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Introduction

The aim of these notes is to explain the remarkable formula found by Yau and
Zaslow [Y-Z] to express the number of rational curves on a K3 surface. Projective
K3 surfaces fall into countably many families (Fg)g≥1 ; a surface in Fg admits a g-
dimensional linear system of curves of genus g . A näıve count of constants suggests
that such a system will contain a positive number, say n(g) , of rational (highly
singular) curves. The formula is∑

g≥0

n(g)qg =
q

∆(q)
,

where ∆(q) = q
∏

n≥1(1− qn)24 is the well-known modular form of weight 12 , and
we put by convention n(0) = 1 .

To explain the idea in a nutshell, take the case g = 1 . We are thus looking
at K3 surfaces with an elliptic fibration f : S → P1 , and we are asking for the
number of singular fibres. The (topological) Euler-Poincaré characteristic of a fibre
Ct is 0 if Ct is smooth, 1 if it is a rational curve with one node, 2 if it has a
cusp, etc. From the standard properties of the Euler-Poincaré characteristic, we get
e(S) =

∑
t

e(Ct) ; hence n(1) = e(S) = 24 , and this number counts nodal rational

curves with multiplicity 1 , cuspidal rational curves with multiplicity 2 , etc.
The idea of Yau and Zaslow is to generalize this approach to any genus. Let S

be a K3 surface with a g-dimensional linear system Π of curves of genus g . The
role of f will be played by the morphism J̄ C → Π whose fibre over a point t ∈ Π
is the compactified Jacobian J̄Ct . To apply the same method, we would like to
prove the following facts:

1) The Euler-Poincaré characteristic e(J̄ C) is the coefficient of qg in the Taylor
expansion of q/∆(q) .

2) e(J̄Ct) = 0 if Ct is not rational.
3) e(J̄Ct) = 1 if Ct is a rational curve with nodes as only singularities. Moreover

e(J̄Ct) is positive when Ct is rational, and can be computed in terms of the
singularities of Ct .

4) For a generic K3 surface S in Fg , all rational curves in Π are nodal.
The first statement is proved in § 1, by comparing e(J̄ C) with the Euler-

Poincaré characteristic of the Hilbert scheme S[g] which has been computed by

1 Partially supported by the European HCM project “Algebraic Geometry in Europe” (AGE).
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Göttsche. The assertion 2) is proved in § 2. We prove part of 3) in § 3 and 4:
we express e(J̄C) , for a rational curve C , in terms of a local invariant of the
singularities of C , and compute this local invariant in a number of cases. This
invariant has been recently identified by Fantechi, Göttsche and van Straten as
the multiplicity of the δ-constant stratum in the semi-universal deformation of the
singularity [F-G-S]; this implies in particular the positivity of e(J̄C) . This approach
also provides an alternate proof for most of our results in § 3 and 4.

Unfortunately 4) is of a different nature, and seems to be widely open.

The outcome (see Cor. 2.3) is that the coefficient of qg in q/∆(q) counts the
rational curves in Π with a certain multiplicity, which is 1 for a nodal curve and
can be computed explicitely in many cases; the only missing point (equivalent to 4))
is the fact that for a generic surface in Fg this coefficient is simply the number of
rational curves in Π .

1. The compactified relative Jacobian

(1.1) Let X be a complex variety; we denote by e(X) its Euler-Poincaré char-
acteristic, defined by e(X) =

∑
p(−1)p dimQ Hp

c(X,Q) . Recall that this invariant is
additive, that is satisfies e(X) = e(U) + e(X U) whenever U is an open subset of
X .

(1.2) We consider a projective K3 surface S with a complete linear system
(Ct)t∈Π of curves of genus g ≥ 1 (so Π is a projective space of dimension g ). We
will assume that all the curves Ct are integral (that is irreducible and reduced).
This is a simplifying assumption, which can probably be removed at the cost of
various technical complications. It is of course satisfied if the class of Ct generates
Pic(S) .

Let C → Π be the morphism with fibre Ct over t ∈ Π . For each integer
d ∈ Z , we denote by J̄ C =

∐
d∈Z

J̄ dC the compactified Picard scheme of this family.

J̄ dC is a projective variety of dimension 2g , which parameterizes pairs (Ct,L)
where t ∈ Π and L is a torsion free, rank 1 coherent sheaf on Ct of degree d

(which means by definition χ(L) = d + 1− g ). According to Mukai ([M], example
0.5), J̄ dC can be viewed as a connected component of the moduli space of simple
sheaves on S , and therefore is smooth, and admits a (holomorphic) symplectic
structure.

The simplest symplectic varieties associated to the K3 surface S are the Hilbert
schemes S[d] , which parameterize finite subschemes of length d of S . The birational
comparison of the symplectic varieties J̄ dC , for various values of d , with S[g] is an
interesting problem, about which not much seems to be known. There is one easy
case:
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Proposition 1.3 .− The compactified Jacobian J̄ gC is birationally isomorphic
to S[g] .

Proof: Let U be the open subset of J̄ gC consisting of pairs (Ct,L) where Ct

is smooth, L is invertible and dim H0(Ct,L) = 1 . To such a pair corresponds a
unique effective divisor D on Ct of degree g , which can be viewed as a length g

subscheme of S ; since dim H0(Ct,OCt(D)) = 1 it is contained in a unique curve of
Π , namely Ct . This provides an isomorphism between U and the open subset of
S[g] parameterizing finite subschemes of S contained in a unique smooth curve of
Π .

Corollary 1.4 .− Write
q

∆(q)
=

∑
g≥0

e(g) qg . Then e(J̄ gC) = e(g) .

Proof: We can either use a recent result of Batyrev [B] saying that two birationally
equivalent projective Calabi-Yau manifolds have the same Betti numbers, or a more
precise result of Huybrechts [H]: two birationally equivalent projective symplectic
manifolds are diffeomorphic. It remains to apply Göttsche’s formula e(S[g]) = e(g)
[G].

2. The compactified Jacobian of a non-rational curve

Let C be an integral curve. By a rank 1 sheaf on C we will mean a torsion free,
rank 1 coherent sheaf. The rank 1 sheaves L on C of degree d are parameterized
by the compactified Jacobian J̄dC . If L is an invertible sheaf of degree d on C ,
the map L 7→ L ⊗ L is an isomorphism of J̄C onto J̄dC , so we can restrict our
study to degree 0 sheaves.

Let L ∈ J̄C ; the endomorphism ring of L is an OC -subalgebra of the sheaf of
rational functions on C . It is finitely generated as a OC -module, hence contained
in O

C̃
. It is thus of the form OC′ , where f : C′ → C is some partial normalization

of C . The sheaf L is a OC′ -module, which amounts to say that it is the direct
image of a rank 1 sheaf L′ on C′ .

Lemma 2.1 .− Let L ∈ JC . Then L ⊗ L is isomorphic to L if and only if f∗L
is trivial.

Proof: The sheaf L ⊗ L is isomorphic to f∗(L′ ⊗ f∗L) , hence to L if f∗L is trivial.
On the other hand we have

HomOC(L,L ⊗ L) ∼= EndOC(L)⊗OC L ∼= f∗OC′ ⊗ L ∼= f∗f
∗L ,

so if f∗L is non-trivial, the space Hom(L,L ⊗ L) is zero, and L ⊗ L cannot be
isomorphic to L .
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Proposition 2.2 .− Let C be an integral curve whose normalization C̃ has genus
≥ 1 . Then e(J̄dC) = 0 .

Proof: We have an exact sequence

0 → G −→ JC −→ JC̃ → 0 ,

where G is a product of additive and multiplicative groups. In particular, G is
a divisible group, hence this exact sequence splits as a sequence of abelian groups.
For each integer n , we can therefore find a subgroup of order n in JC which maps
injectively into JC̃ . By Lemma 2.1, this group acts freely on J̄C , which implies
that n divides e(J̄C) ; since this holds for any n the Proposition follows.

Corollary 2.3 .− Write
q

∆(q)
=

∑
g≥0

e(g) qg ; let Πrat ⊂ Π be the (finite) subset of

rational curves. Then e(g) =
∑

t∈Πrat

e(J̄Ct) .

Proof: We first make a general observation: let f : X → Y be a surjective morphism
of complex algebraic varieties whose fibres have Euler characteristic 0 ; then
e(X) = 0 . This is well known (and easy) if f is a locally trivial fibration; the
general case follows using (1.1), because there exists a stratification of Y such that
f is locally trivial above each stratum [V].

The set Πrat is finite because otherwise it would contain a curve, so S would be
ruled. Consider the morphism p : J̄ gC → Π above Π Πrat ; by the above remark,
we have e(p−1(Π Πrat)) = 0 , hence the result using again (1.1).

In other words, e(g) counts the number of rational curves with multiplicity,
the multiplicity of a curve C being e(J̄C) . In the next two sections we will try to
show that this is indeed a reasonable notion of multiplicity.

3. The compactified Jacobian of a rational curve

Lemma 3.1 .− Let f : C′ → C be a partial normalization of C . The morphism
f∗ : J̄C′ → J̄C is a closed embedding.

Proof: Let L,M be two rank 1 sheaves on C′ . We claim that any OC -homo-
morphism u : f∗L → f∗M is actually f∗OC′ -linear. Let U be a Zariski open
subset of C , ϕ ∈ Γ(U, f∗OC′) , s ∈ Γ(U, f∗L) ; the rational function ϕ can be
written as a/b , with a, b ∈ Γ(U,OC) and b 6= 0 . Then the element u(ϕs)− ϕu(s)
of Γ(U, f∗M) is killed by b , hence is zero since f∗M is torsion-free.

Therefore if f∗L and f∗M are isomorphic as OC -modules, they are also
isomorphic as f∗OC′ -modules, which means that L and M are isomorphic: this
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proves the injectivity of f∗ (which would be enough for our purpose). Now if S is
any base scheme, the same argument applies to sheaves L , M on C× S , flat over
S , whose restrictions to each fibre C× {s} are torsion free rank 1 (observe that
a local section b of OC is M-regular because it is on each fibre, and M is flat
over S ). This proves that f∗ is a monomorphism; since it is proper, it is a closed
embedding.

(3.2) Recall that the curve C is said to be unibranch if its normalization
C̃ → C is a homeomorphism. Any curve C admits a unibranch partial normaliza-
tion π̌ : Č → C which is minimal, in the sense that any unibranch partial normaliza-
tion C′ → C factors through π̌ . To see this, let C be the conductor of C , and let
Σ̃ be the inverse image in C̃ of the singular locus Σ ∈ C . The finite-dimensional
k-algebra A := O

C̃
/C is a product of local rings (Ax)

x∈Σ̃
; let (ex)

x∈Σ̃
be the corre-

sponding idempotent elements of A . A sheaf of algebras OC′ with OC ⊂ OC′ ⊂ O
C̃

is unibranch if and only if OC′/C contains each ex , or equivalently OC′ contains
the classes ex + C for each x ∈ Σ̃ ; clearly there is a smallest such algebra, namely
the algebra OČ generated by OC and the classes ex + C . The completion of the
local ring of Č at a point y is the image of ÔC,π̌(y) in Ô

C̃,y
.

Proposition 3.3 .− With the above notation, e(J̄C) = e(J̄Č) .

Proof: In view of Prop. 2.2, we may suppose that C̃ is rational. As before we denote
by Σ the singular locus of C , and by Σ̃ its inverse image in Č . The cohomology
exact sequence associated to the short exact sequence

1 → O∗
C −→ O∗

C̃
−→ O∗

C̃
/O∗

C → 1

provides a bijective homomorphism (actually an isomorphism of algebraic groups)
O∗

C̃
/O∗

C
∼−→ JC .

The evaluation maps O∗
C̃
→ (C∗)Σ̃ and O∗

C → (C∗)Σ give rise to a surjective

homomorphism O∗
C̃
/O∗

C → (C∗)Σ̃/(C∗)Σ ; its kernel is unipotent, that is isomorphic

to a vector space. If n is any integer ≥ Card(Σ̃) , it follows that we can find a section
ϕ of O∗

C̃
in a neighborhood of Σ̃ such that the numbers ϕ(x̃) for x̃ ∈ Σ̃ are all

distinct, but ϕn belongs to OC . Let L be the line bundle on C associated to the
class of ϕ in O∗

C̃
/O∗

C .

Let U be the complement of π̌∗(J̄Č) in J̄C ; according to 1.1 and Lemma
3.1, our assertion is equivalent to e(U) = 0 . We claim that the line bundle L acts
freely on U ; since the order of L in JC is finite and arbitrary large, this will finish
the proof. Let L ∈ U , and let C′ be the partial normalization of C such that
End(L) = OC′ ; by definition of U , C′ is not unibranch, hence there are two points
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of Σ̃ mapping to the same point of C′ ; this implies that the function ϕ does not
belong to O∗

C′ . From the commutative diagram

Õ∗
C̃
/O∗

C
∼−−−−→ JCy y

O∗
C̃
/O∗

C′
∼−−−−→ JC′

we conclude that the pull back of L to JC′ is non-trivial; by Lemma 2.1 this implies
that L ⊗ L is not isomorphic to L .

Corollary 3.4 .− For a rational nodal curve C , we have e(J̄C) = 1 .

Remark 3.5 .− Consider a rational curve C whose singularities are all of type
A2l−1 , that is locally defined by an equation u2 − v2l = 0 . Locally around such
a singularity, the curve C is the union of two smooth branches with a high order
contact, so by 3.3 e(J̄C) is equal to 1 . The fact that some highly singular curves
count with multiplicity one looks rather surprising. The case g = 2 provides a
(modest) confirmation: the surface S is a double covering of P2 branched along a
sextic curve B ; the curves Ct are the inverse images of the lines in P2 , and they
become rational when the line is bitangent to B . We get an A3 -singularity when
the line has a contact of order 4 ; thus our assertion in this case follows from the
(certainly classical) fact that a line with a fourth order contact counts as a simple
bitangent.

(3.6) Prop. 3.3 reduces the computation of the invariant e(J̄C) to the case of a
unibranch (rational) curve. To understand this invariant we will use a construction
of Rego ([R], see also [G-P]). For each x ∈ C , we put δx = dimO

C̃,x
/OC,x and we

denote by C the ideal O
C̃
(−

∑
x(2δx) x) ; it is contained in the conductor of C (but

the inclusion is strict unless C is Gorenstein).

For x ∈ C , we denote by Ax and Ãx the finite dimensional algebras OC,x/Cx

and O
C̃,x

/Cx . Let G(δx, Ãx) be the Grassmannian of codimension δx subspaces of

Ãx , and Gx the closed subvariety of G(δx, Ãx) consisting of sub-Ax-modules. We
can also view Gx as parameterizing the sub-OC,x -modules Lx of codimension δx

in O
C̃,x

, because any such sub-module contains Cx ([G-P], lemma 1.1 (iv)). Since

O
C̃
/C is a skyscraper sheaf with fibre Ãx at x , the product

∏
x∈Σ

Gx parameterizes

sub-OC -modules L ⊂ O
C̃

such that dimO
C̃,x

/Lx = δx for all x . This implies
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χ(O
C̃
/L) =

∑
x δx = χ(O

C̃
/OC) , hence L ∈ J̄C . We have thus defined a morphism

e :
∏

x∈Σ
Gx → J̄C .

Proposition 3.7 .− The map e is a homeomorphism.

Note that e is not an isomorphism, already when C is a rational curve with
one ordinary cusp s : the Grassmannian Gs is isomorphic to P1 , while J̄C is
isomorphic to C .

Since we are dealing with compact varieties, it suffices to prove that e is
bijective.

Injectivity: Let L , M be two sub-OC -modules of O
C̃

containing C . If L and M
give the same element in J̄C , there exists a rational function ϕ on C̃ such that
M = ϕL . But the equalities dimO

C̃,x
/Mx = dimO

C̃,x
/Lx = dim ϕxOC̃,x

/Mx

imply ϕxOC̃,x
= O

C̃,x
for all x , which means that ϕ is constant.

Surjectivity: Let f : C̃ → C be the normalization morphism, and L ∈ J̄C . Let us
denote by L̃ the line bundle on C̃ quotient of f∗L by its torsion subsheaf. We
claim that its degree is ≤ 0 : we have an exact sequence

0 → L −→ f∗L̃ −→ T → 0

where T is a skyscrapersheaf supported on the singular locus of C , such
that dim Tx ≤ δx for all x ∈ C ([G-P], lemma 1.1); this implies χ(L̃)− χ(L) ≤
χ(O

C̃
)− χ(OC) , from which the required inequality follows. Since C̃ is rational, it

follows that L̃−1 admits a global section whose zero set is contained in Σ .
Because of the canonical isomorphisms

HomOC(L,O
C̃
) ∼= HomO

C̃
(f∗L,O

C̃
) ∼= HomO

C̃
(L̃,O

C̃
) ,

we conclude that there exists a homomorphism i : L → O
C̃

which is bijective outside
Σ . Put nx = dimO

C̃,x
/i(Lx) for each x ∈ Σ . Since

∑
x∈Σ

nx = dimO
C̃
/i(L) = χ(O

C̃
)− χ(L) = g =

∑
x∈Σ

δx ,

there exists a rational function ϕ on C̃ with divisor
∑

x(δx − nx)x . Replacing L
by ϕL , we may assume nx = δx for all x , which means that L belongs to the
image of e .

The variety Gx depends only on the local ring O of C at x (even only on
its completion); we will also denote it by GO . Recall that GO parameterizes the
sub-O-modules L of the normalization Õ of O with dim Õ/L = dim Õ/O . We
put ε(x) = e(Gx) (or ε(O) = e(GO) ). The above Proposition gives:
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Proposition 3.8 .− Let C be a rational unibranch curve; then e(J̄C) =
∏

x∈C
ε(x) .

Of course ε(x) is equal to 1 for a smooth point, so we could as well consider
the product over the singular locus Σ of C . Note that in view of Prop. 3.3, we may
define ε(x) for a non-unibranch singularity by taking the product of the ε-invariants
of each branch; Prop. 3.8 remains valid.

4. Examples

(4.1) Singularities with C∗-action
Assume that the local, unibranch ring O admits a C∗ -action. This action

extends to its completion, so we will assume that O is complete. The C∗ -action
also extends to the normalization Õ of O , and there exists a local coordinate
t ∈ Õ such that the line Ct is preserved (this is because the pro-algebraic group
Aut(Õ) is an extension of C∗ by a pro-unipotent group, hence all subgroups of
Aut(Õ) isomorphic to C∗ are conjugate). It follows that the graded subring O is
associated to a semi-group Γ ⊂ N , in other words O is the ring C[[Γ]] of formal
series

∑
γ∈Γ

aγtγ .

The C∗ -actions on O and Õ give rise to a C∗ -action on GO . The fixed
points of this action are the submodules of Õ which are graded, that is of the form
C[[∆]] , where ∆ is a subset of N ; the condition dim Õ/C[[∆]] = dim Õ/O means
Card(N ∆) = Card(N Γ) , and the condition that C[[∆]] is a O-module means
Γ + ∆ ⊂ ∆ . The first condition already implies that there are only finitely many
such fixed points. According to [BB], the number of these fixed points is equal to
e(GO) . We conclude:

Proposition 4.2 .− Let Γ ⊂ N be a semi-group with finite complement. The
number ε(C[[Γ]]) is equal to the number of subsets ∆ ⊂ N such that Γ + ∆ ⊂ ∆
and Card(N ∆) = Card(N Γ) .

I do not know whether there exists a closed formula computing this number,
say in terms of a minimal set of generators of Γ . This turns out to be the case
in the situation we were originally interested in, namely planar singularities. The
semi-group Γ is then generated by two coprime integers p and q , which means
that the local ring O is of the form C[[u, v]]/(up − vq) .

Proposition 4.3 .− Let p, q be two coprime integers. Then

ε(C[[u, v]]/(up − vq)) =
1

p + q

(
p + q

p

)
.
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Proof: The following proof has been shown to me by P. Colmez.
(4.3.1) We first observe that if a subset ∆ satisfies Γ + ∆ ⊂ ∆ , all its

translates n + ∆ (n ∈ Z) contained in N have the same property; moreover,
among all these translates, there is exactly one with Card(N ∆) = Card(N Γ) .
Thus the number we want to compute is the cardinal of the set D of subsets ∆ ⊂ N

such that Γ + ∆ ⊂ ∆ , modulo the identification of a subset and its translates.

(4.3.2) For such a subset ∆ , let us introduce the generating function
F∆(T) =

∑
δ∈∆

Tδ ∈ Z[[T]] . Since p + ∆ ⊂ ∆ , we can write, in a unique way,

∆ =
p⋃

i=1

(a(i) + pN) ; then (1− Tp) F∆(T) =
p∑

i=1

Ta(i) . Writing similarly ∆ =

q⋃
j=1

(b(j) + qN) , we get (1− Tq) F∆(T) =
q∑

j=1

Tb(j) . Put a(j) = b(j − p) + p for

p + 1 ≤ j ≤ p + q ; the equality (1− Tp)
p+q∑

j=p+1

Ta(j)−p = (1− Tq)
p∑

i=1

Ta(i) reads

(4.3 a)
p+q∑
i=1

Ta(i) =
p∑

i=1

Ta(i)+q +
p+q∑

j=p+1

Ta(j)−p .

Conversely, given a function a : [1, p + q] → N satisfying (4.3 a), the set

∆ =
p⋃

i=1

(a(i) + pN) is equal to
p+q⋃

j=p+1

(a(j)− p + qN) , and therefore satisfies

Γ + ∆ ⊂ ∆ (note that (4.3 a) implies that the classes (mod. p ) of the a(i) ’s, for
1 ≤ i ≤ p , are all distinct).

The equality (4.3 a) means that there exists a permutation σ ∈ Sp+q such
that a(σi) is equal to a(i) + q if i ≤ p and to a(i)− p if i > p . This implies that
a(σm(i)) is of the form a(i) + αq − βp , with α, β ∈ N and α + β = m ; since p

and q are coprime, it follows that σ is of order p + q , that is a circular permutation.
It also follows that the numbers a(i) are all distinct; hence the permutation σ is
uniquely determined. Let τ be a permutation such that τστ−1 is the permutation
i 7→ i + 1 (mod. p + q) , and let S∆ = τ([1, p]) . Replacing a by a◦τ−1 , our
function a satisfies

(4.3 b) a(i + 1) =
{

a(i) + q if i ∈ S∆,
a(i)− p if i /∈ S∆ .

Since τ is determined up to right multiplication by a power of σ , the set
S∆ ⊂ [1, p + q] is well determined up to a translation (mod. p + q) . Note that
replacing ∆ by n + ∆ amounts to add the constant value n to the function a ,
hence does not change S∆ .

(4.3.3) Conversely, let us start from a subset S ⊂ [1, p + q] with p elements.
We define inductively a function aS on [1, p + q] by the relations (4.3 b), giv-
ing to aS(1) an arbitrary value, large enough so that aS takes its values in
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N . By construction the function aS satisfies (4.3 b), so by (4.3.2) the subset
∆S =

⋃
s∈S

(aS(s) + pN) satisfies Γ + ∆S ⊂ ∆S .

An easy computation gives aS+1(i + 1) = aS(i) and therefore ∆S+1 = ∆S .
Let S be the set of subsets of [1, p + q] with p elements, modulo translation; the
maps ∆ 7→ S∆ from D to S and S 7→ ∆S from S to D are inverse of each other.

Since Card(S) =
1

p + q

(
p + q

p

)
, the Proposition follows.

(4.4) Simple singularities
We now consider the case where the singularities of C are simple, that is

of A,D,E type. The local ring of such a singularity has only finitely many
isomorphism classes of torsion free rank 1 modules, and this property characterizes
these singularities among all plane curves singularities [G-K].

Proposition 4.5 .− Let O be the local ring of a simple singularity. Then ε(O) is
the number of isomorphism classes of torsion free rank 1 O-modules. It is given by:

– ε(O) = l + 1 if O is of type A2l ;
– ε(O) = 1 if O is of type A2l+1 ;
– ε(O) = 1 if O is of type D2l (l ≥ 2) ;
– ε(O) = l if O is of type D2l+1 (l ≥ 2) ;
– ε(O) = 5 if O is of type E6 ;
– ε(O) = 2 if O is of type E7 ;
– ε(O) = 7 if O is of type E8 .

Proof: Let C be a rational curve having only one simple singularity with local ring
O ; the action of JC on J̄C has finitely many orbits, corresponding to the different
isomorphism classes of rank 1 O-modules. Since each orbit is an affine space, its
Euler characteristic is 1 , hence by (1.1) ε(O) = e(J̄C) is equal to the number of
these orbits.

If O is unibranch, its completion is of the form C[[u, v]]/(up − vq) , with
p = 2 , q = 2l + 1 for the type A2l , p = 3 , q = 4 for the type E6 and p = 3 ,
q = 5 for the type E8 ; in these cases the result follows from 4.3. We have already
observed that ε = 1 for a A2l+1 singularity (Remark 3.5). A Dl singularity is the
union of a Al−3 branch and a transversal smooth branch, hence the result by 3.3.
Finally an E7 singularity is the union of an ordinary cusp and its tangent, hence
has ε = 2 .

Remark 4.6 .− Let D be the set of graded sub-O-modules L ⊂ Õ with dim Õ/L =
dim Õ/O . Two modules L , M in D are isomorphic if and only if M = tnL for
some n ∈ Z , but the dimension condition forces n = 1 . It follows that each torsion
free rank 1 O-module is isomorphic to exactly one element of D . It is quite easy
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that way to write down the list of isomorphism classes of rank 1 O-modules (which
is of course well-known, see e.g. [G-K]). For instance if O is of type E8 , we get the
following modules (with the notation of 4.1):
O , Ot +Ot8 , Ot2 +Ot6 , Ot2 +Ot4 , Ot3 +Ot4 , Ot3 +Ot5 +Ot7 , Õt4 .

REFERENCES

[B] V. BATYREV: On the Betti numbers of birationally isomorphic projective

varieties with trivial canonical bundles. Preprint alg-geom/9710020, to
appear in Proc. European Algebraic Geometry Conference (Warwick, 1996).

[BB] A. BIALYNICKI-BIRULA: On fixed point schemes of actions of multiplicative

and additive groups. Topology 12, 99-103 (1973).
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211-223 (1980).

[V] J.-L. VERDIER: Stratifications de Whitney et théorème de Bertini-Sard.
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