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Counting Points on Hyperelliptic Curves overFinite FieldsPierrick Gaudry1 and Robert Harley21 LIX, �Ecole Polytechnique,91128 Palaiseau Cedex, France2 Projet Cristal, INRIA, Domaine de Voluceau - Rocquencourt,78153 Le Chesnay, FranceAbstract. We describe some algorithms for computing the cardinalityof hyperelliptic curves and their Jacobians over �nite �elds. They includeseveral methods for obtaining the result modulo small primes and primepowers, in particular an algorithm �a la Schoof for genus 2 using Can-tor's division polynomials. These are combined with a birthday paradoxalgorithm to calculate the cardinality. Our methods are practical andwe give actual results computed using our current implementation. TheJacobian groups we handle are larger than those previously reported inthe literature.IntroductionIn recent years there has been a surge of interest in algorithmic aspects of curves.When presented with any curve, a natural task is to compute the number ofpoints on it with coordinates in some �nite �eld. When the �nite �eld is largethis is generally di�cult to do.Ren�e Schoof gave a polynomial time algorithm for counting points on ellipticcurves i.e., those of genus 1, in his ground-breaking paper [Sch85]. Subsequentimprovements by Elkies and Atkin ([Sch95], [Mor95], [Elk98]) lowered the expo-nent to the point where e�cient implementations became possible. After furtherimprovements ([Cou96], [Ler97]) several implementations of the Schoof-Elkies-Atkin algorithm were actually written and very large �nite �elds can now behandled in practice ([Mor95], [Ver99]).For higher genus, signi�cant theoretical progress was made by Pila who gavea polynomial time algorithm in [Pil90] (see also [HI98]). However to date thesemethods have not been developed as extensively as the elliptic case. As a �rst steptowards closing this gap it is fruitful to concentrate on low genus hyperellipticcurves, as these are a natural �rst generalization of elliptic curves and techniquesused in the elliptic case can be adapted. Such techniques include Schoof-likemethods and several others which all contribute to a practical algorithm.We mention two possible applications of the ability to count points on lowgenus hyperelliptic curves. An early theoretical application was the proof thatprimality testing is in probabilistic polynomial time, [AH92]. A practical ap-plication results from the apparent di�culty of computing discrete logarithms



2 Pierrick Gaudry and Robert Harleyin the Jacobian groups of these curves. In low genus, no sub-exponential algo-rithms are currently known, except for some very thin sets of examples ([R�uc99],[FR94]) and hence the Jacobian group of a random curve is likely to be suitablefor constructing cryptosystems [Kob89]. To build such a cryptosystem, it is �rstdesirable to check that the group order has a large prime factor since otherwisethe logarithm could be computed in small subgroups [PH78].We restrict ourselves to odd characteristic for simplicity. We will work withmodels of odd degree where arithmetic is analogous to that of imaginary quadratic�elds. For the even degree alternative, which is similar to real quadratic �elds, seethe recent paper [ST99] which describes a birthday paradox algorithm optimizedusing an analogue of Shanks' infrastructure.Our contribution contains several complementary approaches to the problemof �nding the size of Jacobian groups, all of which have been implemented.By combining these approaches we have been able to count larger groups thanpreviously reported in the literature.The �rst approach is an e�cient birthday paradox algorithm for hyperellipticcurves. We have �lled in all the details required for a large-scale distributedimplementation, although the basic idea has been known for 20 years. In ourimplementation we also use an optimized group operation for genus 2, in whichwe have reduced the number of �eld operations required.The time taken grows as a small power of the �eld size and this algorithm,if used in isolation, would take a prohibitive amount of time to handle largegroups such as those of cryptographic size. However our version of it can takeadvantage of prior information on the result modulo some integer. We elaboratevarious strategies for collecting as much of this information as possible.We show that when the characteristic p is not too large, the result modulo pcan be obtained surprisingly easily using the Cartier-Manin operator. It providesan elegant and self-contained method based on theoretical material proved in the1960's.To go further, we also extend Schoof's algorithm to genus 2 curves usingCantor's division polynomials. On the basis of previous outlines existing in theliterature, but not directly implementable, we elaborated a practical algorithmand programmed it in Magma. For the case where the modulus is a power of 2,we are able to bypass computations with division polynomials and use a muchfaster technique based on formulae for halving in the Jacobian.The combinations of these techniques has allowed us to count genus 2 groupswith as many as 1038 elements.We would particularly like to thank �Eric Schost of the GAGE laboratoryat �Ecole Polytechnique for helpful discussion concerning algebraic systems. Fur-thermore his assistance in computing Gr�obner bases was invaluable and allowedus to compute group orders modulo larger powers of 2 than would otherwisehave been possible.We also thank Fran�cois Morain for many constructive comments on thispaper.



Counting points on hyperelliptic curves over �nite �elds 3Prerequisites and NotationsWe will take a concrete approach, concentrating on arithmetic and algorithmicaspects rather than more abstract geometric ones.Let g be a positive integer and let Fq be the �nite �eld of q = pn elements,where p is an odd prime. For our purposes, a hyperelliptic curve of genus g isthe set of solutions (x; y) of the equation y2 = f(x), where f(x) is a monicpolynomial of degree 2g+1 with coe�cients in Fq and with distinct roots1. Notethat the coordinates may be in the base �eld Fq or in an extension �eld.When a point P = (xP ; yP ) is on the curve C, its opposite is the point�P = (xP ;�yP ). A divisor2 is a formal sum D = Pi Pi of points on C. Notethat points may be repeated with some multiplicity in the sum. A semi-reduceddivisor is a divisor with no two points opposite. Such a divisor with k pointsis said to have weight k. A reduced divisor is a semi-reduced divisor of weightk � g.The Jacobian, denoted J, is the set of reduced divisors. An important factis that one can de�ne an addition operation on reduced divisors which makes Jinto a group, whereas this is not possible on the curve itself directly. This grouplaw is denoted by + and will be described in the next section.A convenient representation of reduced (and semi-reduced) divisors, due toMumford [Mum84], uses a pair of polynomials hu(x); v(x)i. Here u(x) =Qi(x�xi) and v(x) interpolates the points Pi respecting multiplicities. More preciselyv = 0 or deg v < deg u, and u divides f �v2. We say that a semi-reduced divisoris de�ned over a �eld F when the coe�cients of u and v are in F (even thoughthe coordinates xi and yi may be in an extension �eld) and write J=F for theset of such divisors.Most reduced divisors have weight g. The set of those with strictly lowerweight is called �. A divisor of weight 1 i.e., with a single point P = (xP ; yP ),is represented by hu(x); v(x)i = hx � xP ; yP i. The unique divisor of weight 0,O = hu(x); v(x)i = h1; 0i, is the neutral element of the addition law. Scalarmultiplication by an integer l is denoted by:[l]D = D +D + � � �+D : (l times) (1)We say that D is an l{torsion divisor whenever [l]D = O. The set of all l{torsiondivisors, including those de�ned over extension �elds, is denoted by J[l].We concentrate particularly on genus-2 curves and in this case the divisorsin J n� have the form:D = hx2 + u1x+ u2; v0x+ v1i : (2)1 Strictly speaking, this is the a�ne part of a smooth projective model. In genus 2every curve is birationally equivalent to such a curve provided the base �eld is largeenough.2 Strictly speaking, these are degree-0 divisors with the multiplicity of the point atin�nity left implicit.



4 Pierrick Gaudry and Robert Harley1 Group Law in the JacobianWe will sketch the group law i.e., addition of reduced divisors, using the intuitive`sum of points' notation and then describe e�cient formulae for computing thelaw in genus 2 using Mumford's representation.The computation of D1 +D2 can be viewed, at a high level of abstraction,as the following three steps:{ form a (non-reduced) divisor with all the points of D1 and D2,{ semi-reduce it by eliminating all pairs of opposite points,{ reduce it completely.The third step is the only one that presents any di�culty3. When we reachit we have a semi-reduced divisor with at most 2g points. If there are g orfewer then no reduction is necessary but if there are more than g we reduce by ahigher-genus analogue of the well known chord-and-tangent operation for ellipticcurves.1.1 Reduction StepFix g = 2 and, for the moment, consider a semi-reduced divisor R with 3 distinctpoints. The reduction of R is as follows.Let y = a(x) be the equation of the parabola (or perhaps line) interpolatingthe three points. The roots of f � a2 are the abscissae of the intersections be-tween the parabola and the curve. This is a quintic polynomial so there are �veintersections (including multiplicities). We already know 3 of them, the pointsof R. Form a divisor S with the other two, and the result of the reduction is �S.In the more frequent case where R has 4 points, choose an interpolating cubic(or lower degree) polynomial a(x) instead. Then f � a2 has degree 5 or 6 andwe know 4 intersections. Form S with the others and the result is �S.In cases where some points of R are repeated, the interpolation step is ad-justed to ensure tangency to the curve with su�cient multiplicity. Also, in genusg > 2 the reduction step may need to be repeated several times.In practice it would be ine�cient to compute the group law this way using therepresentation of divisors as sums of points, since the individual points may bede�ned over extension �elds. By using Mumford's notation we can work entirelyin the �eld of de�nition of the divisors.1.2 Group Law in Mumford's NotationCantor gave two forms of the group law using Mumford's notation in [Can87].One was a direct analogue of Gauss's reduction of binary quadratic forms of3 In a more classical treatment the reduction would be described as choosing a rep-resentative for an equivalence class of degree 0 divisors modulo linear equivalence,where linearly equivalent divisors are those that di�er by a principal divisor.



Counting points on hyperelliptic curves over �nite �elds 5negative discriminant, the other an asymptotically fast algorithm for high genusmaking clever use of fast polynomial arithmetic.We describe an e�cient algorithm, carefully optimized to reduce the numberof operations required. We �nd that in genus 2 doubling a divisor or addingtwo divisors both take 30 multiplication operations and 2 inversions, in general.Note for comparison that optimized elliptic curve operations typically take 3 or4 multiplications and 1 inversion.Space limits us to a brief description of the genus 2 doubling operation. LetD = hu; vi. We cover the cases that may occur, in order of increasing complexity.Simple case: If v = 0 the result is simply O.Weight 1: Here u(x) = x�xP and v(x) = yP . The result is h(x�xP )2; ax+ bi,where ax+ b is the tangent line at P with a = f 0(xP )=2yP and b = yP � axP .Weight 2: Compute the resultant r = u2v20 + v21 � u1v0v1 of u and v.Resultant 0: If r = 0 then u and v have a root in common i.e., D hasa point with ordinate 0. Isolate the other point by xP = �u1 + v1=v0,yP = v1 + v0xP and return to the weight 1 case above.General case: Consider the fact that v is a square root of f modulou. We can double the multiplicity of all points in D by using a Newtoniteration to compute a square root modulo u2.{ Newton iteration: set U = u2, and V = (v + f=v)=2 mod U ,{ Get `other' roots: set U = (f � V 2)=U ,{ Make U monic,{ Reduce V modulo U ,The result is hU;�V i.Several observations help to optimize calculation with these formulae: after the�rst step, V � v mod u; also the division by U in the second step is exact; notall coe�cients of the polynomials are really needed; �nally some multiplicationscan be avoided using Karatsuba's algorithm.The general addition operation is similar to doubling although the Newtoniteration is replaced by a little Chinese Remainder calculation and more casesneed to be handled. Since the details are somewhat tedious, we give the resultingpseudo-code and sample C code at the following Web site:http://cristal.inria.fr/~harley/hyper/2 Frobenius EndomorphismIn this section we collect some useful results and quote them without proof. Astarting point for the reader interested in pursuing this material is [IR82] andthe references therein.We �rst describe properties of the q{power Frobenius endomorphism �(x) =xq . Note that it has no e�ect on elements of Fq but it becomes non-trivial in



6 Pierrick Gaudry and Robert Harleyextension �elds. This map extends naturally to points, by transforming their xand y coordinates. It extends further to divisors by acting point-wise.Crucially, this latter action is equivalent to acting on each coe�cient of theu and v polynomials in Mumford's notation. When a divisor is de�ned over Fq ,� may permute its points but it leaves the divisor as a whole invariant.2.1 Characteristic PolynomialThe � operator acts linearly and has a characteristic polynomial of degree 2gwith integer coe�cients. In genus 2 it is known to have the form:�(t) = t4 � s1t3 + s2t2 � s1qt+ q2 ; (3)so that �(�) is the identity map on all of J, in other words:8P 2 J; �4(P )� [s1]�3(P ) + [s2]�2(P )� [s1q]�(P ) + [q2]P = O : (4)The so-called Riemann hypothesis for curves, on the roots of their zeta func-tions, was proved by Weil and implies that the complex roots of � have absolutevaluepq. Hence, in genus 2 the following bounds apply: js1j � 4pq and js2j � 6q.2.2 Relations Between Frobenius and CardinalitiesThe Frobenius is intimately related to the number of points on the curve andthe number of divisors in J, over the base �eld and its extensions.First of all, knowledge of � is equivalent to that of #C=Fqi for 1 � i � g. Ingenus 2 the following formulae relate them:#C=Fq = q � s1 and #C=Fq2 = q2 � s21 + 2s2 : (5)Furthermore #J=Fq is completely determined by � according to the formula#J=Fq = �(1). An important consequence is that the group order is constrainedto a rather small interval, the Hasse-Weil interval:�(pq � 1)2g� � #J=Fq � �(pq + 1)2g� : (6)In the reverse direction, knowledge of #J=Fq almost determines � for q largeenough. For instance in genus 2, (#J=Fq )�q2�1 = s2�s1(q+1) and the boundon s2 given above ensures that there are O(1) possibilities.3 Birthday Paradox AlgorithmTo compute the group order N = #J=Fq exactly we search for it in the Hasse-Weil interval which has width w close to 4gqg�1=2. The �rst few coe�cients siof � can be computed by exhaustively counting points on the curve over Fqi .Doing so for i � I reduces the search interval to width w = O(qg�(I+1)=2) butcosts O(qI ) (see [Elk98]). In genus 2 this is not useful and one simply takesw = 2b4(q + 1)pqc.



Counting points on hyperelliptic curves over �nite �elds 73.1 Computing the Order of the GroupAssume for the moment that we know how to compute the order n of a randomlychosen divisor D in J=Fq (from now on the term \divisor" always refers to areduced divisor). Writing e for the group exponent, we have n j e and e jN andthus N is restricted to at most d(w + 1)=ne possibilities. Usually n � w and soN is completely determined.It is possible for n to be smaller, though. In such a case we could try severalother randomly chosen divisors, taking n to be the least common multiple oftheir orders and stopping if n > w. After a few tries n will converge to e and ife > w the method terminates.However in rare cases the exponent itself may be small, e � w. It is knownthat J=Fq is the product of at most 2g cyclic groups and thus e � pq � 1 andin fact this lower bound can be attained.It is possible to obtain further information by determining the orders ofdivisors in the Jacobian group of the quadratic twist curve, but even this maynot be su�cient. We do not yet have a completely satisfactory solution for sucha rare case, however we mention that the Weil pairing may provide one.3.2 Computing the Order of One DivisorTo determine the order n of an arbitrary divisor D we �nd some multiple of n,factor it and search for its smallest factor d such that [d]D = O.There are certainly multiples of n in the search interval (since the grouporder is one such) and we can �nd one of them using a birthday paradox al-gorithm, in particular a distributed version of Pollard's lambda method [Pol78]with distinguished points. For a similar Pollard rho method see [vOW99].Since the width of the search interval is w, we expect to determine the mul-tiple after O(pw) operations in the Jacobian. By using distinguished points anddistributing the computation on M machines, this takes negligible space andO(pw(log q)2=M) time4.The birthday paradox algorithm is as follows.{ Choose some distinguishing characteristic.{ Choose a hash function h that hashes divisors to the range 0::19, say.{ Pick 20 random step lengths li > 0 with average roughly Mpw,{ Precompute the 20 divisors Di = [li]D.{ Precompute E = [c]D.Here c is the center of the search interval. In genus 2 c = q2 + 6q + 1. Thecalculation then consists of many `chains' of iterations run onM client machines:{ Pick a random r < w and compute R = [r]D.{ Pick a random bit b and if it is 1 set R to R+E.{ While R is not distinguished, set r := r + lh(R) and R := R +Dh(R).4 Using classical algorithms for �eld arithmetic.



8 Pierrick Gaudry and Robert Harley{ Store the distinguished R on a central server along with r and b.The distinguishing feature must be chosen to occur with probability signi�-cantly less thanpw=M , say 50 times less. Thus each chain takes aboutpw=M=50steps and has length about w=50.Note that chains with b = 0 visit many pseudo-random divisors in the setS1 = f[r]D j 0 � r < wg and a few with larger r. Chains with b = 1 visit manydivisors in S2 = fE + [r]D j 0 � r < wg and a few with larger r. However thechoice of E guarantees that the intersection I = S1 \ S2 contains at least w=2divisors.Now after a total of O(pw) steps have been performed, O(pw) divisors havebeen visited and O(pw) of them are expected to be in I . Then the birthdayparadox guarantees a signi�cant chance that a useful collision occurs i.e., thatthe same divisor R is visited twice with di�erent bits b. Shortly afterwards auseful collision of distinguished points is detected at the server, between R0 andR1 say.Therefore r0 � c+ r1 modulo n and �nally c+ r1� r0 is the desired multipleof n.3.3 Beyond the Birthday ParadoxTo handle larger examples than is possible with the birthday paradox algorithmalone, we precompute the Jacobian order modulo some integer. If N is knownmodulo m then the search for a multiple of a divisor's order can be restricted toan arithmetic progression modulo m, rather than the entire search interval5. Inthis way the expected number of operations can be reduced by a factor pm.The algorithm outlined above needs to be modi�ed as follows (we can assumethat m is much smaller than w since otherwise no birthday paradox algorithmwould be required!).{ Increase the frequency of the distinguishing characteristic by a factor pm.{ The step lengths must be multiples ofm chosen with average lengthMpwm.{ Replace E with [z]D where z is nearest c such that z � N mod m.To compute N modulo m with m as large as possible, we will �rst computeit modulo small primes and prime powers using various techniques explained inthe next few sections. Then the Chinese Remainder Theorem gives N modulotheir product.To date this use of local information has speeded up the birthday paradox al-gorithm by a signi�cant factor in practice. It should be pointed out however thatwhile the birthday paradox algorithm takes exponential time, the Schoof-like al-gorithm described below takes polynomial time. Hence it can be expected thatfor future calculations with very large Jacobians, the Schoof part will providemost of the information.5 Note that we could also take advantage of partial information that restricted N toseveral arithmetic progressions modulo m.



Counting points on hyperelliptic curves over �nite �elds 94 Cartier-Manin Operator and Hasse-Witt MatrixWe propose a method for calculating the order of the Jacobian modulo thecharacteristic p of the base �eld, by using the so-called Cartier-Manin operatorand its concrete representation as the Hasse-Witt matrix (see [Car57]). In thecase of hyperelliptic curves, this g � g matrix can be computed by a methodgiven in [Yui78] which generalizes the computation of the Hasse invariant forelliptic curves. Yui's result is as follows:Theorem 1. Let y2 = f(x) with deg f = 2g+1 be the equation of a genus g hy-perelliptic curve. Denote by ci the coe�cient of xi in the polynomial f(x)(p�1)=2.Then the Hasse-Witt matrix is given byA = (cip�j)1�i;j�g : (7)In [Man65], Manin relates it to the characteristic polynomial of the Frobeniusmodulo p. For a matrix A = (aij), let A(p) denote the elementwise p{th poweri.e., (apij). Then Manin proved the following result:Theorem 2. Let C be a curve of genus g de�ned over a �nite �eld Fpn . Let A bethe Hasse-Witt matrix of C, and let A� = AA(p) � � �A(pn�1). Let �(t) be the char-acteristic polynomial of the matrix A�, and �(t) the characteristic polynomial ofthe Frobenius endomorphism. Then�(t) � (�1)gtg�(t) mod p : (8)Now it is straightforward to compute �(t) modulo the characteristic p andhence #J=Fq mod p, provided that p is not too large (say at most 100000).Note that this is a very e�cient way to get information on the Jacobian order,particularly when p is moderately large. Such a situation can occur in practicewith �elds chosen, for implementation reasons, to be of the form Fpn with p closeto a power of 2 such as p = 28 � 5 or p = 216 � 15.5 Algorithm �a la SchoofIn this section we describe a polynomial time algorithm �a la Schoof for computingthe cardinality of J=Fq in genus 2. This algorithm follows theoretical work ofPila [Pil90] and Kampk�otter [Kam91]. We make extensive use of the divisionpolynomials described by Cantor [Can94].5.1 Hyperelliptic Analogue of Schoof's AlgorithmThe hyperelliptic analogue of Schoof's algorithm consists of computing � mod-ulo some small primes l by working in J[l]. Once this has been done, modulosu�ciently many primes (or prime powers), then � can be recovered exactly bythe Chinese Remainder Theorem. From the bounds on si above, it su�ces to



10 Pierrick Gaudry and Robert Harleyconsider l = O(log q). In practice we use a few small l, determine � modulotheir product, and use this information to optimize a birthday paradox searchas described previously.Let l be a prime power co-prime with the characteristic. Then the subgroupof l{torsion points has the structure J[l] �= (Z=lZ)2g. Moreover, the Frobeniusacts linearly on this subgroup and Tate's theorem [Tat66] states that the charac-teristic polynomial of the induced endomorphism is precisely the characteristicpolynomial of the Frobenius endomorphism on J with its coe�cients reducedmodulo l. Hence by computing the elements of J[l] and the Frobenius action onthem, we can get the characteristic polynomial modulo l.The following lemma due to Kampk�otter simpli�es the problem.Lemma 1. If l is an odd prime power, then the set J n� contains a Z=lZ{basisof J[l].Thus the Frobenius endomorphism on J[l] is completely determined by its actionon J[l] n�.Let D = hx2 + u1x + u2; v0x + v1i be a divisor in J n �, then the condition[l]D = O can be expressed by a �nite set of rational equations in u1; u2; v0; v1.More precisely, there exists an ideal Il of the polynomial ring Fq [U1; U2; V0; V1]such that D lies in J[l] n� if and only if f(u1; u2; v0; v1) = 0 for all polynomialsf in (a generating set of) the ideal Il. In [Kam91], Kampk�otter gives explicitformulae for multivariate polynomials generating Il.From now on, we can represent a generic element of J[l] n� by the quotientring Fq [U1; U2; V0; V1]=Il. The Frobenius action can be computed for this elementand it is possible to �nd its minimal polynomial by brute force. The characteristicpolynomial is then easy to recover (at least in the case where l is a prime)and we are done. This method due to Pila and Kampk�otter has polynomial-time complexity, however it involves arithmetic on ideals which requires time-consuming computations of Gr�obner bases. In the following we propose anothermethod which avoids the use of ideals.5.2 Cantor's Division PolynomialsIn [Can94], Cantor de�ned division polynomials of hyperelliptic curves, general-izing the elliptic case, and gave an e�cient recursion to build them.These polynomials are closely related to Kampk�otter's ideal Il, but they allowa Schoof-like algorithm to work mostly with one instead of four variables. Anapproximate interpretation of the phenomenon is that the division polynomialslead to a representation of Il directly computed in a convenient form (almost aGr�obner basis for a lexicographical order).Cantor's construction provides 6 sequences of polynomials d(l)0 ; d(l)1 ; d(l)2 ande(l)0 ; e(l)1 ; e(l)2 such that for divisors P = hx � xP ; yP i of weight 1 in generalposition, we get[l]P = *x2 + d(l)1 (xP )d(l)0 (xP )x+ d(l)2 (xP )d(l)0 (xP ) ; yP  e(l)1 (xP )e(l)0 (xP )x+ e(l)2 (xP )e(l)0 (xP )!+ : (9)



Counting points on hyperelliptic curves over �nite �elds 11The degrees of these division polynomials ared0 d1 d2 e0 e1 e22l2 � 1 2l2 � 2 2l2 � 3 3l2 � 2 3l2 � 2 3l2 � 3By lemma 1 it is su�cient to consider divisors D 62 �. In order to multiplyD = hu(x); v(x)i by l we express it as a sum of two divisors of weight 1 i.e.,we write D = P1 + P2. These divisors are given by P1 = hx � x1; y1i andP2 = hx� x2; y2i where x1 and x2 are the roots of u(x) and yi = v(xi). Clearly[l]D = [l]P1 + [l]P2.The divisor D is an l{torsion divisor if and only if [l]P1 and [l]P2 are oppositedivisors. This last condition is converted into a condition on the polynomialrepresentations [l]P1 = huP1(x); vP1 (x)i and [l]P2 = huP2(x); vP2 (x)i. Indeed twodivisors are opposite if their u polynomials are equal and their v polynomialsare opposite. Hence the elements of J[l]n� are characterized by a set of rationalequations in the 4 indeterminates x1; x2; y1; y2, two of them involving only thetwo indeterminates x1 and x2.Thus we get an ideal similar to Il represented in a convenient form: we caneliminate x2 with the two bivariate equations by computing some resultants, thenwe have a univariate polynomial in x1 and for each root x1 it is not di�cult torecover the corresponding values of x2; y1 and y2.5.3 Details of the AlgorithmNext we explain the computation of the characteristic polynomial modulo a �xedprime power l. Here we will assume that l is odd (the even case discussed in thenext section).Building an Elimination Polynomial for x1. We �rst compute Cantor'sl{division polynomials. We refer to the original paper [Can94] for the recursionformulae and the proof of the construction. This phase takes negligible timecompared to what follows.The second step is to eliminate x2 in the two bivariate equations. The systemlooks like �E1(x1; x2) = d1(x1)d2(x2)� d1(x2)d2(x1) = 0 ;E2(x1; x2) = d0(x1)d2(x2)� d0(x2)d2(x1) = 0 : (10)The polynomial (x1 � x2) is clearly a common factor of E1 and E2, and thisfactor is a parasite: it does not lead to a l{torsion divisor6. We throw away thisfactor and consider the new reduced system, still denoting the two equations by6 If there is another common factor of E1 and E2, we have to throw it away. This occurswhen a non trivial l{torsion divisor is in �. The values for the degrees assume thatwe are in the generic case.



12 Pierrick Gaudry and Robert HarleyE1(x1; x2) and E2(x1; x2) . Then we eliminate x2 by computing the followingresultant R(x1) = Resx2(E1(x1; x2); E2(x1; x2)) = 0 : (11)We can then note that R(x1) is divisible by some high power of d2(x1). Indeed,if d2(x1) = 0 then the expressions E1 and E2 have common roots (at the rootsof d2(x2)). The power of d2 in R is � = 2l2 � 2. We assume that the base �eldis large enough and we specialize the system at many distinct values for x1.Substituting �i for x1, the system becomes two univariate polynomials in x2,for which we compute the resultant ri. With enough pairs (�i; ri) i.e., one morethan a bound on the degree of ~R(x1) = R(x1)=(d2(x1))� , we can recover ~R(x1)by interpolation. Knowing the degrees of d0; d1; d2, it is easy to getdeg ~R(x1) = 4l4 � 10l2 + 6 : (12)Eliminating the Parasites (optional). As previously mentioned there are l4divisors of l{torsion and thus the degree of ~R(x1) is too high by a factor 4. Thismeans that there are still a lot of parasite factors, due to the fact that we onlytook conditions on the abscissae x1; x2 into account and imposed nothing on theordinates y1; y2. Two strategies can be used: we can decide to live with theseparasites and go on to the next step or we can compute another resultant toeliminate them (and get a polynomial of degree l4 � 1). The choice depends onthe relative speeds of the resultant computation and the root-�nding algorithm.In order to eliminate the parasites we construct a third equation E3(x1; x2),coming from the fact that the ordinates of [l]P1 and [l]P2 are opposite. We writethat the coe�cients are opposite,(y1 e1(x1)e0(x1) = �y2 e1(x2)e0(x2)y1 e2(x1)e0(x1) = �y2 e2(x2)e0(x2) ; (13)and this system implies that E3(x1; x2) = e1(x1)e2(x2)� e1(x2)e2(x1) = 0.Taking the resultant between E1 and E3, we get a polynomial ~S(x1) of degree12l4 � 30l2 + 18 whose GCD with ~R(x1) is of degree l4 � 1 (in general, a fewparasites may remain in rare cases). We still denote this GCD by ~R(x1) forconvenience.Recovering the Result Modulo l. To �nd the result we factor ~R(x1) and,for each irreducible factor, we construct an extension of Fq using this factor toget a root X1 of ~R(x1). Then we substitute this root into E1 and E2 and recoverthe corresponding root X2. Using the equation of the curve we get the ordinatesY1 and Y2, which may be in a quadratic extension. We get the two divisorsP1 = hx�X1; Y1i and P2 = hx�X2; Y2i and check whether [l](P1 + P2) = O or[l](P1 � P2) = O. If neither holds, then we started from a parasite solution and



Counting points on hyperelliptic curves over �nite �elds 13we try another factor of ~R(x1). In the favorable case we get an l{torsion divisorD with which we check the Frobenius equation. To do so we compute[s1]�3(D) + [qs1 mod l]�(D) ; (14)for every s1 2 [0; l� 1] and�4(D) + [s2]�2(D) + [q2 mod l]D ; (15)for every s2 2 [0; l�1]. We only keep the pairs (s1; s2) for which these are equal.If there is only one pair (s1; s2) left, or if there are several pairs all leading tothe same value for the cardinality modulo l, then it is not necessary to continuewith another factor. Thus it is usually not necessary to have a complete fac-torization of ~R(x1) and the computation is faster if one starts with irreduciblefactors of smallest degree.We summarize the above in the following:Algorithm. Computation of #J=Fq modulo l.1. Compute ~R(x1).2. Find a factor of ~R(x1) of smallest degree.3. Build P1 and P2 with this factor.4. Check if P1 + P2 or P1 � P2 is an l{torsion divisor. If so call it D, else goback to step 2.5. For each remaining pair (s1; s2), check the Frobenius equation for D.6. Compute the set of possible values of #J=Fq from the remaining values of(s1; s2). If there are several values left, go back to step 2. If there is just one,return it.5.4 ComplexityWe evaluate the cost of this algorithm by counting the number of operationsin the base �eld Fq . We neglect all the log� l factors, and denote by M(x) thenumber of �eld operations required to multiply two polynomials of degree x.The �rst step requires O(l4) resultant computations, each of which can bedone in M(l2) operations, and the interpolation of a degree O(l4) polynomialwhich can be done in M(l4) operations. For the analysis of the remaining steps,we will denote by d the degree of the smallest factor of ~R(x1) that allows usto conclude. We assume moreover that the most costly part of the factorizationis the distinct degree factorization (which is the case if d is small and if thenumber of factors of degree d is not too large). Then the cost of �nding thefactor is O(d log(q))M(l4). Thereafter the computation relies on manipulationsof polynomials of degree d and the complexity is O(l + log(q))M(d), where lre
ects the l possible values of s1 and of s2 and log(q) re
ects the Frobeniuscomputations. Hence the (heuristic) overall cost for the algorithm isO(l4)M(l2) +O(d log q)M(l4) +O(l2 + log q)M(d) (16)



14 Pierrick Gaudry and Robert Harleyoperations in the base �eld.Now we would like to obtain a complexity for the whole Schoof-like algorithm.For that we will keep only the primes l for which d = O(l); this should occurheuristically with a �xed probability (this is an analogue of `Elkies primes' forelliptic curves). Then we have to use a set of O(log q) primes l, each of themsatisfying l = O(log q). Moreover we will assume fast polynomial arithmetic andthusM(x) = O(x) (ignoring logarithmic factors). Hence the cost of the algorithmis heuristically O(log7 q) operations in Fq . Each operation can be performed inO(log2 q) bit operations using classical arithmetic and we get that the complexityof the Schoof-like algorithm is O(log9 q).Remark. This analysis is heuristic, but one could obtain a rigorous proof thatthe algorithm runs in polynomial time. The algorithm could also be made de-terministic by avoiding polynomial factorizations. However in both cases theexponent would be higher than 9.6 Lifting the 2-Power Torsion DivisorsIn this section, we will show how to obtain some information on the #J=Fqmodulo small powers of 2. Factoring f gives some information immediately.To go further we iterate a method for `halving' divisors in the Jacobian. Thisquickly leads to divisors de�ned over large extensions, so that the run-time growsexponentially. In practice we can use this technique to obtain partial informationmodulo 256, say.The divisors of order 1 or 2 are precisely the D = hu(x); 0i for which u(x)divides f(x) and is of degree at most g. When f has n irreducible factors, thenit has 2n factors altogether. Exactly half of them have degree at most g, since fis square-free of degree 2g + 1. Hence the number of such divisors is 2n�1, and2n�1 j #J=Fq . Furthermore, when f is irreducible then the 2{part is trivial and#J=Fq is odd.6.1 Halving in the JacobianLet D = hu(x); v(x)i be a divisor di�erent from O. We would like to �nd adivisor � such that [2]� = D. Note that there are 22g solutions, any two ofwhich di�er by a 2{torsion divisor. In general, � is de�ned over an extension ofthe �eld of de�nition of D.Writing � = h~u(x); ~v(x)i, we derive a rational expression for the divisor[2]� using the formulae of section 1. Then equating this expression with D, weget a set of 2g polynomial equations in 2g indeterminates ~ui and ~vi with 2gparameters ui and vi. There are g2 such systems corresponding to the di�erentpossible weights of D and �.We consider the most frequent case where D and � are both of weight g.The corresponding system has at most 22g solutions and these can be obtainedby constructing a Gr�obner basis for a lexicographical order, factoring the last



Counting points on hyperelliptic curves over �nite �elds 15polynomial in the basis and propagating the solution to the other polynomials.All this can be done in time polynomial in log q provided that the divisor D weare dealing with is de�ned over an extension of bounded degree of Fq .In order to speed up the computations in the case where D is de�ned over alarge extension, we can avoid repeated Gr�obner-basis computations and insteadcompute a single generic Gr�obner basis for the system, where the coe�cientsof D are parameters. As the halving is algebraic over Fq (because the curve isde�ned over Fq ), the generic basis is also de�ned over Fq . After this computationwe can halve any divisorD, even when de�ned over a large extension, by pluggingits coe�cients into the generic basis to get the specialized one.We are indebted to Eric Schost who kindly performed the construction ofthis generic Gr�obner basis for the curves we studied [Sch]. For his construction,he made use of the Kronecker package [Lec99] written by Gr�egoire Lecerf. Thispackage behaves very well on these types of problem (lifting from specializedsystems to generic ones), and it is likely that we would not have been able to dothis lifting by using classical algorithms for Gr�obner-basis computations.Example. Let C be de�ned byy2 = x5 + 1597x4 + 1041x3 + 5503x2 + 6101x+ 1887 ; (17)over the �nite �eld Fp with p = 1017+3. We will search for all rational 2{powertorsion divisors i.e., those de�ned over Fp . Two irreducible factors of f(x) havedegree at most 2, they aref1 = x+ 28555025517563816 and f2 = x+ 74658844563359755 ;Thus there are three rational divisors of order two: P1 = hf1; 0i, P2 = hf2; 0iand P1 + P2. The halving method applied to P1 �nds four rational divisors oforder 4. They are hu; vi and hu;�vi where:u = x2 + 1571353025997967 x+ 12198441063534328v = 32227723250469108 x+ 68133247565452990and: u = x2 + 70887725815800572 x+ 94321182398888258v = 42016761890161508 x+ 3182371156137467 :There are 16 solutions altogether but the others are in extension �elds (theGr�obner bases are too large to include them here!) Applying the method to P2and to P1 +P2 �nds no further rational 4{torsion divisors. By continuing in thesame manner one �nds 8 divisors of order 8, 16 of order 16, 32 of order 32 andno more. Thus the 2{part of the rational Jacobian is of the form (Z=2)� (Z=32)and hence #J=Fp � 64 mod 128.This type of exhaustive search in the base �eld determines the exact power of2 dividing #J=Fp . In the next section we show how to �nd information modulolarger powers of 2.



16 Pierrick Gaudry and Robert Harley6.2 Algorithm for Computing #J=Fq mod 2kNext we go into extension �elds to �nd some 2k{torsion divisors and we substi-tute them into �, the characteristic equation of the Frobenius endomorphism, todetermine values of its coe�cients modulo 2k and hence the value of #J=Fq mod2k, for increasing k.Algorithm (for g = 2).1. Factor f to �nd a 2{torsion divisor. Halve it to get a 4{torsion divisor D4.2. Find the pair (s1; s2) mod 4 for which �(D4) = O. Set k to 2.3. Compute the generic Gr�obner basis for halving (weight 2) divisors in thegiven Jacobian.4. Build a 2k+1{torsion divisor D2k+1 by substituting the coe�cients of D2k inthe system, computing a root of the eliminating polynomial in an extensionof minimal degree, and propagating it throughout the system.5. For each pair (s1; s2) mod 2k+1 compatible with the previously found pairmodulo 2k, plug D2k+1 into � and �nd the pair for which �(D2k+1) = O.6. Set k = k + 1, and go back to Step 4.Note that this is an idealized description of the algorithm. In fact there willfrequently be several pairs (s1; s2) remaining after checking the Frobenius equa-tion for one 2k{torsion divisor. We can eliminate false candidates by checkingwith other 2k{torsion divisors. It can be costly to eliminate all of them whenthe required divisors are in large extensions; an alternative strategy is to con-tinue and expect the false candidates to be eliminated later using 2k+1{torsiondivisors.In this algorithm, we could skip step 3 and compute speci�c Gr�obner basesat each time in step 4. However, the generic Gr�obner basis is more e�cient andallows one to perform one or two extra iterations for the same run-time.7 Combining these Algorithms | Practical ResultsWe have implemented all these algorithms and tested their performance for realcomputation. Some of them were written in the C programming language, andothers were implemented in the Magma computer algebra system [BC97].7.1 Prime FieldIn the case where the curve is de�ned over a prime �eld Fp , where p is a largeprime, we use all the methods described in previous sections except for Cartier-Manin. We give some data for a `random' curve for which we computed thecardinality of the Jacobian. Let the curve C be de�ned byy2 = x5 + 3141592653589793238 x4 + 4626433832795028841 x3+ 9716939937510582097 x2 + 4944592307816406286 x+ 2089986280348253421 ; (18)



Counting points on hyperelliptic curves over �nite �elds 17over the prime �eld of order p = 1019 + 51. The cardinality of its Jacobian is#J = 99999999982871020671452277000281660080 ; (19)and the characteristic polynomial of the Frobenius has coe�cients:s1 = 1712898036 and s2 = 11452277089352355350 :The �rst step of this computation is to factor f(x). It has 3 irreducible factors,thus we already know that #J � 0 mod 4.The second step is to lift the 2{power torsion divisors. The computation ofthe generic halving Gr�obner basis (done by E. Schost) took about one hour onan Alpha workstation. Then we lifted the divisors several times and checked theFrobenius equation. In the following table we give the degree of the extensionwhere we found a 2k{torsion divisor, and the information on #J that we got(timings on a Pentium 450).#J deg of ext #J deg of ext time0 mod 2 1 16 mod 32 160 mod 4 1 48 mod 64 320 mod 8 4 48 mod 128 64 5000 sec0 mod 16 8 176 mod 256 128 9 hoursThe next step is to perform the Schoof{like algorithm. We did so for theprimes l 2 f3; 5; 7; 11; 13g. The following table gives the degree of the polynomial~R(x1) for each l, and the smallest extension where we found an l{torsion divisor(timings on a Pentium 450).l degree of ~R(x1) degree of ext #J time3 240 2 1 mod 3 1200 sec5 2256 1 0 mod 5 300 sec7 9120 6 4 mod 7 12 hours11 57360 1 0 mod 11 19 hours13 112560 7 9 mod 13 205 hoursThe run-time for l = 3 is surprisingly large in this table. For our curve, anunlucky event occurs, which becomes rare as l increases. Indeed, after testing theFrobenius equation for all the 3{torsion divisors several candidates (s1; s2) stillremain, yielding several possibilities for #J mod 3. What this means is that theminimal polynomial of � is not the characteristic polynomial. Each remainingcandidate for (s1; s2) gives a multiple of the minimal polynomial. By taking theirGCD we obtain the exact minimal polynomial, from which we can deduce thecharacteristic polynomial7 and #J mod 3.In our case, there are 3 pairs left after testing all the 3{torsion points, leadingto the following candidates for #J mod 3.(s1; s2) mod 3 #J mod 3 �(t) mod 3(0; 2) 1 t4 � t2 + 1(1; 2) 2 t4 � t3 � t2 � t+ 1(2; 2) 0 t4 + t3 � t2 + t+ 17 See [Kam91] for more about this.



18 Pierrick Gaudry and Robert HarleyThe third case is impossible because if #J � 0 mod 3 then we would havefound a rational 3{torsion divisor earlier. In order to decide between the two�rst cases we determine the minimal polynomial, which is t2 + 1 and thus thecharacteristic polynomial must be (t2 + 1)2 and �nally #J � 1 mod 3.However to do this we have to build all the 3{torsion divisors. This explainswhy the running time is higher than for l = 5, where we found a rational 5{torsion divisor and immediately deduced that #J = 0 mod 5.The �nal step is the birthday paradox computation. The width of the Hasse-Weil interval is roughly 2:5 � 1029. The search space is reduced by a factor28� 3� 5� 7� 11� 13 = 3843840 leaving 6:6� 1022 candidates. The search wasperformed on ten Alpha workstations working in parallel and calculated 5�1011operations in the Jacobian. On a single 500 MHz workstation, this computationwould have taken close to 50 days.7.2 Non-prime FieldsLet C be a genus 2 curve de�ned over Fpn , where p is a small odd prime. Weassume that C is not de�ned over a small sub�eld, for in that case it is easy tocompute �(t) using a theorem due to Weil.Here the �rst step is to use Cartier-Manin to get �(t) mod p quickly and thencontinue as before, except that we avoid l = p in the Schoof part.Examples: We did not try to build big examples, however we give two mediumones. For the �rst, let the curve C be de�ned byy2 = x5 + x4 + x3 + x2 + tx+ 1 ; (20)over the �nite �eld F330 = F3 [t]=(t30 + t� 1). The cardinality of its Jacobian is#J = 42391156018493425614913594804 : (21)The second example illustrates the advantage given by Cartier-Manin in afavorable case where p = 216 � 15. Let the curve C be de�ned byy2 = x5 + x4 + x3 + x2 + x+ t ; (22)over the �nite �eld Fp4 = Fp [t]=(t4 � 17). The Cartier-Manin computation gaveus #J � 58976 mod p in 17 minutes, and �nishing using our other methods gave#J = 339659790214687297284652908385855015466 : (23)8 Perspectives for Further ResearchThe present paper reports on practical algorithms for counting points on hy-perelliptic curves over large �nite �elds and on implementations for genus 2.Although it is now possible to deal with almost cryptographic-size Jacobians,there is still a substantial amount of work to be done. Some improvements orgeneralizations seem to be accessible in the near future, whereas others are stillquite vague. Among them we would like to mention:



Counting points on hyperelliptic curves over �nite �elds 19{ Extension of the algorithm to even characteristic. This is only a matterof translating the formulae, in order to deal with an equation of the formy2 + h(x) y = f(x). The Cartier-Manin part and the lifting of the 2{torsionshould merge, giving an e�cient way to compute the result modulo 2k. Forthe Schoof-like part, the formulae of Cantor's division polynomials have tobe adapted, which does not appear to be too di�cult.{ Extension of the Schoof-like algorithm to genus g > 2. The main di�cultyis that it does not appear possible to avoid manipulation of ideals.{ More use could certainly be made of the Jacobian of the twist curve.{ We believe that it may be possible to lift the curve to a local �eld with residue�eld Fq and use Cartier-Manin to compute �(t) modulo small powers of thecharacteristic. We do not yet know how to compute the lift, however.{ A major improvement would be to elaborate a genus 2 version of the Elkies-Atkin approach for elliptic curves, which would lead to computations withpolynomials of lower degree. We conjecture that it is possible to work withdegrees reduced from O(l4) to O(l3). The �rst task is to construct modularequations for Siegel modular forms, instead of classical ones. This requires adescription of isogenies for each small prime degree, which can be given bylists of cosets under left actions of the symplectic group Sp4(Z) instead ofthe classical modular group SL2(Z). Starting points for studying the relevantforms and groups include [Fre83] and [Kli90]. This will be explained in moredetail elsewhere [Har].All the above is the subject of active research.References[AH92] L. M. Adleman and M.-D. A. Huang. Primality testing and Abelian varietiesover �nite �elds, vol. 1512 of Lecture Notes in Math. Springer{Verlag, 1992.[BC97] W. Bosma and J. Cannon. Handbook of Magma functions, 1997. Sydney,http://www.maths.usyd.edu.au:8000/u/magma/.[Can87] D. G. Cantor. Computing in the Jacobian of an hyperelliptic curve. Math.Comp., 48(177):95{101, 1987.[Can94] D. G. Cantor. On the analogue of the division polynomials for hyperellipticcurves. J. Reine Angew. Math., 447:91{145, 1994.[Car57] P. Cartier. Une nouvelle op�eration sur les formes di��erentielles. C. R. Acad.Sci. Paris S�er. I Math., 244:426{428, 1957.[Cou96] J.-M. Couveignes. Computing l-isogenies using the p-torsion. In H. Cohen,editor, Algorithmic Number Theory, volume 1122 of Lecture Notes in Comput.Sci., pages 59{65. Springer Verlag, 1996. Second International Symposium,ANTS-II, Talence, France, May 1996, Proceedings.[Elk98] N. Elkies. Elliptic and modular curves over �nite �elds and related compu-tational issues. In D.A. Buell and J.T. Teitelbaum, editors, ComputationalPerspectives on Number Theory, pages 21{76. AMS/International Press, 1998.Proceedings of a Conference in Honor of A.O.L. Atkin.[FR94] G. Frey and H.-G. R�uck. A remark concerning m-divisibility and the discretelogarithm in the divisor class group of curves. Math. Comp., 62(206):865{874,April 1994.



20 Pierrick Gaudry and Robert Harley[Fre83] E. Freitag. Siegelsche Modulfunktionen, volume 254 of Grundlehren der math-ematischen Wissenschaften. Springer{Verlag, 1983.[Har] R. Harley. On modular equations in genus 2. In preparation.[HI98] M.-D. Huang and D. Ierardi. Counting points on curves over �nite �elds. J.Symbolic Comput., 25:1{21, 1998.[IR82] K. F. Ireland and M. Rosen. A classical introduction to modern numbertheory, volume 84 of Graduate texts in Mathematics. Springer{Verlag, 1982.[Kam91] W. Kampk�otter. Explizite Gleichungen f�ur Jacobische Variet�aten hyperellip-tischer Kurven. PhD thesis, Univ. Gesamthochschule Essen, August 1991.[Kli90] H. Klingen. Introductory lectures on Siegel modular forms, vol. 20 of Cam-bridge studies in advanced mathematics. Cambridge University Press, 1990.[Kob89] N. Koblitz. Hyperelliptic cryptosystems. J. of Cryptology, 1:139{150, 1989.[Lec99] G. Lecerf. Kronecker, Polynomial Equation System Solver, Reference manual,1999. http://www.gage.polytechnique.fr/~lecerf/software/kronecker.[Ler97] R. Lercier. Algorithmique des courbes elliptiques dans les corps �nis. Th�ese,�Ecole polytechnique, June 1997.[Man65] J. I. Manin. The Hasse-Witt matrix of an algebraic curve. Trans. Amer.Math. Soc., 45:245{264, 1965.[Mor95] F. Morain. Calcul du nombre de points sur une courbe elliptique dans uncorps �ni : aspects algorithmiques. J. Th�eor. Nombres Bordeaux, 7:255{282,1995.[Mum84] D. Mumford. Tata lectures on theta II, volume 43 of Progr. Math. Birkhauser,1984.[PH78] S. Pohlig and M. Hellman. An improved algorithm for computing logarithmsover GF(p) and its cryptographic signi�cance. IEEE Trans. Inform. Theory,IT{24:106{110, 1978.[Pil90] J. Pila. Frobenius maps of abelian varieties and �nding roots of unity in �nite�elds. Math. Comp., 55(192):745{763, October 1990.[Pol78] J. M. Pollard. Monte Carlo methods for index computation mod p. Math.Comp., 32(143):918{924, July 1978.[R�uc99] H. G. R�uck. On the discrete logarithm in the divisor class group of curves.Math. Comp., 68(226):805{806, 1999.[Sch] E. Schost. Computing parametric geometric resolutions. Submitted to IS-SAC'2000.[Sch85] R. Schoof. Elliptic curves over �nite �elds and the computation of squareroots mod p. Math. Comp., 44:483{494, 1985.[Sch95] R. Schoof. Counting points on elliptic curves over �nite �elds. J. Th�eor.Nombres Bordeaux, 7:219{254, 1995.[ST99] A. Stein and E. Teske. Catching kangaroos in function �elds. Preprint, March1999.[Tat66] J. Tate. Endomorphisms of Abelian varieties over �nite �elds. Invent. Math.,2:134{144, 1966.[Ver99] F. Vercauteren. #EC(GF(2^1999)). E-mail message to the NMBRTHRY list,Oct 1999.[vOW99] P. C. van Oorschot and M. J. Wiener. Parallel collision search with crypt-analytic applications. J. of Cryptology, 12:1{28, 1999.[Yui78] N. Yui. On the jacobian varietes of hyperelliptic curves over �elds of charac-teristic p > 2. J. Algebra, 52:378{410, 1978.




