S3 invariant. The string field theory for the resulting open strings is now

Chern-Simons theory with gauge group SO(N) or Sp(N), depending on the choice of

orientifold action on the gauge group. The total free energy of the Chern-Simons theory

with gauge group SO/Sp can be written as

F = − log S
SO(N)/Sp(N)
00 =

1

2

∞∑

d=1

1

d

e−dt

(q
d
2 − q−

d
2 )2

∓
∑

d odd

1

d

e−dt/2

q
d
2 − q−

d
2

, (3.2)

where the ∓ sign corresponds to SO/Sp, respectively. In (3.2), q = egs , with

gs =
2πi

k + y
, (3.3)

and y is the dual Coxeter of the gauge group, which is N − 2 for SO(N) and N + 1 for

Sp(N). The parameter t in (3.2) is the ’t Hooft parameter, given by

t = (N ∓ 1)gs, (3.4)

for SO/Sp, respectively.

RP 2

SO(N)/Sp(N)

Fig. 1: Geometric transition for the orientifold of the conifold. The cross in the

figure to the left represents an IRIP2 obtained by quotienting a IP1 by the involution

I, and the dashed line in the figure on the right represents an S3 with SO/Sp gauge

group.
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In the usual geometric transition of [17], the dual to the deformed conifold is the

resolved conifold Y = O(−1) ⊕ O(−1) → IP1. This Calabi-Yau threefold admits a toric

description given by the following toric data:

X1 X2 X3 X4

C∗ 1 1 −1 −1
(3.5)

This means that Y is defined as the space obtained from

|X1|
2 + |X2|

2 − |X3|
2 − |X4|

2 = t (3.6)

after quotienting by the U(1) action specified by the charges in (3.5). The involution (3.1)

of the deformed conifold maps to the antiholomorphic involution of Y defined by:

I : (X1, X2, X3, X4) → (X2,−X1, X4,−X3). (3.7)

It is easy to see that Y/I contains a single IRIP2 obtained from the quotient of the IP1 of

Y by I. We will represent the quotient of the resolved conifold by that involution in terms

of the toric diagram depicted in fig. 1.

The free energy of the SO/Sp Chern-Simons theory gives the total free energy of closed

strings propagating on Y/I. The first term in (3.2) gives the oriented contribution, while

the second term gives the unoriented contribution, and they have the structure explained

in (2.3) and (2.5). Notice that in the case of the unoriented contribution we have

ng=0,c=1
Q=1/2 = ∓1 (3.8)

depending on the choice of sign for the crosscaps, and all the remaining Gopakumar-Vafa

invariants vanish. In particular, the contribution of Riemann surfaces with two crosscaps

is zero. As we will see in this paper, in more general cases there are two-crosscaps contri-

butions. The above prediction of the large N transition for the free energy was checked in

[1] against mirror symmetry, and in [13] against localization computations for unoriented

Gromov-Witten theory.
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3.2. Our main example

In this paper we want to generalize the open/closed string duality studied in [29] to

more general orientifolds. We will mainly focus on a noncompact Calabi-Yau manifold X

described by the following toric data:

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

C∗ −1 1 1 −1 0 0 0 0 0 0
C∗ 1 0 −1 −1 0 1 0 0 0 0
C∗ 1 −1 0 −1 1 0 0 0 0 0
C∗ 0 0 0 1 −1 −1 1 0 0 0
C∗ 0 0 0 0 1 0 −1 −1 0 1
C∗ 0 0 0 0 0 1 −1 0 −1 1
C∗ 0 0 0 0 0 0 −1 1 1 −1.

(3.9)

v

v

v

v

v

v

v v

1 2

9

3

v7

6

4

5

v10

8

Fig. 2: Toric diagram of the noncompact Calabi-Yau threefold X.

The compact locus consists of two divisors that are each isomorphic to a del Pezzo surface

dP2 and a rational (−1,−1) curve that intersects both divisors transversely. Note that the

two compact divisors do not intersect. We now consider a real torus action on X given by:

eiφ · (X1, X2, . . . , X10) → (eiλ1φX1, e
iλ2φX2, . . . , e

iλ10φX10). (3.10)

The configuration of invariant curves is presented in fig. 3. We now define the antiholo-

morphic involution as follows:

I : (X1, X2, X3, X4, X5, X6, X7,X8, X9, X10) →

(X10, X8, X9, X7,−X6, X5,−X4, X2, X3, X1).
(3.11)
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The subtorus of (3.10) that is compatible with the involution is defined by the following

constraints on the weigths

λ1 + λ10 = 0, λ2 + λ8 = 0, λ3 + λ9 = 0, λ4 + λ7 = 0, λ5 + λ6 = 0. (3.12)

Imposing these constraints does not enlarge the set of invariant curves.

It is often useful [4] to consider a related Calabi-Yau threefold X̃ obtained from X

by flopping the two exceptional curves outside of the compact divisors. The “commuting

square” of geometries (where the arrows correspond either to flopping or to quotienting by

the antiholomorphic involution) is presented in fig. 3.

FlopsFlops

dP

P

dP

dP

RP

P
P

P

P

P

P

P

P

P
RP

Anti−holomorphic involution

Anti−holomorphic involution

2

2

2
2

2

2
2

2

P

1

1

1

1

1

1

1

1

Fig. 3: The geometry on the closed topological strings side. The orientifolding

action acts from left to right, while flopping the IP1’s acts top-down. The IRIP2 is

represented by a cross at the end of the toric leg.

We can now follow the logic in [5,11,12,4] and consider a geometric transition in which

each of the resolved conifolds (or their orientifolds) that exist locally in the geometry
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are replaced by deformed conifolds (or their orientifolds). In the above example, this

means that we contract two IP1’s and an IRIP2 and we replace them with three spheres

carrying U(N) and SO(N)/Sp(N) Chern-Simons theories, respectively. The transition

is represented in fig. 3. In the next section we will see how to obtain the closed string

amplitudes in the orientifold from Chern-Simons theory

P

P

RP
1

2
U(N  )

2
1

SO(N  ) / Sp(N  )33

P2

1

U(N  )

P2

Fig. 4: The geometric transition. The two IP1 and the IRIP2 of the left figure are

shrunk to singular points in the middle diagram, and then deformed into three S3.

4. Closed String Amplitudes from Chern-Simons Theory

4.1. Results from Chern-Simons theory with classical gauge groups

As we will see in a moment, in order to compute the free energies of topological strings

on orientifolds via geometric transitions we have to compute the Chern-Simons invariants

of the unknot and the Hopf link of linking number +1 in arbitrary representations of U(N),

SO(N) and Sp(N). In this section we will denote q = egs and

λ = qN+a, (4.1)

where

a =






0 for U(N),
−1 for SO(N),
1 for Sp(N).

(4.2)

Notice that the ’t Hooft parameter of the classical gauge groups can be written as

t = (N + a)gs (4.3)
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therefore λ = et. For an arbitrary gauge group G it is a well known result that the Chern-

Simons invariant of the unknot in an arbitrary representation R is given by the so-called

quantum dimension of R [31]:

WR =
S0R

S00
= dimqR, (4.4)

where S0R, S00 are entries of the S matrix of the WZW model with the corresponding

gauge group and at level k (recall that k is related to the string coupling constant by

(3.3)). Using Weyl’s formula one can write the quantum dimension as a product over

positive roots α ∈ ∆+:

dimqR =
∏

α∈∆+

[(ΛR + ρ, α)]

[(ρ, α)]
, (4.5)

where ΛR is the highest weight of the representation R and ρ is the Weyl vector. We also

defined the following q-number:

[x] = qx/2 − q−x/2. (4.6)

The expression (4.5) can be written more explicitly for the different classical gauge

groups. Let R be a representation corresponding to a Young tableau with row lengths

{µi}i=1,...,d(µ), with µ1 ≤ µ2 ≤ ... and where d(µ) denotes the number of rows. Then the

quantum dimension of a representation R of U(N) reads (see for example [25])

dimU(N)
q R =

∏

1≤i<j≤d(µ)

[µi − µj + j − i]

[j − i]

d(µ)∏

i=1

∏µi−1
v=−i+1[v]λ∏µi

w=1[w − i + d(µ)]
, (4.7)

where we defined

[x]λ = λ1/2qx/2 − λ−1/2q−x/2, (4.8)

and λ = qN for U(N) representations.

We can also find explicit expressions for the quantum dimensions of SO(N) and Sp(N)

representations

dimSO(N)
q R =

∏

1≤i<j≤d(µ)

[µi − µj + j − i][µi + µj + 1 − i − j]λ
[j − i][1 − i − j]λ

×

d(µ)∏

i=1

[µi − i]
SO(N)
λ

[−i]
SO(N)
λ

µi∏

v=1

[µi + 1 − i − v − d(µ)]λ
[v − i + d(µ)]

,

dimSp(N)
q R =

∏

1≤i<j≤d(µ)

[µi − µj + j − i][µi + µj + 1 − i − j]λ
[j − i][1 − i − j]λ

×

d(µ)∏

i=1

[1 − i]
Sp(N)
λ [2µi − 2i + 1]λ

[1 − i + µi]
Sp(N)
λ [1 − 2i]λ

µi∏

v=1

[µi + 1 − i − v − d(µ)]λ
[v − i + d(µ)]

,

(4.9)
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where we defined
[x]

SO(N)
λ = λ1/4q

1
4 (2x+1) − λ−1/4q−

1
4 (2x+1),

[x]
Sp(N)
λ = λ1/4q

1
4 (2x−1) − λ−1/4q−

1
4 (2x−1),

(4.10)

with λ = qN+a which leads to λ = qN−1 for SO(N) and λ = qN+1 for Sp(N). Using (4.9)

one can show that

dimSp(N)
q R = (−1)ℓ(R)dimSO(−N)

q RT , (4.11)

where RT is the transposed or conjugate representation, related to R by exchanging rows

with columns, SO(−N) is meant in the sense of analytic continuation, and ℓ(R) is the

number of boxes of the Young tableau. This relation is part of the “SO(N) = Sp(−N)”

equivalence [10]. A relation similar to (4.11) holds for usual dimensions [28].

Using (4.7) and (4.9) one can also infer the following formula for quantum dimensions

of representations of SO(N) and Sp(N) in terms of quantum dimensions of representations

of U(N):

dimSO(N)/Sp(N)
q R =

∑

Q=Qt

(−1)1/2(ℓ(Q)∓r(Q))dimU(N)
q (R/Q), (4.12)

where the skew quantum dimension is defined by

dimU(N)
q (R/Q) =

∑

R′

NR
R′QdimU(N)

q R′ (4.13)

and NR
R1R2

are the usual Littlewood-Richardson coefficients that appear in the tensor

product of U(N) representations: R1 ⊗ R2 =
∑

R NR
R1R2

R. In (4.12) the sum is over

self-conjugate representations, i.e. representations that are equal to their transpose, and

starts with the trivial representation: {·, , , , , ...}. r(Q) denotes the rank of Q,

which is defined as the number of boxes in the leading diagonal of the Young tableau [23].

The − sign is for SO(N) representations while the + sign is for Sp(N) representations.

As we will see in the following sections, the relations between quantum dimensions

of representations of SO(N) and Sp(N) (4.11) and (4.12) are responsible for the fact

that partition functions of SO(N) and Sp(N) differ only by an overall sign in front of the

unoriented contributions with an odd number of crosscaps, which lead to the interpretation

that they correspond to different choices of sign for the crosscap states. Basically, the first

term in the sum of the right hand side of (4.12) is responsible for oriented contributions

to the partition functions, so they are the same for SO(N), Sp(N) and U(N) gauge

groups. The other terms in the sum are responsible for unoriented contributions to the

partition function, and the difference of sign in the exponent of the (−1) factor leads to a
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relative minus sign between unoriented contributions with an odd number of crosscaps of

the SO(N) and Sp(N) partition functions.

Another important ingredient we will need is the framing of knots and links [31].

Given a knot invariant in representation R, we can change its framing by p units (where p

is an integer) if we multiply it by

(−1)ℓ(R)pqpCR/2 (4.14)

where CR is the quadratic Casimir of the representation R. The quadratic Casimirs have

the following expressions for the different classical gauge groups:

CR = κR + (N + a)ℓ(R), (4.15)

where a is given by (4.2), and

κR =
∑

i

µi(µi − 2i + 1). (4.16)

The framing factor can then be written as

(−1)ℓ(R)pλpℓ(R)/2qpκR/2. (4.17)

The sign in (4.14) is not standard in the context of Chern-Simons theory, but as shown

in [3,25], it is crucial in the context of topological string theory in order to guarantee

integrality properties in the resulting amplitudes. To incorporate a change of framing in

a link, we just change the framings of each of its components according to the rule (4.14)

as well.

In our computations we will also need the invariants of Hopf links with linking number

+1. For arbitrary gauge group G, the invariant of the Hopf link with linking number +1 is

given by the normalized inverse S matrix [31], and it can be written in terms of quantum

dimensions as (see for example [19])

WR1R2
=

S−1
R1R2

S00
=

∑

R∈R1⊗R2

q
1
2 (CR−CR1

−CR2
)dimqR, (4.18)

where the sum is over all representations R occurring in the decomposition of the tensor

product of R1 and R2. In the U(N) case, we can replace the Casimir operators CRi

appearing in (4.18) by κRi
, since ℓ(R) = ℓ(R1) + ℓ(R2) in the decomposition of a tensor
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product of irreducible representations of U(N). However this relation between the number

of boxes of Young tableaux does not hold in the SO(N) and Sp(N) cases. We thus find

W
U(N)
R1R2

=
∑

R

NR
R1R2

q
1
2 (κR−κR1

−κR2
)dimU(N)

q R,

W
SO(N)/Sp(N)
R1R2

=
∑

R

MR
R1R2

λ
1
2 (ℓ(R)−ℓ(R1)−ℓ(R2))q

1
2 (κR−κR1

−κR2
)dimSO(N)/Sp(N)

q R,

(4.19)

where we have denoted by MR
R1R2

the tensor product coefficients for irreducible represen-

tations of SO(N) and Sp(N), which turn out to be the same for SO and Sp.

To compute (4.19) we need the values of MR
R1R2

, in other words, we have to decompose

any tensor product of SO(N) or Sp(N) representations into a sum of irreducible represen-

tations. This can be done with a technique first developped by Littlewood in [23]. Let us

first consider SO(N) representations. Let [R] be the character of the representations R,

as a function of the eigenvalues of an SO(N) matrix, and let {R} be the Schur function of

these eigenvalues labeled by the same representation. One can prove the following formulae

[23]:

[R] ={R} +
∑

R1∈{δ}

(−1)ℓ(R1)/2NR
R1R2

{R2},

{R} =[R] +
∑

R1∈{γ}

NR
R1R2

[R2],
(4.20)

where {δ} and {γ} are subsets of Young tableaux that we describe in Appendix A. By

using these relations one can express each character [R][R′] in the product as a sum of

Schur functions, then multiply these with the usual Littlewood-Richardson coefficients,

and finally rexpress the Schur functions in terms of a sum of characters by the second

equation of (4.20). For example,

[ ][ ] =(−1 + { })({ })

={ } + { } − { }

=[ ] + [ ] + [ ] + [ ] − [ ] = [ ] + [ ] + [ ],

(4.21)

where the Young tableaux are associated to irreducible representations of SO(N). To com-

pute the decompositions for Sp(N) representations, one only has to replace the subsets {δ}

and {γ} respectively by the subsets {β} and {α}, which are also explained in Appendix A

[28]. Using this technique one can decompose any tensor products of SO(N) and Sp(N)

representations into a sum of irreducible representations, which is needed in the computa-

tion of expectation values of Hopf links using (4.19). One finds that the decomposition of
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tensor products is always the same for SO(N) and Sp(N) representations, justifying our

claim above.

The procedure we have described turns out to be rather involved, and fortunately

there is a more direct way of computing MR
R1R2

through the following formula [21,15]:

MR
R1R2

=
∑

Q,T,U

NR1

QT NR2

QUNR
TU , (4.22)

which expresses these coefficients in terms of usual Littlewood-Richardson coefficients. This

formula allows to easily compute the invariants of Hopf links for SO/Sp gauge groups for

any pair of representations.

As shown in [4,2], the Hopf link invariant W
U(N)
R1R2

plays a crucial role in the computa-

tion of oriented string amplitudes. It is a Laurent polynomial in λ
1
2 whose highest power

is λ(ℓ(R1)+ℓ(R2))/2:

W
U(N)
R1R2

= λ(ℓ(R1)+ℓ(R2))/2WR1R2
(q) + · · · , (4.23)

where the dots refer to terms with lower powers of λ. The leading part of W
U(N)
R1R2

, which

we have denoted by WR1R2
, can be computed in terms of Schur polynomials in an infinite

number of variables (see for example [2,26,14] for more details):

WR1R2
(q) = sR2

(xi = q−i+ 1
2 )sR1

(xi = qµ
R2
i

−i+ 1
2 ), (4.24)

where {µR2
i }i=1,···,d(µR2 ) is the partition corresponding to R2. We will also denote WR =

WR· = sR(xi = q−i+ 1
2 ). By looking at the formula in (4.19) for W

SO(N)/Sp(N)
R1R2

, one can

see that it is a Laurent polynomial in λ
1
2 , whose highest power is also λ(ℓ(R1)+ℓ(R2))/2, and

which has the same leading coefficient WR1R2
(q).

4.2. Computation of open string amplitudes

We will now follow the results in [4,11,12] to compute the topological open string

amplitudes in the geometry described in section 3, which is shown in fig. 5. There are

Ni D-branes wrapped around the three S3’s Mi, i = 1, 2, 3. This geometry is similar to

the one considered for example in [4]; the main difference being that one of the spheres in

our geometry, more precisely M3, is left invariant by the anti-holomorphic involution, thus

leading to a SO(N) or Sp(N) Chern-Simons theory.

For open strings with both ends on the same S3, the dynamics is described by a

Chern-Simons theory as usual. For M1 and M2, the Chern-Simons theories respectively
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2M  : U(N  )2

M  : U(N  )1 M  : SO(N  ) / Sp(N  )3 3

Fig. 5: The deformed geometry. Mi i = 1, 2, 3 are the three spheres and rci

are the Kähler parameters of the cylindrical instantons. The gauge groups of the

Chern-Simons theories on the spheres and the framings of the unknots are also

indicated.

have gauge groups U(N1) and U(N2), while for M3 it has gauge group SO(N3) or Sp(N3).

However, there are also cylindrical open string instantons coupling the Chern-Simons the-

ories on different spheres [30]. Schematically, the path integral becomes

Z =

∫ 3∏

i=1

DAi e
∑

3

i=1
SCS

i (Ai)+Sinst , (4.25)

where SCS
i (Ai), i = 1, 2, 3 are the Chern-Simons actions for the three S3’s. The instan-

ton sector, Sinst, can be computed by using localization (as in [11,12]) or by using the

techniques of [4]. We will follow here the procedure of [4]. As explained there, the bifun-

damental strings stretching between two three sphere S3’s give a massive complex scalar

field, with mass proportional to the complexified Kähler parameter rc corresponding to

the “distance” between the two spheres. After integrating out this scalar field one finds an

operator which corresponds to a primitive annulus of size rc together with its multicovers.

The boundaries of the annulus are on the two three spheres between which the bifunda-

mental strings are stretched. These cylindrical instantons and the geometry are shown in

fig. 5. Inserting one operator for each cylindrical instanton we find

eSinst = O(U3, U1)O(V1, V2)O(U2, V3), (4.26)
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where we have defined the holonomy variables

Ui = P exp

∮

Ξi

Ai, Vi = P exp

∮

Γi

Ai, i = 1, 2, 3, (4.27)

and the Ξi, Γi, i = 1, 2, 3 are the boundary components of the cylindrical instantons, which

are unknots in the corresponding three-spheres. The operators in (4.26) are given by

O(A, B, rc) =
∑

R

TrRAe−ℓ(R)rcTrRB, (4.28)

where the sum is over all representations, including the trivial one.

The careful reader may note that the operator (4.28) is only equivalent to the usual

operator [27,4]

exp
∞∑

n=1

e−nrc

n
TrAnTrBn (4.29)

in the U(N) case. In the more general case where the gauge group is SO(N) or Sp(N),

the two operators are not equivalent. It turns out that (4.28) is the good operator to use;

it would be interesting to investigate further why this is so.

We can now write the total free energy F = − log Z (with Z given in (4.25)) as

F =

3∑

i=1

F(Mi) + Finst, (4.30)

where F(Mi) are the free energies of the Chern-Simons theories in the spheres Mi, i =

1, 2, 3, and Finst is:

Finst = − ln

{ ∑

R1,R2,R3

e−
∑3

i=1
ℓ(Ri)rciWR3R1

(L1)WR1R2
(L2)WR2R3

(L3)

}
, (4.31)

where Li is the link formed by the knots (Ξi, Γi) and

WR3R1
(L1) =

〈R3|VM1
|R1〉

ZM1

,

WR1R2
(L2) =

〈R1|VM2
|R2〉

ZM2

,

WR2R3
(L3) =

〈R2|VM3
|R3〉

ZM3

.

(4.32)

It was shown in [4] (using our notation as in fig. 5) that

VM1
= TS−1, VM2

= ST−1S, VM3
= S−1, (4.33)
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which means that the three links Li, i = 1, 2, 3 are Hopf links with linking number +1 and

that the framings are as follows: (Γ1, Ξ3, Γ3) are canonically framed, i.e. with framings

(0, 0, 0), while (Ξ1, Ξ2, Γ2) have framings (1, 1, 1), as shown in fig. 5. We can thus write

WR3R1
(L1) = (−1)ℓ(R3)q

κR3
2

S−1
R3R1

S00
= (−1)ℓ(R3)q

κR3
2 WR3R1

,

WR1R2
(L2) = (−1)ℓ(R1)+ℓ(R2)q

1
2 (κR1

+κR2
)
S−1

R1R2

S00
= (−1)ℓ(R1)+ℓ(R2)q

1
2 (κR1

+κR2
)WR1R2

WR2R3
(L3) =

S−1
R2R3

S00
= WR1R3

,

(4.34)

where the λ dependent pieces of (4.17) have been absorbed in a redefinition of rci. Therefore

(4.31) becomes

Finst = − ln

{
1 +

∑

R1,R2,R3

(−1)
∑

3

i=1
lie−

∑
3

i=1
ℓ(Ri)rciq

1
2 (κR1

+κR2
+κR3

)

×WR3R1
(L1)WR1R2

(L2)WR2R3
(L3)

}
,

(4.35)

where we singled out the term coming from R1, R2, R3 = ·, i.e. the three representations

being the trivial representation.

4.3. Duality map and closed string amplitudes

Let us first recall the variables we have defined so far. We first defined the Chern-

Simons variables q = egs and λi = qNi+ai , with gs = 2πi
ki+y being the same for the three

theories. We denote the three Kähler parameters of the cylindrical instantons by rci,

i = 1, 2, 3 and the three ’t Hooft parameters of the different gauge groups by ti. We

now want to relate the open string parameters ti and rci to the following closed string

parameters: t, which is the Kähler parameter of IP2, and si, i = 1, 2, 3, which are the

Kähler parameters of the two IP1’s and the IRIP2. The duality map reads

t = rc1 −
t1 + t2

2
= rc2 −

t2 + t3
2

= rc3 −
t1 + t3

2
,

t1 = s1, t2 = s2, t3 = s3.
(4.36)
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Let now qi be qi = e−si = e−ti , i = 1, 2, 3, and let ℓ be ℓ(R1) + ℓ(R2) + ℓ(R3). We can

rewrite the open string partition function (4.35) using (4.36):

Finst = − ln

{
1 +

∑

ℓ

(−1)ℓe−ℓtq
1
2 (κR1

+κR2
+κR3

)q
ℓ(R1)+ℓ(R3)

2
1 q

ℓ(R1)+ℓ(R2)
2

2 q
ℓ(R2)+ℓ(R3)

2
3

×W
U(N)
R3R1

W
U(N)
R1R2

W
SO(N)/Sp(N)
R2R3

}
,

(4.37)

where the Hopf link invariants in the last line are evaluated at λ = q−1
i , i = 1, 2, 3,

respectively. Notice that the leading power of λ in W
U(N)
R1R2

and in W
SO(N)/Sp(N)
R1R2

is in both

cases λ(ℓ(R1)+ℓ(R2))/2, therefore the above expression for Finst gives a power series in qi

with positive integer coefficients, as it should. We can now expand the logarithm to find

Finst =

∞∑

ℓ=1

Z
(c)
ℓ e−ℓt, (4.38)

where the connected coefficient Z
(c)
ℓ are given by

Z
(c)
ℓ =

∑

1≤d≤ℓ

(−1)d+1

d

∑

m1+m2+...+md=ℓ

Zm1
Zm2

· · ·Zmd
. (4.39)

These coefficients give the instanton partition function order by order in the Kähler pa-

rameter e−t. Using the formulae given above for Hopf link invariants with classical gauge

groups, we can explicitly compute the coefficients Z
(c)
ℓ . The contributions independent

of the Kähler parameter t are given by the sum of Chern-Simons free energies on S3

∑3
i=1 FCS(Mi), which have already been computed in [29,17].

4.4. The oriented contribution

As we explained in section 2, Finst contains contributions due to oriented and to

unoriented instantons. In order to compute the closed, unoriented string amplitudes we

have to subtract the oriented part, which we must compute independently. The covering

space X is the Calabi-Yau manifold depicted in fig. 6. The oriented amplitude can be

computed using the topological vertex formalism [2]. Using the formulas and gluing rules

explained in [2] we find

Z(X) =
∑

R

OR(t, q1, q2)ORT (t,q1, q2)(−1)l(R)q
l(R)
3 , (4.40)
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Fig. 6: The geometry in the topological vertex formalism. In brackets next to the

representations are the framings in the corresponding propagator.

where qi = e−si and t is the Kähler parameter of the IP2, s1 and s2 are the Kähler

parameters of the two IP1’s attached to the IP2, and s3 is the Kähler parameter of the IP1

between the two IP2’s. Notice that we have identified the Kähler parameters in the way

prescribed by the involution. In (4.40) we introduced the operator

OR(t, q1, q2) =
∑

Ri

CRR5RT
1
CR1RT

3 RT
2
CR3RT

5 RT
4
CR2··CR4··

× (−1)
∑

i
ℓ(Ri)qκ(R1)+κ(R3)+κ(R5)e−(ℓ(R1)+ℓ(R3)+ℓ(R5))tq

ℓ(R2)
1 q

ℓ(R4)
2 ,

(4.41)

where CRiRjRk
is the topological vertex amplitude, which can be expressed in terms of the

quantities (4.24):

CR1R2R3
=

∑

Q1,Q3,Q

N R1

QQ1
N

RT
3

QQ3
qκR2

/2+κR3
/2

WRT
2 Q1

WR2Q3

WR2

. (4.42)
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Using (4.40) we can express again the free energy as a sum over connected coefficients

F(X) = − log Z(X) =
∑

ℓ,ℓ1,ℓ2,ℓ3

Z
(c)
ℓ,ℓ1,ℓ2,ℓ3

qℓ1
1 qℓ2

2 qℓ3
3 e−ℓt. (4.43)

The free energy computed in (4.38) should equal, according to (2.2),

Finst =
1

2
F(X) + F(X/I, gs)unor, (4.44)

where F(X) is given in (4.43). This determines the unoriented part, which should have the

structure given in (2.5). We will encode the resulting oriented and unoriented Gopakumar-

Vafa invariants in the following generating functionals

Fg,0
d =

1

2

∑

d1,d2,d3

ng,0
d,d1,d2,d3

qd1
1 qd2

2 qd3
3 ,

Fg,1
d =

∑

d1,d2,d3

ng,1
d,d1,d2,d3

qd1
1 qd2

2 q
d3/2
3 ,

Fg,2
d =

∑

d1,d2,d3

ng,2
d,d1,d2,d3

qd1
1 qd2

2 qd3
3 ,

(4.45)

where d is the degree in e−t, and the superscripts g, c with c = 0, 1, 2 denote the genus

and the number of crosscaps, respectively. Of course, c = 0 is the oriented contribution

obtained from (4.43) (multiplied by the factor of 1/2), and in the second equation of (4.45)

d3 must be odd. In order to compute these functionals, we have to remove multicoverings

according to (2.3) and (2.5). It is important to note that the requirement that the partition

function satisfies the good integrality properties leading to (4.45) is highly nontrivial.

R

R RP 2

2

1

R
R 3

Fig. 7: Toric diagram for local IP2 attached to an IRIP2
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We present the results for the functionals given by (4.45) in Appendix B. For the sake

of brevity, here we present the results only in the limiting case where we take the volumes

of the two IP1’s attached to the IP2 to infinity, as in [4]. We thus obtain the answer for

the simpler geometry whose toric diagram is depicted in fig. 7. This geometry already

captures all the interesting features of the unoriented and oriented generating functionals.

To take this limit, one can directly consider the generating functionals (4.45) and set

q1,2 = 0, which corresponds to sending the two Kähler parameters to infinity. One can also

obtain this limit by taking the leading piece of the U(N) Hopf link invariants in (4.37), in

the sense explained in (4.23). The free energy of this geometry is just:

F = − ln

{
1 +

∑

ℓ

(−1)ℓe−ℓtq
1
2 (κR1

+κR2
+κR3

)q
ℓ(R2)+ℓ(R3)

2
3 WR3R1

WR1R2
W

SO(N)/Sp(N)
R2R3

}
.

(4.46)

The result can now be encoded in the simpler generating functionals

Fg,0
d =

1

2

∑

d3

ng,0
d,d3

qd3
3 ,

Fg,1
d =

∑

d3

ng,1
d,d3

q
d3/2
3 ,

Fg,2
d =

∑

d3

ng,2
d,d3

qd3
3 ,

(4.47)

with the same restrictions as for (4.45). We present here the all genus results we obtain

up to degree 6 in e−t. At this order ng,c
d,d3

= 0 ∀ g ≥ 11 (all the invariants ng,c
d,d3

with d ≤ 6

that are not shown in the tables are understood to be zero). The results in Tables 1 − 16

correspond to Sp(N) gauge group; to obtain the SO(N) result it suffices to change the

sign of the invariants with c = 1.

c = 0 d3 = 0 1 2 3 4 5 c = 1 d3 = 1 3 5 7 9 11

d = 0 0 1 0 0 0 0 d = 0 1 0 0 0 0 0

1 6 −4 0 0 0 0 1 −2 0 0 0 0 0

2 −12 14 −2 0 0 0 2 5 −3 0 0 0 0

3 54 −84 30 0 0 0 3 −32 30 −4 0 0 0

4 −384 725 −392 51 0 0 4 286 −369 112 −5 0 0

5 3390 −7540 5434 −1368 84 0 5 −3038 5016 −2410 328 −6 0

6 −34128 87776 −79198 29466 −4040 124 6 35870 −72150 47554 −11528 819 −7

Table 1: Invariants n0,c

d,d3
at genus 0, with c = 0, 1, up to d = 6.
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c = 2 d3 = 2 3 4 5

d = 3 1 0 0 0

4 −11 2 0 0

5 131 −66 7 0

6 −1690 1460 −333 12

Table 2: Invariants n0,2

d,d3
at genus 0, up to d = 6.

c = 0 d3 = 0 1 2 3 4 c = 1 d3 = 1 3 5 7 9

d = 3 20 −18 0 0 0 d = 3 −9 7 0 0 0

4 −462 612 −168 0 0 4 288 −315 59 0 0

5 8904 −15210 7380 −930 0 5 −6984 9954 −3630 282 0

6 −161896 336636 −228532 56536 −3851 6 152622 −269501 145467 −25672 1014

Table 3: Invariants n1,c

d,d3
at genus 1, with c = 0, 1, up to d = 6.

c = 2 d3 = 2 3 4 5

d = 4 −6 0 0 0

5 201 −55 1 0

6 −5180 3180 −438 2

Table 4: Invariants n1,2

d,d3
at genus 1, up to d = 6.

c = 0 d3 = 0 1 2 3 4 c = 1 d3 = 1 3 5 7 9

d = 4 −204 216 −24 0 0 d = 4 108 −103 9 0 0

5 10860 −15444 5154 −276 0 5 −7506 9474 −2567 95 0

6 −388044 690273 −365536 60235 −1800 6 329544 −521400 231550 −29010 554

Table 5: Invariants n2,c

d,d3
at genus 2, with c = 0, 1 up to d = 6.

c = 2 d3 = 2 3 4

d = 4 −1 0 0

5 146 −18 0

6 −8296 3520 −274

Table 6: Invariants n2,2

d,d3
at genus 2, up to d = 6.
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c = 0 d3 = 0 1 2 3 4 c = 1 d3 = 1 3 5 7 9

d = 4 −30 28 0 0 0 d = 4 14 −12 0 0 0

5 7344 −9094 2036 −30 0 5 −4519 5133 −977 11 0

6 −581706 913220 −381934 40728 −408 6 447502 −642780 233460 −19781 139

Table 7: Invariants n3,c

d,d3
at genus 3, with c = 0, 1, up to d = 6.

c = 2 d3 = 2 3 4

d = 5 58 −2 0

6 −8489 2352 −90

Table 8: Invariants n3,2

d,d3
at genus 3, up to d = 6.

c = 0 d3 = 0 1 2 3 4 c = 1 d3 = 1 3 5 7 9

d = 5 2772 −3084 424 0 0 d = 5 −1542 1599 −191 0 0

6 −580800 821490 −270708 17600 −36 6 407661 −536973 157255 −8372 13

Table 9: Invariants n4,c

d,d3
at genus 4, with c = 0, 1, up to d = 6.

c = 2 d3 = 2 3 4

d = 5 12 0 0

6 −5862 976 −15

Table 10: Invariants n4,2

d,d3
at genus 4, up to d = 6.

c = 0 d3 = 0 1 2 3 c = 1 d3 = 1 3 5 7 c = 2 d3 = 2 3 4

d = 5 540 −552 36 0 d = 5 −276 265 −15 0 d = 5 1 0 0

6 −393714 509724 −130496 4684 6 254310 −309962 71523 −2141 6 −2758 245 −1

Table 11: Invariants n5,c

d,d3
at genus 5, up to d = 6.
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c = 0 d3 = 0 1 2 3 c = 1 d3 = 1 3 5 7 c = 2 d3 = 2 3

d = 5 42 −40 0 0 d = 5 −20 18 0 0 d = 5 0 0

6 −180780 216960 −41904 696 6 108440 −123342 21630 −302 6 −868 34

Table 12: Invariants n6,c

d,d3
at genus 6, up to d = 6.

c = 0 d3 = 0 1 2 3 c = 1 d3 = 1 3 5 7 c = 2 d3 = 2 3

d = 6 −55076 61896 −8532 44 d = 6 30948 −33110 4156 −18 d = 6 −174 2

Table 13: Invariants n7,c

d,d3
at genus 7, up to d = 6.

c = 0 d3 = 0 1 2 c = 1 d3 = 1 3 5 c = 2 d3 = 2

d = 6 −10620 11268 −992 d = 6 5634 −5710 458 d = 6 −20

Table 14: Invariants n8,c

d,d3
at genus 8, up to d = 6.

c = 0 d3 = 0 1 2 c = 1 d3 = 1 3 5 c = 2 d3 = 2

d = 6 −1170 1180 −50 d = 6 590 −570 22 d = 6 −1

Table 15: Invariants n9,c

d,d3
at genus 9, up to d = 6.

c = 0 d3 = 0 1 c = 1 d3 = 1 3

d = 6 −56 54 d = 6 27 −25

Table 16: Invariants n10,c

d,d3
at genus 10, up to d = 6.

5. Unoriented Localization

As explained in section 2, to compute the full partition function of closed topolog-

ical strings on the geometry before the geometric transition, we have to sum both over

holomorphic maps from orientable Riemann surfaces to the Calabi-Yau space X as well as

maps from non-orientable worldsheets to the orientifolded space X/I.

In [13] it was developed a method for summing unoriented world-sheet instantons

for closed topological strings based on localization with respect to a torus action on a

moduli space of equivariant holomorphic maps. Although in [13] this moduli space has not

been constructed, a computational definition for its virtual fundamental cycle was given.
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Concretely, this reduces to enumerating all fixed loci under an induced torus action on the

moduli space and assigning a local contribution to each component of the fixed locus using

an equivariant version of the localization theorem of [16]. Moreover, in [13] it was shown

that the fixed loci can be represented in terms of Kontsevich graphs [22] with involution.

This method does not rely on large N duality, and therefore may provide an indepen-

dent check of our large N duality proposal for orientifolds. Namely, we can employ the

localization techniques of [13] to compute one crosscap and two crosscaps contributions to

the full closed topological string partition function on the orientifolded geometry before

the geometric transition.

We can use the computation in [13] to confirm the one crosscap invariants for low

degree and genus obtained from the Chern-Simons computation. There, it was computed

the unoriented free energy for a IP2 with a IRIP2 attached. This is exactly the limiting

geometry for which we presented our results in Tables 1− 16, related to the full geometry

of section 2 by sending the two Kähler parameters of the two IP1’s of the full geometry to

infinity. In our variables, the result of [13] reads

F =
1

gs
(q

1/2
3 − 2e−tq

1/2
3 + 5e−2tq

1/2
3 + ... +

1

9
q
3/2
3 − 3e−2tq

3/2
3 +

268

9
e−3tq

3/2
3 + ...)

+ gs(
1

24
q
1/2
3 −

1

12
e−tq

1/2
3 + ...).

(5.1)

By expanding q = egs in powers of gs, it is straightforward to show that the contributions

with c = 1 in Tables 1 − 16 are in agreement with (5.1).

In the following we will compute some Klein bottle amplitudes using unoriented lo-

calization. We will find agreement with the Chern-Simons and with the topological vertex

computations presented in the next section. We will perform the computations in the

Calabi-Yau geometry X̃. In the patch {X1 6= 0, X7 6= 0, X10 6= 0} we introduce local

coordinates

z =
X3

1X4

X7X
3
10

, u =
X6X7X

2
10

X1
, v =

X5X7X
2
10

X1
. (5.2)

Using (3.12) we obtain the weights of the local coordinates

λz = 6λ1 + 2λ4, λu = −3λ1 − λ4 + λ6, λv = −3λ1 − λ4 + λ5. (5.3)

Note that the compatibility of the involution with the torus action implies λz +λu+λv = 0.

We will denote the contributions of the fixed loci by Cχ,d,h, where χ is the Euler

characteristic of the unoriented source Riemann surface and d and h are the degrees of the

map with respect to the IRIP2 and hyperplane class of IP2 respectively.
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5.1. Unoriented localization @ 2 crosscaps @ degree 2 IRIP2

The computation at degree 0 hyperplane class has been performed in [13]. Let us

recall the graphs and their contributions.

(b)(a)

Fig. 8: Two crosscaps and no hyperplane at degree 2 IRIP2.

Note that in case (b) the antiholomorphic involution exchanges the two components

of the source curve. In [13] it has been postulated that such an operation will introduce

an additional minus sign. Therefore the contributions of the two graphs are

C
(a)
0,2,0 =

λuλv

4λ2
z

, C
(b)
0,2,0 = −

λuλv

4λ2
z

. (5.4)

Let us consider now the degree 1 hyperplane class configurations. The graphs allowed

are presented in fig. 9 below.

(a) 

(c) (d) 

(b) 

Fig. 9: Two crosscaps and one hyperplane at degree 2 IRIP2. Mirror pairs are

{(a), (c)} and {(b), (d)} respectively.

The allowed configurations are obtained by performing bubblings at the nodes of the

graphs in fig. 8 and inserting degree 1 hyperplane graphs; we will call such configurations

type I graphs. These come in pairs, each one admits a mirror graph. From now on, we will
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draw a single graph for each mirror pair. The contributions of the above configurations

are given by

C
(a)
0,2,1 =

λ2
v

2λ2
z

, C
(b)
0,2,1 = −

λ2
v

2λ2
z

, C
(c)
0,2,1 =

λ2
u

2λ2
z

, C
(d)
0,2,1 = −

λ2
u

2λ2
z

(5.5)

where we have used again the sign rule postulated in [13]. The graph contributions add

up to zero.

The discussion is similar at degree 2 hyperplane class. The type I graphs appearing

cancel in pairs due to the same sign rule as above. There also appear new configurations,

which we will call type II graphs, and which we present in fig. 10 below.

(i) (ii)

Fig. 10: Two crosscaps and two hyperplanes at degree 2 IRIP2: type II graphs.

Their contributions are given by

C
(i)
0,2,2 =

(λu − 2λv)(λv − λu)

2λ2
v

, C
(ii)
0,2,2 = −

(λu − 2λv)(λv − λu)

2λ2
v

(5.6)

and therefore they cancel due to the same sign rule that we used previously.

At degree 3 hyperplane class, we obtain again pairs of graphs of type I and type II

that cancel each other. In fig. 11 we draw some new type II graphs whose analogues at

higher IRIP2 degree will play an important role.

(a) (b)

Fig. 11: Two crosscaps and three hyperplanes at degree 2 IRIP2: type II graphs.

The contributions of the above two graphs are: C
(a)
0,2,3 = −C

(b)
0,2,3 = 1. To conclude, we

obtain that up to degree 3 hyperplane class, the 2 crosscaps degree 2 IRIP2 Gromov-Witten

invariants vanish. In fact, this will be true at any hyperplane class degree.
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5.2. Unoriented localization @ 2 crosscaps @ degree 4 IRIP2

At degree 0 hyperplane class this computation has been performed in [13]. We list

the graphs

3

(c)(b)

2

2

(d)(a) (e)

Fig. 12: Two crosscaps and no hyperplane at degree 4 IRIP2.

and their contributions

C
(a)
0,4,0 =

1

2

λ2
uλ2

v

λ4
z

, C
(b)
0,4,0 = −

1

2

λ2
uλ2

v

λ4
z

, C
(c)
0,4,0 =

1

8

λuλv(2λ2
z − 9λuλv)

λ4
z

,

C
(d)
0,4,0 = −

1

4

λuλv(λ
2
z − 4λuλv)

λ4
z

, C
(e)
0,4,0 =

1

8

λ2
uλ2

v

λ4
z

.

(5.7)

Note that C
(a)
0,4,0 + C

(b)
0,4,0 = 0 and C

(c)
0,4,0 + C

(d)
0,4,0 + C

(e)
0,4,0 = 0.

At degree 1 hyperplane class there appear new configurations, which we will call type

III graphs; they are obtained by adding to the first two graphs in fig. 12 degree 1 hyperplane

lines as shown below.

(B)

(A)

Fig. 13: Two crosscaps and one hyperplane at degree 4 IRIP2: type III graphs.

Using again the sign rule in [13], the two graphs in each line of fig. 13 add up to zero.

We now turn to type I graphs; they are presented in fig. 14 and their contributions are:
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3

(b) (c)

2

2

(a) 

Fig. 14: Two crosscaps and one hyperplane at degree 4 IRIP2: type I graphs.

C
(a)
0,4,1 =

1

2
(2−9

λuλv

λ2
z

)(
λ2

u

λ2
z

+
λ2

v

λ2
z

), C
(b)
0,4,1 = (−1+4

λuλv

λ2
z

)(
λ2

u

λ2
z

+
λ2

v

λ2
z

), C
(c)
0,4,1 =

λuλv

2λ2
z

(
λ2

u

λ2
z

+
λ2

v

λ2
z

).

It is easy to check that C
(a)
0,4,1 + C

(b)
0,4,1 + C

(c)
0,4,1 = 0. This is in fact the same cancellation

that took place at degree 0 hyperplane class between the contributions of the corresponding

three graphs. Again, we see that at degree 1 hyperplane class there is nothing essentially

new compared to degree 0 hyperplane class.

Let us now consider the case of degree 2 hyperplane class. We can split the allowed

configurations in graphs of type I and III above. Configurations of type III are built by

starting with the graphs (a) and (b) in fig. 12 and further adding in all possible ways degree

2 graphs in IP2. They will always cancel in pairs. Configurations of type I are constructed

by starting with the graphs (c), (d) and (e) in fig. 12, performing a bubbling at a pair

of identified nodes and inserting degree 2 graphs in IP2. The contributions of the graphs

with degree 2 multicoverings of one of the hyperplane sections cancel as before; there also

appear configurations as in fig. 15 below. However, their contributions also add up to

zero, and this will be true for any quartet of type I graphs as in fig. 15.

3 2

2

(c)(b) (a) (d)

Fig. 15: Two crosscaps and one hyperplane at degree 4 IRIP2: type I graphs.

There are also type II graphs, which are constructed by starting with the graphs (c),

(d) and (e) in fig. 12. A triplet of such graphs is presented below.
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(i)

3

(ii)

2

2

(iii)

Fig. 16: Two crosscaps and two hyperplanes at degree 4 IRIP2: type II graphs.

The total contribution of the above three graphs is

C
(i)
0,4,2 + C

(ii)
0,4,2 + C

(iii)
0,4,2 = −

(λu − λv)
2(λu + λv + λz)Q9(λu, λv, λz)

4λ2
uλ2

vλ2
z(2λu + λz)2(2λv + λz)2(3λu + λz)(3λv + λz)

, (5.8)

where Q9(λu, λv, λz) is a degree 9 homogeneous polynomial in λu, λv, λz. We recall that

consistency of the antiholomorphic involution with the torus action implies λu+λv+λz = 0,

and therefore the sum of the graphs in fig. 16 is zero. This will also be true for the other

possible triplet of type II graphs. We conclude that up to degree 2 hyperplane class, the

two crosscaps degree 4 IRIP2 Gromov-Witten invariants vanish.

At degree 3 hyperplane class there appear all three types of graphs. We claim that

the type I and III graphs sum up to zero, as above. Besides sets of type II graphs that

have analogues at lower degree hyperplane class, and whose contributions add up to zero

in a similar fashion, at degree 3 hyperplane class there also are new collections of graphs.

Such a set is presented in fig. 17.

2

2

(i) (ii) (iii)

3

Fig. 17: Two crosscaps and three hyperplanes at degree 4 IRIP2: type II graphs.

The total contribution of the above three graphs is

C
(i)
0,4,3 + C

(ii)
0,4,3 + C

(iii)
0,4,3 =

λu(λu + λv + λz)(λu − λv)
2(λu − 2λv)

2Q3(λu, λv, λz)

2λ2
zλ

4
v(2λv + λz)2(3λv + λz)

, (5.9)

where Q3(λu, λv, λz) is a degree 3 homogeneous polynomial in λu, λv, λz. But λu+λv+λz =

0, and these graphs sum up to zero.

However, at degree 3 hyperplane class there is a unique set of type II graphs, presented

in fig. 18, whose total contribution does not vanish.
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3

(b)

2

2

(d)

(a)

(e)

(c)

Fig. 18: Two crosscaps and three hyperplanes at degree 4 IRIP2: type II graphs.

The contributions of the graphs in fig. 18 are given by

C
(a)
0,4,3 = 1 − 3

λuλv

λ2
z

, C
(b)
0,4,3 =

λuλv

λ2
z

, C
(c)
0,4,3 = 2

λuλv

λ2
z

,

C
(d)
0,4,3 = −1 + 2

λuλv

λ2
z

, C
(e)
0,4,3 = 1 − 2

λuλv

λ2
z

.

(5.10)

We see that the sum of the above expressions is equal to 1, which is the Gromov-Witten

invariant n0,2
3,2 of Table 1. It is straightforward to perform now a similar computation but

taking also into account the two (−1,−1) curves that are transversal to the IP2. The result

is that at degree 3 hyperplane class we obtain the following contribution to the free energy

from 2 crosscap configurations

F0,2
3 = q2

3 − q1q
2
3 − q2q

2
3 + q1q2q

2
3 . (5.11)

This is in agreement with the Chern-Simons theory result presented in appendix B.

6. Topological Vertex Computation

Using large N duality, it was recently proposed [2] that the free energy of closed

topological strings on a toric manifold can be computed using a cubic field theory, namely

a topological vertex and gluing rules. In this section we present a prescription to compute

all genus topological string amplitudes on orientifolds with an external “IRIP2 leg” by

using the topological vertex formalism. We will also explicitly show that this prescription

is equivalent to the large N dual Chern-Simons computation.

6.1. General prescription
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RP 2

R

Fig. 19: Toric diagram for the quotient X/I of a local, toric Calabi-Yau manifold

with a single IRIP2.

Consider a quotient X/I of a local, toric Calabi-Yau manifold X by an involution I

which can be represented as in fig. 19. We have a bulk geometry, represented by the blob,

attached to an IRIP2 through an edge associated to the representation R. Let us denote

by OR the amplitude for the blob with the external leg. We propose the following formula

for total partition function:

Z =
∑

R=RT

ORQℓ(R)/2(−1)
1
2 (ℓ(R)∓r(R)) (6.1)

where the sum is over all self-conjugate representations R. Here r(R) denotes the rank of

R, as in (4.12), and Q = e−s is the exponentiated Kähler parameter corresponding to the

IRIP2. The ∓ sign is correlated with the choice of ± sign for the crosscaps, and corresponds

to the SO/Sp gauge duals, respectively.

The prescription (6.1) comes from the action of the involution I on the partition

function on the covering space, which is given by

Z =
∑

R

OR(ti)ORT (ti)Q
ℓ(R)(−1)ℓ(R). (6.2)

where the Kähler parameters have been identified in the way prescribed by the involution.

The involution I maps one half of the toric diagram onto the other half, reversing the

orientation of the middle leg. The resulting partition function is the one given by (6.1).

We are presently investigating in more details the origin of (6.1). Having a clear

understanding of this formula will probably allow us to define a similar prescription for

involutions with a fixed locus, like the I+ of [1].

The restriction to self-conjugate representations may appear surprising at first sight.

But in the topological vertex formalism, inverting the orientation of one edge sends R to

its transpose RT (and also introduces a factor of (−1)ℓ(R)). Therefore, since the IRIP2
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leg is unoriented, its partition function must sum only over self-conjugate representations,

which are the only representations consistent with the involution I.

It is interesting to note that the formula (6.1) is very similar to the formula for

quantum dimensions of SO/Sp gauge group in terms of U(N) quantum dimensions (4.12).

Both formulas share the constraint R = RT and the factor of (−1)
1
2 (ℓ(R)∓r(R)). This

gives a geometrical argument, from the topological vertex formalism, for the appearance

of SO/Sp gauge groups on the Chern-Simons side.

6.2. Examples

We now consider two examples of the above prescription.

1) Orientifold of the resolved conifold. The simplest example is the orientifold of the

resolved conifold first considered in [29], which we reviewed in section 3. In that case, the

toric diagram is very simple and has been drawn in the left hand side of fig. 1. The rule

(6.1) gives:

F = − log

{ ∑

R=RT

C··RQℓ(R)/2(−1)
1
2 (ℓ(R)∓r(R))

}
. (6.3)

This should equal the free energy of Chern-Simons on the sphere for the gauge groups

SO/Sp (3.2). The free energy (6.3) can be indeed computed exactly by using the following

key formula due to Littlewood [23,24]:

∑

R=RT

sR(xi)(−1)
1
2 (ℓ(R)∓r(R)) =

∞∏

i=1

(1 ± xi)
∏

1≤i<j<∞

(1 − xixj). (6.4)

Since CR·· = WR = sR(q−i+ 1
2 ), we can compute (6.3) by setting xi = q−i+ 1

2 Q
1
2 in the

r.h.s. of (6.4). First of all, notice that

∏

i,j

(1 − q−i−j+1Q) = exp

{
−

∞∑

n=1

Qn

n(q
n
2 − q−

n
2 )2

}
. (6.5)

Also, we can easily compute that

∏

i

(1 ∓ q−i+ 1
2 Q

1
2 ) = exp

{
−

∞∑

n=1

(±1)nQ
n
2

n(q
n
2 − q−

n
2 )

}
, (6.6)

and from this we easily check that, indeed, the free energy computed in (6.3) equals (3.2).

2) Local IP2 attached to IRIP2. The second example to consider is local IP2 attached

to a single IRIP2, whose toric diagram is drawn in fig. 7, and which was discussed before
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from the point of view of geometric transitions. The amplitude for this geometry is given

by (6.1) with

OR =
∑

Ri

q
∑

i
κRi (−1)

∑
i
ℓ(Ri)C·R3RT

1
C·R2RT

3
CR1RT

2 Re−t
∑

i
ℓ(Ri), (6.7)

and t is the Kähler parameter of local IP2. If we now compare this expression to the one

obtained by geometric transition in (4.46), we find that both amplitudes are equal if

1

S
SO(N)/Sp(N)
00

∑

R=RT

CR1RT
2 RQℓ(R)/2(−1)

1
2 (ℓ(R)∓r(R)) = q−

κR2
2 Q

1
2 (ℓ(R1)+ℓ(R2))WSO(N)/Sp(N)

R1R2
,

(6.8)

where we have taken into account that the partition function of the geometry in fig. 7 also

includes a t-independent piece which equals S
SO(N)/Sp(N)
00 . The r.h.s. of (6.8) involves the

Hopf link invariant for the gauge groups SO/Sp, where we put λ = Q−1. Notice that

Q
1
2 (ℓ(R1)+ℓ(R2))W

SO(N)/Sp(N)
R1R2

is a polynomial in Q
1
2 , while the l.h.s. of (6.8) is a priori an

infinite series in Q
1
2 . The identity (6.8) can be easily proven in the simple case that R1

(or R2) is the trivial representation, by using again the key identity (6.4). Let us sketch

the proof in the Sp case, the SO case being similar.

First, notice that, as we have just shown in the example of the orientifold of the

conifold, S
SO(N)/Sp(N)
00 equals the l.h.s. of (6.4) evaluated at xi = q−i+ 1

2 Q
1
2 . Let us

consider the l.h.s. of (6.4) for the + sign (i.e. the − sign in the r.h.s.), but now evalu-

ated at xi = qµi−i+ 1
2 Q

1
2 , where µ = {µi}i=1,···,d(µ) is the partition corresponding to the

representation RT
1 . After dividing it by S

Sp(N)
00 we find a finite product

d(µ)∏

i=1

1 − qµi−i+ 1
2 Q

1
2

1 − q−i+ 1
2 Q

1
2

∏

1≤i<j≤d(µ)

1 − qµi+µj−i−j+1Q
1
2

1 − q−i−j+1Q
1
2

d(µ)∏

i=1

µi∏

v=1

(1 − qµi−i−d(µ)−v+1). (6.9)

After some massaging, and using the explicit formulae (4.7), (4.9), as well as the relation

(4.11), it is easy to see that (6.9) equals

Q
ℓ(µ)
2

W
Sp(N)
R1

(λ = Q−1)

WR1

, (6.10)

where WR = sR(q−i+ 1
2 ). Using now that CRR1· = WRRT

1
qκR1

/2 as well as the explicit

formula (4.24), we see that indeed (6.8) is satisfied when R2 = · in the case of Sp(N).

Although we don’t have a full proof of (6.8) in general, we have checked it in many

cases. This shows indeed that the topological vertex calculation and the geometric transi-

tion computation give the same result for this geometry, and indeed for all the geometries

of the form depicted in fig. 19.
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7. Discussion and Open Problems

In this paper we have seen how to compute topological string amplitudes on a certain

class of Calabi-Yau orientifolds, by using geometric transitions involving SO/Sp Chern-

Simons theory, the topological vertex formalism, and localization techniques. This allows

us to extract BPS invariants counting higher genus curves with one and two crosscaps.

This work can be extended in various ways. First of all, it would be very interesting

to consider Calabi-Yau orientifolds in which the involution has fixed loci, like for example

the ones considered in [1]. In this case, the geometric transition of [29] is no longer useful

and one has to find other ways of implementing a Chern-Simons dual description. In

the context of the topological vertex formalism, we should find the right prescription to

deal with fixed point loci, by using perhaps the group-theoretic results of [23] for SO/Sp.

Secondly, one should consider open string amplitudes by adding Lagrangian D-branes, and

to clarify in this way the BPS content of SO/Sp Chern-Simons invariants of knots and

links.

It would be also very important to clarify some issues that appeared in the orientifolds

that we studied here. For example, one would like to have a more detailed derivation of the

multicovering formulae for amplitudes involving two crosscaps and of the choice of annulus

operator we made, as well as a more rigorous justification of the localization techniques

we used. We expect to report on these problems in future work.
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Appendix A. Subsets of Young tableaux

To compute the tensor product decomposition of irreducible representations of SO(N)

and Sp(N) using Littlewood’s technique as explained in (4.20), we had to use four different

subsets of Young tableaux: {δ} and {γ} for SO(N), and {β} and {α} for Sp(N). These

four sets are defined as follows [23].

{δ} is the set of all partitions into even parts only: { , , , ...}.

{β} is the set of all partitions such that there are an even number of parts of any

given magnitude: { , , , ...}.
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To define the two remaining sets we have to use the Frobenius notation [23,28]. In

this notation, a Young tableau is described by an array of pair of numbers. The number

of pairs is equal to the number of boxes in the leading diagonal of the tableau; the upper

number of the pair is the number of boxes to the right and the lower number is the number

of boxes below. For example, the Young tableau is described in the Frobenius notation

by

(
2 1
2 0

)
.

Using this notation we can define the two remaining sets. Consider Young tableaux

defined in the Frobenius notation by

(
a1 a2 a3 a4 ...
b1 b2 b3 b4 ...

)
. (A.1)

{γ} is the set of Young tableaux such that ai = bi + 1 ∀ i: { , , , ...}.

{α} is the set of Young tableaux such that ai + 1 = bi ∀ i: { , , , ...}.

Note that {β} and {α} are respectively related to {δ} and {γ} by taking the transpose

of the representations, where by transpose we mean exchanging rows and columns.

Appendix B. Results in the General Case

Here we present the results for the full generating functionals given by (4.45). The

± sign corresponds to Sp and SO, respectively. Of course, the oriented contribution for

q3 = 0 agrees with previous results for the local del Pezzo dP3 with one Kähler parameter

sent to infinity [9,4], and if we set q1,2 = 0 we recover the results presented in Tables 1−16

(taking into account the 1/2 factor in the definition of the c = 0 generating functional).

We computed the results up to degree 5 in e−t, but we will present only the results

up to degree 3 as the higher degree results are rather cumbersome.

F0,0
0 = q1 + q2 +

1

2
q3,

F0,1
0 = ± [q

1/2
3 ],

F0,2
0 = 0,

F0,0
1 = 3 − 2(q1 + q2 + q3) + (q1q2 + q2q3 + q1q3),

F0,1
1 = ± [−2q

1/2
3 + (q1q

1/2
3 + q2q

1/2
3 )],

F0,2
1 = 0,

(B.1)
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F0,0
2 = − 6 + 5(q1 + q2) + 7q3 − 4q1q2 − 6(q1q3 + q2q3) + 4q1q2q3 +

1

2
(q2

1q3 + q2
2q3)

− q2
3 + (q1q

2
3 + q2q

2
3) − q1q2q

2
3 ,

F0,1
2 = ± [5q

1/2
3 − 4(q1q

1/2
3 + q2q

1/2
3 ) + 3q1q2q

1/2
3 − 3q

3/2
3 + 2(q1q

3/2
3 + q2q

3/2
3 ) − q1q2q

3/2
3 ],

F0,2
2 = 0,

F0,0
3 = 27 − 32(q1 + q2) − 42q3 + 35q1q2 + 48(q1q3 + q2q3) − 50q1q2q3 + 7(q2

1 + q2
2)

+ 15q2
3 − 6(q2

1q2 + q1q
2
2) − 10(q2

1q3 + q2
2q3) − 16(q1q

2
3 + q2q

2
3) + 8(q2

1q2q3 + q1q
2
2q3)

+ 3(q2
1q

2
3 + q2

2q2
3) − 2(q2

1q2q
2
3 + q1q

2
2q2

3) + 15q1q2q
2
3 ,

F0,1
3 = ± [−32q

1/2
3 + 35(q1q

1/2
3 + q2q

1/2
3 ) − 36q1q2q

1/2
3 − 6(q2

1q
1/2
3 + q2

2q
1/2
3 )

+ (q2
1q2q

1/2
3 + q1q

2
2q

1/2
3 ) + 30q

3/2
3 − 30(q1q

3/2
3 + q2q

3/2
3 ) + 4(q2

1q
3/2
3 + q2

2q
3/2
3 )

+ 28q1q2q
3/2
3 − 3(q2

1q2q
3/2
3 + q1q

2
2q

3/2
3 ) − 4q

5/2
3 + 3(q1q

5/2
3 + q2q

5/2
3 ) − 2q1q2q

5/2
3 ],

F0,2
3 = q2

3 − (q1q
2
3 + q2q

2
3) + q1q2q

2
3 ,

F1,0
3 = 10 − 9(q1 + q2 + q3) + 8(q1q2 + q1q3 + q2q3) − 7q1q2q3,

F1,1
3 = ± [−9q

1/2
3 + 8(q1q

1/2
3 + q2q

1/2
3 ) − 7q1q2q

1/2
3 + 7q

3/2
3 − 6(q1q

3/2
3 + q2q

3/2
3 ) + 5q1q2q

3/2
3 ],

F1,2
3 = 0.
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