Counting rational curves on K3 surfaces

Arnaud Beauville ${ }^{1}$

Introduction

The aim of these notes is to explain the remarkable formula found by Yau and Zaslow [Y-Z] to express the number of rational curves on a K3 surface. Projective K3 surfaces fall into countably many families $\left(\mathcal{F}_{g}\right)_{g \geq 1}$; a surface in \mathcal{F}_{g} admits a g dimensional linear system of curves of genus g. A naïve count of constants suggests that such a system will contain a positive number, say $n(g)$, of rational (highly singular) curves. The formula is

$$
\sum_{g \geq 0} n(g) q^{g}=\frac{q}{\Delta(q)}
$$

where $\Delta(q)=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}$ is the well-known modular form of weight 12 , and we put by convention $n(0)=1$.

To explain the idea in a nutshell, take the case $g=1$. We are thus looking at K3 surfaces with an elliptic fibration $f: S \rightarrow \mathbf{P}^{1}$, and we are asking for the number of singular fibres. The (topological) Euler-Poincaré characteristic of a fibre C_{t} is 0 if C_{t} is smooth, 1 if it is a rational curve with one node, 2 if it has a cusp, etc. From the standard properties of the Euler-Poincaré characteristic, we get $e(\mathrm{~S})=\sum_{t} e\left(\mathrm{C}_{t}\right)$; hence $n(1)=e(\mathrm{~S})=24$, and this number counts nodal rational curves with multiplicity 1 , cuspidal rational curves with multiplicity 2 , etc.

The idea of Yau and Zaslow is to generalize this approach to any genus. Let S be a K3 surface with a g-dimensional linear system Π of curves of genus g. The role of f will be played by the morphism $\overline{\mathcal{J}} \mathcal{C} \rightarrow \Pi$ whose fibre over a point $t \in \Pi$ is the compactified Jacobian $\overline{\mathrm{J}} \mathrm{C}_{t}$. To apply the same method, we would like to prove the following facts:

1) The Euler-Poincaré characteristic $e(\overline{\mathcal{J}} \mathcal{C})$ is the coefficient of q^{g} in the Taylor expansion of $q / \Delta(q)$.
2) $e\left(\overline{\mathrm{~J}} \mathrm{C}_{t}\right)=0$ if C_{t} is not rational.
3) $e\left(\overline{\mathrm{~J}} \mathrm{C}_{t}\right)=1$ if C_{t} is a rational curve with nodes as only singularities. Moreover $e\left(\overline{\mathrm{~J}} \mathrm{C}_{t}\right)$ is positive when C_{t} is rational, and can be computed in terms of the singularities of C_{t}.
4) For a generic K 3 surface S in \mathcal{F}_{g}, all rational curves in Π are nodal.

The first statement is proved in §1, by comparing $e(\overline{\mathcal{J}} \mathcal{C})$ with the EulerPoincaré characteristic of the Hilbert scheme $S^{[g]}$ which has been computed by

[^0]Göttsche. The assertion 2) is proved in §2. We prove part of 3) in § 3 and 4: we express $e(\overline{\mathrm{~J}} \mathrm{C})$, for a rational curve C , in terms of a local invariant of the singularities of C , and compute this local invariant in a number of cases. This invariant has been recently identified by Fantechi, Göttsche and van Straten as the multiplicity of the δ-constant stratum in the semi-universal deformation of the singularity [F-G-S]; this implies in particular the positivity of $e(\overline{\mathrm{~J}} \mathrm{C})$. This approach also provides an alternate proof for most of our results in $\S 3$ and 4.

Unfortunately 4) is of a different nature, and seems to be widely open.
The outcome (see Cor. 2.3) is that the coefficient of q^{g} in $q / \Delta(q)$ counts the rational curves in Π with a certain multiplicity, which is 1 for a nodal curve and can be computed explicitely in many cases; the only missing point (equivalent to 4)) is the fact that for a generic surface in \mathcal{F}_{g} this coefficient is simply the number of rational curves in Π.

1. The compactified relative Jacobian

(1.1) Let X be a complex variety; we denote by $e(\mathrm{X})$ its Euler-Poincaré characteristic, defined by $e(\mathrm{X})=\sum_{p}(-1)^{p} \operatorname{dim}_{\mathbf{Q}} \mathrm{H}_{c}^{p}(\mathrm{X}, \mathbf{Q})$. Recall that this invariant is additive, that is satisfies $e(\mathrm{X})=e(\mathrm{U})+e(\mathrm{X}-\mathrm{U})$ whenever U is an open subset of X .
(1.2) We consider a projective K3 surface S with a complete linear system $\left(\mathrm{C}_{t}\right)_{t \in \Pi}$ of curves of genus $g \geq 1$ (so Π is a projective space of dimension g). We will assume that all the curves C_{t} are integral (that is irreducible and reduced). This is a simplifying assumption, which can probably be removed at the cost of various technical complications. It is of course satisfied if the class of C_{t} generates $\operatorname{Pic}(\mathrm{S})$.

Let $\mathcal{C} \rightarrow \Pi$ be the morphism with fibre C_{t} over $t \in \Pi$. For each integer $d \in \mathbf{Z}$, we denote by $\overline{\mathcal{J}} \mathcal{C}=\coprod_{d \in \mathbf{Z}} \overline{\mathcal{J}}^{d} \mathcal{C}$ the compactified Picard scheme of this family. $\overline{\mathcal{J}}^{d} \mathcal{C}$ is a projective variety of dimension $2 g$, which parameterizes pairs $\left(\mathrm{C}_{t}, \mathcal{L}\right)$ where $t \in \Pi$ and \mathcal{L} is a torsion free, rank 1 coherent sheaf on C_{t} of degree d (which means by definition $\chi(\mathcal{L})=d+1-g$). According to Mukai ($[\mathrm{M}]$, example $0.5), \overline{\mathcal{J}}^{d} \mathcal{C}$ can be viewed as a connected component of the moduli space of simple sheaves on S , and therefore is smooth, and admits a (holomorphic) symplectic structure.

The simplest symplectic varieties associated to the K3 surface S are the Hilbert schemes $\mathrm{S}^{[d]}$, which parameterize finite subschemes of length d of S . The birational comparison of the symplectic varieties $\overline{\mathcal{J}}^{d} \mathcal{C}$, for various values of d, with $\mathrm{S}^{[g]}$ is an interesting problem, about which not much seems to be known. There is one easy case:

Proposition 1.3.- The compactified Jacobian $\overline{\mathcal{J}}^{g} \mathcal{C}$ is birationally isomorphic to $\mathrm{S}^{[g]}$.

Proof: Let U be the open subset of $\overline{\mathcal{J}}^{g} \mathcal{C}$ consisting of pairs $\left(\mathrm{C}_{t}, \mathrm{~L}\right)$ where C_{t} is smooth, L is invertible and $\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{C}_{t}, \mathrm{~L}\right)=1$. To such a pair corresponds a unique effective divisor D on C_{t} of degree g, which can be viewed as a length g subscheme of S ; since $\operatorname{dim} \mathrm{H}^{0}\left(\mathrm{C}_{t}, \mathcal{O}_{\mathrm{C}_{t}}(\mathrm{D})\right)=1$ it is contained in a unique curve of Π, namely C_{t}. This provides an isomorphism between U and the open subset of $\mathrm{S}^{[g]}$ parameterizing finite subschemes of S contained in a unique smooth curve of Π.

Corollary 1.4.- Write $\frac{q}{\Delta(q)}=\sum_{g \geq 0} e(g) q^{g}$. Then $e\left(\overline{\mathcal{J}}^{g} \mathcal{C}\right)=e(g)$.
Proof: We can either use a recent result of Batyrev [B] saying that two birationally equivalent projective Calabi-Yau manifolds have the same Betti numbers, or a more precise result of Huybrechts [H]: two birationally equivalent projective symplectic manifolds are diffeomorphic. It remains to apply Göttsche's formula $e\left(\mathrm{~S}^{[g]}\right)=e(g)$ [G].

2. The compactified Jacobian of a non-rational curve

Let C be an integral curve. By a rank 1 sheaf on C we will mean a torsion free, rank 1 coherent sheaf. The rank 1 sheaves \mathcal{L} on C of degree d are parameterized by the compactified Jacobian $\overline{\mathrm{J}}^{d} \mathrm{C}$. If L is an invertible sheaf of degree d on C , the map $\mathcal{L} \mapsto \mathcal{L} \otimes \mathrm{L}$ is an isomorphism of $\overline{\mathrm{J}} \mathrm{C}$ onto $\overline{\mathrm{J}}^{d} \mathrm{C}$, so we can restrict our study to degree 0 sheaves.

Let $\mathcal{L} \in \overline{\mathrm{J}} \mathrm{C}$; the endomorphism ring of \mathcal{L} is an \mathcal{O}_{C}-subalgebra of the sheaf of rational functions on C . It is finitely generated as a \mathcal{O}_{C}-module, hence contained in $\mathcal{O}_{\widetilde{\mathrm{C}}}$. It is thus of the form $\mathcal{O}_{\mathrm{C}^{\prime}}$, where $f: \mathrm{C}^{\prime} \rightarrow \mathrm{C}$ is some partial normalization of C . The sheaf \mathcal{L} is a $\mathcal{O}_{\mathrm{C}^{\prime}}$-module, which amounts to say that it is the direct image of a rank 1 sheaf \mathcal{L}^{\prime} on C^{\prime}.

Lemma 2.1.- Let $\mathrm{L} \in \mathrm{JC}$. Then $\mathcal{L} \otimes \mathrm{L}$ is isomorphic to \mathcal{L} if and only if $f^{*} \mathrm{~L}$ is trivial.

Proof: The sheaf $\mathcal{L} \otimes \mathrm{L}$ is isomorphic to $f_{*}\left(\mathcal{L}^{\prime} \otimes f^{*} \mathrm{~L}\right)$, hence to \mathcal{L} if $f^{*} \mathrm{~L}$ is trivial. On the other hand we have

$$
\mathcal{H o m}_{\mathcal{O}_{\mathrm{C}}}(\mathcal{L}, \mathcal{L} \otimes \mathrm{~L}) \cong \mathcal{E} n d_{\mathcal{O}_{\mathrm{C}}}(\mathcal{L}) \otimes_{\mathcal{O}_{\mathrm{C}}} \mathrm{~L} \cong f_{*} \mathcal{O}_{\mathrm{C}^{\prime}} \otimes \mathrm{L} \cong f_{*} f^{*} \mathrm{~L},
$$

so if $f^{*} \mathrm{~L}$ is non-trivial, the space $\operatorname{Hom}(\mathcal{L}, \mathcal{L} \otimes \mathrm{L})$ is zero, and $\mathcal{L} \otimes \mathrm{L}$ cannot be isomorphic to \mathcal{L}.

Proposition 2.2.- Let C be an integral curve whose normalization $\widetilde{\mathrm{C}}$ has genus ≥ 1. Then $e\left(\bar{J}^{d} \mathrm{C}\right)=0$.

Proof: We have an exact sequence

$$
0 \rightarrow \mathrm{G} \longrightarrow \mathrm{JC} \longrightarrow \mathrm{~J} \widetilde{\mathrm{C}} \rightarrow 0
$$

where G is a product of additive and multiplicative groups. In particular, G is a divisible group, hence this exact sequence splits as a sequence of abelian groups. For each integer n, we can therefore find a subgroup of order n in JC which maps injectively into $\mathrm{J} \widetilde{\mathrm{C}}$. By Lemma 2.1, this group acts freely on $\overline{\mathrm{J} C}$, which implies that n divides $e(\overline{\mathrm{~J} C})$; since this holds for any n the Proposition follows.

Corollary 2.3.- Write $\frac{q}{\Delta(q)}=\sum_{g \geq 0} e(g) q^{g}$; let $\Pi_{\mathrm{rat}} \subset \Pi$ be the (finite) subset of rational curves. Then $e(g)=\sum_{t \in \Pi_{\mathrm{rat}}} e\left(\overline{\mathrm{~J}} \mathrm{C}_{t}\right)$.
Proof: We first make a general observation: let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a surjective morphism of complex algebraic varieties whose fibres have Euler characteristic 0 ; then $e(\mathrm{X})=0$. This is well known (and easy) if f is a locally trivial fibration; the general case follows using (1.1), because there exists a stratification of Y such that f is locally trivial above each stratum [V].

The set Π_{rat} is finite because otherwise it would contain a curve, so S would be ruled. Consider the morphism $p: \overline{\mathcal{J}}^{g} \mathcal{C} \rightarrow \Pi$ above $\Pi-\Pi_{\text {rat }}$; by the above remark, we have $e\left(p^{-1}\left(\Pi-\Pi_{\mathrm{rat}}\right)\right)=0$, hence the result using again (1.1).

In other words, $e(g)$ counts the number of rational curves with multiplicity, the multiplicity of a curve C being $e(\overline{\mathrm{~J}} \mathrm{C})$. In the next two sections we will try to show that this is indeed a reasonable notion of multiplicity.

3. The compactified Jacobian of a rational curve

Lemma 3.1.- Let $f: \mathrm{C}^{\prime} \rightarrow \mathrm{C}$ be a partial normalization of C . The morphism $f_{*}: \overline{\mathrm{J}} \mathrm{C}^{\prime} \rightarrow \overline{\mathrm{J}} \mathrm{C}$ is a closed embedding.

Proof: Let \mathcal{L}, \mathcal{M} be two rank 1 sheaves on C^{\prime}. We claim that any \mathcal{O}_{C}-homomorphism $u: f_{*} \mathcal{L} \rightarrow f_{*} \mathcal{M}$ is actually $f_{*} \mathcal{O}_{\mathrm{C}^{\prime}}$-linear. Let U be a Zariski open subset of $\mathrm{C}, \varphi \in \Gamma\left(\mathrm{U}, f_{*} \mathcal{O}_{\mathrm{C}^{\prime}}\right), s \in \Gamma\left(\mathrm{U}, f_{*} \mathcal{L}\right)$; the rational function φ can be written as a / b, with $a, b \in \Gamma\left(\mathrm{U}, \mathcal{O}_{\mathrm{C}}\right)$ and $b \neq 0$. Then the element $u(\varphi s)-\varphi u(s)$ of $\Gamma\left(\mathrm{U}, f_{*} \mathcal{M}\right)$ is killed by b, hence is zero since $f_{*} \mathcal{M}$ is torsion-free.

Therefore if $f_{*} \mathcal{L}$ and $f_{*} \mathcal{M}$ are isomorphic as \mathcal{O}_{C}-modules, they are also isomorphic as $f_{*} \mathcal{O}_{\mathrm{C}^{\prime}}$-modules, which means that \mathcal{L} and \mathcal{M} are isomorphic: this
proves the injectivity of f_{*} (which would be enough for our purpose). Now if S is any base scheme, the same argument applies to sheaves \mathcal{L}, \mathcal{M} on $\mathrm{C} \times \mathrm{S}$, flat over S, whose restrictions to each fibre $\mathrm{C} \times\{s\}$ are torsion free rank 1 (observe that a local section b of \mathcal{O}_{C} is \mathcal{M}-regular because it is on each fibre, and \mathcal{M} is flat over S). This proves that f_{*} is a monomorphism; since it is proper, it is a closed embedding.
(3.2) Recall that the curve C is said to be unibranch if its normalization $\widetilde{\mathrm{C}} \rightarrow \mathrm{C}$ is a homeomorphism. Any curve C admits a unibranch partial normalization $\check{\pi}: \check{\mathrm{C}} \rightarrow \mathrm{C}$ which is minimal, in the sense that any unibranch partial normalization $\mathrm{C}^{\prime} \rightarrow \mathrm{C}$ factors through $\check{\pi}$. To see this, let \mathcal{C} be the conductor of C , and let $\widetilde{\Sigma}$ be the inverse image in $\widetilde{\mathrm{C}}$ of the singular locus $\Sigma \in \mathrm{C}$. The finite-dimensional k-algebra $\mathrm{A}:=\mathcal{O}_{\widetilde{\mathrm{C}}} / \mathcal{C}$ is a product of local rings $\left(\mathrm{A}_{x}\right)_{x \in \widetilde{\Sigma}}$; let $\left(e_{x}\right)_{x \in \widetilde{\Sigma}}$ be the corresponding idempotent elements of A . A sheaf of algebras $\mathcal{O}_{\mathrm{C}^{\prime}}$ with $\mathcal{O}_{\mathrm{C}} \subset \mathcal{O}_{\mathrm{C}^{\prime}} \subset \mathcal{O}_{\widetilde{\mathrm{C}}}$ is unibranch if and only if $\mathcal{O}_{\mathrm{C}^{\prime}} / \mathcal{C}$ contains each e_{x}, or equivalently $\mathcal{O}_{\mathrm{C}^{\prime}}$ contains the classes $e_{x}+\mathcal{C}$ for each $x \in \widetilde{\Sigma}$; clearly there is a smallest such algebra, namely the algebra $\mathcal{O}_{\check{\mathrm{C}}}$ generated by \mathcal{O}_{C} and the classes $e_{x}+\mathcal{C}$. The completion of the local ring of $\check{\mathrm{C}}$ at a point y is the image of $\widehat{\mathcal{O}}_{\mathrm{C}, \check{\pi}(y)}$ in $\widehat{\mathcal{O}}_{\widetilde{\mathrm{C}}, y}$.
Proposition 3.3.- With the above notation, $e(\overline{\mathrm{~J}} \mathrm{C})=e(\overline{\mathrm{~J}})$.
Proof: In view of Prop. 2.2, we may suppose that $\widetilde{\mathrm{C}}$ is rational. As before we denote by Σ the singular locus of C , and by $\widetilde{\Sigma}$ its inverse image in $\check{\mathrm{C}}$. The cohomology exact sequence associated to the short exact sequence

$$
1 \rightarrow \mathcal{O}_{\mathrm{C}}^{*} \longrightarrow \mathcal{O}_{\widetilde{\mathrm{C}}}^{*} \longrightarrow \mathcal{O}_{\widetilde{\mathrm{C}}}^{*} / \mathcal{O}_{\mathrm{C}}^{*} \rightarrow 1
$$

provides a bijective homomorphism (actually an isomorphism of algebraic groups) $\mathcal{O}_{\widetilde{\mathrm{C}}}^{*} / \mathcal{O}_{\mathrm{C}}^{*} \xrightarrow{\sim} \mathrm{JC}$.

The evaluation maps $\mathcal{O}_{\widetilde{\mathrm{C}}}^{*} \rightarrow\left(\mathbf{C}^{*}\right)^{\widetilde{\Sigma}}$ and $\mathcal{O}_{\mathrm{C}}^{*} \rightarrow\left(\mathbf{C}^{*}\right)^{\Sigma}$ give rise to a surjective homomorphism $\mathcal{O}_{\widetilde{\mathrm{C}}}^{*} / \mathcal{O}_{\mathrm{C}}^{*} \rightarrow\left(\mathbf{C}^{*}\right)^{\widetilde{\Sigma}} /\left(\mathbf{C}^{*}\right)^{\Sigma}$; its kernel is unipotent, that is isomorphic to a vector space. If n is any integer $\geq \operatorname{Card}(\widetilde{\Sigma})$, it follows that we can find a section φ of $\mathcal{O}_{\widetilde{\mathrm{C}}}^{*}$ in a neighborhood of $\widetilde{\Sigma}$ such that the numbers $\varphi(\tilde{x})$ for $\tilde{x} \in \widetilde{\Sigma}$ are all distinct, but φ^{n} belongs to \mathcal{O}_{C}. Let L be the line bundle on C associated to the class of φ in $\mathcal{O}_{\widetilde{\mathrm{C}}}^{*} / \mathcal{O}_{\mathrm{C}}^{*}$.

Let U be the complement of $\check{\pi}_{*}(\overline{\mathrm{~J}} \check{\mathrm{C}})$ in $\overline{\mathrm{J}} \mathrm{C}$; according to 1.1 and Lemma 3.1, our assertion is equivalent to $e(\mathrm{U})=0$. We claim that the line bundle L acts freely on U ; since the order of L in JC is finite and arbitrary large, this will finish the proof. Let $\mathcal{L} \in \mathrm{U}$, and let C^{\prime} be the partial normalization of C such that $\mathcal{E} n d(\mathcal{L})=\mathcal{O}_{\mathrm{C}^{\prime}}$; by definition of $\mathrm{U}, \mathrm{C}^{\prime}$ is not unibranch, hence there are two points
of $\widetilde{\Sigma}$ mapping to the same point of C^{\prime}; this implies that the function φ does not belong to $\mathcal{O}_{\mathrm{C}^{\prime}}^{*}$. From the commutative diagram

we conclude that the pull back of L to JC^{\prime} is non-trivial; by Lemma 2.1 this implies that $\mathcal{L} \otimes \mathrm{L}$ is not isomorphic to \mathcal{L}.

Corollary 3.4.- For a rational nodal curve C , we have $e(\overline{\mathrm{~J}} \mathrm{C})=1$.

Remark 3.5.- Consider a rational curve C whose singularities are all of type $\mathrm{A}_{2 l-1}$, that is locally defined by an equation $u^{2}-v^{2 l}=0$. Locally around such a singularity, the curve C is the union of two smooth branches with a high order contact, so by $3.3 e(\overline{\mathrm{~J} C})$ is equal to 1 . The fact that some highly singular curves count with multiplicity one looks rather surprising. The case $g=2$ provides a (modest) confirmation: the surface S is a double covering of \mathbf{P}^{2} branched along a sextic curve B ; the curves C_{t} are the inverse images of the lines in \mathbf{P}^{2}, and they become rational when the line is bitangent to B . We get an A_{3}-singularity when the line has a contact of order 4 ; thus our assertion in this case follows from the (certainly classical) fact that a line with a fourth order contact counts as a simple bitangent.
(3.6) Prop. 3.3 reduces the computation of the invariant $e(\overline{\mathrm{~J}} \mathrm{C})$ to the case of a unibranch (rational) curve. To understand this invariant we will use a construction of Rego ([R], see also [G-P]). For each $x \in \mathrm{C}$, we put $\delta_{x}=\operatorname{dim} \mathcal{O}_{\widetilde{\mathrm{C}}, x} / \mathcal{O}_{\mathrm{C}, x}$ and we denote by \mathcal{C} the ideal $\mathcal{O}_{\widetilde{\mathrm{C}}}\left(-\sum_{x}\left(2 \delta_{x}\right) x\right.$) ; it is contained in the conductor of C (but the inclusion is strict unless C is Gorenstein).

For $x \in \mathrm{C}$, we denote by A_{x} and $\widetilde{\mathrm{A}}_{x}$ the finite dimensional algebras $\mathcal{O}_{\mathrm{C}, x} / \mathcal{C}_{x}$ and $\mathcal{O}_{\widetilde{\mathrm{C}}, x} / \mathcal{C}_{x}$. Let $\mathbf{G}\left(\delta_{x}, \widetilde{\mathrm{~A}}_{x}\right)$ be the Grassmannian of codimension δ_{x} subspaces of $\widetilde{\mathrm{A}}_{x}$, and \mathbf{G}_{x} the closed subvariety of $\mathbf{G}\left(\delta_{x}, \widetilde{\mathrm{~A}}_{x}\right)$ consisting of sub- A_{x}-modules. We can also view \mathbf{G}_{x} as parameterizing the sub- $\mathcal{O}_{\mathrm{C}, x}$-modules \mathcal{L}_{x} of codimension δ_{x} in $\mathcal{O}_{\widetilde{\mathrm{C}}, x}$, because any such sub-module contains \mathcal{C}_{x} ([G-P], lemma 1.1 (iv)). Since $\mathcal{O}_{\widetilde{\mathrm{C}}} / \mathcal{C}$ is a skyscraper sheaf with fibre $\widetilde{\mathrm{A}}_{x}$ at x, the product $\prod_{x \in \Sigma} \mathbf{G}_{x}$ parameterizes sub- \mathcal{O}_{C}-modules $\mathcal{L} \subset \mathcal{O}_{\widetilde{\mathrm{C}}}$ such that $\operatorname{dim} \mathcal{O}_{\widetilde{\mathrm{C}}, x} / \mathcal{L}_{x}=\delta_{x}$ for all x. This implies
$\chi\left(\mathcal{O}_{\widetilde{\mathrm{C}}} / \mathcal{L}\right)=\sum_{x} \delta_{x}=\chi\left(\mathcal{O}_{\widetilde{\mathrm{C}}} / \mathcal{O}_{\mathrm{C}}\right)$, hence $\mathcal{L} \in \overline{\mathrm{J}} \mathrm{C}$. We have thus defined a morphism $e: \prod_{x \in \Sigma} \mathbf{G}_{x} \rightarrow \overline{\mathrm{~J}} \mathrm{C}$.

Proposition 3.7.- The map e is a homeomorphism.
Note that e is not an isomorphism, already when C is a rational curve with one ordinary cusp s : the Grassmannian \mathbf{G}_{s} is isomorphic to \mathbf{P}^{1}, while $\overline{\mathrm{J} C}$ is isomorphic to C.

Since we are dealing with compact varieties, it suffices to prove that e is bijective.

Injectivity: Let \mathcal{L}, \mathcal{M} be two sub- \mathcal{O}_{C}-modules of $\mathcal{O}_{\widetilde{\mathrm{C}}}$ containing \mathcal{C}. If \mathcal{L} and \mathcal{M} give the same element in $\overline{\mathrm{J}} \mathrm{C}$, there exists a rational function φ on $\widetilde{\mathrm{C}}$ such that $\mathcal{M}=\varphi \mathcal{L} . \quad$ But the equalities $\quad \operatorname{dim} \mathcal{O}_{\widetilde{\mathrm{C}}, x} / \mathcal{M}_{x}=\operatorname{dim} \mathcal{O}_{\widetilde{\mathrm{C}}, x} / \mathcal{L}_{x}=\operatorname{dim} \varphi_{x} \mathcal{O}_{\widetilde{\mathrm{C}}, x} / \mathcal{M}_{x}$ imply $\varphi_{x} \mathcal{O}_{\widetilde{\mathrm{C}}, x}=\mathcal{O}_{\widetilde{\mathrm{C}}, x}$ for all x, which means that φ is constant.
Surjectivity: Let $f: \widetilde{\mathrm{C}} \rightarrow \mathrm{C}$ be the normalization morphism, and $\mathcal{L} \in \overline{\mathrm{J}} \mathrm{C}$. Let us denote by $\widetilde{\mathcal{L}}$ the line bundle on $\widetilde{\mathrm{C}}$ quotient of $f^{*} \mathcal{L}$ by its torsion subsheaf. We claim that its degree is ≤ 0 : we have an exact sequence

$$
0 \rightarrow \mathcal{L} \longrightarrow f_{*} \widetilde{\mathcal{L}} \longrightarrow \mathcal{T} \rightarrow 0
$$

where \mathcal{T} is a skyscrapersheaf supported on the singular locus of C , such that $\operatorname{dim} \mathcal{T}_{x} \leq \delta_{x}$ for all $x \in \mathrm{C}$ ([G-P], lemma 1.1); this implies $\chi(\widetilde{\mathcal{L}})-\chi(\mathcal{L}) \leq$ $\chi\left(\mathcal{O}_{\widetilde{\mathrm{C}}}\right)-\chi\left(\mathcal{O}_{\mathrm{C}}\right)$, from which the required inequality follows. Since $\widetilde{\mathrm{C}}$ is rational, it follows that $\widetilde{\mathcal{L}}^{-1}$ admits a global section whose zero set is contained in Σ.

Because of the canonical isomorphisms

$$
\operatorname{Hom}_{\mathcal{O}_{\mathrm{C}}}\left(\mathcal{L}, \mathcal{O}_{\widetilde{\mathrm{C}}}\right) \cong \operatorname{Hom}_{\mathcal{O}_{\widetilde{\mathrm{C}}}}\left(f^{*} \mathcal{L}, \mathcal{O}_{\widetilde{\mathrm{C}}}\right) \cong \operatorname{Hom}_{\mathcal{O}_{\widetilde{\mathrm{C}}}}\left(\widetilde{\mathcal{L}}, \mathcal{O}_{\widetilde{\mathrm{C}}}\right)
$$

we conclude that there exists a homomorphism $i: \mathcal{L} \rightarrow \mathcal{O}_{\widetilde{\mathrm{C}}}$ which is bijective outside Σ. Put $n_{x}=\operatorname{dim} \mathcal{O}_{\widetilde{\mathrm{C}}, x} / i\left(\mathcal{L}_{x}\right)$ for each $x \in \Sigma$. Since

$$
\sum_{x \in \Sigma} n_{x}=\operatorname{dim} \mathcal{O}_{\widetilde{\mathrm{C}}} / i(\mathcal{L})=\chi\left(\mathcal{O}_{\widetilde{\mathrm{C}}}\right)-\chi(\mathcal{L})=g=\sum_{x \in \Sigma} \delta_{x}
$$

there exists a rational function φ on $\widetilde{\mathrm{C}}$ with divisor $\sum_{x}\left(\delta_{x}-n_{x}\right) x$. Replacing \mathcal{L} by $\varphi \mathcal{L}$, we may assume $n_{x}=\delta_{x}$ for all x, which means that \mathcal{L} belongs to the image of e.

The variety \mathbf{G}_{x} depends only on the local ring \mathcal{O} of C at x (even only on its completion); we will also denote it by $\mathbf{G}_{\mathcal{O}}$. Recall that $\mathbf{G}_{\mathcal{O}}$ parameterizes the sub- \mathcal{O}-modules L of the normalization $\widetilde{\mathcal{O}}$ of \mathcal{O} with $\operatorname{dim} \widetilde{\mathcal{O}} / \mathrm{L}=\operatorname{dim} \widetilde{\mathcal{O}} / \mathcal{O}$. We put $\varepsilon(x)=e\left(\mathbf{G}_{x}\right)$ (or $\varepsilon(\mathcal{O})=e\left(\mathbf{G}_{\mathcal{O}}\right)$). The above Proposition gives:

Proposition 3.8.- Let C be a rational unibranch curve; then $e(\overline{\mathrm{~J}} \mathrm{C})=\prod_{x \in \mathrm{C}} \varepsilon(x)$.
Of course $\varepsilon(x)$ is equal to 1 for a smooth point, so we could as well consider the product over the singular locus Σ of C. Note that in view of Prop. 3.3, we may define $\varepsilon(x)$ for a non-unibranch singularity by taking the product of the ε-invariants of each branch; Prop. 3.8 remains valid.

4. Examples

(4.1) Singularities with \mathbf{C}^{*}-action

Assume that the local, unibranch ring \mathcal{O} admits a \mathbf{C}^{*}-action. This action extends to its completion, so we will assume that \mathcal{O} is complete. The \mathbf{C}^{*}-action also extends to the normalization $\widetilde{\mathcal{O}}$ of \mathcal{O}, and there exists a local coordinate $t \in \widetilde{\mathcal{O}}$ such that the line $\mathbf{C} t$ is preserved (this is because the pro-algebraic group $\operatorname{Aut}(\widetilde{\mathcal{O}})$ is an extension of \mathbf{C}^{*} by a pro-unipotent group, hence all subgroups of $\operatorname{Aut}(\widetilde{\mathcal{O}})$ isomorphic to \mathbf{C}^{*} are conjugate). It follows that the graded subring \mathcal{O} is associated to a semi-group $\Gamma \subset \mathbf{N}$, in other words \mathcal{O} is the ring $\mathbf{C}[[\Gamma]]$ of formal series $\sum_{\gamma \in \Gamma} a_{\gamma} t^{\gamma}$.

The \mathbf{C}^{*}-actions on \mathcal{O} and $\widetilde{\mathcal{O}}$ give rise to a \mathbf{C}^{*}-action on $\mathbf{G}_{\mathcal{O}}$. The fixed points of this action are the submodules of $\widetilde{\mathcal{O}}$ which are graded, that is of the form $\mathbf{C}[[\Delta]]$, where Δ is a subset of \mathbf{N}; the condition $\operatorname{dim} \widetilde{\mathcal{O}} / \mathbf{C}[[\Delta]]=\operatorname{dim} \widetilde{\mathcal{O}} / \mathcal{O}$ means $\operatorname{Card}(\mathbf{N}-\Delta)=\operatorname{Card}(\mathbf{N}-\Gamma)$, and the condition that $\mathbf{C}[[\Delta]]$ is a \mathcal{O}-module means $\Gamma+\Delta \subset \Delta$. The first condition already implies that there are only finitely many such fixed points. According to $[\mathrm{BB}]$, the number of these fixed points is equal to $e\left(\mathbf{G}_{\mathcal{O}}\right)$. We conclude:

Proposition 4.2.- Let $\Gamma \subset \mathbf{N}$ be a semi-group with finite complement. The number $\varepsilon(\mathbf{C}[[\Gamma]])$ is equal to the number of subsets $\Delta \subset \mathbf{N}$ such that $\Gamma+\Delta \subset \Delta$ and $\operatorname{Card}(\mathbf{N}-\Delta)=\operatorname{Card}(\mathbf{N}-\Gamma)$.

I do not know whether there exists a closed formula computing this number, say in terms of a minimal set of generators of Γ. This turns out to be the case in the situation we were originally interested in, namely planar singularities. The semi-group Γ is then generated by two coprime integers p and q, which means that the local ring \mathcal{O} is of the form $\mathbf{C}[[u, v]] /\left(u^{p}-v^{q}\right)$.

Proposition 4.3.- Let p, q be two coprime integers. Then

$$
\varepsilon\left(\mathbf{C}[[u, v]] /\left(u^{p}-v^{q}\right)\right)=\frac{1}{p+q}\binom{p+q}{p}
$$

Proof: The following proof has been shown to me by P. Colmez.
(4.3.1) We first observe that if a subset Δ satisfies $\Gamma+\Delta \subset \Delta$, all its translates $n+\Delta \quad(n \in \mathbf{Z})$ contained in \mathbf{N} have the same property; moreover, among all these translates, there is exactly one with $\operatorname{Card}(\mathbf{N}-\Delta)=\operatorname{Card}(\mathbf{N}-\Gamma)$. Thus the number we want to compute is the cardinal of the set \mathcal{D} of subsets $\Delta \subset \mathbf{N}$ such that $\Gamma+\Delta \subset \Delta$, modulo the identification of a subset and its translates.
(4.3.2) For such a subset Δ, let us introduce the generating function $\mathrm{F}_{\Delta}(\mathrm{T})=\sum_{\delta \in \Delta} \mathrm{T}^{\delta} \in \mathbf{Z}[[\mathrm{T}]]$. Since $p+\Delta \subset \Delta$, we can write, in a unique way, $\Delta=\bigcup_{i=1}^{p}(a(i)+p \mathbf{N}) ;$ then $\left(1-\mathrm{T}^{p}\right) \mathrm{F}_{\Delta}(\mathrm{T})=\sum_{i=1}^{p} \mathrm{~T}^{a(i)}$. Writing similarly $\Delta=$ $\bigcup_{j=1}^{q}(b(j)+q \mathbf{N})$, we get $\left(1-\mathrm{T}^{q}\right) \mathrm{F}_{\Delta}(\mathrm{T})=\sum_{j=1}^{q} \mathrm{~T}^{b(j)}$. Put $a(j)=b(j-p)+p$ for $p+1 \leq j \leq p+q$; the equality $\left(1-\mathrm{T}^{p}\right) \sum_{j=p+1}^{p+q} \mathrm{~T}^{a(j)-p}=\left(1-\mathrm{T}^{q}\right) \sum_{i=1}^{p} \mathrm{~T}^{a(i)}$ reads

$$
\begin{equation*}
\sum_{i=1}^{p+q} \mathrm{~T}^{a(i)}=\sum_{i=1}^{p} \mathrm{~T}^{a(i)+q}+\sum_{j=p+1}^{p+q} \mathrm{~T}^{a(j)-p} \tag{4.3a}
\end{equation*}
$$

Conversely, given a function $a:[1, p+q] \rightarrow \mathbf{N}$ satisfying (4.3 a), the set $\Delta=\bigcup_{i=1}^{p}(a(i)+p \mathbf{N})$ is equal to $\bigcup_{j=p+1}^{p+q}(a(j)-p+q \mathbf{N})$, and therefore satisfies $\Gamma+\Delta \subset \Delta$ (note that (4.3 a) implies that the classes (mod. p) of the $a(i)$'s, for $1 \leq i \leq p$, are all distinct).

The equality (4.3 a) means that there exists a permutation $\sigma \in \mathfrak{S}_{p+q}$ such that $a(\sigma i)$ is equal to $a(i)+q$ if $i \leq p$ and to $a(i)-p$ if $i>p$. This implies that $a\left(\sigma^{m}(i)\right)$ is of the form $a(i)+\alpha q-\beta p$, with $\alpha, \beta \in \mathbf{N}$ and $\alpha+\beta=m$; since p and q are coprime, it follows that σ is of order $p+q$, that is a circular permutation. It also follows that the numbers $a(i)$ are all distinct; hence the permutation σ is uniquely determined. Let τ be a permutation such that $\tau \sigma \tau^{-1}$ is the permutation $i \mapsto i+1(\bmod . p+q)$, and let $\mathrm{S}_{\Delta}=\tau([1, p])$. Replacing a by $a \circ \tau^{-1}$, our function a satisfies

$$
a(i+1)= \begin{cases}a(i)+q & \text { if } i \in \mathrm{~S}_{\Delta} \tag{4.3b}\\ a(i)-p & \text { if } i \notin \mathrm{~S}_{\Delta}\end{cases}
$$

Since τ is determined up to right multiplication by a power of σ, the set $\mathrm{S}_{\Delta} \subset[1, p+q]$ is well determined up to a translation (mod. $\left.p+q\right)$. Note that replacing Δ by $n+\Delta$ amounts to add the constant value n to the function a, hence does not change S_{Δ}.
(4.3.3) Conversely, let us start from a subset $\mathrm{S} \subset[1, p+q]$ with p elements. We define inductively a function a_{S} on $[1, p+q]$ by the relations (4.3 b), giving to $a_{\mathrm{S}}(1)$ an arbitrary value, large enough so that a_{S} takes its values in
\mathbf{N}. By construction the function a_{S} satisfies (4.3 b), so by (4.3.2) the subset $\Delta_{\mathrm{S}}=\bigcup_{s \in \mathrm{~S}}\left(a_{\mathrm{S}}(s)+p \mathbf{N}\right)$ satisfies $\Gamma+\Delta_{\mathrm{S}} \subset \Delta_{\mathrm{S}}$.

An easy computation gives $a_{\mathrm{S}+1}(i+1)=a_{\mathrm{S}}(i)$ and therefore $\Delta_{\mathrm{S}+1}=\Delta_{\mathrm{S}}$. Let \mathcal{S} be the set of subsets of $[1, p+q]$ with p elements, modulo translation; the maps $\Delta \mapsto \mathrm{S}_{\Delta}$ from \mathcal{D} to \mathcal{S} and $\mathrm{S} \mapsto \Delta_{\mathrm{S}}$ from \mathcal{S} to \mathcal{D} are inverse of each other. Since $\operatorname{Card}(\mathcal{S})=\frac{1}{p+q}\binom{p+q}{p}$, the Proposition follows.
(4.4) Simple singularities

We now consider the case where the singularities of C are simple, that is of $\mathrm{A}, \mathrm{D}, \mathrm{E}$ type. The local ring of such a singularity has only finitely many isomorphism classes of torsion free rank 1 modules, and this property characterizes these singularities among all plane curves singularities [G-K].

Proposition 4.5.- Let \mathcal{O} be the local ring of a simple singularity. Then $\varepsilon(\mathcal{O})$ is the number of isomorphism classes of torsion free rank $1 \mathcal{O}$-modules. It is given by:

$$
\begin{aligned}
& -\varepsilon(\mathcal{O})=l+1 \text { if } \mathcal{O} \text { is of type } \mathrm{A}_{2 l} ; \\
& -\varepsilon(\mathcal{O})=1 \text { if } \mathcal{O} \text { is of type } \mathrm{A}_{2 l+1} ; \\
& -\varepsilon(\mathcal{O})=1 \text { if } \mathcal{O} \text { is of type } \mathrm{D}_{2 l}(l \geq 2) ; \\
& -\varepsilon(\mathcal{O})=l \text { if } \mathcal{O} \text { is of type } \mathrm{D}_{2 l+1}(l \geq 2) ; \\
& -\varepsilon(\mathcal{O})=5 \text { if } \mathcal{O} \text { is of type } \mathrm{E}_{6} ; \\
& -\varepsilon(\mathcal{O})=2 \text { if } \mathcal{O} \text { is of type } \mathrm{E}_{7} ; \\
& -\varepsilon(\mathcal{O})=7 \text { if } \mathcal{O} \text { is of type } \mathrm{E}_{8} .
\end{aligned}
$$

Proof: Let C be a rational curve having only one simple singularity with local ring \mathcal{O}; the action of JC on $\overline{\mathrm{J}} \mathrm{C}$ has finitely many orbits, corresponding to the different isomorphism classes of rank $1 \mathcal{O}$-modules. Since each orbit is an affine space, its Euler characteristic is 1 , hence by (1.1) $\varepsilon(\mathcal{O})=e(\overline{\mathrm{~J} C})$ is equal to the number of these orbits.

If \mathcal{O} is unibranch, its completion is of the form $\mathbf{C}[[u, v]] /\left(u^{p}-v^{q}\right)$, with $p=2, q=2 l+1$ for the type $\mathrm{A}_{2 l}, p=3, q=4$ for the type E_{6} and $p=3$, $q=5$ for the type E_{8}; in these cases the result follows from 4.3. We have already observed that $\varepsilon=1$ for a $\mathrm{A}_{2 l+1}$ singularity (Remark 3.5). $\mathrm{A} \mathrm{D}_{l}$ singularity is the union of a A_{l-3} branch and a transversal smooth branch, hence the result by 3.3. Finally an E_{7} singularity is the union of an ordinary cusp and its tangent, hence has $\varepsilon=2$.

Remark 4.6.- Let \mathcal{D} be the set of graded sub- \mathcal{O}-modules $\mathrm{L} \subset \widetilde{\mathcal{O}}$ with $\operatorname{dim} \widetilde{\mathcal{O}} / \mathrm{L}=$ $\operatorname{dim} \widetilde{\mathcal{O}} / \mathcal{O}$. Two modules L, M in \mathcal{D} are isomorphic if and only if $\mathrm{M}=t^{n} \mathrm{~L}$ for some $n \in \mathbf{Z}$, but the dimension condition forces $n=1$. It follows that each torsion free rank $1 \mathcal{O}$-module is isomorphic to exactly one element of \mathcal{D}. It is quite easy
that way to write down the list of isomorphism classes of rank $1 \mathcal{O}$-modules (which is of course well-known, see e.g. [G-K]). For instance if \mathcal{O} is of type E_{8}, we get the following modules (with the notation of 4.1):

$$
\mathcal{O}, \mathcal{O} t+\mathcal{O} t^{8}, \mathcal{O} t^{2}+\mathcal{O} t^{6}, \mathcal{O} t^{2}+\mathcal{O} t^{4}, \mathcal{O} t^{3}+\mathcal{O} t^{4}, \mathcal{O} t^{3}+\mathcal{O} t^{5}+\mathcal{O} t^{7}, \widetilde{\mathcal{O}} t^{4}
$$

REFERENCES

[B] V. Batyrev: On the Betti numbers of birationally isomorphic projective varieties with trivial canonical bundles. Preprint alg-geom/9710020, to appear in Proc. European Algebraic Geometry Conference (Warwick, 1996).
[BB] A. Bialynicki-birula: On fixed point schemes of actions of multiplicative and additive groups. Topology 12, 99-103 (1973).
[F-G-S] B. Fantechi, L. Göttsche, D. van Straten: Euler number of the compactified Jacobian and multiplicity of rational curves. Preprint alggeom/9708012, to appear in J. Algebraic Geometry.
[G] L. Göтtsche: The Betti numbers of the Hilbert scheme of points on a smooth projective surface. Math. Ann. 86, 193-207 (1990).
[G-K] G.-M. Greuel, H. Knörrer: Einfache Kurvensingularitäten und torsionfreie Moduln. Math. Ann. 270, 417-425 (1985).
[G-P] G.-M. Greuel, G. Pfister: Moduli spaces for torsion free modules on curve singularities, I. J. Algebraic Geometry 2, 81-135 (1993).
[H] D. Huybrechts: Compact hyperkähler manifolds: basic results. Preprint alg-geom/9705025.
[M] S. MukaI: Symplectic structure of the moduli space of sheaves on an abelian or K3 surface. Invent. math. 77, 101-116 (1984).
[R] C. J. Rego: The compactified Jacobian. Ann. scient. Éc. Norm. Sup. 13, 211-223 (1980).
[V] J.-L. Verdier: Stratifications de Whitney et théorème de Bertini-Sard. Invent. math. 36, 295-312 (1976).
[Y-Z] S.-T. Yau, E. ZasLow: BPS states, string duality, and nodal curves on K3. Nuclear Phys. B 471, 503-512 (1996).

Arnaud Beauville
DMI - École Normale Supérieure
(URA 762 du CNRS)
45 rue d'Ulm
F-75230 Paris Cedex 05

[^0]: $\overline{1}$ Partially supported by the European HCM project "Algebraic Geometry in Europe" (AGE).

