
Counting Models using Connected Components

Roberto J. Bayardo Jr.
IBM Almaden Research Center

bayardo@alum.mit.edu
http://www.almaden.ibm.com/cs/people/bayardo

J. D. Pehoushek
M.U.S.T. Centre

danpeh@yahoo.com

From: AAAI-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.
 Abstract

Recent work by Birnbaum & Lozinskii [1999] demonstrated
that a clever yet simple extension of the well-known Davis-
Putnam procedure for solving instances of propositional
satisfiability yields an efficient scheme for counting the
number of satisfying assignments (models). We present a new
extension, based on recursively identifying connected
constraint-graph components, that substantially improves
counting performance on random 3-SAT instances as well as
benchmark instances from the SATLIB and Beijing suites. In
addition, from a structure-based perspective of worst-case
complexity, while polynomial time satisfiability checking is
known to require only a backtrack search algorithm enhanced
with nogood learning, we show that polynomial time
counting using backtrack search requires an additional
enhancement: good learning.

Introduction
Many practical problems from a variety of domains, most
notably planning [Kautz & Selman 1996], have been effi-
ciently solved by formulating them as instances of proposi-
tional satisfiability (SAT) and applying any of a number of
freely available SAT algorithms. The problem of counting
the number of models of a propositional formula (#SAT)
has also been shown to have numerous applications [Roth
1996], though fast algorithms for this problem are not yet
widely available. A recent paper by Birnbaum and Lozin-
skii [1999] may help change this situation, since it demon-
strates that the Davis-Putnam (DP) algorithm [Davis et al.
1962] (for which freely available implementations are com-
monplace) can be straightforwardly extended to count mod-
els by identifying when subproblems contain no unsatisfied
clauses; they call the resulting algorithm CDP.

In this paper, we describe an alternative modification of
Davis-Putnam for more efficient model counting. We show
that our approach yields the most significant improvements
over CDP (orders of magnitude) on real world instances
with many solutions, though we also witness large improve-
ments on artificial instances such as those from the random
3-SAT problem space.

The basic idea behind our approach is as follows: by
identifying connected components in the constraint graph of
a SAT instance, the number of models can be determined by
multiplying together the number of models of each sub-
problem corresponding to a connected component. This is a
straightforward consequence of the fact that each subprob-
lem corresponding to a connected component is completely
Copyright 2000, American Association for Artificial Intelligence
(www.aaa.org). All rights reserved.
independent of the others. We apply this idea recursively as
Davis-Putnam builds a partial satisfying assignment.

The idea of recursively exploiting connected components
in solving instances of SAT or the more general constraint
satisfaction problem is not entirely new [Freuder & Quinn
1985; Bayardo & Miranker 1995]. In these formulations,
however, connected components are identified using the full
constraint graph, prior to attempting any solution of the
instance. While this method is well-suited for obtaining
worst-case complexity bounds for determining satisfiability
given structure restricted instances, it offers few opportuni-
ties for good average-case performance when the initial
constraint graph is dense, as is often the case with SAT (due
to the typical abundance of non-binary constraints).

In contrast, our algorithm exploits components dynami-
cally within a Davis-Putnam procedure. The Davis-Putnam
procedure attempts to extend a partial solution of the input
instance into a full solution. With each new extension, sev-
eral clauses may be satisfied, and the constraint graph sim-
plifies dynamically in a manner dependent upon the current
variable assignments. By applying component identification
dynamically, our algorithm is able to fully exploit this sim-
plified structure. The advantage of this dynamic decomposi-
tion technique over static decomposition schemes is
analogous to that of dynamic over static variable ordering.

The idea of dynamic component detection and exploita-
tion has been proposed before by Rymon [1994], though
within a set-enumeration tree search algorithm for identify-
ing prime implicants of a propositional formula. To our
knowledge, the technique has not been previously applied
within a Davis-Putnam algorithm for the purpose of model
counting. We note, however, that non-chronological back-
tracking schemes such as CBJ [Prosser 1993] and graph-
based backjumping [Dechter 1987] effectively exploit com-
ponent structure while backing up from a contradiction/
dead-end.

Our primary contribution, then, is the demonstration that
the dynamic detection and exploitation of connected com-
ponents within a Davis-Putnam procedure is an efficient
technique for model counting across a wide range of SAT
instances. We also discuss how to optimize the technique
for instances containing a mixture of both over and under-
constrained subproblems (such instances are common in the
real world). Our implementation is an extension of the relsat
algorithm from Bayardo & Schrag [1997], and it appears in
the relsat v2.00 release available from the web page of the
first author.

re

.

ry
e

ity
 o

a
m
a

ub
o-
he
a-

e
-

.
,

e,

ri-

la
les

y in
ng
then
tial
nd
es
ce-
be
ns

a

e
uth

g
s in
-

b-

g-
ing
me
ng
the
n-

ely.
o

In addition to the experimental contributions above, we
look at the complexity of counting models in the presence
of structure-restricted instances of the constraint-satisfac-
tion problem (of which SAT is a simple restriction). Even
though we find that model counting with a backtrack search
algorithm can be significantly harder than satisfiability
checking in practice, we show that with proper learning
enhancements of the backtracking algorithm, satisfiability
and model counting have equivalent worst-case runtime.
However, while determining satisfiability in polynomial
time requires only that a backtrack algorithm be enhanced
with the ability to record nogoods, we show this is not suffi-
cient for polynomial-time counting. In addition to the abil-
ity to record nogoods, polynomial time counting requires
that goods be recorded as well. We discuss implementation
difficulties which must be addressed before good learning
can be applied efficiently in practice.

Definitions
A propositional logic variable ranges over the domain

. An assignment is a mapping of these values
to variables. A literal is the occurrence of a variable, e.g. ,
or its negation, e.g. ; a positive literal is satisfied
when the variable is assigned true, and a negative literal

 is satisfied when is assigned false. A clause is a sim-
ple disjunction of literals, e.g. ; a clause is sat-
isfied when one or more of its literals is satisfied. A unit
clause contains exactly one variable, and a binary clause
contains exactly two. The empty clause signals a con-
tradiction (seen in the interpretation, “choose one or mo
literals to be true from among none”). A conjunctive nor-
mal formula (CNF) is a conjunction of clauses (e.g

); a CNF is satisfied if all of its
clauses are satisfied.

A model of a CNF is an assignment mentioning eve
variable in the CNF that satisfies every clause. For a giv
CNF, we consider the problems of determining satisfiabil
(determining if a model exists) and counting the number
models of the instance (SAT and #SAT respectively).

The constraint graph of a SAT instance is obtained by
representing each variable with a node, and imposing
edge between any pair of variables appearing in the sa
clause. A connected component of a graph is a maxim
subgraph such that for every pair of nodes , in the s
graph, there is a path from to . All connected comp
nents of a graph can be easily identified in linear time in t
size of the graph () using a simple depth-first tr
versal [Melhorn 1984].

Basic Algorithm Description
Before describing our algorithm, we first introduce th
counting Davis-Putnam proof procedure (CDP) of Birn
baum & Lozinskii, which appears in the following figure
The algorithm maintains a satisfying truth assignment
which is empty upon initial top-level entry to the recursiv

true false,{ }
x

x¬ x
x

x¬ x
x y z¬∨ ∨()

 ()

a b∨() x y z¬∨ ∨()∧

u v
u v

O n m+()

σ

n

f

n
e
l
-

call-by-value procedure. It also accepts the number of va
ables present in the initial formula, .

CDP exploits the fact that when all clauses in the formu
are satisfied by the partial assignment, then any variab
remaining unassigned can be assigned a value arbitraril
order to obtain a solution. Thus, if there are remaini
unassigned variables once all clauses become satisfied,
there are unique models that include the given par
assignment, so CDP immediately returns . This step a
the omission of the pure literal rule are the only differenc
between CPD and the classic Davis-Putnam proof pro
dure (DP). The pure literal rule is omitted since it cannot
used when counting models or enumerating all solutio
without potentially compromising completeness.

Like any good implementation of DP, CDP employs
heuristic driven branch-selection function, SELECT-
BRANCH-VARIABLE. It also performs unit-propagation
(UNIT-PROPAGATE) to immediately assign variables that ar
mentioned in some unary clause. The CNF and the tr
assignment are modified in calls to UNIT-PROPAGATE.
This function adds the single literal from a unit clause
to the literal set , then it simplifies the CNF by removin
any clauses in which occurs, and shortens any clause
which occurs through resolution. After unit propaga
tion, if contains a contradiction, then the current su
problem has no models and backtracking is necessary.

Our procedure, which we call DDP for Decomposin
Davis-Putnam, appears in the pseudo-code on the follow
page. Like CDP, DDP is based on DP, employing the sa
unit propagation and branch selection functions. Followi
each full unit propagation step, the constraint graph of
resulting simplified formula is constructed and its co
nected components identified.1 Each subproblem corre-
sponding to a component is then attempted recursiv
Their solution counts are finally multiplied together t
obtain the solution count for the given formula.

1. Our implementation actually determines the component struc-
ture lazily while backtracking instead of eagerly before branch
selection. Though the effect in terms of search space explored
is the same, this implementation detail simplifies some of the
remaining optimizations, and also prevents component detec-
tion overhead from reducing performance on unsatisfiable
instances.

n

if in then return 0
if then return

return +

CDP F σ n, ,()
UNIT-PROPAGATE F σ,()

 () F
F ∅= 2n σ–

α SELECT-BRANCH-VARIABLE F()←
CDP F α(){ }∪ σ α{ } n,∪,()
CDP F α¬(){ }∪ σ α¬{ } n,∪,()

i

2i

2i

F
σ

λ ω
σ

λ
λ¬

F

while (exists in where)
UNIT-PROPAGATE F σ,()

ω F ω λ()=
σ σ λ{ }∪←
F SIMPLIFY F()←

rly
n-
ro
re
to
 is
ed
e
sa
o
a

the
u
fi-
 is
oid
tat
-
n

es
p-
 b
n

or
th
o

firs
se

ing
c

’s
a

e
le

o

of
e
ry

ves
ce
ing

ry
le
nt.
ir

 6
 is
se
th

al

P
go-
of
fi-

c-
tain
ble

that
his
h
of

e
 in
).
 is
ng
e

his

les
tics
ic
al
es
nt

m,
lec-
 to

on
es,

-

Optimizations
One modification of “plain vanilla” DDP which can pro-

vide substantial performance improvements, particula
for instances with a mixture of both under and over-co
strained subproblems, is to attempt the component subp
lems of in a carefully determined order. The idea he
exploits the fact that if any subproblem of turns out
have no solutions, then the overall model count for
inevitably zero. Thus, by attempting the most-constrain
subproblems first, we often avoid futile counting within th
under-constrained subproblems in the presence of an un
isfiable subproblem. Note, however, that such ordering
subproblems is heuristic; there is always a chance we m
inadvertently place an unsatisfiable subproblem last in
ordering. To reduce the impact of such a mistake, o
implementation of DDP first attempts to determine satis
ability of each subproblem. Only when each subproblem
determined satisfiable does model counting begin. To av
redundant searching, model counting begins from the s
where satisfiability checking left off. Note that this modifi
cation also allows DDP to return a single satisfying assig
ment should one exist, in addition to the solution count.

To further avoid futile search, our implementation solv
subproblems in an interleaved fashion, dynamically jum
ing to another subproblem if the current one turns out to
less constrained than initially estimated. This modificatio
is not describable in the recursive pseudo-code framew
used to define DDP above, which implements a strict dep
first search of the developing tree of connected comp
nents. This enhancement instead results in a best-
search of the developing component tree. The scores u
in this best-first search can be obtained by simply reus
the scores typically provided by the branch-variable sele
tion heuristic -- in our implementation, a subproblem
score is given by the score assigned to its best branch v
able.

Another approach for improving performance is to fus
the counting methods of both CDP and DDP into a sing
algorithm: the resulting algorithm is nearly identical t
DDP, except like CDP, it accepts the number of variables
and returns when the formula is empty in place
simply returning 1 when all variables have been assign
values. Comparing this enhanced algorithm to DDP, eve

if in then return 0
if all variables are assigned a value then return 1
Identify independent subproblems
 corresponding to connected components of .
for each subproblem , do

 +

return

DDP F σ,()
UNIT-PROPAGATE F σ,()

 () F

F1…Fj
F

Fi i 1…j=
α SELECT-BRANCH-VARIABLE Fi()←
ci DDP Fi α(){ }∪ σ α{ }∪,()←

DDP Fi α¬(){ }∪ σ α¬{ }∪,()
ci

i 1…j=
∏

F
F

F

n
2n σ–
b-

t-
f
y

r

e

-

e

k
-
-
t
d

-

ri-

d

time the formula turns up empty, this enhancement sa
 recursive calls to the top-level procedure sin

there are connected components, one correspond
to each unassigned variable.

Similar to the above idea, we can invoke an arbitra
algorithm in place of CDP/DDP when is of a suitab
size or structure for obtaining a more efficient model cou
This technique was used by Birnbaum & Lozinskii in the
implementation of CDP: when contains fewer than
clauses, they invoke an algorithm of Lozinskii [1992] that
more efficient at handling these small formulas. Becau
these “small-model” enhancements apply equally to bo
algorithms, we did not exploit them in the experiment
comparison described in the following section.

Experimental Comparison
In this section, we experimentally compare CDP and DD
on a wide variety of instances. We implemented these al
rithms by modifying and extending the relsat algorithm
Bayardo & Schrag [1997]. Relsat is a Davis-Putnam satis
ability checker that also infers additional clauses (nogoods)
as search progresses and performs conflict-directed back-
jumping [Prosser 1993] to better recover from contradi
tion. The clauses added by relsat explain when a cer
sub-assignment of the instance results in an unsatisfia
subproblem. The additional clauses are redundant in
they do not affect the solution count of the instance. T
implies that by ignoring them during constraint-grap
decomposition, they do not compromise correctness
DDP.

Relsat allows one to specify the “order” of learning to b
applied, corresponding to the degree of the polynomial
its space complexity (resulting from clause inference
Unless otherwise noted, we used a setting of 3 which
known to be useful for many instances when determini
satisfiability [Bayardo & Schrag 1997]. We discuss th
effect of this setting on the various instances later in t
section.

Due to the high overhead of scoring branch variab
(relsat uses expensive unit-propagation based heuris
[Freeman 1995]), code profiling revealed that dynam
component detection was an almost negligible addition
expense for the algorithm. For this reason, we sometim
report performance only in terms of the CPU-independe
metric of branch selections performed by the algorith
rather than seconds elapsed. The number of branch se
tions corresponds to the number of recursive calls made
each procedure, and correlates highly with runtime
instances from the same class. When we do report runtim
they are for a 400 Mhz Pentium-II IBM IntelliStation M
Pro running Windows NT 4.0.

2 n σ–()
n σ–

F

F

e
D
P

ys
ub
it

rge
://
n

te

ri-
aph-
tic
ed
 was

e.
he
/
or
es
 the
oi4,
ite,

-
ure

 at
u-

gh
 of
se
nd
er

nt
nt
).
n

ces
tly
re
led
es

ne

For our first experiment, we ran CDP and DDP on the
same set of 50-variable instances from the uniform random
3-SAT problem space. To generate an instance from this
problem space, three distinct variables are uniform-ran-
domly selected out of the pool of possible variables.
Each variable is negated with probability . These liter-
als are combined to form a clause. clauses are created in
this manner and conjoined to form the 3-CNF Boolean
expression.

We generated 100 instances at every C/V (clause/vari-
able) point plotted along the axis of the figure above, for
a total of 5000 instances. The axis plots the median num-
ber of branch selections, corresponding to the number of
recursive calls of the procedure. Corroborating the results
of Birnbaum and Lozinskii, we found that the hardness
peak for CDP is around 1.2 C/V. We found the hardness
peak resulted in a median of ~26 million branch selections,
versus ~16 million determined by Birnbaum and Lozinskii.
This discrepancy is most likely explained by the lack of
small-model enhancements in our implementation.

Surprisingly, DDP does not appear to have an identical
hardness peak. DDP instead peaks at approximately 1.5 C/
V, with a median of ~8 million branch selections. Unlike
the hardness peak for satisfiability, which consistently
arises at approximately 4.26 C/V [Crawford & Auton
1996], the hardness peak for model counting may well be
more algorithm dependent.

Though somewhat obscured by the logarithmic scale of
the axis, at CDP’s hardness peak, DDP is over 3 tim
faster. Note that as the C/V ratio increases beyond 2.5, C
gains a slight edge over DDP. We found that the fused DD
CDP algorithm described in the previous section alwa
performs better than either one alone, but never by a s
stantial amount. We omit its curve from the plot since
obscures the detail of the others.

DDP appears to be much more advantageous on la
instances we obtained from the SATLIB repository (http
aida.intellektik.informatik.tu-darmstadt.de/~hoos). We ra
DDP and CDP on all 100 instances in the “flat200-*” sui

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

B
r
a
n
c
h
e
s

(
s
e
c
)

Clauses / Variables

ddp
cdp

n
1 2⁄

m

x
y

y
 s
P
/

-

r

of graph coloring problems, each consisting of 600 va
ables and 2237 clauses. These instances are artificial gr
coloring instances which are hard for the Brelaz heuris
[Hogg 1996]. For DDP, an instance from this class requir
27 seconds and 11,645 branch points on average. CDP
unable to determine a model count for any of these
instances within the cutoff time of 15 minutes per instanc

We systematically went through the remainder of t
SATLIB and beijing suite (available at http://www.cirl.edu
crawford/beijing) of benchmark instances, picking out f
experimentation those obtained from “real world” sourc
such as planning and circuit analysis. Several, such as
ais-* class of instances, the blocksworld instances, han
and the 4blocks* and 3blocks instances from beijing su
were not significantly easier for CDP or DDP than a com
plete enumeration of the solution space by DP with the p
literal rule disabled (called enumerating DP). This was
because the number of solutions was relatively small --
most a few hundred or thousand -- making efficient en
meration possible.

Many of the remaining satisfiable instances, thou
known to be easy when determining satisfiability instead
counting models, were too hard for either algorithm. The
instances include logistics.c, logistics.d, 2bitadd_11 a
2bitadd_12. All resulted in timeout after the one hour p
instance execution time limit was reached.

We found several instances for which the model cou
was efficiently determined by DDP even though the cou
was much too large for enumerating DP (see Table 12

CDP failed to determine a solution count within 1 hour o
any of them. Indeed, we were unable to find any instan
among the benchmark suites for which CDP significan
outperforms enumerating DP. We note that given mo
computational power, it is possible some would be revea
by examining more of the randomly generated instanc
and/or increasing cutoff time substantially beyond o
hour.

2. Though counts are rounded in the table, our implementation
computes them exactly using a bignum package in order to
avoid rounding errors which could result from using a floating
point representation.

TABLE 1. Performance of and number of models computed by
DDP on several “real world” benchmark instances for which
model counts could be determined within 1 hour.

instance branch sec count
2bitmax_6 6.2 mil 247 2.1e29
2bitcomp_5 237,379 9 9.8e15
logistics.a 151,265 24 3.8e14
logistics.b 5.3 mil 923 2.4e23
ssa7552-038 105,030 123 2.8e37
ssa7552-158 20,107 21 2.6e31
ssa7552-159 39,980 42 7.7e33
ssa7552-160 34,146 40 7.5e32

”,
b-
a-
nd
o-

ity

en,
rch
-
ns
lt.
nds
tatic
ies
lly

g
ods
of
 of
as
rch
for
o
g

it

es-
ly-

on-
the
isfi-
of
l

 of
ng
of
int
any

of
se-
ns
n

Effects of Learning
We repeated the experiments from Table 1 with a learn
order of 0 to disable the recording of additional clauses by
the algorithms during search. In almost every case, this did
not substantially alter performance. The only exceptions
were logistics.a which went from 24 seconds of CPU time
to over 15 minutes, and logistics.b, which resulted in time-
out after one hour. The fact that learning often has no effect
is not unexpected, since it is activated only in the presence
of unsatisfiable subproblems. Instances which have a large
number of solutions, like those in Table 1, tend to have only
few such subproblems, and these are identified early on by
the ordering optimizations that prevent futile counting
when unsatisfiable subproblems are present.

Complexity Related Issues
In [Bayardo & Miranker 1996], the constraint-graph of a
constraint satisfaction problem (CSP -- of which SAT is a
restriction) is recursively decomposed to form a rooted-tree
arrangement (see figure above) on which a backtracking
algorithm similar to DDP is applied. By definition of a
rooted-tree arrangement, two variables in different branches
belong to different connected components when their com-
mon ancestors are assigned values.

The important differences between this algorithm and
DDP are the decomposition is done statically before back-
track search instead of dynamically, and the algorithm
attempts only to determine satisfiability instead of the num-
ber of models. They use this framework to define several
graph-based parameters that can be used to bound the num-
ber of times each subproblem is attempted by the algorithm
when different degrees and styles of learning are applied.
These parameters lead to overall bounds on runtime which
match the best-known structure-derived runtime bounds.

The key idea to the bounding technique is the realization
that the assignment of variables within the defining set of a
subproblem (the set of ancestors that are connected to at
least one subproblem variable in the constraint graph)
determines whether the subproblem is satisfiable. For
example, the defining set of the subproblem rooted at in

A graph and a rooted-tree arrangement of the graph.

x1

x2

x3

x9x8

x10

x4

x5

x6
x7

x1

x2

x3

x9

x8

x10

x4

x5 x7

x6

x4
the example arrangement consists of alone. By record-
ing the defining set assignment as a nogood or a good each
time a subproblem is found to be unsatisfiable or satisfiable
respectively, the number of times each subproblem is
attempted can be bounded by the number of unique defin-
ing set assignments.

This algorithm can be easily modified to count solutions
with identical bounds on runtime since equivalent assign-
ments of the defining set must clearly lead to an equivalent
number of solutions to the subproblem. Instead of recording
whether a defining set assignment is “good” or “nogood
the idea is to pair the solution count of the given subpro
lem with its defining set assignment. With such a modific
tion, subproblem counts can then be combined a
propagated exactly as done by DDP, allowing the alg
rithms to determine a model count instead of satisfiabil
with equivalent space and runtime complexity.

From a structure-based complexity perspective, th
counting models with learning-enhanced backtrack sea
is no more difficult than determining satisfiability. In prac
tice, however, our experiments from the previous sectio
reveal that counting models is often much more difficu
This is possibly due to the fact that structure-based bou
on runtime are rather conservative; they are based on s
constraint-graph analysis, unable to account for efficienc
resulting from dynamic variable ordering and dynamica
simplifying constraint graph structure.

Another cause of the difficulty we witnessed in countin
may be due to the fact that relsat does not record go
(defining set assignments for which the solution count
the subproblem is greater than zero), the importance
which is indicated by complexity results. Previous work h
shown that recording only nogoods during backtrack sea
leads to effective structure based bounds on runtime
determining satisfiability [Frost & Dechter 1994]. Bayard
& Miranker [1996] demonstrated that while good recordin
improves runtime complexity of satisfiability checking,
does so by reducing only the base of the exponent.

When counting models, good learning is in fact a nec
sary enhancement of backtrack search for achieving po
nomial time complexity given certain variable
arrangements. One simple example is a CSP whose c
straint graph is a chain. If we arrange the variables in
order they appear along the chain, then determining sat
ability using a nogood learning backtrack algorithm is
quadratic complexity [Bayardo & Miranker 1994]. Mode
counting, however, would be exponential in the number
variables if the constraints are sufficiently loose. Recordi
of goods in addition to nogoods brings the complexity
model counting down to quadratic regardless of constra
looseness, so long as they have the chain (or in fact
tree) structure.

Towards Practical Good Learning
Though we have empirically explored the effects

nogood learning on model counting through relsat’s clau
recording functionality, the effect of good learning remai
unknown in practice. An effective implementation is a

x3

lue
all
in
tia
as
ng
or
,
ht

n
b-
rn
st
n

n
n-
for
i-
e

ce
r-

od
en
ity
o-
of
d
.

r-

k-
n

ime
In

ity
e

-

open problem, and a solution must address at least two sig-
nificant complications: the identification of small defining
sets, and ensuring correctness of the technique in conjunc-
tion with dynamic variable ordering.

The defining sets obtained from static constraint graph
analysis are too large to use in practice on all but the most
structure restricted instances. To overcome this, practical
nogood learning algorithms perform conflict analysis to
obtain a much smaller set of culprit variables. Conflict anal-
ysis techniques work backwards from contradiction, and are
therefore inapplicable when attempting to identify the set of
assignments responsible for a positive solution count. Tech-
niques for minimizing the defining set in the case of a satis-
fiable (good) subproblem need to be developed.

 Nogood learning is not complicated by dynamic variable
ordering; if the defining set assignment of some nogood
subproblem reappears, then the solution count of the cur-
rent subproblem is immediately known to be zero, even if
the current subproblem does not exactly match the subprob-
lem from which the defining set assignment was derived.
With good learning, in addition to recording the defining set
assignment, it seems we must explicitly keep track of all the
variables appearing within the subproblem. This is because
some of the subproblem’s variables may be assigned va
once the defining set assignment reappears, potenti
affecting its solution count. In order to apply a good,
addition to the defining set assignment matching the par
assignment, all subproblem variables must be in an un
signed state. Good learning with dynamic variable orderi
therefore requires additional overhead to check and rec
the subproblem variables, and perhaps more significantly
reduces the probability with which a recorded good mig
be exploited in the future.

On the other hand, since hard instances for model cou
ing typically contain comparatively few unsatisfiable su
problems, there are plenty more opportunities to lea
goods than nogoods. This suggests good learning may
prove beneficial on sufficiently difficult instances eve
given the above limitations.

Conclusions and Future Work
We have demonstrated that recursive identification of co
nected components within a dynamically simplified co
straint graph leads to an efficient DP-based algorithm
counting models of a propositional logic formula. In add
tion, from a structure-based perspective of complexity, w
have shown that model counting using a learning-enhan
backtrack search algorithm is no more difficult than dete
mining satisfiability.

One avenue remaining to be explored is whether go
learning will lead to substantial performance gains wh
counting models in practice, as suggested by complex
results showing that good learning is mandatory for polyn
mial time counting. We have yet to solve the problem
providing an efficient and effective implementation of goo
learning in conjunction with dynamic variable ordering
Though this problem is non-trivial, we feel it is not insu
mountable, and continue to contemplate solutions.
s
y

l
-

d
it

t-

ill

-

d

References

Bayardo, R. J. and Miranker, D. P. 1994. An Optimal Bac
track Algorithm for Tree-Structured Constraint Satisfactio
Problems. Artificial Intelligence, 71(1):159-181.

Bayardo, R. J. and Miranker, D. P. 1995. On the space-t
trade-off in solving constraint satisfaction problems.
Proc. of the 14th Int’l Joint Conf. on Artificial Intelligence,
558-562.

Bayardo, R. J. and Miranker, D. P. 1996. A Complex
Analysis of Space-Bounded Learning Algorithms for th
Constraint Satisfaction Problem. In Proc. 13th Nat’l Conf.
on Artificial Intelligence, 558-562.

Bayardo, R. J. and Schrag, R. 1997. Using CSP Look-Back
Techniques to Solve Real-World SAT Instances. In Proc. of
the 14th National Conf. on Artificial Intelligence, 203-208.

Birnbaum, E. and Lozinskii, E. L. 1999. The Good Old
Davis-Putnam Procedure Helps Counting Models. Journal
of Artificial Intelligence Research 10:457-477.

Crawford, J. M. and Auton, L. D. 1996. Experimental
Results on the Crossover Point in Random 3SAT. Artificial
Intelligence 81(1-2), 31-57.

Davis, M., Logemann, G. and Loveland, D. 1962. A
Machine Program for Theorem Proving, CACM 5, 394-397.

Dechter R., and Pearl, J., 1987. Network-Based Heuristics
for Constraint-Satisfaction Problems. Artificial Intelligence,
34(1):1-38.

Freeman, J. W. 1995. Improvements to Propositional Satis
fiability Search Algorithms. Ph.D. Dissertation, U. Pennsyl-
vania Dept. of Computer and Information Science.

Freuder, E.C. and Quinn, M.J., 1985. Taking Advantage of
Stable Sets of Variables in Constraint Satisfaction Prob-
lems. In Proceedings of IJCAI-85, 1076-1078.

Frost, D. and Dechter, R. 1994. Dead-End Driven Learning.
In Proc. of the Twelfth Nat’l Conf. on Artificial Intelligence,
294-300.

Hogg, T. 1996. Refining the Phase Transition in Combina-
torial Search. Artificial Intelligence, 81:127-154.

Kautz, H. and Selman, B. 1996. Pushing the Envelope:
Planning, Propositional Logic, and Stochastic Search. In
Proc. 13th Nat’l Conf. on Artificial Intelligence, 558-562.

Lozinskii, E. 1992. Counting Propositional Models. Infor-
mation Processing Letters, 41(6):327-332.

Melhorn, K. 1984. Data Structures and Algorithms, vol 1-3,
Springer.

Prosser, P. 1993. Hybrid Algorithms for the Constraint Sat-
isfaction Problem. Computational Intelligence 9(3):268-
299.

Roth, D. 1996. On the Hardness of Approximate Reason-
ing. Artificial Intelligence 82, 273-302.

Rymon, R. 1994. An SE-tree-based Prime Implicant Gener-
ation Algorithm. Annals of Mathematics and Artificial
Intelligence 11, 1994.

	Introduction
	Definitions
	Basic Algorithm Description
	Optimizations
	Experimental Comparison
	Effects of Learning
	Complexity Related Issues
	Towards Practical Good Learning
	Conclusions and Future Work
	References

