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Abstract 

 
Human flow counting has many applications in 

space management. This study applied channel state 
information (CSI) available in IEEE 802.11n networks 
to characterize the flow count. Raw inputs including 
mean, standard deviation and five-number summary 
were extracted from windowed CSI data. Due to the 
large number of raw inputs, stacked denoising 
autoencoders were used to extract hierarchical 
features from raw inputs and a final layer of softmax 
regression was used to model the flow counting 
problem. It is found that this deep neural network 
structure beats other popular classification algorithms 
including random forest, logistic regression, support 
vector machine and multilayer perceptron in 
predicting the flow count with attractive speed 
performance. 
 
1. Introduction  
 

Human flow counting has many applications in 
space management. For example, the flow count can be 
used to prevent over-crowdedness or to adjust HVAC 
settings accordingly. Mechanical units are commonly 
used to count human flow. However, they are 
inefficient and inconvenient. Image based solutions 
have been developed, but they require expensive 
camera devices and illumination and occlusion 
problems are unavoidable in image processing. 

The average human being contains about 60~70% 
water which disrupts radio wave propagation. Research 
on intelligent space management has shifted from 
image based solutions to methods based on wireless 
technologies that are widely deployed in today’s smart 
societies. Wireless based solutions avoid the privacy 
invasion issue that often comes with image based 
approaches. 

Lin et al. exploited radio irregularity in the Internet 
of Things to count people automatically [1]. The 
researchers used features extracted from received 
signal strength indicator (RSSI) to count the flow. 
RSSI, an aggregate power indicator resulting from the 

multipath propagation of indoor wireless 
communication [2], is widely available in many 
devices. RSSI is coarse-grained and more detailed 
communication information called channel state 
information (CSI) has been defined in the IEEE 
802.11n standard. 

Using hardware fast Fourier transform, off-the-
shelf network interface cards such as Intel WifiLink 
5300 (IWL) can output channel frequency response 
(CFR) as 30 CSI data per communication channel [3]. 
CFR is to RSSI what a rainbow is to a sunbeam [2]. 

CSI has a finer resolution than RSSI regarding 
communication channels, and exhibits a more stable 
temporal feature as well. Using empirical data, Wang 
et al. showed that CSI amplitude had a greater stability 
than RSSI for continuously received packets at a fixed 
location [4]. The finer resolution comes with the price 
of higher dimensionality of CSI based features. Deep 
learning techniques were used in [4] to properly reduce 
the dimension and improve indoor localization 
accuracy. 

Deep learning, a rejuvenated artificial neural 
network research subject, has caught the attention of 
many researchers in artificial intelligence. An essential 
part of deep learning is deep neural networks (DNNs) 
that automatically capture useful features from raw 
inputs for classification problems [5][6][7][8]. For 
example, with the high dimensional CSI data, a well 
designed DNN may be able to extract features that are 
helpful to the flow counting task. 

In this study, we exploited the opportunity of rich 
CSI data embedded in 802.11n networks to count 
human flow automatically. The counting problem was 
defined as a classification problem, i.e., using patterns 
of CSI fluctuation to predict the corresponding flow 
size. With 3 receiving antennas and 1 transmitting 
antenna (i.e., 3 communication channels), each packet 
creates 90 CSI amplitude data. Over a window of n 
continuously received packets, these 90n data were 
summarized into 630 raw inputs for the flow counting 
problem. Principal component analysis (PCA) is often 
used to extract or select features from high dimensional 
inputs before a classification algorithm is applied to the 
training data [9]. Instead of PCA, we applied stacked 
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denoising autoencoders (SdA) [10] to extract 
hierarchical features from our raw inputs. On top of the 
SdA, a softmax regression was used to classify the last 
encoded features into different flow sizes. 

Our data set has a size of 16000 records. Though 
the volume by no means fits the definition of big data, 
the large number of raw inputs may create a 
complicated situation for traditional classification 
algorithms. Our goals of this study include (1) to 
empirically validate the acclaimed advantage of pre-
training in DNN [11]; and (2) to compare the efficacy 
of DNN with that of other classification algorithms 
including multilayer perceptron, multinomial logistic 
regression [12], random forest [13] and support vector 
machine [14] in the human flow counting problem.  

This paper is organized as follows. Section 2 is 
devoted to a literature review on CSI, autoencoders, 
DNN and various other classification algorithms. 
Methodology and experimental data sets are described 
in section 3 followed by experimental results and 
discussions in section 4. We conclude the paper with 
remarks in section 5. 
 
2. Literature review 
 

Automatic flow counting has been investigated by 
many research groups. Device-free approaches are 
preferred because they do not require people to carry 
specific devices such as RFID to do the job. Recent 
research tends to exploit radio irregularity patterns 
caused by human movement to predict the flow size. 
We first describe CSI data revealed by 802.11n 
networks, which are very popular in today's public or 
private space. Autoencoders are unsupervised neural 
networks that can be trained easily. We explain the 
goal and training of autoencoders next. When layers of 
autoencoders are stacked and a classification network 
such as the softmax regression is placed on top of the 
SdA, we obtain a DNN in deep learning. We explain 
the pre-training and fine-training stages of a DNN and 
regularization techniques used to prevent overfitting a 
DNN. Finally, we briefly discuss other classification 
algorithms used in this study to compare their efficacy 
with that of DNN. 
 
2.1. Channel state information 
 

Let h(t) denote a temporal linear filter, known as 
channel impulse response (CIR), that models the 
multipath propagation of a wireless communication 
channel. A channel is defined as a pair of a 
transmitting antenna and a receiving antenna. If s(t) is 
the transmitted signal, then the received signal r(t) = 
s(t)⨂h(t) is the convolution of s(t) and h(t). Taking 

the Fourier transform of both sides, we obtain R(f) = 
S(f)H(f)  where H(f), called CFR, is the Fourier 
transform of h(t). It is known that environmental 
changes cause CIR to fluctuate only in a few time 
indices; on the other hand, diverse frequency spans 
make CFR a more responsive descriptor for such 
changes [2]. By modifying IWL's network driver, 
Halperin et al. [3] release 802.11n CSI tool that can 
output sampled values of CFR as CSI.  

A subcarrier is a communication sub-band in the 
orthogonal frequency division multiplexing (OFDM) 
modulation scheme used by 802.11n networks. For a 
20 MHz communication channel, OFDM divides the 
channel into 64 subcarriers each with 312.5 KHz space. 
Of these 64 subcarriers, 802.11n uses 52 subcarriers 
for data, 4 for pilot and 8 as null. IWL network driver 
further aggregates the 56 data and pilot subcarriers into 
30 groups of which the modified driver in [3] reports 
the sampled CFR values as CSI. Thus, CSI of each 
communication channel contains data from 30 
subcarriers. 

Because IWL is a popular network card and CSI 
provides fine-grained channel information, recent 
exploitations of radio signals in indoor applications 
have been mostly based on CSI instead of RSSI. For 
example, CSI was used in [4] to infer indoor 
localization. Zhang et al. used CSI to identify an 
individual because different people have different walk 
gaits [15].  
 
2.2. Autoencoders 
 

Autoencoders are unsupervised networks used to 
extract internal patterns from data. A typical 
autoencoder has 3 layers: the input layer, the hidden 
layer and the output layer (Figure 1). The hidden layer 
serves the purposes of encoding inputs into more 
compact representations that may embed certain 
patterns of data. The output layer decodes codes in the 
hidden layer. The purpose of training an autoencoder is 
to obtain network weights so that outputs match inputs 
as closely as possible.  

The decoding weights do not have to be related to 
encoding weights. In figure 1, we use tied weights to 
reduce the number of weights, i.e., the decoding matrix 
is the transpose of the encoding matrix. At the hidden 
layer and the output layer, each node gets its value 
from the activation of a weighted sum of inputs from 
the previous layer. We used the sigmoid function 
1/(1 + e−s) as the activation function in this study.  

The hidden layer does not have to be of a smaller 
size than the input layer. In order to avoid the learning 
of a trivial identity function, regularizing functions can 
be added to a loss function to guide the search of 
optimal weights. In this study, we used an L2 
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regularizer of network weights and mean squared 
errors to construct the loss function (equation 1). In 
equation 1, xi's are inputs from a data set, zi's are 
corresponding outputs from the network with weight 
matrix W, and C is a tradeoff parameter that balances 
the effect of mean squared errors and network weights, 

i.e. ‖W‖2 = �∑ wij
2

ij . Gradient decent based methods 

are used to adjust W iteratively so that loss(W) is as 
small as possible. 

 
loss(W) = 1

n
∑ ‖xi − zi‖2n

i=1 + C‖W‖2  (1) 
 
Vincent et al. considered denoising autoencoders to 

extract robust features from the original data [10]. To 
train a denoising autoencoder, inputs are first corrupted 
to simulate noise that may be embedded in the original 
data. Then corrupted inputs move forward the network 
to produce outputs as usual, and loss is obtained by 
comparing uncorrupted inputs with outputs from the 
corrupted inputs. Using a binomial distribution, we 
randomly set an input node to zero to produce a 
corrupted input. 

 

 
Figure 1. An autoencoder network 

 
2.3. Deep neural networks 
 

After a denoising autoencoder is trained, we can 
remove its decoding layer and use its encoding layer to 
extract new features from the original inputs. Using 
outputs from the encoding layer as new inputs, we can 
train the next layer of denoising autoencoder. This 
procedure can be continued successively for a few 
layers of denoising autoencoders extracting 
hierarchical features from the original inputs. 
Eventually, we put a supervised layer on top of the last 
encoding layer. A typical supervised layer is the 
softmax layer where each output node represents the 
probability for the occurrence of a class.  

When the loss function in equation 1 is measured 
by cross entropy instead of mean squared errors, the 

softmax layer is equivalent to multinomial logistic 
regression in statistics [12]. Due to a neat expression, 
most software packages implementing multinomial 
logistic regression can optimize the loss function by 
using Newton's or quasi-Newton's algorithms. 
Newton's algorithms not only consider second 
derivatives of the loss function, but also invert a 
Hessian matrix. In short, Newton's algorithms take 
more efforts to conduct an epoch of training, but may 
also need fewer epochs to find the optimal solution. In 
the following, we will call multinomial logistic 
regression with Newton's or quasi-Newton's 
optimization the Logistic classifier. We reserve the 
term Softmax classifier for a softmax layer trained with 
gradient decent based methods. 

A typical DNN is shown in Figure 2, where the 
hidden layers (W1, W2, ...) are encoding layers of 
successively trained denoising autoencoders, and the 
output layer (S) is a softmax layer. The pretraining 
stage of a DNN refers to the greedy layer-wise training 
step of SdA without the softmax layer, i.e. each 
denoising autoencoder is trained individually. The first 
denoising autoencoder is trained with the original 
inputs, the second autoencoder is trained with the 
encoded data from the first autoencoder, and so on. 
The fine-training stage of a DNN is to train the entire 
network as a whole, but layers of SdA are initialized 
with the weights from individually trained 
autoencoders. Erhan et al. showed that the 
unsupervised pretraining step helped a DNN to 
generalize better on test data [11]. 

A multilayer perceptron (MLP) in this study has the 
same network structure as a DNN except that its 
hidden layers are not pretrained with SdA. That is, 
during training, MLP initializes its weights with 
randomly selected numbers. MLP is a powerful 
learning tool when many hidden layers are used. 
Training MLP with random initial weights may lead to 
two problems: optimization and generalization. The 
optimization issue refers to the problem that solutions 
may be trapped in unwanted local optimal areas, and 
the generalization issue refers to the problem that the 
trained MLP does not perform well on test data [11].  
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Figure 2. A deep neural network 

 
2.4. Other classification algorithms 
 

Multinomial logistic regression is a simple two 
layer structure where the activation function is the 
softmax function in equation 2. Since each node 
represents the probability of an output class, cross 
entropy (negative log-likelihood) is commonly used for 
the loss function. A weight regularizing term may be 
added to the loss function as in equation 1. Newton's 
algorithms are available to minimize the loss function. 

 

σ(𝐳𝐳)𝑗𝑗 = 𝑒𝑒𝑧𝑧𝑗𝑗

∑ 𝑒𝑒𝑧𝑧𝑘𝑘𝐾𝐾
𝑘𝑘=1

, 𝑗𝑗 = 1,2, … ,𝐾𝐾    (2) 

 
As a powerful ensemble algorithm, random forest 

(RF) creates multiple decision trees in the training 
stage and aggregates decisions from these trees to 
make predictions in the operational stage [13]. Each 
decision tree is trained with data sampled with 
replacements from the training set. At a decision node, 
RF picks the best variable from a random subset of 
predictors by using entropy or Gini criterion. Using 
multiple decision trees in the operational stage may 
prevent the overfitting problem encountered in many 
machine learning algorithms. 

Support vector machine (SVM) is a popular 
classification algorithm based on statistical learning 
theory. SVM uses a kernel trick to map inputs into a 
high dimensional feature space where data of different 
classes may be more easily separated. Commonly used 
kernels include radial basis kernels (equations 3) and 
polynomial kernels (equation 4). A separating 
hyperplane with the maximum margin is sought in the 
feature space. With kernel tricks, distances in the 
feature space may be easily computed by using the 
kernel function and the margin maximization problem  

in the feature space is converted to a convex quadratic 
programming problem in the input space. SVM is best 
suited for binary classification problems where the 
maximum margin separating hyperplane can separate 
two classes in the feature space. When SVM is applied 
to multiclass classification problems, multiple one-
over-rest or one-over-one binary classifiers are trained 
to predict outputs of multiple classes.  

 
          K(𝐱𝐱, 𝐳𝐳) = exp(−γ‖𝐱𝐱 − 𝐳𝐳‖2)   (3) 
 
   K(𝐱𝐱, 𝐳𝐳) = (𝐱𝐱 ∙ 𝐳𝐳 + c)d               (4) 
  

3. Methodology  
 

We describe our experimental scenario to collect 
CSI data. Raw inputs are summarized from a window 
of CSI data. These inputs are processed with a DNN to 
construct a human flow counting system. Network 
structure of the DNN is explained next. 
 
3.1. Experimental scenario 
 

In an experimental scenario, groups of one to five 
people were asked to walk through a corridor where 
two Linux systems were placed by the sides (Figure 3).  

 

 
Figure 3. Experimental scenario 

 
Systems T and R were Ubuntu systems installed 

with the modified IWL network driver from [3]. They 
were placed 6 meters apart and 75 centimeters above 
the floor. The groups were asked to walk in a row at 
about the same pace to pass the line of sight (LoS) 
between T and R. System T continuously transmitted 
packets with one antenna at the speed of 1000 packets 
per second. At the same time, system R received these 
packets with three antennas and recorded their CSI 
data for later processing. Thus, there were 3 
communication channels in this scenario. For each 
group size (one to five), 20 walk-throughs were 
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conducted, and each walk-through lasted about 8 
seconds.  

 
3.2. Input extraction 

 
For each walk-through, we divided the collected 

data into 160 non-overlapping windows. Each window 
consisted of CSI data from 50 packets (50 
milliseconds), and was summarized as follows. 

Let zi,j,k denote the CSI absolute value for the ith 
receiving antenna, the jth subcarrier and the kth packet, 
where i = 1, 2, 3, j = 1, ..., 30 and k = 1, ..., 50. Then 
we used mean, standard deviation and five-number 
summary to summarize CSI data of these 50 packets.  

For each combination of the 3 receiving antennas 
and 30 subcarriers, we computed the mean, standard 
deviation, first quartile, second quartile (median), third 
quartile, minimum and maximum of zi,j,k  of the 50 
packets in a window. In total, there are 16000 records 
equally divided into five classes of flow size. Each 
record has 630 inputs and one output. Table 1 lists the 
inputs extracted from a window of 50 packets.  

 
Table 1. Inputs extracted from 

windowed CSI data (i = 1, ...,3, j=1, ...,30) 
Variable Meaning 
mui,j Mean of zi,j,k  across 50 packets 
sdi,j Standard deviation of zi,j,k across 50 packets 
fqi,j First quartile of zi,j,k  across 50 packets 
sqi,j Second quartile of zi,j,k  across 50 packets 
tqi,j Third quartile of zi,j,k  across 50 packets 
mini,j Minimum of zi,j,k  across 50 packets 
maxi,j Maximum of zi,j,k  across 50 packets 

 
More specifically, a record in our data set has the 

following format: (mu11, sd11, fq11, sq11, tq11, min11, max11 , ..., 
mui,j, sdi,j, fqi,j, sqi,j, tqi,j, mini,j, maxi,j, ..., mu3,30, sd3,30, fq3,30, 
sq3,30, tq3,30, min3,30, max3,30, class) where the first 630 
components are CSI descriptive statistics as in Table 1 
and the last component is a class label. In order to 
reduce the dimension of raw inputs, we used SdA to 
extract hierarchical features. 
 
3.3. Network structures 
 

By a rough rule of halving the inputs and a trial and 
error approach, we designed a DNN with three hidden 
layers. The first hidden layer had 300 nodes, the 
second had 150 nodes, and the third had 60 nodes. On 
top of the third hidden layer, we had a softmax layer 
with 5 nodes each corresponding to the probability of a 
specific flow count. Each hidden layer was the 
encoding layer of a denoising autoencoder. These 

autoencoders were trained layer by layer as in most 
SdA studies. The pretrained weights were used as 
initial weights in the fine-training stage of the whole 
network including the softmax layer which was 
randomly initialized.  

Table 2 shows the settings of each hidden layer. 
Most of these parameters were obtained via a trial and 
error approach or adopted from the default setting of 
the used DNN training package. The corruption rate 
(noise) was used to randomly set that fraction of input 
nodes equal to 0 in denoising autoencoders training. 
The penalizing coefficient is the tradeoff coefficient C 
in equation 1.  

A mini-batch approach was adopted to update 
network weights more frequently than the traditional 
epoch based network training. For each autoencoder 
training, after a batch of 100 records had been 
processed, network weights were updated with Adam 
gradient based optimization algorithm. Each 
autoencoder was trained with 20 epochs. The learning 
rate was set to 0.001. 

 
Table 2. Properties of hidden layers 

Layer Nodes Characteristics Autoencoder 
training 

1 300 0.1 corruption rate, 
0.01 penalizing 
coefficient  

20 epochs, 
batch size 100 

2 150 0.1 corruption rate, 
0.01 penalizing 
coefficient 

20 epochs, 
batch size 100 

3 60 0.2 corruption rate, 
0.01 penalizing 
coefficient 

20 epochs, 
batch size 100 

 
Even with the L2 weight regularization in SdA, 

DNN still overfits training data easily. Thus, dropouts 
were introduced to each hidden layer. In the fine-
training stage, a fraction of hidden nodes were 
randomly marked as nonexistent (dropouts) to prevent 
overfitting. On the other hand, every node was used to 
predict the class label of a test record in the operational 
stage [16]. The dropout rate was 0.2 for hidden layer 1, 
and 0.1 for hidden layers 2 and 3. 

Cross entropy was used in the fine-training stage to 
guide the search of optimal network weights. In 
addition, an L2 weight regularizer was added to the loss 
function with a penalizing coefficient of 0.01. Adam 
optimization algorithm was adopted for 300 epochs of 
network training with a batch size of 200. 

The above network structure with pretraining will 
be denoted as DNN in the following report. Another 
neural network with the same structure without 
pretraining will be denoted as MLP. MLP used random 
numbers to initialize weights of hidden layers. 
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The third network will be denoted as Softmax in 
the following report. Softmax has two layers: the input 
layer of 630 nodes and the output layer of 5 nodes. The 
softmax function (equation 2) was the activation 
function of this network. In contrast to Newton's 
algorithm in multinomial logistic regression (Logistic), 
Softmax was trained with Adam gradient based 
optimization algorithm. The batch size and the number 
of epochs were the same as those of DNN and MLP. 

All three neural networks were modeled and trained 
with the open source Tensorflow package from Google 
[17]. To minimize the programming efforts, we used 
the Keras framework [18] on top of Tensorflow. Inputs 
were normalized column-wise so that each predictor 
had a maximum value of 1. 

 
3.4. Settings of the other classifiers 

 
RF and Logistic classifiers were implemented with 

the Weka software [19]. The RF algorithm was set to 
use a forest of 300 decision trees and the number of 
randomly selected predictors at a decision node was set 
to 10. Regarding the logistic regression in Weka, we 
selected a ridge coefficient of 0 and a maximum 
iteration number of 300 to train the model. Weka used 
a quasi-Newton's method to minimize the loss function. 

Since Weka had no built-in support for SVM, we 
turned to the scikit-learn python library [20] for SVM 
classifiers. Unlike other classifiers in this study, SVM 
is inherently a binary classification algorithm, and 
scikit-learn uses the one-over-one approach to handle 
multiclass classification problems. The following 
default settings were used with scikit-learn: radial basis 
kernels (equation 3) with regularizing coefficient C=1 
and automatic setting of γ. 
 
4. Experimental results and discussions 
 

In this study, we have implemented 6 models to 
count human flows with the help of machine learning: 
DNN, MLP, Softmax, RF, Logistic and SVM. Before 
comparing their efficacy, we first describe how data 
analysis was conducted. 

 
4.1. Data analysis procedure 
 

Cross validation (CV) is a powerful tool to assess 
classification accuracy in machine learning. For a k-
fold CV, a data set at hand is first partitioned into k 
equal parts randomly. One part of the partition is 
reserved as the test set while the remaining parts are 
combined to form the training set. After a classification 
assessment is done with these training and test sets, the 
next part of the partition is reserved as the test set 

while the remaining parts are combined to form the 
training set, and another classification assessment is 
conducted. This process of training and test continues 
until each part of the partition takes the role of test set 
exactly once. Then prediction rates from k assessments 
can be averaged to get a final result for this CV. 

Obviously, the final result of a CV depends on its 
partition of the data set. Thus several runs of k-fold CV 
should be conducted to minimize the effect of data 
partitioning. Our data set has 16000 records, each with 
630 predictors and one class label. We used 5-fold CV 
to evaluate the performance of the six models stated 
above. In addition, 20 runs of 5-fold CV were 
conducted with each run using a specific seed to 
initiate the partitioning step. In a training and test step 
of the 5-fold CV, there were 12800 training records 
and 3200 test records. Using random permutation, we 
ensured that each output class (1 to 5) was equally 
represented in the training set and the test set. 

 
4.2. Result from RSSI based inputs 
 

In order to appreciate the advantages provided by 
fine-grained CSI data in flow counting, we conducted a 
rough prediction analysis by using inputs from RSSI. 
As the modified driver in [3] also reports the RSSI 
value of each communication channel, we gathered 3 
such values from our experimental setup. Like the CSI 
case, a window of 50 packets was used to summarize 
RSSI values in a very short period. The windowed 
RSSI values were summarized by the mean, standard 
deviation and five-number summary. Instead of 630 
predictors, we had 21 predictors from RSSI values of 3 
communication channels. A typical run of 5-fold CV 
with different algorithms (MLP, Softmax, RF, Logistic, 
SVM) yielded a prediction rate from 0.470 to 0.520. 
This result is much worse than the following result 
from CSI based inputs. 

Though the above result seems very unattractive, 
we need to note that this is a 5-class prediction 
problem. Since each class is equally represented in test 
sets, a naive guess with one consistent class label 
yields a prediction rate of 0.2. Procedures with random 
guesses may yield even lower prediction rates. 

 
4.3. Result from CSI based inputs 
 

Table 3 summarizes prediction rates of the six 
models with CSI based inputs in Table 1. The mean 
column is the average rate from 20 runs of 5-fold CV. 
The Stand. Dev column represents the standard 
deviation of these 20 prediction rates, and the Run 
Time column indicates the number of seconds used to 
run a training and test step of a CV. All analyses were 
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done on a machine equipped with Intel i7-6700 CPU, 
16GB of DDR4 memory and NVIDIA GTX 1050 GPU 
with 4GB of video ram. 

 
Table 3. Prediction accuracy 

 Mean Stand. Dev Run Time 
DNN 0.827 0.0027 56 s 
MLP 0.817 0.0032 46 s 
Softmax 0.709 0.0016 50 s 
RF 0.739 0.0016 41 s 
Logistic 0.746 0.0019 93 s 
SVM 0.780 0.0014 324 s 

 
The run time column shows that SVM had the 

longest run time to conduct a training and test step of a 
5-fold CV. This could be due to the fact that a large 
number of one-over-one binary classifiers needed to be 
trained. For a 5-class classification problem, 10 such 
classifiers need to be trained.   

The Logistic model required the second longest run 
time to finish a training and test step of a CV. This can 
be expected because Weka implements the loss 
optimization procedure with a quasi-Newton's 
algorithm, which needs more derivative computations 
and inverts many large matrices. 

The other models needed about the same time to 
finish a training and test step of a CV. The only 
unforeseen result was MLP ran faster than Softmax 
even though Softmax had a simpler network structure. 
This might be due to the dropout layers embedded in 
MLP. Dropouts reduce a network structure in the 
training stage. 

In terms of prediction accuracy, DNN offered the 
highest performance among the six models considered 
in this study. MLP came next, followed by SVM, 
Logistic, RF and Softmax in turns. SVM was still a 
powerful classification algorithm except that it took 
much longer time than the other models to handle the 
data. The Logistic model beats its structurally 
equivalent Softmax model without a surprise, because 
Weka implements its Logistic regression with a quasi-
Newton's algorithm while the Softmax model uses 
gradient decent based methods to optimize its loss 
function. 

 

 
Figure 4. Loss vs. epoch 

 

 
Figure 5. Accuracy vs. epoch 

 
For the training of three gradient decent based 

models (DNN, MLP and Softmax), we plot the loss 
value and the accuracy rate epoch by epoch in Figures 
4 and 5 respectively. These figures show that (1) the 
training procedure converged as more epochs of 
training were conducted; (2) the loss function based on 
cross entropy faithfully guided the search of optimal 
weights. When loss values went down, prediction rates 
went up; and (3) the comparison among the three 
models was consistent with the final result on test data. 

RF was the fastest algorithm among the models 
considered in the study. However, its prediction 
accuracy was mediocre compared to the other models. 
On the other hand, MLP competed neck and neck with 
DNN in terms of accuracy and run time. 

Is the 1% difference between DNN and MLP 
significant? Since all six models ran each of the 20 
CVs with the same partition scheme, we conducted a 
paired t-test of prediction rates to check the statistical 
significance. The result shows that the 2-tail test 
statistic has a p-value of 3.46E-10, effectively p = 
0.000 in most statistics textbooks. Thus, DNN has a 
significantly better performance than MLP. This result 
reaffirms Erhan et al.'s claim that pretraining helps a 
network's generalization power [11]. The 20 prediction 
rates from MLP seem to have a bigger standard 
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deviation (0.0032) than that of DNN (0.0027). 
However, the Levene's test for equality of variances 
does not reject the null hypothesis of equal variances (p 
= 0.211), thus this difference in standard deviation is 
not statistically significant. That is, we cannot conclude 
that DNN is more reliable in computing the prediction 
rate. 
 
4.4. Effect of five-number summary 
 

To investigate the effect of five-number summary 
on the prediction result, we conducted a second data 
analysis without five-number summary from CSI data. 
This result may reveal the impact of additional features 
summarized from windowed CSI data. 

This time, only the mean and standard deviation 
were extracted from each window of 50 CSI data. The 
five-number summary was not included in the 
formation of raw inputs. Each record now has 180 
predictors from the combination of 3 communication 
channels and 30 subcarriers. 

Since the input data had a smaller dimension, we 
reduced the network structure accordingly. Instead of 
three hidden layers, we used only two hidden layers. 
The first hidden layer had 90 nodes and the second 
hidden layer had 30 nodes. A softmax layer was placed 
on top of the second hidden layer.  

Six models were considered as before. The DNN 
model initialized its hidden layers with pretrained 
weights from SdA. Properties of the SdA are listed in 
Table 4. These parameters were chosen based on a trial 
and error approach or default values in the adopted 
software Keras [18]. The MLP model initialized its 
network weights randomly sampled from a uniform 
distribution.  

 
Table 4. Properties of hidden layers 

Layer Nodes Characteristics Autoencoder 
training 

1 90 0.1 corruption rate, 
0.01 penalizing 
coefficient  

20 epochs, 
batch size 100 

2 30 0.1 corruption rate, 
0.01 penalizing 
coefficient 

20 epochs, 
batch size 100 

 
In order to prevent overfitting, dropouts were 

introduced for hidden layers of DNN and MLP. The 
dropout rate was 0.2 for hidden layer 1 and 0.1 for 
hidden layer 2. The supervised training of DNN, MLP 
and Softmax was conducted with 300 epochs and a 
batch size of 100. Settings for the other classifiers were 
the same as the previous analysis. Table 5 summarizes 
the prediction result of the six models. 

 
Table 5. Prediction result 

 Mean Stand. Dev Run Time 
DNN 0.759 0.0021 68 s 
MLP 0.752 0.0022 62 s 
Softmax 0.685 0.0012 47 s 
RF 0.721 0.0016 34 s 
Logistic 0.786 0.0013 30 s 
SVM 0.790 0.0011 56 s 

 
This time, SVM was the champion in terms of 

prediction rate. Though 10 one-over-one binary 
classifiers were needed, its run time was not much 
different from that of the other models. This shows that 
when more predictors are used, it takes more time for 
SVM to have a convergent quadratic optimization 
solution.  

Logistic model was the champion in terms of run 
time, and its predication performance was just a little 
bit worse than that of SVM. DNN was in the third 
place regarding prediction accuracy. However, its lead 
over MLP was still statistically significant (p = 0.000) 
though the absolute lead was only 0.7%. 

For this second data analysis, the run time of DNN 
and MLP was longer than that of the corresponding 
network in the first analysis. This is due to the fact that 
we had a finer update schedule in this case (a batch 
size of 100 vs. a batch size of 200). 

 
4.5. Discussions 
 

Though both analyses reaffirm Erhan et al.'s claim 
that pretraining helps a network's generalization power 
[11], the absolute improvement of prediction rate (1% 
and 0.7% respectively) looks pretty small compared to 
results presented in most machine learning studies. In 
[11], Erhan et al. considered the MNIST data set which 
had 60000 training data and 10000 test data. Their 
results showed that the absolute improvement in 
prediction rate was less than 1% when 1 to 4 hidden 
layers were used. Thus, this range of improvement 
seems more like a norm for evaluations on data sets 
with 10000s of records. 

By comparing Tables 3 and 5, we also observe the 
scalability and robustness of each prediction model in 
terms of the number of predictors. Though DNN and 
MLP failed to beat Logistic and SVM in the case of 
180 predictors, they out-performed the latter in the case 
of 630 predictors. The results show that adding five-
number summary to predictors increased prediction 
accuracy when right classifiers were used. Our analysis 
shows that Logistic and SVM did not scale well and 
robustly to the number of predictors. On the other 
hands, DNN and MLP scaled well and robustly to the 
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number of predictors. Part of the reason might be due 
to the fact that Tensorflow utilized NVIDIA GPU 
efficiently, while scikit-learn and Weka did not take 
advantages of the GPU.  

In the experimental scenario, we only used one 
transmitting antenna to transmit packets. IWL allows 
the use of three transmitting antennas at the same time. 
With five-number summary included in the predictors, 
this will create a raw input of 1890 predictors. When 
more IWLs are placed in the field to collect CSI data, 
for example, two systems can be used to receive 
packets sent from a third system, raw inputs of more 
predictors will be created. From our experiments, it 
seems that DNN is a promising solution to handle large 
data sets with many predictors. 

Hidden layers visualization may be useful for 
understanding the inner working of SdA in the field of 
computer vision. SdA was used to extract different 
levels of geometric features from the MNIST data set 
for the problem of digit recognition [21]. For example, 
the first layer may detect edges from raw input images, 
the second layer detects simple shapes composed of 
edges, and higher layers detect even more abstract 
geometric features suitable for automatic digit 
recognition. Because our raw data consist of the mean, 
standard deviation and five-number summary from 
windowed CSI data, it is probably difficult to visualize 
motifs discovered in different layers of SdA. This 
problem is similar to the construct explanation problem 
encountered in factor analysis. 
 
5. Conclusions 
 

Deep learning has revitalized artificial neural 
network research in machine learning. A typical DNN 
in deep learning has many hidden layers each 
pretrained with a denoising autoencoder. Literature has 
shown that pretraining can help DNN generalize better 
than an MLP without pretraining. The pretraining is 
efficient and effective because each autoencoder is 
trained individually, thus the bizarre explosion or 
vanishing of weights in a back-propagation training of 
MLP can be avoided.  

We applied DNN to a human flow counting 
problem that may have many applications in space 
management. Though our data set by no means belongs 
to the category of big data, rich inputs extracted from 
IEEE 802.11n CSI data may confuse many popular 
classification algorithms to learn an efficient model. 

Specific to the wireless based flow counting 
problem, we observed that CSI predictors yielded a 
better performance than RSSI predictors in predicting 
flow counts, no matter which classification algorithms 
were used to learn the model. This justifies the merits 
of fine-grained information embedded in CSI data, and 

also explains recent trends of exploiting CSI data in 
various indoor applications. 

Moving from RSSI to CSI, the number of 
predictors increases at least 30 times, because IWL 
outputs CSI data for 30 subcarriers. Each CSI entry is 
actually a complex number, and we only considered 
the modulus part (absolute value) of CSI in this study. 
With such fine-grained information of communication 
channels, high dimensional inputs provide more 
differentiation power for learning algorithms on the 
one hand, but produce the curse of dimensionality 
problem on the other hand. Traditional approaches to 
reduce input dimensions include PCA or hand-crafting 
domain specific features. In this study, we used SdA to 
automatically craft features useful for our flow 
counting model. 

Our experiments showed that five-number 
summary could improve the flow counting accuracy 
when right algorithms were used. Overall, we found 
that DNN, an MLP with pretrained hidden layers, and 
the 630 predictors summarized from windowed CSI 
data in Table 1 provided the best performance. 

Though DNN solves the high dimensionality 
problem and provides the best performance at the same 
time, it comes with several issues that are worthy of 
noting. First, many hyper-parameters need to be tuned 
properly in order to get a good performance, for 
example, the number of layers, nodes per layer, 
penalizing coefficients, corruption rates, epochs, batch 
sizes, dropout rates and so on. It seems that most 
studies today still rely on a trial and error approach to 
tune these parameters. Second, DNN inherits the black 
box learning characteristics of neural networks, thus it 
is difficult to explain the inner working of hidden 
layers in many application cases. 

In the future, we plan to use the full capacity of 
IEEE 802.11n communication channels to capture CSI 
data. This will create raw inputs with a very high 
dimension. DNN will be carefully examined to 
investigate its learning power on such high 
dimensional data. 
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