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What is this work about?

➡ The regular tree is the worst-case graph for an 
appropriate notion of spatial decay of correlations 
(Strong Spatial Mixing).

➡ New efficient algorithm for approximating marginals 
(and hence the partition function) in the regime 
where the regular tree exhibits SSM.

Strong application: hard-core model (independent sets).

Novel exact tree representation for the marginal
probability at a vertex in any binary spin system.



Count/sample weighted independent sets of a graph G.

Weights are determined by an activity parameter   :  

The Hard-Core Model
(Independent Sets)

- Occupied vertex

- Unoccupied vertex

w(I) = λ
|I|

λ
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Computational Problem

Aim:        -approximation of the partition function -

  Equivalently: approximately sample independent sets

  where Pr(I) = λ
|I|/ Z.

(1 + ǫ)
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Computational Problem

Aim:        -approximation of the partition function -

  Equivalently: approximately sample independent sets

  where

Intuitively, the problem becomes harder as   grows.

(Sampling with large   will output a maximum ind. set.)

Pr(I) = λ
|I|/ Z.

(1 + ǫ)

Z ≡ Z
λ

G =

∑

I

λ
|I|

λ

λ



Known bounds

NP-hard to approximate Z within a polynomial factor 
for: max degree    and          , where c is a (large 
enough) constant. [Luby-Vigoda]
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Known bounds

NP-hard to approximate Z within a polynomial factor 
for: max degree    and          , where c is a (large 
enough) constant. [Luby-Vigoda]

FPRAS exists for (based on the Glauber dynamics) -

   easy:            (Dobrushin’s uniqueness condition) 

   best:            [Dyer-Greenhill, Vigoda]

Finding out exact constants is important -

  most interesting graphs are low dimensional lattices.
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Combinatorial Problem

For what values of   is the ‘Gibbs’ measure unique?

uniqueness of Gibbs measure:

v v

λ

|Pr(v is occupied | σℓ) − Pr(v is occupied | τℓ)| →

ℓ→∞

0

ℓ ℓ



Uniqueness for
 General Graphs

For what values of   is there a decaying rate

such that for every graph G of maximum degree

and every        

                            ?

λ δ(ℓ) →
ℓ→∞

0

∆

v ∈ G,

|Pr(v is occupied | σℓ) − Pr(v is occupied | τℓ)| ≤ δ(ℓ)



Known Bounds

Gibbs measure is unique on all graphs of maximum 

degree    for             [Vigoda]

Same bound as the algorithmic one; 
uses essentially the same argument. 
(Part of a general correspondence 
between computational complexity 
and decay of correlations in the 

Gibbs distribution.)

λ <
2
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Known Bounds

Gibbs measure is unique on all graphs of maximum 

degree    for             [Vigoda]

On the   -regular tree, Gibbs measure is unique

if and only if λ ≤ λc =

(∆−1)∆−1

(∆−2)∆

(

≥
e

∆−2

)

.

λ <
2

∆−2
.∆

∆

λc .

Algorithmic implications: although it is easy to count 

independent sets of the tree for arbitrary            

arguments that imply uniqueness are bound to fail 

above

λ,



Known Bounds

Gibbs measure is unique on all graphs of maximum 

degree    for             [Vigoda]

On the   -regular tree, Gibbs measure is unique

if and only if

Conjecture [Sokal]: the tree is the worst case -

         uniqueness on all graphs for  λ ≤ λc.
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Main Result
Theorem:  Fix   and    For a general graph G of 

maximum degree    consider the influence of placing 

conditions at any given distance. This influence is 

maximized by taking G to be the regular tree.
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Main Result
Theorem:  Fix   and    For a general graph G of 

maximum degree    consider the influence of placing 

conditions at any given distance. This influence is 

maximized by taking G to be the regular tree.

Corollary:  The Gibbs measure is unique for all graphs 

of maximum degree    and 

∆ λ.

∆,

∆ λ ≤ λc =

(∆−1)∆−1

(∆−2)∆
.



Algorithmic Implications

(⇒ FPRAS)

Corollary:  For all graphs of ’sub-exponential growth’ 
and         the Glauber dynamics is rapidly mixing. λ < λc

New algorithm: fix   and         deterministic      
     -approximation for any graph of max 
degree   in time
(degree of poly depends on   and  .)

λ < λc;

λ

poly(n, 1/ǫ).

(1+ǫ)

∆

∆

∆



Interesting Specific Cases 

Uniformly weighted independent sets 

New: efficient approximation scheme for

Previous bound is

Believed to be hard for

First deterministic approx scheme for #P-complete problem.

(λ = 1) :

∆ ≤ 4 .

∆ ≥ 6 .

∆ ≤ 5 .



Interesting Specific Cases 

Uniformly weighted independent sets 

New: efficient approximation scheme for

Previous bound is

Believed to be hard for

First deterministic approx scheme for #P-complete problem.

The sqaure lattice

Believed to have a critical activity at 

Previously best known lower bound: 1.25 {1.45}  (site-perc.)

New bound: 1.6875 .

(λ = 1) :

∆ ≤ 4 .

∆ ≥ 6 .

∼ 3.79 .

Z
2
:

∆ ≤ 5 .



Proof of Main Theorem 

Theorem:  Fix   and    For a general graph G of 

maximum degree    consider the influence of placing 

conditions at any given distance. This influence is 

maximized by taking G to be the regular tree.

Part 1:  prove the theorem when G is a general 

(irregular) tree.

In other words: on the regular tree SSM holds all 

the way up to the uniqueness threshold.

∆ λ.

∆,



Tree Representation for 
General Graphs 

Theorem:  For every graph G and vertex        there 

exists a tree          of the same maximum degree 

such that

T (G, v)

v ∈ G

Pr
G

(v is occupied) = Pr
T (G,v)

(root is occupied).



Tree Representation for 
General Graphs 

Theorem:  For every graph G and vertex        there 

exists a tree          of the same maximum degree 

such that

Furthermore, the correspondence (with the same 

tree) continues to hold when placing a condition on G   

(and a corresponding condition on         ).

T (G, v)

v ∈ G

T (G, v)

Pr
G

(v is occupied | σℓ) = Pr
T (G,v)

(root is occupied | σ̂ℓ).



Construction of 
Similar to the tree of self-avoiding walks originating at v:
order the neighbors of each vertex;
construct the tree of paths originating at v;
vertices that close cycles are fixed to be occupied or 
unoccupied (determined by the above ordering).
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Construction of 

Condition on         Condition on 

T (G, v)

G T (G, v)
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Calculating Pr(occupation)

Notation:  

Basic: when connection two separate graphs -

Standard recursive procedure for trees:

  Stopping rules -
 fixed vertices: 
 (unfixed) leaves:

v u

RG,v = RG1,v ·

1

1 + RG2,u

RT = λ

d
∏

i=1

(

1

1 + RTi

)

R =∞ or 0;

R = λ.

G

R
σ

G,v =
PrG(v is occupied | σ)

PrG(v is unoccupied | σ)
.



Calculating   

Split v into deg(v) degree-one vertices:

   associate the activity      with each

G G′

RG,v

v v1 v2 v3

λ
1/d

vi.



Split v into deg(v) degree-one vertices:

   associate the activity      with each

Observation:

Calculating   

G G′

RG,v

v v1 v2 v3

λ
1/d

vi.

RG,v =
PrG(v is occupied)

PrG(v is unoccupied)
=

PrG′(all vi are occupied)

PrG′(all vi are unoccupied)
.



Telescopic Product   

G G′
v v1 v2 v3

PrG′(all vi are occupied)

PrG′(all vi are unoccupied)
=

d∏

i=1

Pr( )

Pr( )

vi



Conditional Probabilities

G G′
v v1 v2 v3

PrG′(all vi are occupied)

PrG′(all vi are unoccupied)
=

d∏

i=1

Pr( )

Pr( )

=

d∏

i=1

R
τi

G′,vi
.

vi

τi



It’s all about the Neighbors 

vi

ui

R
τi

G′,vi
=

λ
1/d

1 + R
τi

(G′\vi),ui



Recursive Procedure for
     Calculating   

G
G′ \ vi

RG,v

v

ui ui

R
τi

G′,vi
=

λ
1/d

1 + R
τi

(G′\vi),ui

⇓

RG,v = λ

d∏

i=1

1

1 + R
τi

(G′\vi),ui



The procedure for calculating      makes 
exactly the same calculations as the tree 
procedure for calculating  

RG,v = RT (G,v)

RG,v

RT (G,v).

T (G, v)
v

G
v

ui

G′ \ vi

ui

RG,v = λ

d∏

i=1

1

1 + R
τi

(G′\vi),ui

RT = λ

d∏

i=1

1

1 + RTi

Ti

ui



Approximation Algorithm

v G T (G, v)

ℓ

Run the previous recursive procedure, but if the 

stack of the recursion is   levels deep return 

trivial lower and upper bounds.

ℓ



Approximation Algorithm

Run the previous recursive procedure, but if the 

stack of the recursion is   levels deep return 

trivial lower and upper bounds.

Running time is 

For          the difference between the resulting 

lower and upper bounds is

           -approximation for

     in time 

O((∆− 1)ℓ).

λ < λc

poly(1/ǫ).

Pr(v is occupied)

≤ exp(−ℓ).

⇒ (1+ǫ)

ℓ



Summary

New Tree representation for general graphs.

Proves that the tree is the “worst-case”.

New tree-like algorithm for approximately counting 
independent sets (works up to the tree threshold).

Improved bounds for specific interesting settings:
Uniformly weighted independent sets with 

The square lattice  Z2
.

∆ ≤ 5 .



Open Problems

1. Tree representation is valid for any binary spin 
system (i.e., Ising models). Is there a tree 
representation for models with more than two spins 
(e.g., proper colorings) ?

[Gamarnik-Katz, Nair-Tetali]: Tree-like algorithms 
(branching depends on spins as well, no direct 
comparison with model on the tree, require 
stronger and unnatural forms of decay of 
correlations).

Negative result [Sly]: tree is not worst case for 
uniqueness.



Open Problems

2. Improve the hardness threshold for approximately 
counting independent sets.

[Mossel-W-Wormald]: Conjecture that    is the 
threshold for the computational probelm. Provide 
evedince that approximation is hard above   .

3. More efficient variants of the algorithm (iterative?)

4. Solve other problems using the tree representation:
Spin glass Ising on 
SSM down to    for Ising on    for d>2.

λc

λc

Z
d
.

Tc Z
d
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