SCISPACE

formerly Typeset

@ Open access « Book Chapter - DOI:10.1007/10722028_18
Counting Points on Hyperelliptic Curves over Finite Fields — Source link [/

Pierrick Gaudry, Robert Harley

Institutions: Ecole Polytechnique

Published on: 02 Jul 2000 - Algorithmic Number Theory Symposium

Topics: Division polynomials, Cardinality, Prime power, Finite field and Birthday problem

Related papers:

« Computing in the Jacobian of a hyperelliptic curve

» Hyperelliptic cryptosystems

« Counting Points on Hyperelliptic Curves using Monsky-Washnitzer Cohomology
« Elliptic curve cryptosystems

« Tata Lectures on Theta |

Share this paper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/counting-points-on-hyperelliptic-curves-over-finite-fields-
y3k8skl2y7

https://typeset.io/
https://www.doi.org/10.1007/10722028_18
https://typeset.io/papers/counting-points-on-hyperelliptic-curves-over-finite-fields-y3k8skl2y7
https://typeset.io/authors/pierrick-gaudry-1i1xoxhu50
https://typeset.io/authors/robert-harley-2cl5mob94x
https://typeset.io/institutions/ecole-polytechnique-29q4ufob
https://typeset.io/conferences/algorithmic-number-theory-symposium-24c28088
https://typeset.io/topics/division-polynomials-52hm1xe4
https://typeset.io/topics/cardinality-3g4ot0hp
https://typeset.io/topics/prime-power-23vm6vm3
https://typeset.io/topics/finite-field-1a8kh9h8
https://typeset.io/topics/birthday-problem-1td2j3iu
https://typeset.io/papers/computing-in-the-jacobian-of-a-hyperelliptic-curve-49ly3dbxds
https://typeset.io/papers/hyperelliptic-cryptosystems-25fmcvanjc
https://typeset.io/papers/counting-points-on-hyperelliptic-curves-using-monsky-3wbqsyxlzu
https://typeset.io/papers/elliptic-curve-cryptosystems-2ur87i8agx
https://typeset.io/papers/tata-lectures-on-theta-i-38v7ixs78s
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/counting-points-on-hyperelliptic-curves-over-finite-fields-y3k8skl2y7
https://twitter.com/intent/tweet?text=Counting%20Points%20on%20Hyperelliptic%20Curves%20over%20Finite%20Fields&url=https://typeset.io/papers/counting-points-on-hyperelliptic-curves-over-finite-fields-y3k8skl2y7
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/counting-points-on-hyperelliptic-curves-over-finite-fields-y3k8skl2y7
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/counting-points-on-hyperelliptic-curves-over-finite-fields-y3k8skl2y7
https://typeset.io/papers/counting-points-on-hyperelliptic-curves-over-finite-fields-y3k8skl2y7

& HAL

open science

\

Counting points on hyperelliptic curves over finite fields
Pierrick Gaudry, Robert Harley

» To cite this version:

Pierrick Gaudry, Robert Harley. Counting points on hyperelliptic curves over finite fields. ANTS-IV,
2000, Leiden, Netherlands. pp.313-332, 10.1007/10722028 18 . inria-00512403

HAL Id: inria-00512403
https://hal.inria.fr /inria-00512403
Submitted on 30 Aug 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00512403
https://hal.archives-ouvertes.fr

Counting Points on Hyperelliptic Curves over
Finite Fields

Pierrick Gaudry! and Robert Harley>

L LIx, Ecole Polytechnique,
91128 Palaiseau Cedex, France
2 Projet Cristal, INRIA, Domaine de Voluceau - Rocquencourt,
78153 Le Chesnay, France

Abstract. We describe some algorithms for computing the cardinality
of hyperelliptic curves and their Jacobians over finite fields. They include
several methods for obtaining the result modulo small primes and prime
powers, in particular an algorithm d la Schoof for genus 2 using Can-
tor’s division polynomials. These are combined with a birthday paradox
algorithm to calculate the cardinality. Our methods are practical and
we give actual results computed using our current implementation. The
Jacobian groups we handle are larger than those previously reported in
the literature.

Introduction

In recent years there has been a surge of interest in algorithmic aspects of curves.
When presented with any curve, a natural task is to compute the number of
points on it with coordinates in some finite field. When the finite field is large
this is generally difficult to do.

René Schoof gave a polynomial time algorithm for counting points on elliptic
curves i.e., those of genus 1, in his ground-breaking paper [Sch85]. Subsequent
improvements by Elkies and Atkin ([Sch95], [Mor95], [E1k98]) lowered the expo-
nent to the point where efficient implementations became possible. After further
improvements ([Cou96], [Ler97]) several implementations of the Schoof-Elkies-
Atkin algorithm were actually written and very large finite fields can now be
handled in practice ([Mor95], [Ver99]).

For higher genus, significant theoretical progress was made by Pila who gave
a polynomial time algorithm in [Pil90] (see also [HI98]). However to date these
methods have not been developed as extensively as the elliptic case. As a first step
towards closing this gap it is fruitful to concentrate on low genus hyperelliptic
curves, as these are a natural first generalization of elliptic curves and techniques
used in the elliptic case can be adapted. Such techniques include Schoof-like
methods and several others which all contribute to a practical algorithm.

We mention two possible applications of the ability to count points on low
genus hyperelliptic curves. An early theoretical application was the proof that
primality testing is in probabilistic polynomial time, [AH92]. A practical ap-
plication results from the apparent difficulty of computing discrete logarithms

2 Pierrick Gaudry and Robert Harley

in the Jacobian groups of these curves. In low genus, no sub-exponential algo-
rithms are currently known, except for some very thin sets of examples ([Riic99],
[FR94]) and hence the Jacobian group of a random curve is likely to be suitable
for constructing cryptosystems [Kob89]. To build such a cryptosystem, it is first
desirable to check that the group order has a large prime factor since otherwise
the logarithm could be computed in small subgroups [PH78].

We restrict ourselves to odd characteristic for simplicity. We will work with
models of odd degree where arithmetic is analogous to that of imaginary quadratic
fields. For the even degree alternative, which is similar to real quadratic fields, see
the recent paper [ST99] which describes a birthday paradox algorithm optimized
using an analogue of Shanks’ infrastructure.

Our contribution contains several complementary approaches to the problem
of finding the size of Jacobian groups, all of which have been implemented.
By combining these approaches we have been able to count larger groups than
previously reported in the literature.

The first approach is an efficient birthday paradox algorithm for hyperelliptic
curves. We have filled in all the details required for a large-scale distributed
implementation, although the basic idea has been known for 20 years. In our
implementation we also use an optimized group operation for genus 2, in which
we have reduced the number of field operations required.

The time taken grows as a small power of the field size and this algorithm,
if used in isolation, would take a prohibitive amount of time to handle large
groups such as those of cryptographic size. However our version of it can take
advantage of prior information on the result modulo some integer. We elaborate
various strategies for collecting as much of this information as possible.

We show that when the characteristic p is not too large, the result modulo p
can be obtained surprisingly easily using the Cartier-Manin operator. It provides
an elegant and self-contained method based on theoretical material proved in the
1960’s.

To go further, we also extend Schoof’s algorithm to genus 2 curves using
Cantor’s division polynomials. On the basis of previous outlines existing in the
literature, but not directly implementable, we elaborated a practical algorithm
and programmed it in Magma. For the case where the modulus is a power of 2,
we are able to bypass computations with division polynomials and use a much
faster technique based on formulae for halving in the Jacobian.

The combinations of these techniques has allowed us to count genus 2 groups
with as many as 1038 elements.

We would particularly like to thank Eric Schost of the GAGE laboratory
at Ecole Polytechnique for helpful discussion concerning algebraic systems. Fur-
thermore his assistance in computing Grobner bases was invaluable and allowed
us to compute group orders modulo larger powers of 2 than would otherwise
have been possible.

We also thank Francois Morain for many constructive comments on this
paper.

Counting points on hyperelliptic curves over finite fields 3
Prerequisites and Notations

We will take a concrete approach, concentrating on arithmetic and algorithmic
aspects rather than more abstract geometric ones.

Let g be a positive integer and let F, be the finite field of ¢ = p™ elements,
where p is an odd prime. For our purposes, a hyperelliptic curve of genus g is
the set of solutions (x,y) of the equation y?> = f(z), where f(z) is a monic
polynomial of degree 2g+ 1 with coefficients in I, and with distinct roots'. Note
that the coordinates may be in the base field F, or in an extension field.

When a point P = (zp,yp) is on the curve C, its opposite is the point
—P = (zp,—yp). A divisor® is a formal sum D = 3, P; of points on C. Note
that points may be repeated with some multiplicity in the sum. A semi-reduced
divisor is a divisor with no two points opposite. Such a divisor with k& points
is said to have weight k. A reduced divisor is a semi-reduced divisor of weight
k<g.

The Jacobian, denoted J, is the set of reduced divisors. An important fact
is that one can define an addition operation on reduced divisors which makes J
into a group, whereas this is not possible on the curve itself directly. This group
law is denoted by + and will be described in the next section.

A convenient representation of reduced (and semi-reduced) divisors, due to
Mumford [Mum84], uses a pair of polynomials (u(z),v(z)). Here u(z) = [[,(z —
x;) and v(z) interpolates the points P; respecting multiplicities. More precisely
v=0or degv < degu, and u divides f —v?. We say that a semi-reduced divisor
is defined over a field F when the coefficients of u and v are in F (even though
the coordinates z; and y; may be in an extension field) and write J/F for the
set of such divisors.

Most reduced divisors have weight g. The set of those with strictly lower
weight is called @. A divisor of weight 1 i.e., with a single point P = (zp,yp),
is represented by (u(z),v(x)) = (x — xp,yp). The unique divisor of weight 0,
O = (u(z),v(z)) = (1,0), is the neutral element of the addition law. Scalar
multiplication by an integer [is denoted by:

lID=D+D+---+D . (I times) (1)

We say that D is an [-torsion divisor whenever [[]D = O. The set of all [-torsion
divisors, including those defined over extension fields, is denoted by J[I].

We concentrate particularly on genus-2 curves and in this case the divisors
in J \ O have the form:

D = (2 + w1z + us,voT + v1) . (2)

! Strictly speaking, this is the affine part of a smooth projective model. In genus 2
every curve is birationally equivalent to such a curve provided the base field is large
enough.

2 Strictly speaking, these are degree-0 divisors with the multiplicity of the point at
infinity left implicit.

4 Pierrick Gaudry and Robert Harley
1 Group Law in the Jacobian

We will sketch the group law i.e., addition of reduced divisors, using the intuitive
‘sum of points’ notation and then describe efficient formulae for computing the
law in genus 2 using Mumford’s representation.

The computation of D; + D5 can be viewed, at a high level of abstraction,
as the following three steps:

— form a (non-reduced) divisor with all the points of D; and D-,
— semi-reduce it by eliminating all pairs of opposite points,
— reduce it completely.

The third step is the only one that presents any difficulty®. When we reach
it we have a semi-reduced divisor with at most 2¢ points. If there are g or
fewer then no reduction is necessary but if there are more than g we reduce by a
higher-genus analogue of the well known chord-and-tangent operation for elliptic
curves.

1.1 Reduction Step

Fix g = 2 and, for the moment, consider a semi-reduced divisor R with 3 distinct
points. The reduction of R is as follows.

Let y = a(x) be the equation of the parabola (or perhaps line) interpolating
the three points. The roots of f — a? are the abscissae of the intersections be-
tween the parabola and the curve. This is a quintic polynomial so there are five
intersections (including multiplicities). We already know 3 of them, the points
of R. Form a divisor S with the other two, and the result of the reduction is —S.

In the more frequent case where R has 4 points, choose an interpolating cubic
(or lower degree) polynomial a(z) instead. Then f — a® has degree 5 or 6 and
we know 4 intersections. Form S with the others and the result is —S.

In cases where some points of R are repeated, the interpolation step is ad-
justed to ensure tangency to the curve with sufficient multiplicity. Also, in genus
g > 2 the reduction step may need to be repeated several times.

In practice it would be inefficient to compute the group law this way using the
representation of divisors as sums of points, since the individual points may be
defined over extension fields. By using Mumford’s notation we can work entirely
in the field of definition of the divisors.

1.2 Group Law in Mumford’s Notation

Cantor gave two forms of the group law using Mumford’s notation in [Can87].
One was a direct analogue of Gauss’s reduction of binary quadratic forms of

% In a more classical treatment the reduction would be described as choosing a rep-
resentative for an equivalence class of degree 0 divisors modulo linear equivalence,
where linearly equivalent divisors are those that differ by a principal divisor.

Counting points on hyperelliptic curves over finite fields 5

negative discriminant, the other an asymptotically fast algorithm for high genus
making clever use of fast polynomial arithmetic.

We describe an efficient algorithm, carefully optimized to reduce the number
of operations required. We find that in genus 2 doubling a divisor or adding
two divisors both take 30 multiplication operations and 2 inversions, in general.
Note for comparison that optimized elliptic curve operations typically take 3 or
4 multiplications and 1 inversion.

Space limits us to a brief description of the genus 2 doubling operation. Let
D = (u,v). We cover the cases that may occur, in order of increasing complexity.

Simple case: If v = 0 the result is simply O.

Weight 1: Here u(z) = z — xp and v(z) = yp. The result is ((z — zp)?, ax +b),
where ax + b is the tangent line at P with a = f'(zp)/2yp and b = yp — azp.

Weight 2: Compute the resultant r = uQvg + v% — u1vgur of u and v.

Resultant 0: If » = 0 then u and v have a root in common i.e., D has
a point with ordinate 0. Isolate the other point by xp = —u; + v1 /vo,
yp = v1 + vozrp and return to the weight 1 case above.

General case: Consider the fact that v is a square root of f modulo
u. We can double the multiplicity of all points in D by using a Newton
iteration to compute a square root modulo 2.

— Newton iteration: set U = u?, and V = (v + f/v)/2 mod U,

— Get ‘other’ roots: set U = (f — V?)/U,

— Make U monic,

— Reduce V modulo U,
The result is (U, V).

Several observations help to optimize calculation with these formulae: after the
first step, V' = v mod u; also the division by U in the second step is exact; not
all coefficients of the polynomials are really needed; finally some multiplications
can be avoided using Karatsuba’s algorithm.

The general addition operation is similar to doubling although the Newton
iteration is replaced by a little Chinese Remainder calculation and more cases
need to be handled. Since the details are somewhat tedious, we give the resulting
pseudo-code and sample C code at the following Web site:

http://cristal.inria.fr/ harley/hyper/

2 Frobenius Endomorphism

In this section we collect some useful results and quote them without proof. A
starting point for the reader interested in pursuing this material is [IR82] and
the references therein.

We first describe properties of the g—power Frobenius endomorphism ¢(x) =
z?. Note that it has no effect on elements of F, but it becomes non-trivial in

6 Pierrick Gaudry and Robert Harley

extension fields. This map extends naturally to points, by transforming their x
and y coordinates. It extends further to divisors by acting point-wise.

Crucially, this latter action is equivalent to acting on each coefficient of the
v and v polynomials in Mumford’s notation. When a divisor is defined over F,,
¢ may permute its points but it leaves the divisor as a whole invariant.

2.1 Characteristic Polynomial

The ¢ operator acts linearly and has a characteristic polynomial of degree 2g
with integer coefficients. In genus 2 it is known to have the form:

x(t) = t* — s1t% + 5ot — 519t + ¢* (3)
so that x(¢) is the identity map on all of J, in other words:
VP eJ, ¢'(P)— [51]6°(P) + [52]¢*(P) — [s19]6(P) + [¢*]P = O . (4)

The so-called Riemann hypothesis for curves, on the roots of their zeta func-
tions, was proved by Weil and implies that the complex roots of y have absolute
value \/q. Hence, in genus 2 the following bounds apply: |s:| < 4,/q and |s2| < 6q.

2.2 Relations Between Frobenius and Cardinalities

The Frobenius is intimately related to the number of points on the curve and
the number of divisors in J, over the base field and its extensions.

First of all, knowledge of x is equivalent to that of #C/F,: for 1 <i < g. In
genus 2 the following formulae relate them:

#C/F, =q—s1 and #C/F2 =¢° — st +2ss . (5)

Furthermore #J/IF, is completely determined by x according to the formula
#J/F; = x(1). An important consequence is that the group order is constrained
to a rather small interval, the Hasse-Weil interval:

[(Va-1)*] < #J/F, < |(Va+1)*] . (6)

In the reverse direction, knowledge of #J/F, almost determines x for ¢ large
enough. For instance in genus 2, (#J/F,)—q¢®>—1 = s3 —s1(¢+1) and the bound
on s given above ensures that there are O(1) possibilities.

3 Birthday Paradox Algorithm

To compute the group order N = #J/F, exactly we search for it in the Hasse-
Weil interval which has width w close to 4gq?~'/2. The first few coefficients s;
of x can be computed by exhaustively counting points on the curve over F,,.
Doing so for i < I reduces the search interval to width w = O(q?~+1)/2) but
costs O(q!) (see [Elk98]). In genus 2 this is not useful and one simply takes

w = 2[4(qg+1)/q].

Counting points on hyperelliptic curves over finite fields 7

3.1 Computing the Order of the Group

Assume for the moment that we know how to compute the order n of a randomly
chosen divisor D in J/F, (from now on the term “divisor” always refers to a
reduced divisor). Writing e for the group exponent, we have n|e and e| N and
thus N is restricted to at most [(w + 1)/n] possibilities. Usually n > w and so
N is completely determined.

It is possible for n to be smaller, though. In such a case we could try several
other randomly chosen divisors, taking n to be the least common multiple of
their orders and stopping if n > w. After a few tries n will converge to e and if
e > w the method terminates.

However in rare cases the exponent itself may be small, e < w. It is known
that J/IF, is the product of at most 2g cyclic groups and thus e > /g — 1 and
in fact this lower bound can be attained.

It is possible to obtain further information by determining the orders of
divisors in the Jacobian group of the quadratic twist curve, but even this may
not be sufficient. We do not yet have a completely satisfactory solution for such
a rare case, however we mention that the Weil pairing may provide one.

3.2 Computing the Order of One Divisor

To determine the order n of an arbitrary divisor D we find some multiple of n,
factor it and search for its smallest factor d such that [d]D = O.

There are certainly multiples of n in the search interval (since the group
order is one such) and we can find one of them using a birthday paradox al-
gorithm, in particular a distributed version of Pollard’s lambda method [Pol78]
with distinguished points. For a similar Pollard rho method see [vOW99].

Since the width of the search interval is w, we expect to determine the mul-
tiple after O(y/w) operations in the Jacobian. By using distinguished points and
distributing the computation on M machines, this takes negligible space and
O(vw(logq)? /M) time®.

The birthday paradox algorithm is as follows.

Choose some distinguishing characteristic.

— Choose a hash function h that hashes divisors to the range 0..19, say.
Pick 20 random step lengths I; > 0 with average roughly M+/w,

— Precompute the 20 divisors D; = [I;]D.

Precompute E = [c]D.

Here c is the center of the search interval. In genus 2 ¢ = ¢ + 6¢ + 1. The
calculation then consists of many ‘chains’ of iterations run on M client machines:

— Pick a random r < w and compute R = [r]D.
— Pick a random bit b and if it is 1 set R to R + E.
— While R is not distinguished, set r :=r + l(g) and R := R + Dy(p)-

% Using classical algorithms for field arithmetic.

8 Pierrick Gaudry and Robert Harley

— Store the distinguished R on a central server along with r and b.

The distinguishing feature must be chosen to occur with probability signifi-
cantly less than \/w/M, say 50 times less. Thus each chain takes about \/w/M /50
steps and has length about w/50.

Note that chains with b = 0 visit many pseudo-random divisors in the set
S1 ={[r]D | 0 <r < w} and a few with larger r. Chains with b = 1 visit many
divisors in So = {E + [r]D | 0 < r < w} and a few with larger r. However the
choice of FE guarantees that the intersection I = Sy N Sy contains at least w/2
divisors.

Now after a total of O(y/w) steps have been performed, O(y/w) divisors have
been visited and O(y/w) of them are expected to be in I. Then the birthday
paradox guarantees a significant chance that a useful collision occurs i.e., that
the same divisor R is visited twice with different bits b. Shortly afterwards a
useful collision of distinguished points is detected at the server, between Ry and
R, say.

Therefore ro = ¢ + r1 modulo n and finally ¢+ r; — rg is the desired multiple
of n.

3.3 Beyond the Birthday Paradox

To handle larger examples than is possible with the birthday paradox algorithm
alone, we precompute the Jacobian order modulo some integer. If N is known
modulo m then the search for a multiple of a divisor’s order can be restricted to
an arithmetic progression modulo m, rather than the entire search interval®. In
this way the expected number of operations can be reduced by a factor /m.

The algorithm outlined above needs to be modified as follows (we can assume
that m is much smaller than w since otherwise no birthday paradox algorithm
would be required!).

— Increase the frequency of the distinguishing characteristic by a factor \/m.
— The step lengths must be multiples of m chosen with average length M +/wm.
— Replace E with [z]D where z is nearest ¢ such that z = N mod m.

To compute N modulo m with m as large as possible, we will first compute
it modulo small primes and prime powers using various techniques explained in
the next few sections. Then the Chinese Remainder Theorem gives N modulo
their product.

To date this use of local information has speeded up the birthday paradox al-
gorithm by a significant factor in practice. It should be pointed out however that
while the birthday paradox algorithm takes exponential time, the Schoof-like al-
gorithm described below takes polynomial time. Hence it can be expected that
for future calculations with very large Jacobians, the Schoof part will provide
most of the information.

® Note that we could also take advantage of partial information that restricted N to
several arithmetic progressions modulo m.

Counting points on hyperelliptic curves over finite fields 9

4 Cartier-Manin Operator and Hasse-Witt Matrix

We propose a method for calculating the order of the Jacobian modulo the
characteristic p of the base field, by using the so-called Cartier-Manin operator
and its concrete representation as the Hasse- Witt matriz (see [Car57]). In the
case of hyperelliptic curves, this ¢ x g matrix can be computed by a method
given in [Yui78] which generalizes the computation of the Hasse invariant for
elliptic curves. Yui’s result is as follows:

Theorem 1. Let y? = f(z) with deg f = 2g+1 be the equation of a genus g hy-
perelliptic curve. Denote by c; the coefficient of =* in the polynomial f(z)®~1/2.
Then the Hasse-Witt matriz is given by

A= (cip_j)1§i7j§g . (7)

In [Man65], Manin relates it to the characteristic polynomial of the Frobenius
modulo p. For a matrix A = (a;;), let A® denote the elementwise p—th power
i.e., (a};). Then Manin proved the following result:

Theorem 2. Let C be a curve of genus g defined over a finite field Fyn . Let A be
the Hasse- Witt matriz of C, and let Ay = AAW .. CA®T | Let k(t) be the char-
acteristic polynomial of the matriz Ay, and x(t) the characteristic polynomial of

the Frobenius endomorphism. Then
x(t) = (-1)9t.(t) mod p . (8)

Now it is straightforward to compute x(¢) modulo the characteristic p and
hence #J/F, mod p, provided that p is not too large (say at most 100000).
Note that this is a very efficient way to get information on the Jacobian order,
particularly when p is moderately large. Such a situation can occur in practice
with fields chosen, for implementation reasons, to be of the form F,~» with p close
to a power of 2 such as p =28 — 5 or p = 216 — 15.

5 Algorithm a la Schoof

In this section we describe a polynomial time algorithm a la Schoof for computing
the cardinality of J/F, in genus 2. This algorithm follows theoretical work of
Pila [Pil90] and Kampkdtter [Kam91]. We make extensive use of the division
polynomials described by Cantor [Can94].

5.1 Hyperelliptic Analogue of Schoof’s Algorithm

The hyperelliptic analogue of Schoof’s algorithm consists of computing x mod-
ulo some small primes [by working in J[/]. Once this has been done, modulo
sufficiently many primes (or prime powers), then x can be recovered exactly by
the Chinese Remainder Theorem. From the bounds on s; above, it suffices to

10 Pierrick Gaudry and Robert Harley

consider | = O(logq). In practice we use a few small [, determine xy modulo
their product, and use this information to optimize a birthday paradox search
as described previously.

Let [be a prime power co-prime with the characteristic. Then the subgroup
of I-torsion points has the structure J[I] = (Z/IZ)?9. Moreover, the Frobenius
acts linearly on this subgroup and Tate’s theorem [Tat66] states that the charac-
teristic polynomial of the induced endomorphism is precisely the characteristic
polynomial of the Frobenius endomorphism on J with its coefficients reduced
modulo /. Hence by computing the elements of J[I] and the Frobenius action on
them, we can get the characteristic polynomial modulo /.

The following lemma due to Kampkdtter simplifies the problem.

Lemma 1. Ifl is an odd prime power, then the set J\ © contains a Z [1Z—basis
of J[1].

Thus the Frobenius endomorphism on J[{] is completely determined by its action
on J[I]\ O.

Let D = (2% 4+ u1® + uz,vox + v1) be a divisor in J \ ©, then the condition
[[]D = O can be expressed by a finite set of rational equations in wy,us, vo, v;.
More precisely, there exists an ideal I; of the polynomial ring I, [Uy, Us, Vo, V4]
such that D lies in J[I]\ © if and only if f(u1,u2,v9,v1) = 0 for all polynomials
f in (a generating set of) the ideal I;. In [Kam91], Kampkétter gives explicit
formulae for multivariate polynomials generating I;.

From now on, we can represent a generic element of J[I] \ @ by the quotient
ring ¥, [Us, Us, Vo, V1]/1;. The Frobenius action can be computed for this element
and it is possible to find its minimal polynomial by brute force. The characteristic
polynomial is then easy to recover (at least in the case where [is a prime)
and we are done. This method due to Pila and Kampkotter has polynomial-
time complexity, however it involves arithmetic on ideals which requires time-
consuming computations of Grébner bases. In the following we propose another
method which avoids the use of ideals.

5.2 Cantor’s Division Polynomials

In [Can94], Cantor defined division polynomials of hyperelliptic curves, general-
izing the elliptic case, and gave an efficient recursion to build them.

These polynomials are closely related to Kampkdotter’s ideal I;, but they allow
a Schoof-like algorithm to work mostly with one instead of four variables. An
approximate interpretation of the phenomenon is that the division polynomials
lead to a representation of I; directly computed in a convenient form (almost a
Grobner basis for a lexicographical order).

Cantor’s construction provides 6 sequences of polynomials d(()l),dgl),dgl) and
e(()l),egl),egl) such that for divisors P = (x — zp,yp) of weight 1 in general
position, we get

0 M) oDy oDy
= (o e e (e) - o

Counting points on hyperelliptic curves over finite fields 11

The degrees of these division polynomials are

do dy d» eo el €2
217 —1|217 — 2|21 — 3[31> — 2[31> — 2|31> = 3

By lemma 1 it is sufficient to consider divisors D € ©. In order to multiply
D = (u(x),v(x)) by | we express it as a sum of two divisors of weight 1 i.e.,
we write D = P, + P5. These divisors are given by P, = (z — x1,y;) and
P, = (x — x2,y2) where z; and zo are the roots of u(z) and y; = v(z;). Clearly

The divisor D is an [-torsion divisor if and only if [[]P; and [[]P» are opposite
divisors. This last condition is converted into a condition on the polynomial
representations [[|P; = (up, (z),vp, (z)) and [[|P> = (up,(z), vp, (z)). Indeed two
divisors are opposite if their v polynomials are equal and their v polynomials
are opposite. Hence the elements of J[I]\ © are characterized by a set of rational
equations in the 4 indeterminates x1,za,y1,y2, two of them involving only the
two indeterminates z; and 5.

Thus we get an ideal similar to I; represented in a convenient form: we can
eliminate x5 with the two bivariate equations by computing some resultants, then
we have a univariate polynomial in z; and for each root z; it is not difficult to
recover the corresponding values of z2,y; and ys.

5.3 Details of the Algorithm

Next we explain the computation of the characteristic polynomial modulo a fixed
prime power /. Here we will assume that [is odd (the even case discussed in the
next section).

Building an Elimination Polynomial for x;. We first compute Cantor’s
I[-division polynomials. We refer to the original paper [Can94] for the recursion
formulae and the proof of the construction. This phase takes negligible time
compared to what follows.

The second step is to eliminate - in the two bivariate equations. The system
looks like

{E1 (z1,22) = di(21)d2(22) — di (22)d2(21) =0 , (10)
E2($1,5E2) = do(fl)d2($2) —dg(l‘g)d2(l‘1) 0.

The polynomial (z; — x2) is clearly a common factor of F; and FE», and this
factor is a parasite: it does not lead to a [-torsion divisor®. We throw away this
factor and consider the new reduced system, still denoting the two equations by

5 If there is another common factor of E; and Es, we have to throw it away. This occurs
when a non trivial [-torsion divisor is in ©. The values for the degrees assume that
we are in the generic case.

12 Pierrick Gaudry and Robert Harley

Ei(x1,22) and Es(x1,72) . Then we eliminate x5 by computing the following
resultant

R(fl) = RGSIZ(E1($1,$2),E2(5E1,$2)) =0. (11)

We can then note that R(x) is divisible by some high power of ds(z1). Indeed,
if d2(z1) = 0 then the expressions E; and E> have common roots (at the roots
of dx(x2)). The power of d> in R is § = 2[2 — 2. We assume that the base field
is large enough and we specialize the system at many distinct values for z;.
Substituting &; for z;, the system becomes two wunivariate polynomials in s,
for which we compute the resultant r;. With enough pairs (§;,r;) i.e., one more
than a bound on the degree of R(x1) = R(x1)/(dx(z1))°, we can recover R(x;)
by interpolation. Knowing the degrees of dy, d;,ds, it is easy to get

deg R(z;) = 41* — 1012 4+ 6 . (12)

Eliminating the Parasites (optional). As previously mentioned there are [*
divisors of [—torsion and thus the degree of R(x1) is too high by a factor 4. This
means that there are still a lot of parasite factors, due to the fact that we only
took conditions on the abscissae x1, x> into account and imposed nothing on the
ordinates y;,y2. Two strategies can be used: we can decide to live with these
parasites and go on to the next step or we can compute another resultant to
eliminate them (and get a polynomial of degree [* — 1). The choice depends on
the relative speeds of the resultant computation and the root-finding algorithm.

In order to eliminate the parasites we construct a third equation Es3(z1,z5),
coming from the fact that the ordinates of [I]P; and [I]P; are opposite. We write
that the coefficients are opposite,

er(zr) _ _ ei(z2)
{’“ ol ~ Valm (13)
Y1 eo(z1) —Y2 eo(z2)

and this system implies that F3(z1,z2) = e1(z1)ea(z2) — e1(x2)e2(x1) = 0.

Taking the resultant between E; and Fs, we get a polynomial S (z1) of degree
121* — 3012 + 18 whose GCD with R(z;) is of degree I* — 1 (in general, a few
parasites may remain in rare cases). We still denote this GCD by R(z;) for
convenience.

Recovering the Result Modulo . To find the result we factor R(z) and,
for each irreducible factor, we construct an extension of F, using this factor to
get a root Xy of R(z1). Then we substitute this root into E; and E, and recover
the corresponding root X». Using the equation of the curve we get the ordinates
Y; and Y5, which may be in a quadratic extension. We get the two divisors
P, =(x—X1,Y7) and P, = (z — X>,Y5) and check whether [I|(P, + P2) = O or
[[](Py — Py) = O. If neither holds, then we started from a parasite solution and

Counting points on hyperelliptic curves over finite fields 13

we try another factor of R(z1). In the favorable case we get an I-torsion divisor
D with which we check the Frobenius equation. To do so we compute

[51]6°(D) + [as1 mod []¢(D) (14)

for every s; € [0,] — 1] and
¢*(D) + [s2]¢*(D) + [¢° mod 1D (15)

for every so € [0, —1]. We only keep the pairs (s, s2) for which these are equal.
If there is only one pair (s1, s2) left, or if there are several pairs all leading to
the same value for the cardinality modulo [, then it is not necessary to continue
with another factor. Thus it is usually not necessary to have a complete fac-
torization of R(z;) and the computation is faster if one starts with irreducible
factors of smallest degree.
We summarize the above in the following:

Algorithm. Computation of #J/F, modulo /.

Compute R(z).

Find a factor of R(z;) of smallest degree.

Build P, and P, with this factor.

Check if P, + P, or P, — P, is an [-torsion divisor. If so call it D, else go
back to step 2.

For each remaining pair (s, s2), check the Frobenius equation for D.

6. Compute the set of possible values of #J/F, from the remaining values of
(s1, 82). If there are several values left, go back to step 2. If there is just one,
return it.

Ll

ot

5.4 Complexity

We evaluate the cost of this algorithm by counting the number of operations
in the base field F,. We neglect all the log™ [factors, and denote by M (z) the
number of field operations required to multiply two polynomials of degree x.
The first step requires O(I*) resultant computations, each of which can be
done in M (I?) operations, and the interpolation of a degree O(I*) polynomial
which can be done in M (I*) operations. For the analysis of the remaining steps,
we will denote by d the degree of the smallest factor of R(z;) that allows us
to conclude. We assume moreover that the most costly part of the factorization
is the distinct degree factorization (which is the case if d is small and if the
number of factors of degree d is not too large). Then the cost of finding the
factor is O(dlog(q))M (I*). Thereafter the computation relies on manipulations
of polynomials of degree d and the complexity is O(l + log(q))M (d), where [
reflects the ! possible values of s; and of s and log(q) reflects the Frobenius
computations. Hence the (heuristic) overall cost for the algorithm is

O(I*YM(1*) + O(dlog q) M (I*) + O(I* + log q) M (d) (16)

14 Pierrick Gaudry and Robert Harley

operations in the base field.

Now we would like to obtain a complexity for the whole Schoof-like algorithm.
For that we will keep only the primes [for which d = O(l); this should occur
heuristically with a fixed probability (this is an analogue of ‘Elkies primes’ for
elliptic curves). Then we have to use a set of O(logq) primes [, each of them
satisfying I = O(log ¢). Moreover we will assume fast polynomial arithmetic and
thus M (z) = O(z) (ignoring logarithmic factors). Hence the cost of the algorithm
is heuristically O(log” q) operations in F,. Each operation can be performed in
O(log2 q) bit operations using classical arithmetic and we get that the complexity
of the Schoof-like algorithm is O(log® q).

Remark. This analysis is heuristic, but one could obtain a rigorous proof that
the algorithm runs in polynomial time. The algorithm could also be made de-
terministic by avoiding polynomial factorizations. However in both cases the
exponent would be higher than 9.

6 Lifting the 2-Power Torsion Divisors

In this section, we will show how to obtain some information on the #J/F,
modulo small powers of 2. Factoring f gives some information immediately.
To go further we iterate a method for ‘halving’ divisors in the Jacobian. This
quickly leads to divisors defined over large extensions, so that the run-time grows
exponentially. In practice we can use this technique to obtain partial information
modulo 256, say.

The divisors of order 1 or 2 are precisely the D = (u(x),0) for which u(x)
divides f(z) and is of degree at most g. When f has n irreducible factors, then
it has 2" factors altogether. Exactly half of them have degree at most g, since f
is square-free of degree 2g + 1. Hence the number of such divisors is 27!, and
2n=1 | #J/F,. Furthermore, when f is irreducible then the 2-part is trivial and
#J/F, is odd.

6.1 Halving in the Jacobian

Let D = (u(z),v(x)) be a divisor different from O. We would like to find a
divisor A such that [2]A = D. Note that there are 2?9 solutions, any two of
which differ by a 2-torsion divisor. In general, A is defined over an extension of
the field of definition of D.

Writing A = (i(z),d(z)), we derive a rational expression for the divisor
[2] A using the formulae of section 1. Then equating this expression with D, we
get a set of 2¢g polynomial equations in 2g indeterminates #; and v; with 2g
parameters u; and v;. There are g2 such systems corresponding to the different
possible weights of D and A.

We consider the most frequent case where D and A are both of weight g.
The corresponding system has at most 229 solutions and these can be obtained
by constructing a Grobner basis for a lexicographical order, factoring the last

Counting points on hyperelliptic curves over finite fields 15

polynomial in the basis and propagating the solution to the other polynomials.
All this can be done in time polynomial in log g provided that the divisor D we
are dealing with is defined over an extension of bounded degree of F,.

In order to speed up the computations in the case where D is defined over a
large extension, we can avoid repeated Grobner-basis computations and instead
compute a single generic Grobner basis for the system, where the coefficients
of D are parameters. As the halving is algebraic over F, (because the curve is
defined over IF,), the generic basis is also defined over F,. After this computation
we can halve any divisor D, even when defined over a large extension, by plugging
its coefficients into the generic basis to get the specialized one.

We are indebted to Eric Schost who kindly performed the construction of
this generic Grébner basis for the curves we studied [Sch]. For his construction,
he made use of the Kronecker package [Lec99] written by Grégoire Lecerf. This
package behaves very well on these types of problem (lifting from specialized
systems to generic ones), and it is likely that we would not have been able to do
this lifting by using classical algorithms for Grébner-basis computations.

Example. Let C be defined by
y? = 2° + 1597 2 + 1041 2% + 5503 2% + 6101 = + 1887 , (17)

over the finite field F, with p = 10'7 4 3. We will search for all rational 2-power
torsion divisors i.e., those defined over F,. Two irreducible factors of f(x) have
degree at most 2, they are

fi =« + 28555025517563816 and fo = = + 74658844563359755 ,

Thus there are three rational divisors of order two: P, = (f1,0), P» = (f2,0)
and P; + P». The halving method applied to P; finds four rational divisors of
order 4. They are {u,v) and (u, —v) where:

u =22+ 1571353025997967 x + 12198441063534328

v = 32227723250469108 x + 68133247565452990
and:

u = 2% + 70887725815800572 z + 94321182398888258

v = 42016761890161508 x + 3182371156137467 .

There are 16 solutions altogether but the others are in extension fields (the
Grobner bases are too large to include them here!) Applying the method to P
and to P; + P, finds no further rational 4-torsion divisors. By continuing in the
same manner one finds 8 divisors of order 8, 16 of order 16, 32 of order 32 and
no more. Thus the 2—part of the rational Jacobian is of the form (Z/2) x (Z/32)
and hence #J/F, = 64 mod 128.

This type of exhaustive search in the base field determines the exact power of
2 dividing #J/F,. In the next section we show how to find information modulo
larger powers of 2.

16 Pierrick Gaudry and Robert Harley

6.2 Algorithm for Computing #J/F, mod 2*

Next we go into extension fields to find some 2¥~torsion divisors and we substi-
tute them into y, the characteristic equation of the Frobenius endomorphism, to
determine values of its coefficients modulo 2¥ and hence the value of #J/F, mod
2% for increasing k.

Algorithm (for g = 2).

1. Factor f to find a 2—torsion divisor. Halve it to get a 4—torsion divisor Dj.

2. Find the pair (s1, $2) mod 4 for which x(D4) = O. Set k to 2.

3. Compute the generic Grobner basis for halving (weight 2) divisors in the
given Jacobian.

4. Build a 2¥+!torsion divisor Dye+1 by substituting the coefficients of Dy in
the system, computing a root of the eliminating polynomial in an extension
of minimal degree, and propagating it throughout the system.

5. For each pair (s1,s2) mod 2¥*1 compatible with the previously found pair
modulo 2*, plug Dye41 into x and find the pair for which y(Dyrt1) = O.

6. Set k =k + 1, and go back to Step 4.

Note that this is an idealized description of the algorithm. In fact there will
frequently be several pairs (s, $2) remaining after checking the Frobenius equa-
tion for one 2*-torsion divisor. We can eliminate false candidates by checking
with other 2¢—torsion divisors. It can be costly to eliminate all of them when
the required divisors are in large extensions; an alternative strategy is to con-
tinue and expect the false candidates to be eliminated later using 2*+!-torsion
divisors.

In this algorithm, we could skip step 3 and compute specific Grébner bases
at each time in step 4. However, the generic Grobner basis is more efficient and
allows one to perform one or two extra iterations for the same run-time.

7 Combining these Algorithms — Practical Results

We have implemented all these algorithms and tested their performance for real
computation. Some of them were written in the C programming language, and
others were implemented in the Magma computer algebra system [BC97].

7.1 Prime Field

In the case where the curve is defined over a prime field [F,, where p is a large
prime, we use all the methods described in previous sections except for Cartier-
Manin. We give some data for a ‘random’ curve for which we computed the
cardinality of the Jacobian. Let the curve C be defined by

y? = 2% + 3141592653589793238 z* + 4626433832795028841 >
+ 9716939937510582097 x> + 4944592307816406286 (18)
+ 2089986280348253421

Counting points on hyperelliptic curves over finite fields 17

over the prime field of order p = 10'® 4+ 51. The cardinality of its Jacobian is
#J = 99999999982871020671452277000281660080 |, (19)
and the characteristic polynomial of the Frobenius has coefficients:
51 = 1712898036 and s; = 11452277089352355350 .

The first step of this computation is to factor f(x). It has 3 irreducible factors,
thus we already know that #J = 0 mod 4.

The second step is to lift the 2—power torsion divisors. The computation of
the generic halving Grobner basis (done by E. Schost) took about one hour on
an Alpha workstation. Then we lifted the divisors several times and checked the
Frobenius equation. In the following table we give the degree of the extension
where we found a 2*-torsion divisor, and the information on #J that we got
(timings on a Pentium 450).

#J |deg of ext #J deg of ext| time
0 mod 2 1 16 mod 32 16
0 mod 4 1 48 mod 64 32
0 mod 8 4 48 mod 128 64 5000 sec
0 mod 16 8 176 mod 256 128 9 hours

The next step is to perform the Schoof-like algorithm. We did so for the
primes [€ {3,5,7,11,13}. The following table gives the degree of the polynomial
R(z;) for each I, and the smallest extension where we found an I-torsion divisor
(timings on a Pentium 450).

I |degree of R(z1)|degree of ext| #J time

3 240 2 1 mod 3 | 1200 sec
5 2256 1 0 mod 5 | 300 sec

7 9120 6 4 mod 7 | 12 hours
11 57360 1 0 mod 11| 19 hours
13 112560 7 9 mod 13|205 hours

The run-time for [= 3 is surprisingly large in this table. For our curve, an
unlucky event occurs, which becomes rare as [increases. Indeed, after testing the
Frobenius equation for all the 3—torsion divisors several candidates (s1, s2) still
remain, yielding several possibilities for #J mod 3. What this means is that the
minimal polynomial of ¢ is not the characteristic polynomial. Each remaining
candidate for (s, s2) gives a multiple of the minimal polynomial. By taking their
GCD we obtain the exact minimal polynomial, from which we can deduce the
characteristic polynomial” and #J mod 3.

In our case, there are 3 pairs left after testing all the 3—torsion points, leading
to the following candidates for #J mod 3.

(s1,s2) mod 3|#J mod 3 x(t) mod 3
(0,2) 1 tT—t7 41
(1,2) 2 th—t3 -t —t 41
(2,2) 0 4t -2+t 41

" See [Kam91] for more about this.

18 Pierrick Gaudry and Robert Harley

The third case is impossible because if #J = 0 mod 3 then we would have
found a rational 3—torsion divisor earlier. In order to decide between the two
first cases we determine the minimal polynomial, which is t> + 1 and thus the
characteristic polynomial must be (2 + 1)? and finally #J = 1 mod 3.

However to do this we have to build all the 3—torsion divisors. This explains
why the running time is higher than for [= 5, where we found a rational 5-
torsion divisor and immediately deduced that #J = 0 mod 5.

The final step is the birthday paradox computation. The width of the Hasse-
Weil interval is roughly 2.5 x 102°. The search space is reduced by a factor
28 x 3 x 5 x 7 x 11 x 13 = 3843840 leaving 6.6 x 10?? candidates. The search was
performed on ten Alpha workstations working in parallel and calculated 5 x 10"
operations in the Jacobian. On a single 500 MHz workstation, this computation
would have taken close to 50 days.

7.2 Non-prime Fields

Let C be a genus 2 curve defined over F,», where p is a small odd prime. We
assume that C is not defined over a small subfield, for in that case it is easy to
compute x(#) using a theorem due to Weil.

Here the first step is to use Cartier-Manin to get x(¢) mod p quickly and then
continue as before, except that we avoid [= p in the Schoof part.

Examples: We did not try to build big examples, however we give two medium
ones. For the first, let the curve C be defined by

v=®+at 4+t a2t x4+ 1, (20)
over the finite field Fys0 = F3[t]/(t3° 4+ ¢ — 1). The cardinality of its Jacobian is
#J = 42391156018493425614913594804 . (21)

The second example illustrates the advantage given by Cartier-Manin in a
favorable case where p = 216 — 15. Let the curve C be defined by

Y=+t +2 4t (22)
over the finite field F,« = F,[t]/(t* — 17). The Cartier-Manin computation gave
us #J = 58976 mod p in 17 minutes, and finishing using our other methods gave

#J = 339659790214687297284652908385855015466 . (23)

8 DPerspectives for Further Research

The present paper reports on practical algorithms for counting points on hy-
perelliptic curves over large finite fields and on implementations for genus 2.
Although it is now possible to deal with almost cryptographic-size Jacobians,
there is still a substantial amount of work to be done. Some improvements or
generalizations seem to be accessible in the near future, whereas others are still
quite vague. Among them we would like to mention:

Counting points on hyperelliptic curves over finite fields 19

— Extension of the algorithm to even characteristic. This is only a matter
of translating the formulae, in order to deal with an equation of the form
y? + h(z) y = f(x). The Cartier-Manin part and the lifting of the 2-torsion
should merge, giving an efficient way to compute the result modulo 2*. For
the Schoof-like part, the formulae of Cantor’s division polynomials have to
be adapted, which does not appear to be too difficult.

— Extension of the Schoof-like algorithm to genus g > 2. The main difficulty
is that it does not appear possible to avoid manipulation of ideals.

— More use could certainly be made of the Jacobian of the twist curve.

— We believe that it may be possible to lift the curve to a local field with residue
field F, and use Cartier-Manin to compute x(¢#) modulo small powers of the
characteristic. We do not yet know how to compute the lift, however.

— A major improvement would be to elaborate a genus 2 version of the Elkies-
Atkin approach for elliptic curves, which would lead to computations with
polynomials of lower degree. We conjecture that it is possible to work with
degrees reduced from O(I*) to O(I?). The first task is to construct modular
equations for Siegel modular forms, instead of classical ones. This requires a
description of isogenies for each small prime degree, which can be given by
lists of cosets under left actions of the symplectic group Sp4(Z) instead of
the classical modular group S Ly (Z). Starting points for studying the relevant
forms and groups include [Fre83] and [K1i90]. This will be explained in more
detail elsewhere [Har].

All the above is the subject of active research.

References

[AH92] L. M. Adleman and M.-D. A. Huang. Primality testing and Abelian varieties
over finite fields, vol. 1512 of Lecture Notes in Math. Springer—Verlag, 1992.

[BC97] W. Bosma and J. Cannon. Handbook of Magma functions, 1997. Sydney,
http://www.maths.usyd.edu.au:8000/u/magma/.

[Can87] D. G. Cantor. Computing in the Jacobian of an hyperelliptic curve. Math.
Comp., 48(177):95-101, 1987.

[Can94] D. G. Cantor. On the analogue of the division polynomials for hyperelliptic
curves. J. Reine Angew. Math., 447:91-145, 1994.

[Car57] P. Cartier. Une nouvelle opération sur les formes différentielles. C. R. Acad.
Sci. Paris Sér. I Math., 244:426-428, 1957.

[Cou96] J.-M. Couveignes. Computing [-isogenies using the p-torsion. In H. Cohen,
editor, Algorithmic Number Theory, volume 1122 of Lecture Notes in Comput.
Sci., pages 59-65. Springer Verlag, 1996. Second International Symposium,
ANTS-II, Talence, France, May 1996, Proceedings.

[E1k98] N. Elkies. Elliptic and modular curves over finite fields and related compu-
tational issues. In D.A. Buell and J.T. Teitelbaum, editors, Computational
Perspectives on Number Theory, pages 21-76. AMS /International Press, 1998.
Proceedings of a Conference in Honor of A.O.L. Atkin.

[FR94] G. Frey and H.-G. Riick. A remark concerning m-divisibility and the discrete
logarithm in the divisor class group of curves. Math. Comp., 62(206):865-874,
April 1994.

20

[Fre83]

[Har]
[H198]

[TR82]
[Kam91]
[K1i90]

[Kob89]
[Lec99]

[Ler97]
[Man65]

[Mor95]

Pierrick Gaudry and Robert Harley

E. Freitag. Siegelsche Modulfunktionen, volume 254 of Grundlehren der math-
ematischen Wissenschaften. Springer—Verlag, 1983.

R. Harley. On modular equations in genus 2. In preparation.

M.-D. Huang and D. Ierardi. Counting points on curves over finite fields. J.
Symbolic Comput., 25:1-21, 1998.

K. F. Ireland and M. Rosen. A classical introduction to modern number
theory, volume 84 of Graduate texts in Mathematics. Springer—Verlag, 1982.
W. Kampkotter. Ezplizite Gleichungen fiir Jacobische Varietaten hyperellip-
tischer Kurven. PhD thesis, Univ. Gesamthochschule Essen, August 1991.
H. Klingen. Introductory lectures on Siegel modular forms, vol. 20 of Cam-
bridge studies in advanced mathematics. Cambridge University Press, 1990.
N. Koblitz. Hyperelliptic cryptosystems. J. of Cryptology, 1:139-150, 1989.
G. Lecerf. Kronecker, Polynomial Equation System Solver, Reference manual,
1999. http://www.gage.polytechnique.fr/"lecerf/software/kronecker.
R. Lercier. Algorithmique des courbes elliptiques dans les corps finis. These,
Ecole polytechnique, June 1997.

J. I. Manin. The Hasse-Witt matrix of an algebraic curve. Trans. Amer.
Math. Soc., 45:245-264, 1965.

F. Morain. Calcul du nombre de points sur une courbe elliptique dans un
corps fini : aspects algorithmiques. J. Théor. Nombres Bordeaur, 7:255-282,
1995.

[Mum84] D. Mumford. Tata lectures on theta II, volume 43 of Progr. Math. Birkhauser,

[PHT7S]

[Pil90]
[Pol78]
[Riic99]
[Sch]
[Sch85]
[Sch95]
[ST99]
[Tat66]

[Ver99]

1984.

S. Pohlig and M. Hellman. An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance. IEEE Trans. Inform. Theory,
I1T-24:106-110, 1978.

J. Pila. Frobenius maps of abelian varieties and finding roots of unity in finite
fields. Math. Comp., 55(192):745-763, October 1990.

J. M. Pollard. Monte Carlo methods for index computation mod p. Math.
Comp., 32(143):918-924, July 1978.

H. G. Riick. On the discrete logarithm in the divisor class group of curves.
Math. Comp., 68(226):805-806, 1999.

E. Schost. Computing parametric geometric resolutions. Submitted to IS-
SAC’2000.

R. Schoof. Elliptic curves over finite fields and the computation of square
roots mod p. Math. Comp., 44:483-494, 1985.

R. Schoof. Counting points on elliptic curves over finite fields. J. Théor.
Nombres Bordeaur, 7:219-254, 1995.

A. Stein and E. Teske. Catching kangaroos in function fields. Preprint, March
1999.

J. Tate. Endomorphisms of Abelian varieties over finite fields. Invent. Math.,
2:134-144, 1966.

F. Vercauteren. #EC(GF(271999)). E-mail message to the NMBRTHRY list,
Oct 1999.

[vOW99] P. C. van Oorschot and M. J. Wiener. Parallel collision search with crypt-

[Yui78]

analytic applications. J. of Cryptology, 12:1-28, 1999.
N. Yui. On the jacobian varietes of hyperelliptic curves over fields of charac-
teristic p > 2. J. Algebra, 52:378-410, 1978.

