
Counting Human Flow with Deep Neural Network

Shing H. Doong
ShuTe University

 tungsh@stu.edu.tw

Abstract

Human flow counting has many applications in

space management. This study applied channel state
information (CSI) available in IEEE 802.11n networks
to characterize the flow count. Raw inputs including
mean, standard deviation and five-number summary
were extracted from windowed CSI data. Due to the
large number of raw inputs, stacked denoising
autoencoders were used to extract hierarchical
features from raw inputs and a final layer of softmax
regression was used to model the flow counting
problem. It is found that this deep neural network
structure beats other popular classification algorithms
including random forest, logistic regression, support
vector machine and multilayer perceptron in
predicting the flow count with attractive speed
performance.

1. Introduction

Human flow counting has many applications in
space management. For example, the flow count can be
used to prevent over-crowdedness or to adjust HVAC
settings accordingly. Mechanical units are commonly
used to count human flow. However, they are
inefficient and inconvenient. Image based solutions
have been developed, but they require expensive
camera devices and illumination and occlusion
problems are unavoidable in image processing.

The average human being contains about 60~70%
water which disrupts radio wave propagation. Research
on intelligent space management has shifted from
image based solutions to methods based on wireless
technologies that are widely deployed in today’s smart
societies. Wireless based solutions avoid the privacy
invasion issue that often comes with image based
approaches.

Lin et al. exploited radio irregularity in the Internet
of Things to count people automatically [1]. The
researchers used features extracted from received
signal strength indicator (RSSI) to count the flow.
RSSI, an aggregate power indicator resulting from the

multipath propagation of indoor wireless
communication [2], is widely available in many
devices. RSSI is coarse-grained and more detailed
communication information called channel state
information (CSI) has been defined in the IEEE
802.11n standard.

Using hardware fast Fourier transform, off-the-
shelf network interface cards such as Intel WifiLink
5300 (IWL) can output channel frequency response
(CFR) as 30 CSI data per communication channel [3].
CFR is to RSSI what a rainbow is to a sunbeam [2].

CSI has a finer resolution than RSSI regarding
communication channels, and exhibits a more stable
temporal feature as well. Using empirical data, Wang
et al. showed that CSI amplitude had a greater stability
than RSSI for continuously received packets at a fixed
location [4]. The finer resolution comes with the price
of higher dimensionality of CSI based features. Deep
learning techniques were used in [4] to properly reduce
the dimension and improve indoor localization
accuracy.

Deep learning, a rejuvenated artificial neural
network research subject, has caught the attention of
many researchers in artificial intelligence. An essential
part of deep learning is deep neural networks (DNNs)
that automatically capture useful features from raw
inputs for classification problems [5][6][7][8]. For
example, with the high dimensional CSI data, a well
designed DNN may be able to extract features that are
helpful to the flow counting task.

In this study, we exploited the opportunity of rich
CSI data embedded in 802.11n networks to count
human flow automatically. The counting problem was
defined as a classification problem, i.e., using patterns
of CSI fluctuation to predict the corresponding flow
size. With 3 receiving antennas and 1 transmitting
antenna (i.e., 3 communication channels), each packet
creates 90 CSI amplitude data. Over a window of n
continuously received packets, these 90n data were
summarized into 630 raw inputs for the flow counting
problem. Principal component analysis (PCA) is often
used to extract or select features from high dimensional
inputs before a classification algorithm is applied to the
training data [9]. Instead of PCA, we applied stacked

Proceedings of the 51st Hawaii International Conference on System Sciences | 2018

URI: http://hdl.handle.net/10125/49987
ISBN: 978-0-9981331-1-9
(CC BY-NC-ND 4.0)

Page 799

denoising autoencoders (SdA) [10] to extract
hierarchical features from our raw inputs. On top of the
SdA, a softmax regression was used to classify the last
encoded features into different flow sizes.

Our data set has a size of 16000 records. Though
the volume by no means fits the definition of big data,
the large number of raw inputs may create a
complicated situation for traditional classification
algorithms. Our goals of this study include (1) to
empirically validate the acclaimed advantage of pre-
training in DNN [11]; and (2) to compare the efficacy
of DNN with that of other classification algorithms
including multilayer perceptron, multinomial logistic
regression [12], random forest [13] and support vector
machine [14] in the human flow counting problem.

This paper is organized as follows. Section 2 is
devoted to a literature review on CSI, autoencoders,
DNN and various other classification algorithms.
Methodology and experimental data sets are described
in section 3 followed by experimental results and
discussions in section 4. We conclude the paper with
remarks in section 5.

2. Literature review

Automatic flow counting has been investigated by
many research groups. Device-free approaches are
preferred because they do not require people to carry
specific devices such as RFID to do the job. Recent
research tends to exploit radio irregularity patterns
caused by human movement to predict the flow size.
We first describe CSI data revealed by 802.11n
networks, which are very popular in today's public or
private space. Autoencoders are unsupervised neural
networks that can be trained easily. We explain the
goal and training of autoencoders next. When layers of
autoencoders are stacked and a classification network
such as the softmax regression is placed on top of the
SdA, we obtain a DNN in deep learning. We explain
the pre-training and fine-training stages of a DNN and
regularization techniques used to prevent overfitting a
DNN. Finally, we briefly discuss other classification
algorithms used in this study to compare their efficacy
with that of DNN.

2.1. Channel state information

Let h(t) denote a temporal linear filter, known as
channel impulse response (CIR), that models the
multipath propagation of a wireless communication
channel. A channel is defined as a pair of a
transmitting antenna and a receiving antenna. If s(t) is
the transmitted signal, then the received signal r(t) =
s(t)⨂h(t) is the convolution of s(t) and h(t). Taking

the Fourier transform of both sides, we obtain R(f) =
S(f)H(f) where H(f), called CFR, is the Fourier
transform of h(t). It is known that environmental
changes cause CIR to fluctuate only in a few time
indices; on the other hand, diverse frequency spans
make CFR a more responsive descriptor for such
changes [2]. By modifying IWL's network driver,
Halperin et al. [3] release 802.11n CSI tool that can
output sampled values of CFR as CSI.

A subcarrier is a communication sub-band in the
orthogonal frequency division multiplexing (OFDM)
modulation scheme used by 802.11n networks. For a
20 MHz communication channel, OFDM divides the
channel into 64 subcarriers each with 312.5 KHz space.
Of these 64 subcarriers, 802.11n uses 52 subcarriers
for data, 4 for pilot and 8 as null. IWL network driver
further aggregates the 56 data and pilot subcarriers into
30 groups of which the modified driver in [3] reports
the sampled CFR values as CSI. Thus, CSI of each
communication channel contains data from 30
subcarriers.

Because IWL is a popular network card and CSI
provides fine-grained channel information, recent
exploitations of radio signals in indoor applications
have been mostly based on CSI instead of RSSI. For
example, CSI was used in [4] to infer indoor
localization. Zhang et al. used CSI to identify an
individual because different people have different walk
gaits [15].

2.2. Autoencoders

Autoencoders are unsupervised networks used to
extract internal patterns from data. A typical
autoencoder has 3 layers: the input layer, the hidden
layer and the output layer (Figure 1). The hidden layer
serves the purposes of encoding inputs into more
compact representations that may embed certain
patterns of data. The output layer decodes codes in the
hidden layer. The purpose of training an autoencoder is
to obtain network weights so that outputs match inputs
as closely as possible.

The decoding weights do not have to be related to
encoding weights. In figure 1, we use tied weights to
reduce the number of weights, i.e., the decoding matrix
is the transpose of the encoding matrix. At the hidden
layer and the output layer, each node gets its value
from the activation of a weighted sum of inputs from
the previous layer. We used the sigmoid function
1/(1 + e−s) as the activation function in this study.

The hidden layer does not have to be of a smaller
size than the input layer. In order to avoid the learning
of a trivial identity function, regularizing functions can
be added to a loss function to guide the search of
optimal weights. In this study, we used an L2

Page 800

regularizer of network weights and mean squared
errors to construct the loss function (equation 1). In
equation 1, xi's are inputs from a data set, zi's are
corresponding outputs from the network with weight
matrix W, and C is a tradeoff parameter that balances
the effect of mean squared errors and network weights,

i.e. ‖W‖2 = �∑ wij
2

ij . Gradient decent based methods

are used to adjust W iteratively so that loss(W) is as
small as possible.

loss(W) = 1

n
∑ ‖xi − zi‖2n

i=1 + C‖W‖2 (1)

Vincent et al. considered denoising autoencoders to

extract robust features from the original data [10]. To
train a denoising autoencoder, inputs are first corrupted
to simulate noise that may be embedded in the original
data. Then corrupted inputs move forward the network
to produce outputs as usual, and loss is obtained by
comparing uncorrupted inputs with outputs from the
corrupted inputs. Using a binomial distribution, we
randomly set an input node to zero to produce a
corrupted input.

Figure 1. An autoencoder network

2.3. Deep neural networks

After a denoising autoencoder is trained, we can
remove its decoding layer and use its encoding layer to
extract new features from the original inputs. Using
outputs from the encoding layer as new inputs, we can
train the next layer of denoising autoencoder. This
procedure can be continued successively for a few
layers of denoising autoencoders extracting
hierarchical features from the original inputs.
Eventually, we put a supervised layer on top of the last
encoding layer. A typical supervised layer is the
softmax layer where each output node represents the
probability for the occurrence of a class.

When the loss function in equation 1 is measured
by cross entropy instead of mean squared errors, the

softmax layer is equivalent to multinomial logistic
regression in statistics [12]. Due to a neat expression,
most software packages implementing multinomial
logistic regression can optimize the loss function by
using Newton's or quasi-Newton's algorithms.
Newton's algorithms not only consider second
derivatives of the loss function, but also invert a
Hessian matrix. In short, Newton's algorithms take
more efforts to conduct an epoch of training, but may
also need fewer epochs to find the optimal solution. In
the following, we will call multinomial logistic
regression with Newton's or quasi-Newton's
optimization the Logistic classifier. We reserve the
term Softmax classifier for a softmax layer trained with
gradient decent based methods.

A typical DNN is shown in Figure 2, where the
hidden layers (W1, W2, ...) are encoding layers of
successively trained denoising autoencoders, and the
output layer (S) is a softmax layer. The pretraining
stage of a DNN refers to the greedy layer-wise training
step of SdA without the softmax layer, i.e. each
denoising autoencoder is trained individually. The first
denoising autoencoder is trained with the original
inputs, the second autoencoder is trained with the
encoded data from the first autoencoder, and so on.
The fine-training stage of a DNN is to train the entire
network as a whole, but layers of SdA are initialized
with the weights from individually trained
autoencoders. Erhan et al. showed that the
unsupervised pretraining step helped a DNN to
generalize better on test data [11].

A multilayer perceptron (MLP) in this study has the
same network structure as a DNN except that its
hidden layers are not pretrained with SdA. That is,
during training, MLP initializes its weights with
randomly selected numbers. MLP is a powerful
learning tool when many hidden layers are used.
Training MLP with random initial weights may lead to
two problems: optimization and generalization. The
optimization issue refers to the problem that solutions
may be trapped in unwanted local optimal areas, and
the generalization issue refers to the problem that the
trained MLP does not perform well on test data [11].

.....

.....

.....

Input layer

Hidden layer

Output layer

W

WT

Page 801

Figure 2. A deep neural network

2.4. Other classification algorithms

Multinomial logistic regression is a simple two
layer structure where the activation function is the
softmax function in equation 2. Since each node
represents the probability of an output class, cross
entropy (negative log-likelihood) is commonly used for
the loss function. A weight regularizing term may be
added to the loss function as in equation 1. Newton's
algorithms are available to minimize the loss function.

σ(𝐳𝐳)𝑗𝑗 = 𝑒𝑒𝑧𝑧𝑗𝑗

∑ 𝑒𝑒𝑧𝑧𝑘𝑘𝐾𝐾
𝑘𝑘=1

, 𝑗𝑗 = 1,2, … ,𝐾𝐾 (2)

As a powerful ensemble algorithm, random forest

(RF) creates multiple decision trees in the training
stage and aggregates decisions from these trees to
make predictions in the operational stage [13]. Each
decision tree is trained with data sampled with
replacements from the training set. At a decision node,
RF picks the best variable from a random subset of
predictors by using entropy or Gini criterion. Using
multiple decision trees in the operational stage may
prevent the overfitting problem encountered in many
machine learning algorithms.

Support vector machine (SVM) is a popular
classification algorithm based on statistical learning
theory. SVM uses a kernel trick to map inputs into a
high dimensional feature space where data of different
classes may be more easily separated. Commonly used
kernels include radial basis kernels (equations 3) and
polynomial kernels (equation 4). A separating
hyperplane with the maximum margin is sought in the
feature space. With kernel tricks, distances in the
feature space may be easily computed by using the
kernel function and the margin maximization problem

in the feature space is converted to a convex quadratic
programming problem in the input space. SVM is best
suited for binary classification problems where the
maximum margin separating hyperplane can separate
two classes in the feature space. When SVM is applied
to multiclass classification problems, multiple one-
over-rest or one-over-one binary classifiers are trained
to predict outputs of multiple classes.

 K(𝐱𝐱, 𝐳𝐳) = exp(−γ‖𝐱𝐱 − 𝐳𝐳‖2) (3)

 K(𝐱𝐱, 𝐳𝐳) = (𝐱𝐱 ∙ 𝐳𝐳 + c)d (4)

3. Methodology

We describe our experimental scenario to collect
CSI data. Raw inputs are summarized from a window
of CSI data. These inputs are processed with a DNN to
construct a human flow counting system. Network
structure of the DNN is explained next.

3.1. Experimental scenario

In an experimental scenario, groups of one to five
people were asked to walk through a corridor where
two Linux systems were placed by the sides (Figure 3).

Figure 3. Experimental scenario

Systems T and R were Ubuntu systems installed

with the modified IWL network driver from [3]. They
were placed 6 meters apart and 75 centimeters above
the floor. The groups were asked to walk in a row at
about the same pace to pass the line of sight (LoS)
between T and R. System T continuously transmitted
packets with one antenna at the speed of 1000 packets
per second. At the same time, system R received these
packets with three antennas and recorded their CSI
data for later processing. Thus, there were 3
communication channels in this scenario. For each
group size (one to five), 20 walk-throughs were

T

R

Human flow

LoS

.....

.....

...

W1

W2

....

S

Input layer

Hidden layer 1

Hidden layer 1

Hidden layer 2

Output layer

Page 802

conducted, and each walk-through lasted about 8
seconds.

3.2. Input extraction

For each walk-through, we divided the collected

data into 160 non-overlapping windows. Each window
consisted of CSI data from 50 packets (50
milliseconds), and was summarized as follows.

Let zi,j,k denote the CSI absolute value for the ith
receiving antenna, the jth subcarrier and the kth packet,
where i = 1, 2, 3, j = 1, ..., 30 and k = 1, ..., 50. Then
we used mean, standard deviation and five-number
summary to summarize CSI data of these 50 packets.

For each combination of the 3 receiving antennas
and 30 subcarriers, we computed the mean, standard
deviation, first quartile, second quartile (median), third
quartile, minimum and maximum of zi,j,k of the 50
packets in a window. In total, there are 16000 records
equally divided into five classes of flow size. Each
record has 630 inputs and one output. Table 1 lists the
inputs extracted from a window of 50 packets.

Table 1. Inputs extracted from

windowed CSI data (i = 1, ...,3, j=1, ...,30)
Variable Meaning
mui,j Mean of zi,j,k across 50 packets
sdi,j Standard deviation of zi,j,k across 50 packets
fqi,j First quartile of zi,j,k across 50 packets
sqi,j Second quartile of zi,j,k across 50 packets
tqi,j Third quartile of zi,j,k across 50 packets
mini,j Minimum of zi,j,k across 50 packets
maxi,j Maximum of zi,j,k across 50 packets

More specifically, a record in our data set has the

following format: (mu11, sd11, fq11, sq11, tq11, min11, max11 , ...,
mui,j, sdi,j, fqi,j, sqi,j, tqi,j, mini,j, maxi,j, ..., mu3,30, sd3,30, fq3,30,
sq3,30, tq3,30, min3,30, max3,30, class) where the first 630
components are CSI descriptive statistics as in Table 1
and the last component is a class label. In order to
reduce the dimension of raw inputs, we used SdA to
extract hierarchical features.

3.3. Network structures

By a rough rule of halving the inputs and a trial and
error approach, we designed a DNN with three hidden
layers. The first hidden layer had 300 nodes, the
second had 150 nodes, and the third had 60 nodes. On
top of the third hidden layer, we had a softmax layer
with 5 nodes each corresponding to the probability of a
specific flow count. Each hidden layer was the
encoding layer of a denoising autoencoder. These

autoencoders were trained layer by layer as in most
SdA studies. The pretrained weights were used as
initial weights in the fine-training stage of the whole
network including the softmax layer which was
randomly initialized.

Table 2 shows the settings of each hidden layer.
Most of these parameters were obtained via a trial and
error approach or adopted from the default setting of
the used DNN training package. The corruption rate
(noise) was used to randomly set that fraction of input
nodes equal to 0 in denoising autoencoders training.
The penalizing coefficient is the tradeoff coefficient C
in equation 1.

A mini-batch approach was adopted to update
network weights more frequently than the traditional
epoch based network training. For each autoencoder
training, after a batch of 100 records had been
processed, network weights were updated with Adam
gradient based optimization algorithm. Each
autoencoder was trained with 20 epochs. The learning
rate was set to 0.001.

Table 2. Properties of hidden layers

Layer Nodes Characteristics Autoencoder
training

1 300 0.1 corruption rate,
0.01 penalizing
coefficient

20 epochs,
batch size 100

2 150 0.1 corruption rate,
0.01 penalizing
coefficient

20 epochs,
batch size 100

3 60 0.2 corruption rate,
0.01 penalizing
coefficient

20 epochs,
batch size 100

Even with the L2 weight regularization in SdA,

DNN still overfits training data easily. Thus, dropouts
were introduced to each hidden layer. In the fine-
training stage, a fraction of hidden nodes were
randomly marked as nonexistent (dropouts) to prevent
overfitting. On the other hand, every node was used to
predict the class label of a test record in the operational
stage [16]. The dropout rate was 0.2 for hidden layer 1,
and 0.1 for hidden layers 2 and 3.

Cross entropy was used in the fine-training stage to
guide the search of optimal network weights. In
addition, an L2 weight regularizer was added to the loss
function with a penalizing coefficient of 0.01. Adam
optimization algorithm was adopted for 300 epochs of
network training with a batch size of 200.

The above network structure with pretraining will
be denoted as DNN in the following report. Another
neural network with the same structure without
pretraining will be denoted as MLP. MLP used random
numbers to initialize weights of hidden layers.

Page 803

The third network will be denoted as Softmax in
the following report. Softmax has two layers: the input
layer of 630 nodes and the output layer of 5 nodes. The
softmax function (equation 2) was the activation
function of this network. In contrast to Newton's
algorithm in multinomial logistic regression (Logistic),
Softmax was trained with Adam gradient based
optimization algorithm. The batch size and the number
of epochs were the same as those of DNN and MLP.

All three neural networks were modeled and trained
with the open source Tensorflow package from Google
[17]. To minimize the programming efforts, we used
the Keras framework [18] on top of Tensorflow. Inputs
were normalized column-wise so that each predictor
had a maximum value of 1.

3.4. Settings of the other classifiers

RF and Logistic classifiers were implemented with

the Weka software [19]. The RF algorithm was set to
use a forest of 300 decision trees and the number of
randomly selected predictors at a decision node was set
to 10. Regarding the logistic regression in Weka, we
selected a ridge coefficient of 0 and a maximum
iteration number of 300 to train the model. Weka used
a quasi-Newton's method to minimize the loss function.

Since Weka had no built-in support for SVM, we
turned to the scikit-learn python library [20] for SVM
classifiers. Unlike other classifiers in this study, SVM
is inherently a binary classification algorithm, and
scikit-learn uses the one-over-one approach to handle
multiclass classification problems. The following
default settings were used with scikit-learn: radial basis
kernels (equation 3) with regularizing coefficient C=1
and automatic setting of γ.

4. Experimental results and discussions

In this study, we have implemented 6 models to
count human flows with the help of machine learning:
DNN, MLP, Softmax, RF, Logistic and SVM. Before
comparing their efficacy, we first describe how data
analysis was conducted.

4.1. Data analysis procedure

Cross validation (CV) is a powerful tool to assess
classification accuracy in machine learning. For a k-
fold CV, a data set at hand is first partitioned into k
equal parts randomly. One part of the partition is
reserved as the test set while the remaining parts are
combined to form the training set. After a classification
assessment is done with these training and test sets, the
next part of the partition is reserved as the test set

while the remaining parts are combined to form the
training set, and another classification assessment is
conducted. This process of training and test continues
until each part of the partition takes the role of test set
exactly once. Then prediction rates from k assessments
can be averaged to get a final result for this CV.

Obviously, the final result of a CV depends on its
partition of the data set. Thus several runs of k-fold CV
should be conducted to minimize the effect of data
partitioning. Our data set has 16000 records, each with
630 predictors and one class label. We used 5-fold CV
to evaluate the performance of the six models stated
above. In addition, 20 runs of 5-fold CV were
conducted with each run using a specific seed to
initiate the partitioning step. In a training and test step
of the 5-fold CV, there were 12800 training records
and 3200 test records. Using random permutation, we
ensured that each output class (1 to 5) was equally
represented in the training set and the test set.

4.2. Result from RSSI based inputs

In order to appreciate the advantages provided by
fine-grained CSI data in flow counting, we conducted a
rough prediction analysis by using inputs from RSSI.
As the modified driver in [3] also reports the RSSI
value of each communication channel, we gathered 3
such values from our experimental setup. Like the CSI
case, a window of 50 packets was used to summarize
RSSI values in a very short period. The windowed
RSSI values were summarized by the mean, standard
deviation and five-number summary. Instead of 630
predictors, we had 21 predictors from RSSI values of 3
communication channels. A typical run of 5-fold CV
with different algorithms (MLP, Softmax, RF, Logistic,
SVM) yielded a prediction rate from 0.470 to 0.520.
This result is much worse than the following result
from CSI based inputs.

Though the above result seems very unattractive,
we need to note that this is a 5-class prediction
problem. Since each class is equally represented in test
sets, a naive guess with one consistent class label
yields a prediction rate of 0.2. Procedures with random
guesses may yield even lower prediction rates.

4.3. Result from CSI based inputs

Table 3 summarizes prediction rates of the six
models with CSI based inputs in Table 1. The mean
column is the average rate from 20 runs of 5-fold CV.
The Stand. Dev column represents the standard
deviation of these 20 prediction rates, and the Run
Time column indicates the number of seconds used to
run a training and test step of a CV. All analyses were

Page 804

done on a machine equipped with Intel i7-6700 CPU,
16GB of DDR4 memory and NVIDIA GTX 1050 GPU
with 4GB of video ram.

Table 3. Prediction accuracy

 Mean Stand. Dev Run Time
DNN 0.827 0.0027 56 s
MLP 0.817 0.0032 46 s
Softmax 0.709 0.0016 50 s
RF 0.739 0.0016 41 s
Logistic 0.746 0.0019 93 s
SVM 0.780 0.0014 324 s

The run time column shows that SVM had the

longest run time to conduct a training and test step of a
5-fold CV. This could be due to the fact that a large
number of one-over-one binary classifiers needed to be
trained. For a 5-class classification problem, 10 such
classifiers need to be trained.

The Logistic model required the second longest run
time to finish a training and test step of a CV. This can
be expected because Weka implements the loss
optimization procedure with a quasi-Newton's
algorithm, which needs more derivative computations
and inverts many large matrices.

The other models needed about the same time to
finish a training and test step of a CV. The only
unforeseen result was MLP ran faster than Softmax
even though Softmax had a simpler network structure.
This might be due to the dropout layers embedded in
MLP. Dropouts reduce a network structure in the
training stage.

In terms of prediction accuracy, DNN offered the
highest performance among the six models considered
in this study. MLP came next, followed by SVM,
Logistic, RF and Softmax in turns. SVM was still a
powerful classification algorithm except that it took
much longer time than the other models to handle the
data. The Logistic model beats its structurally
equivalent Softmax model without a surprise, because
Weka implements its Logistic regression with a quasi-
Newton's algorithm while the Softmax model uses
gradient decent based methods to optimize its loss
function.

Figure 4. Loss vs. epoch

Figure 5. Accuracy vs. epoch

For the training of three gradient decent based

models (DNN, MLP and Softmax), we plot the loss
value and the accuracy rate epoch by epoch in Figures
4 and 5 respectively. These figures show that (1) the
training procedure converged as more epochs of
training were conducted; (2) the loss function based on
cross entropy faithfully guided the search of optimal
weights. When loss values went down, prediction rates
went up; and (3) the comparison among the three
models was consistent with the final result on test data.

RF was the fastest algorithm among the models
considered in the study. However, its prediction
accuracy was mediocre compared to the other models.
On the other hand, MLP competed neck and neck with
DNN in terms of accuracy and run time.

Is the 1% difference between DNN and MLP
significant? Since all six models ran each of the 20
CVs with the same partition scheme, we conducted a
paired t-test of prediction rates to check the statistical
significance. The result shows that the 2-tail test
statistic has a p-value of 3.46E-10, effectively p =
0.000 in most statistics textbooks. Thus, DNN has a
significantly better performance than MLP. This result
reaffirms Erhan et al.'s claim that pretraining helps a
network's generalization power [11]. The 20 prediction
rates from MLP seem to have a bigger standard

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1 14 27 40 53 66 79 92
10

5
11

8
13

1
14

4
15

7
17

0
18

3
19

6
20

9
22

2
23

5
24

8
26

1
27

4
28

7
30

0

L
o
s
s

Epoch

DNN

MLP

Softmax

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
1

0
0

1
1

1
1

2
2

1
3

3
1

4
4

1
5

5
1

6
6

1
7

7
1

8
8

1
9

9
2

1
0

2
2

1
2

3
2

2
4

3
2

5
4

2
6

5
2

7
6

2
8

7
2

9
8

A
c
c
u
r
a
c
y

Epoch

DNN

MLP

Softmax

Page 805

deviation (0.0032) than that of DNN (0.0027).
However, the Levene's test for equality of variances
does not reject the null hypothesis of equal variances (p
= 0.211), thus this difference in standard deviation is
not statistically significant. That is, we cannot conclude
that DNN is more reliable in computing the prediction
rate.

4.4. Effect of five-number summary

To investigate the effect of five-number summary
on the prediction result, we conducted a second data
analysis without five-number summary from CSI data.
This result may reveal the impact of additional features
summarized from windowed CSI data.

This time, only the mean and standard deviation
were extracted from each window of 50 CSI data. The
five-number summary was not included in the
formation of raw inputs. Each record now has 180
predictors from the combination of 3 communication
channels and 30 subcarriers.

Since the input data had a smaller dimension, we
reduced the network structure accordingly. Instead of
three hidden layers, we used only two hidden layers.
The first hidden layer had 90 nodes and the second
hidden layer had 30 nodes. A softmax layer was placed
on top of the second hidden layer.

Six models were considered as before. The DNN
model initialized its hidden layers with pretrained
weights from SdA. Properties of the SdA are listed in
Table 4. These parameters were chosen based on a trial
and error approach or default values in the adopted
software Keras [18]. The MLP model initialized its
network weights randomly sampled from a uniform
distribution.

Table 4. Properties of hidden layers

Layer Nodes Characteristics Autoencoder
training

1 90 0.1 corruption rate,
0.01 penalizing
coefficient

20 epochs,
batch size 100

2 30 0.1 corruption rate,
0.01 penalizing
coefficient

20 epochs,
batch size 100

In order to prevent overfitting, dropouts were

introduced for hidden layers of DNN and MLP. The
dropout rate was 0.2 for hidden layer 1 and 0.1 for
hidden layer 2. The supervised training of DNN, MLP
and Softmax was conducted with 300 epochs and a
batch size of 100. Settings for the other classifiers were
the same as the previous analysis. Table 5 summarizes
the prediction result of the six models.

Table 5. Prediction result

 Mean Stand. Dev Run Time
DNN 0.759 0.0021 68 s
MLP 0.752 0.0022 62 s
Softmax 0.685 0.0012 47 s
RF 0.721 0.0016 34 s
Logistic 0.786 0.0013 30 s
SVM 0.790 0.0011 56 s

This time, SVM was the champion in terms of

prediction rate. Though 10 one-over-one binary
classifiers were needed, its run time was not much
different from that of the other models. This shows that
when more predictors are used, it takes more time for
SVM to have a convergent quadratic optimization
solution.

Logistic model was the champion in terms of run
time, and its predication performance was just a little
bit worse than that of SVM. DNN was in the third
place regarding prediction accuracy. However, its lead
over MLP was still statistically significant (p = 0.000)
though the absolute lead was only 0.7%.

For this second data analysis, the run time of DNN
and MLP was longer than that of the corresponding
network in the first analysis. This is due to the fact that
we had a finer update schedule in this case (a batch
size of 100 vs. a batch size of 200).

4.5. Discussions

Though both analyses reaffirm Erhan et al.'s claim
that pretraining helps a network's generalization power
[11], the absolute improvement of prediction rate (1%
and 0.7% respectively) looks pretty small compared to
results presented in most machine learning studies. In
[11], Erhan et al. considered the MNIST data set which
had 60000 training data and 10000 test data. Their
results showed that the absolute improvement in
prediction rate was less than 1% when 1 to 4 hidden
layers were used. Thus, this range of improvement
seems more like a norm for evaluations on data sets
with 10000s of records.

By comparing Tables 3 and 5, we also observe the
scalability and robustness of each prediction model in
terms of the number of predictors. Though DNN and
MLP failed to beat Logistic and SVM in the case of
180 predictors, they out-performed the latter in the case
of 630 predictors. The results show that adding five-
number summary to predictors increased prediction
accuracy when right classifiers were used. Our analysis
shows that Logistic and SVM did not scale well and
robustly to the number of predictors. On the other
hands, DNN and MLP scaled well and robustly to the

Page 806

number of predictors. Part of the reason might be due
to the fact that Tensorflow utilized NVIDIA GPU
efficiently, while scikit-learn and Weka did not take
advantages of the GPU.

In the experimental scenario, we only used one
transmitting antenna to transmit packets. IWL allows
the use of three transmitting antennas at the same time.
With five-number summary included in the predictors,
this will create a raw input of 1890 predictors. When
more IWLs are placed in the field to collect CSI data,
for example, two systems can be used to receive
packets sent from a third system, raw inputs of more
predictors will be created. From our experiments, it
seems that DNN is a promising solution to handle large
data sets with many predictors.

Hidden layers visualization may be useful for
understanding the inner working of SdA in the field of
computer vision. SdA was used to extract different
levels of geometric features from the MNIST data set
for the problem of digit recognition [21]. For example,
the first layer may detect edges from raw input images,
the second layer detects simple shapes composed of
edges, and higher layers detect even more abstract
geometric features suitable for automatic digit
recognition. Because our raw data consist of the mean,
standard deviation and five-number summary from
windowed CSI data, it is probably difficult to visualize
motifs discovered in different layers of SdA. This
problem is similar to the construct explanation problem
encountered in factor analysis.

5. Conclusions

Deep learning has revitalized artificial neural
network research in machine learning. A typical DNN
in deep learning has many hidden layers each
pretrained with a denoising autoencoder. Literature has
shown that pretraining can help DNN generalize better
than an MLP without pretraining. The pretraining is
efficient and effective because each autoencoder is
trained individually, thus the bizarre explosion or
vanishing of weights in a back-propagation training of
MLP can be avoided.

We applied DNN to a human flow counting
problem that may have many applications in space
management. Though our data set by no means belongs
to the category of big data, rich inputs extracted from
IEEE 802.11n CSI data may confuse many popular
classification algorithms to learn an efficient model.

Specific to the wireless based flow counting
problem, we observed that CSI predictors yielded a
better performance than RSSI predictors in predicting
flow counts, no matter which classification algorithms
were used to learn the model. This justifies the merits
of fine-grained information embedded in CSI data, and

also explains recent trends of exploiting CSI data in
various indoor applications.

Moving from RSSI to CSI, the number of
predictors increases at least 30 times, because IWL
outputs CSI data for 30 subcarriers. Each CSI entry is
actually a complex number, and we only considered
the modulus part (absolute value) of CSI in this study.
With such fine-grained information of communication
channels, high dimensional inputs provide more
differentiation power for learning algorithms on the
one hand, but produce the curse of dimensionality
problem on the other hand. Traditional approaches to
reduce input dimensions include PCA or hand-crafting
domain specific features. In this study, we used SdA to
automatically craft features useful for our flow
counting model.

Our experiments showed that five-number
summary could improve the flow counting accuracy
when right algorithms were used. Overall, we found
that DNN, an MLP with pretrained hidden layers, and
the 630 predictors summarized from windowed CSI
data in Table 1 provided the best performance.

Though DNN solves the high dimensionality
problem and provides the best performance at the same
time, it comes with several issues that are worthy of
noting. First, many hyper-parameters need to be tuned
properly in order to get a good performance, for
example, the number of layers, nodes per layer,
penalizing coefficients, corruption rates, epochs, batch
sizes, dropout rates and so on. It seems that most
studies today still rely on a trial and error approach to
tune these parameters. Second, DNN inherits the black
box learning characteristics of neural networks, thus it
is difficult to explain the inner working of hidden
layers in many application cases.

In the future, we plan to use the full capacity of
IEEE 802.11n communication channels to capture CSI
data. This will create raw inputs with a very high
dimension. DNN will be carefully examined to
investigate its learning power on such high
dimensional data.

Acknowledgments. This work was supported in part
by a grant from the ministry of science and technology
(Taiwan) under the contract number MOST-105-2632-
E-366-001. The author appreciates constructive
comments from the anonymous reviewers.

6. References

[1] W. Lin, W. Seah, and W. Li, "Exploiting Radio
Irregularity in the Internet of Things for Automated People
Counting", IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications, 2011, 1015-1019.

Page 807

[2] Z. Yang, Z. Zhou, and Y. Liu, "From RSSI to CSI: Indoor
Localization via Channel Response", ACM Computing
Surveys, 2013, 46(2), 25.

[3] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, , "Tool
release: gathering 802.11n traces with channel state
information", ACM SIGCOMM Computer Communication
Review, 2011, 41(1), 53-53.

[4] X. Wang, L. Gao, S. Mao, and S. Pandey, "CSI-based
Fingerprinting for Indoor Localization: a Deep Learning
Approach", IEEE Transactions on Vehicular Technology,
2017, 66(1),763-776.

[5] G. Hinton, and N. Srivastava, "Reducing the
Dimensionality of Data with Neural Networks", Science,
2006, 313, 504-507.

[6] L. Deng, and D. Yu, "Deep Learning: Methods and
Applications", Foundations and Trends in Signal Processing,
2014, 7(3-4), 197-387.

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep
Learning, 2016, MIT Press: Cambridge, MA.

[8] Y. LeCun, Y. Bengio, and G. Hinton, "Deep Learning",
Nature, 2015, 521(7553), 436-444.

[9] A. Malhi, and R. Gao, "PCA-based Feature Selection
Scheme for Machine Defect Classification", IEEE
Transactions on Instrumentation and Measurement, 2004,
53(6), 1517-1525.

[10] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol,
"Extracting and Composing Robust Features with Denoising
Autoencoders", ACM International Conference on Machine
Learning, 2008, 1096-1103.

[11] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, and
P. Vincent, "Why Does Unsupervised Pre-training Help Deep
Learning?", Journal of Machine Learning Research, 2010, 11,
625-660.

[12] S. Le Cessie, and J.C. van Houwelingen, "Ridge
Estimatiors in Logistic Regression", Appl. Statist., 1992,
41(1), 191-201.

[13] L. Breiman, “Random Forests”, Machine Leaning, 2001,
45(1), pp. 5-32.

[14] C. Cortes, and V. Vapnik, "Support-vector Networks"
Machine Learning, 1995, 20(3), 273-297.

[15] J. Zhang, B. Wei, W. Hum, and S. Kanhere, "WiFi-ID:
Human Identification Using WiFi Signal", IEEE
International Conference on Distributed Computing in Sensor
Systems, 2016, 75-81.

[16] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, "Dropout: A Simple Way to Prevent
Neural Networks from Overfitting", Journal of Machine
Learning Research, 2015, 15, 1929-1958.

[17] M. Abadi, and et al., "TensorFlow: Large-scale Machine
Learning on Heterogeneous Systems", 2015, Software
available from tensorflow.org.

[18] F. Chollet, "Keras", GitHub,
https://github.com/fchollet/keras

[19] E. Frank, M.A. Hall, and I.H. Witten, The WEKA
Workbench. Online Appendix for "Data Mining: Practical
Machine Learning Tools and Techniques", 2016, Morgan
Kaufmann, Fourth Edition.

[20] F. Pedregosa, and et al., "Scikit-learn: Machine Learning
in Python", Journal of Machine Learning Research, 2011, 12,
2825-2830.

[21] D. Erhan, Y. Bengio, A. Courville, and P. Vincent,
"Visualizing Higher-Layer Features o a Deep Network",
University of Montreal, 2009, 1341, 3.

Page 808

