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By PHILIP H. RHODES, M. ELIZABETH HALLORANt and IRA M. LONGINI, JR 

Centers for Disease Control, Atlanta, USA Emory University, Atlanta, USA 
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SUMMARY 
Differences in infection rates among types of individuals within a population can arise from 
differences in amount of exposure to infection or from differences in susceptibility to 
infection. We derive models for infection rates that incorporate contact rates between 
individuals and variables affecting susceptibility to infection. We emphasize the distinction 
between controlling for exposure opportunity (expected exposure) and actual exposure. 
We present a marked counting process model for the combined contact and infection 
transmission processes. When the contact process is not observable, we develop thinned 
counting process models that reduce to a proportional hazards model. We show that the 
different commonly used parameters for evaluating covariate effects, such as vaccine 
efficacy, form a hierarchy depending on the amount of information available about the 
components of the transmission system. 

Keywords: COUNTING PROCESSES; INFECTIOUS DISEASE MODELS; MARKED COUNTING 
PROCESS; THINNED COUNTING PROCESS; VACCINE EFFICACY 

1. INTRODUCTION 

Differences in infectious disease rates among types of individuals can arise either 
from differences in the exposure to infection or from differences in the susceptibility. 
Several common parameters of relative risk are used to estimate the effect of co- 
variates, such as genetic factors, vaccination status, chemoprophylaxis or age, on 
susceptibility. For example, relative transmission probabilities (secondary attack 
rates), relative person-time measures, hazard ratios and relative cumulative incidence 
(attack rates) have all historically been used to estimate vaccine efficacy. Quite 
commonly two or more methods of analysis are presented in the same paper. 

Until now, however, there has been little effort to relate the different measures to 
one another formally, or their interpretation in terms of the underlying contact and 
infection processes. Here we extend counting process models for infection rates 
(Becker, 1982, 1985, 1989) to incorporate contact rates between individuals, infec- 
tiousness of the infectives and variables affecting susceptibility to infection given that 
such a contact has occurred. Using these counting process models, we demonstrate 
that the commonly used relative risk parameters form a hierarchy requiring different 
amounts of information about the contact and infection process. We emphasize the 
distinction between exposure opportunity and actual exposure, and the amount of 
information that we have about these. Separation of the contact and infection 
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process allows quantification of the different contributions of the contact process, 
infectiousness and susceptibility in the estimated relative risk of infection in the 
comparison groups. We provide guidelines for choosing between study designs 
requiring different amounts of information. 

2. CONTACT, INFECTION, SUSCEPTIBILITY AND INFECTIOUSNESS 
PROCESSES 

2.1. Overview of Hierarchy of Information Levels 
Table 1 contains an overview of the hierarchy of levels of information that could 

be known about a population of interacting individual hosts with a circulating 
infectious agent in it. At a minimum, we need to know those covariates that are 
relevant to susceptibility as well as who is actually susceptible. The hierarchy goes 
from level I to IV, or from (a) to (f), as information is either lost or ignored. In (a), 
we know all contacts between individuals, whereas in (b) we only know when 
infective individuals contact susceptibles. Level (b) is analogous to a vaccine efficacy 
study using the household secondary attack rate, studies in tuberculosis using contact 
tracing to estimate transmission probabilities or discordant partner studies to 
estimate the transmission probability of human immunodeficiency virus. Levels IIA 
and IIB, or (c) and (d), have information only on contacts that lead to infection, or 
the times at which individuals are infectious respectively. These levels have important 
differences, but share enough similarities that they are developed in tandem. The 
analysis of the former has the form of a Poisson regression. At level III, we know just 
the infection times, which under certain conditions leads to a stratified Cox re- 
gression analysis. Finally, at level IV, we only know that a person becomes infected 
sometime during the study period. This provides information for an analysis based 
on cumulative irfcidence or the distribution function, such as vaccine efficacy based 
on attack rates. In the next sections we present the formal counting process models 
for these differing histories, demonstrating the hierarchy of the parameters. 

2.2. Notation and Definitions 
All processes defined below occur in continuous time and are orderly, i.e. multiple 

points do not occur at any time t. Also, there are no tied jumps for pairs of processes 
of the same type involving different individuals; for example, no two infections can 

TABLE 1 
Levels and amount of information for each history 

Level Type of information for each history 

I (a) All contacts between individuals and outcomes of those contacts (whether an 
infection is transmitted) 

(b) Only those contacts between infective and susceptible individuals and infection 
outcome of those contacts 

IIA (c) Only contacts leading to infections (who infects whom) 
IIB (d) Infectious periods, i.e. the times at which individuals become and cease to be 

infectious 
III (e) The times at which individuals become infected 
IV (f) Whether or not an infection occurs to each individual in some time period (0, 71 
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occur at the same time. Some pairs of processes of different types may jump at the 
same time (for example, see Cy1 and Nij below). Consider a closed population of n 
individuals. Let Cq(t) be the counting process for personj contacting person i (j i), 
i, j = 1, .. ., n, i # j. We set C,j(O) = 0 for all i, j, i.e. we disregard all contacts that 
occur before the start of the study. For a study of length T, let tyk represent times in 
(Oj, 1 at which j-+ i, k = 1, . . ., Cy(I) = cu. For an epidemic, T refers either to the 
end of the epidemic or to some preset ending time. For an endemic situation, T is 
some selected time at which an analysis is to be performed. Technically, we require 
that T be a stopping time with respect to some appropriate history (Bremaud, 1981). 

Let Ny1(t) be the counting process for the processj infects i, i.e. dNij(t) = 1 if person 
j infects person i at time t. Let b6k be an indicator variable for whether the contact 
at tyk results in an infection (i.e. byk = dNuj(tijk)). Let Ni.(t) = E Nij(t). Let bi = 
N.(T) - NJ(O), i.e. bi = 1 if person i becomes infected in (0, T1 and bi = 0 if not. 
Alternatively, we may view the process Nu as a random variable associated with each 
jump of Cj that indicated whether or not an infection was transmitted (Bremaud, 
1981). It is possible that Ni.(0) = 1 which indicates that person i was infected before 
the start of the current study. However, for the analyses considered here, we are 
interested only in counting infections that occur after time 0. We assume that the 
infection can occur at most once, i.e. Ni.(t) < 1. 

Let Ij(t) = 1 if person j is infectious at time t and Ij(t) = 0 otherwise. A person is 
infectious immediately after becoming infected (no latent period). Let Si(t) = 1 if 
person i is susceptible at time t and Si(t) = 0 otherwise. We define both sets of these 
processes to be left continuous. Thus, Ij and Si are predictable processes (Bremaud, 
1981). 

2.3. Intensities for Contact Processes 
Let the intensity of the contact process Cij be denoted by Aj(t) (Aii(t) = 0), i.e. 

Aij(t) = him Pr[{C i(t + A)-CCu(t)} = 1II-4f\ (1) 

where 7t is some history (Bremaud, 1981). Informally, by a history we mean some 
observed information arising from various processes on the time interval (0, t]. 
Technically, 7Ht is a a-algebra generated by these processes on (0, t]. There may be 
several such histories that are of interest. We shall assume that the Au are constants 
that can be parameterized by using covariates Gi and G. and a set of parameters 
8 = (01, . . * OR), where R < n(n - 1), the number of pairs of individuals. 

More generally, the contact rates could vary over time, such as cyclically, or be 
history dependent. For example, the occurrence of an infection could cause a personj 
to reduce his or her activity and thus to lower the intensities AY for all i. We do not 
consider this aspect further, and we drop the notation for Gj. 

2.4. Intensities for Infection Processes 
Consider any Cy, contact process discussed earlier. The contact process plus the 

infection outcomes, 8ijk, constitute a marked counting process (Bremaud, 1981; 
Arjas, 1989). Consider the multivariate infection process N(t) = {N1.(t), . . ., NJ(t)}. 
The process N,(t) = EI= NJ(t) plus the identity and covariate values of the person 
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infected at each jump are also a marked counting process. Let the function p(t) 
denote the probability that an event occurring at time t in the original process will be 
retained by a thinned process. If A(t) is an intensity for the original process and p(t) is 
predictable, the intensity for the thinned process is p(t) A(t) (Bremaud, 1981). 

Each infection process N4 is a thinned version of the corresponding contact 
process Cy,. Let p(t; zi, zj, /3) represent the probability that a contact j-* i at time t 
results in an infection if person j is infectious and person i is susceptible. This is also 
called the transmission probability. The zi are covariates associated with susceptible 
i, and zj covariates associated with infective j, whereas /3 is a vector of unknown 
parameters. If either Ij(t) or Si(t) is 0, a point from C4 has probability 0 of being 
accepted. If both Ij(t) and S1(t) are 1, the point is accepted with probability 

A(t; zi, Zj, 0) Si(t) Ij(t. 

The time- and history-dependent probability pQ(t) that a point from Cij will be 
accepted for N# is p(t; zi, zj, 3). A dependence on zj implies that individuals are 
differentially infectious. We assume in this paper that all infectives are equally 
infectious, and we drop the dependence on z. An intensity for Nij(t) may then be 
written as 

aiej(t) = A#Wt)p(t; zi, 13) Si(t) Mjt), (2) 

where the infection process is a thinned version of the contact process. 

3. INFORMATION LEVELS AND TYPES OF STATISTICAL ANALYSIS 

In this section, we derive an appropriate statistical analysis for the transmission 
parameters based on the properties of marked or thinned counting processes. Zi 
and Gi denote covariates associated with the susceptibility and contact parameters 
respectively. In most of the development here, the covariates associated with the 
contact parameters are assumed to be the same for all individuals. 

3.1. Level I 
In the first level of information, either all contacts between individuals and 

outcomes of those contacts are known, or contacts between infectives and the 
susceptibles whom they contact during their infectious period: 

XI = orjC,(s),, Nij(t), Ij(s), Si(s), Zi(s), Gi(s), 0 < s < t}. 

The analysis remains the same for evaluating covariates related to susceptibility since 
only contacts between infectives and susceptibles enter the analysis. Estimation of the 
contact process will differ, however. The log-likelihood of observing contacts at the 
set of points {tijk: i, j = 1, . . ., n, k = 1, . . ., Cij(71) (Fleming and Harrington, 1991) 
is given below in terms of stochastic integrals: 

n n T n n T 

logL(C)J= E log Ai(t)dQ t)- Ai(t)dt. (3) 
i=1 in the I quatinstha 0 

Without loss of generality, in the equations that follow, we suppress the time 
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dependence of the Z-covariates. The conditional likelihood for the infection outcome 
marks (the Nij-processes) given the Cij-, Zi-, Si- and Ij-processes is 

n n c j 

171 II II {h(t ) Si(tijk)p(tijk; Zi, /3)} 5ijkI - Ij(tjk) Si(tijk)p(tijk; Z, 3)}1 -*k (4) 
i=1 j=1 k=1 

We assume that the Aij are parameterized by 0 = (01, . . ., OR) and that p(tijk; Zi, /3) 
= exp(,3zi), where /3 has length H. 00 is defined as 1. Assuming sufficient regularity 
such that the interchange of the various integrals and derivatives is justified, the 
R + H score equations for level I can be written as 

a{log L(C, N)} n nrTi aAii(t) f aAij(t) 
-Hr zz J lo Ai(t) &r dCij(t) dt, (5) 

a{log L(C, AN)} j $~U (t) Si(t)zdN t 
01h S 4 Jo 1 - exp(J3zi) d ) 

n n IT Ij(t) Si(t)Zh, exp(z3zi) dC,(t) (6) 
L~' L~d Jo 1 - exp(,3zi) 

Since p lies in the interval [0, 1], in general we would want ,3 < 0. The score equations 
for j3 can be simplified. Let tijk = Ij(tijk) Si(t#k) and 

n cyi 

IC. = 5 5Yijk 
j=1 k=1 

i.e. the total contacts made on person i by infectives while person i was susceptible. 
Making the above substitutions we obtain 

a{log L(C, N)} n n 
Zh3i exp(j3zi) 

Oh =E6iZhi 5 (ICi. - 6i) .exp(3z) (7) 013h ~~i=1 i= 1-ex(3) 

These equations are formally equivalent to a log-linear binomial regression where 
each person i with covariate zi contributes ICi trials with outcome 6i. The score 
equations for ,3 and 0 can be solved separately. The information equations for this 
level and the score and information equations for all other levels are given in Rhodes 
et al. (1994a). 

3.2. Level II 
In level IIA the source of each infection is known, i.e. who infects whom, as well as 

how long each person is infectious. Level IIA is the last level with any direct contact 
information at all. On level IIB, it is known who is infectious and for how long, but 
no longer who infects whom. The time that a person remains infectious plus contact 
rates with other individuals gives a measure of the exposure opportunity that this 
person provides to other individuals, after taking into account when each was 
susceptible: level IIA, 
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).11A = o{N#(s), Ij(s), Si(s), Zi(s), Gi(s), 0 < s t}; 

level IIB, 
j.fB = ojN,.(s), Ij(s), Si(s), Zi(s), Gi(s), 0 

? s ? t}. 

In most cases, information for pattern IIA will be difficult to obtain because of the 
necessity of observing who infects whom. When the C#-processes are not directly 
observed, we treat the Nij-processes as thinned versions of the C,j. Using expression 
(2) for the intensity of Nij, the log-likelihood for level IIA can be written as 

n n n n 

logL(N#jS,, Ij, Zi, Gi) = S E 6 log A#(t0j)+ +0E i 
i=l j=1 i=l j=l 

n n T 

- E exp3zi) J AM(t) Ij(t) Si(t) dt. (8) 
i-l j=1 ? 

Without knowledge of the contact process, we cannot estimate both the set of 
parameters A# (or the 0) and the parameter ,30 corresponding to a constant term in zi. 
We must incorporate the value exp, 0 into the Ay-functions and deal with a new set of 
parameters AJ = Au exp,f0. We shall also refer to the new set of parameters O (note 
that Oi $A 01 exp,3% except in special cases). In this instance, the ,3- and 0*-equations 
cannot be solved separately. However, the score equations for /3 have the form of a 
Poisson regression if the terms involving the last portion of the second term, i.e. 

n T 

EAJ* Ij(t) Si(t) dt, g 

are known. Thus, estimation proceeds by alternating between solving the 0*- 
equations and the /3-equations. Certain choices of the parameterization for the A*? 
lead to both sets of equations conforming to a Poisson regression model. 

The intensities for the Ni,-processes are obtained by summing the intensities of the 
corresponding Na-processes (Bremaud, 1981). Level IIB has the same limitation in 
terms of not being able to estimate ,3 and Au separately. Thus, the Ni.-processes have 
intensities 

n n 

a(t) = 5 a0(t) = E A)*(t) Si(t) Ij(t) exp(J3zi). (10) 
j=1 j=l 

The log-likelihood for level IIB takes the form 
n n 

log L(Ni i = 1, .. ., nlIj Si, Zj, Gj) = i log A*(ti) Si(ti) Ij(ti) exp(3zi) 

n n T 

-E > exp(/3zi) E f AJ(t) Ij(t) Si(t) dt. 
i=1 j=l 0 

(1 1) 
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3.3. Level III 
We know the times at which infections occur and which individuals were sus- 

ceptible as well as the values of all covariate processes. We do not observe how long 
each person remains infectious. Thus, for level III, 

'I = orNi.(s), Si(s), Zi(s), Gi(s), 0 <$ s < t). 

We proceed by writing a complete likelihood for the marked counting process N (t) 
- I Ni.(t) and then decomposing it into components. The mark corresponds to the 
identity of the person infected when the combined process jumps. The contribution 
to the likelihood for the interval (td1, td) where td is the time of the dth event in the 
process N. is broken into two parts: 

(a) L(no event for N.. in (td1, td), event for N at tdI7III, td-1 < t < td); 
(b) L(identity of person infected at tdlevent at td, set of individuals susceptible at 

time td, 7-I, 0 < t < td). 

The first term is obtained by treating N. as the sum of thinned point processes and 
the second by considering the conditional probability of the identity of the infected 
individual given the set of individuals susceptible at time td. Level III has the same 
limitation in terms of not being able to estimate I30 and Au separately. The first term is 
equal to 

E {A (td) Si(td) Ij(td) exp(8z)} exp {-| f E E A (t) Si(t) Ij(t) exp(,3zi) dt}, i= I =- td- I i= I j=1 

(12) 

whereas the second is given by 
n 

exp(3Zd) Z Ai(td) Ij(td) 
n y=l~j- (13) 

E Si(td) exp(ozi) EAg(td) Ij(td)} 
i=1 j=1 

Thus, the conditional probabilities may depend on the contact parameters and on the 
Ij-processes. In some instances, depending on the form of the Gi covariates, strata 
can be formed in which the above conditional probability does not involve either the 
contact parameters or the Ij-processes. For example, if the A,(t) are all equal to a 
constant value A, the conditional probability is free of both the above quantities. 
Also, consider the case where each individual belongs to one of K mixing groups. In 
that circumstance we can work with Nk.., k = 1, . . ., K, the total infection processes 
in each of the K groups. Part (b) is then the conditional distribution of the mark 
given the actual set of individuals who were susceptible at time td in the group in 
which the infection occurred. 

The Cox regression model has an advantage over analyses IIA and IIB in that 
no modification needs to be made for the situation where the study population 
constitutes only a portion of the entire population. For example, if we conduct a 
vaccine trial in a limited age group of the population and collect infection data only 
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for that age group, the Poisson-based methods could not be formulated correctly 
since we would not know the total exposure potential of the children in the trial. 

Under a K-group mixing model, using a stratified analysis, the conditional prob- 
ability will not depend on the unknown contact parameters (Rhodes et al., 1994b). 
The Cox regression method will be useful only if this condition is met; otherwise the 
analysis still involves the contact parameters and the infectiousness processes. When 
this condition is met, the analysis is conducted by using only the second set of terms. 
Some information is lost by this strategy but usually only a small amount (Cox and 
Oakes, 1984). 

The appropriate partial log-likelihood when the conditional probabilities of the 
marks do not depend on the contact intensities is 

log Lp = z exp3z) dN(t). (14) 
i Sj(t) exp(3zi) 

In a stratified analysis the value given above represents the contribution of one par- 
ticular stratum. 

3.4. Level IV 
For level IV we know whether or not each individual has been infected in (0, TI but 

not when the infection occurred: 

HIV = o{Nj(T), Zj(0), Gi(0)}. 

The analysis has the form of a binary regression, although the link is the comple- 
mentary log-log-link (i.e. log(- log p)). Censoring or late entry is not permitted; nor 
is it possible to incorporate time-dependent covariates. Thus, we restrict attention to 
the values of covariates at the start of the study. 

Consider the probability that an individual i with covariates z would escape 
uninfected over the time period (0, T1 if we were given the full history of the 
infectiousness processes for all other individuals: 

Pr{Nj(T) = OlIj, ZiA = 1 -pi(l) = exp {- exp(f3zi) E Aij(t) Ij(t) dt}, (15) 

or 

log[- log{ 1 - pi(T)}] = /3zi + log { J E Aij(t) Ij(t) dt} = ,3zi + i. (16) 

If the terms -yi are unique to each individual, an estimation of the parameters of 
interest, ,3, is not possible, since each individual adds a new parameter to the anal- 
ysis. However, if among the n individuals there is a limited number of -y-parameters, 
estimation is possible. Thus, although the Ij-processes are not observable, under 
certain conditions functions of these processes are estimable. However, these 
functions are not themselves of great interest. When there is a set of parameters 
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-y = (Fyj. .- yK), where K << n, we then fit the complementary log-log binomial 
regression model incorporating covariates for these parameters. 

4. HOMOGENEOUS MIXING 

We consider the case of homogeneous mixing, i.e. A,(t) = A for i Aj, with 
p(t; zi, O) = pi = exp(fl0 + flzi) for the case where zi is a single dichotomous 
covariate. When the contact processes are not observable, the parameters A and i30 
cannot both be estimated. The composite parameter A* = A exp ,30 is estimable and is 
interpretable as the average rate per unit of time at which one infective individual 
would tend to infect a susceptible individual with covariate equal to 0. The estimates 
for exp 31 for the different information levels and the corresponding estimated 
variances are given in Table 2. The estimator for level I has the form of a log-relative- 
risk. Analyses IIA and IIB are the same since there are no contact covariates. The 
estimator for 31 for level II is similar to that for level I except that a measure of 
exposure opportunity is substituted for a measure of actual exposure. The Cox 
regression estimator (level III) does not have a closed form. The level IV estimator 
uses functions of the proportions infected in each group. If the probability of 
infection per contact is large, such as in measles or chicken-pox, analysis I might 
be a better choice than analysis II (Fig. 1). In this situation, knowledge of actual 
exposure, say a secondary attack rate study, provides a large improvement in the 
standard error over the use of expected exposure or exposure opportunity, such as a 
study using Poisson regression. 

5. DISCUSSION 

We have shown that the usual methods of analysis for estimating the effect of a 
covariate on susceptibility can be viewed as a hierarchy of parameters that depend on 

TABLE 2 
Estimates of i31 and estimated variances for 31 assuming homogeneous 

mixingt 

Level Estimator Variance estinator 

log P / 
_-pO +1l _ 

rno-Ici) ~~no ni 

Ilog(nILo I I 

noLI no n 

III No closed form No closed form 

IV [log{- log(lo)}] 'I)p 

tICi is the number of contacts made on individuals in group i by infectives while 
those individuals in group i were susceptible. ni is the number of infections in each 
group during the study. Li is the total time that susceptibles in group i were 
exposed to infectives. mi is the initial number of susceptibles in group i, Pi = 
ni/mi. 
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-0r 

E /0 

.. o - 

0.0 0.2 0.4 0.6 
Probabflty of infection per contact 

Fig. 1. Ratio of standard errors in the analysis at level II compared with level I by base-line 
transmission probability (expB60 =po) and the covariate effect on the transmission probability, or 
transmission probability ratio (TPR = exp 8) in group 1 compared with group 0: , TPR = 1; 
......., TPR = 0.5; - - - - -, TPR = 0.25; - - - -, TPR = 0.1 (the ratios are based on the variances for f1 
at levels I and II given in Table 2; the number of infections is assumed to be the same in each group, and 
therefore cancels out) 

how much information about the histories of the contact and infection processes is 
known or used in the analysis. We have used a marked counting process model for 
the combined contact and infection transmission processes that distinguishes the 
various roles played by variables affecting the amount of exposure to infection and 
variables affecting susceptibility to infection. A fundamental distinction is whether 
the measures require contact and exposure to infection information (Halloran and 
Struchiner, 1995). 

When the contact process between infectives and susceptibles is observed, the anal- 
ysis can be based on the relative transmission probability. When the contact process is 
not observable, the other measures make assumptions about equal exposure to 
infection in the comparison groups (Greenwood and Yule, 1915). Knowledge of the 
actual amount of exposure, measured by contacts with infectives, leads to a large gain 
in efficiency when the absolute probability of transmission per contact of an infective 
individual with a susceptible individual is high. Infectious diseases such as measles and 
chicken-pox have transmission probabilities greater than 0.85, whereas the transmis- 
sion probability for the human immunodeficiency virus is generally less than 0.01, 
except perhaps during certain periods of infectiousness. 

All the models with the exception of level IV can be extended to accommodate 
individuals who are lost to follow-up or who enter the population after the study 
starts. A more complicated situation is introduced by the process letting Yj(t) = 1 if 
person j is present in the population at time t, and Yj(t) = 0 otherwise. This differs 
from standard usage in survival analysis where Yj(t) = 1 indicates that the person is 
under observation at time t (Andersen and Gill, 1982). A person who is not under 
observation but remains present in the population may influence the infection 
outcomes of other population members. This type of dependence is not seen in non- 
infectious disease studies (Ross, 1916). 
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Formulation of the contact process separately from the susceptibility allows us to 
study the bias in the estimates of relative susceptibility when exposure to infection is 
unequal in the comparison groups (Halloran et al., 1994). It also allows a general 
formulation of the mixing between and within groups in terms of the between- and 
within-group contact rates. This enables an examination of the bias in the estimates 
of relative susceptibility when faulty assumptions are made about the mixing patterns 
(Rhodes et al., 1994b). The derivations in this paper have assumed that the observed 
covariate value had an equal effect on all the people in one stratum. Unobserved 
hetercgeneities, such as genetic variability, would have to be taken into account 
differently (Smith et al., 1984; Svensson, 1991; Longini and Halloran, 1996; Halloran 
et al., 1996). 

We close with a guide to factors that may affect the choice of analysis. Knowledge 
of contacts between infectives and susceptibles, such as in secondary attack rate, 
case-contact or transmission studies (level I), provides the most efficient method of 
evaluating differential susceptibility. Analyses IIA and IIB are useful if we are 
interested in studying the extent to which different segments of the population spread 
infection as well as the effects of susceptibility variables. If the appropriate data are 
available, level IIA provides a more efficient and more easily implemented analysis of 
such structure. If the mixing structure is not of inherent interest, the Cox regression 
method (level III), when appropriate, is an alternative which is easier to implement. 
The Cox model is useful in situations where we are not confident about information 
or assumptions concerning how long individuals remain infectious. Finally, if we 
know only the number of events that occur over the course of a study, then level IV, 
the complementary log-log-model, provides an efficient alternative for a closed 
population with moderate overall levels of infection. 
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