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Abstract

We consider the Uqsl(2)-invariant open spin-1/2 XXZ quantum spin chain of finite
length N . For the case that q is a root of unity, we propose a formula for the number of
admissible solutions of the Bethe ansatz equations in terms of dimensions of irreducible
representations of the Temperley-Lieb algebra; and a formula for the degeneracies of the
transfer matrix eigenvalues in terms of dimensions of tilting Uqsl(2)-modules. These
formulas include corrections that appear if two or more tilting modules are spectrum-
degenerate. For the XX case (q = eiπ/2), we give explicit formulas for the number of
admissible solutions and degeneracies. We also consider the cases of generic q and the
isotropic (q → 1) limit. Numerical solutions of the Bethe equations up to N = 8 are
presented. Our results are consistent with the Bethe ansatz solution being complete.
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1 Introduction

The Hamiltonian of the Uqsl(2)-invariant open spin-1/2 XXZ quantum spin chain with length
N is given by [1]

H =

N−1∑

k=1

[
σx
kσ

x
k+1 + σy

kσ
y
k+1 +

1

2
(q + q−1)σz

kσ
z
k+1

]
− 1

2
(q − q−1)

(
σz
1 − σz

N

)
, (1.1)

where ~σ are the usual Pauli spin matrices, and q = eη is an arbitrary complex parameter.
This model has been the subject of many investigations (see, for example [2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13]).

This model is solvable by Bethe ansatz [1, 14, 15]: the energy eigenvalues are given by

E = 2 sinh2 η

M∑

k=1

1

sinh(λk − η
2
) sinh(λk +

η
2
)
+ (N − 1) cosh η , (1.2)

where {λk} are solutions of the Bethe equations

sinh2N
(
λk +

η

2

) M∏

j 6=k
j=1

sinh(λk − λj − η) sinh(λk + λj − η)

= sinh2N
(
λk −

η

2

) M∏

j 6=k
j=1

sinh(λk − λj + η) sinh(λk + λj + η) ,

k = 1 , 2 , . . . ,M , M = 0 , 1 , . . . ,
⌊N
2

⌋
, (1.3)

where ⌊k⌋ denotes the largest integer not greater than k. This exact solution owes its
existence to the fact that the model is quantum integrable: there are many (∼ N) charges
that commute with the Hamiltonian (1.1) and with each other, whose generating function
is the so-called transfer matrix (A.1).

The main motivation for the present work is to address the problem of completeness,
by which we mean here whether the Bethe equations have too many, too few, or just the
right number of solutions to describe all the distinct eigenvalues of the transfer matrix. This
question is particularly interesting when q is a root of unity, in which case the Hamiltonian
is neither Hermitian nor normal, and in fact has Jordan cells [16, 17, 18]; and therefore the
number of (ordinary) eigenvectors is less than 2N – the total number of states.

For the case that q is a root of unity, we propose a formula for the number of admissible
solutions of the Bethe equations in terms of dimensions [12, 13] of irreducible representations
of the Temperley-Lieb algebra [19], see Eq. (4.10). We also propose a formula for the
degeneracies of the transfer matrix eigenvalues in terms of dimensions of tilting Uqsl(2)-
modules, see Eq. (4.12) These formulas include corrections that appear if two or more tilting
modules are degenerate in eigenvalues of the transfer matrix. For the XX case (q = eiπ/2),
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we give explicit formulas for the number of admissible solutions and degeneracies, see Eqs.
(4.15) and (4.16), respectively. These conjectures, which we have checked up to at least
N = 8, are indeed consistent with the Bethe ansatz solution for this model being complete,
or Eq. (4.14) is satisfied.

An important aspect of these conjectures is the definition of an admissible solution. As
is the case for the periodic chain (see e.g. [20] and references therein), the Bethe equations
(1.3) admit singular solutions (i.e., solutions that contain ±η/2). However, such solutions
do not correspond to eigenvalues and eigenvectors of the model (1.1), and therefore, are not
admissible. In the language of [20], all singular solutions of the model (1.1) are “unphysical”;
i.e., there are no “physical” singular solutions.

Moreover, when q is a root of unity, as is the case for the periodic XXZ chain [21, 22,
23, 24], the Bethe equations (1.3) admit continuous solutions (“algebraic variety of positive
dimension”), in addition to the usual discrete solutions (“algebraic variety of dimension 0”).
However, we restrict our attention to the latter, which are sufficient to obtain all the distinct
eigenvalues of the transfer matrix. The former are important only for the construction of
the eigenvectors and generalized eigenvectors, which we do not discuss here.

The outline of this paper is as follows. In section 2, we consider the isotropic (XXX)
limit q → 1. In section 3, we consider the case of generic values of q. Our main conjectures
are in section 4, where we consider the root of unity case. We briefly discuss our results
in section 5. Background material, special cases and numerical results are provided in the
appendices. Specifically, the construction of the transfer matrix, its important properties,
and the algebraic Bethe ansatz are reviewed in appendix A. The Temperley-Lieb algebra
and its relation to the model (1.1) are briefly reviewed in appendix B. The case p = 2, which
can be treated analytically, is analyzed in appendix C. Examples of cases where two or more
tilting modules are degenerate are individually analyzed in appendix D. Finally, numerical
solutions of the Bethe equations up to N = 8 are displayed in tables in appendix E.

2 XXX

In the limit η → 0, the Hamiltonian (1.1) becomes su(2)-invariant

H =
N−1∑

k=1

~σk · ~σk+1 , (2.1)

the expression (1.2) for the eigenvalues becomes1

E = −2
M∑

k=1

1

λ2
k +

1
4

+N − 1 , (2.2)

1We rescale the Bethe roots λj 7→ −iηλj before taking η → 0.
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and the hyperbolic Bethe equations (1.3) become rational

(
λk +

i

2

)2N M∏

j 6=k
j=1

(λk − λj − i)(λk + λj − i) =

(
λk −

i

2

)2N M∏

j 6=k
j=1

(λk − λj + i)(λk + λj + i) ,

k = 1 , 2 , . . . ,M , M = 0 , 1 , . . . ,
⌊N
2

⌋
. (2.3)

The Bethe equations have the reflection symmetry λk 7→ −λk, while keeping the other
λ’s (i.e. λj with j 6= k) unchanged. Moreover, any solution with λk = 0 must be discarded,
since the corresponding Bethe vector is not an eigenvector of the Hamiltonian (see e.g. [25]
and Appendix A). Hence, we define a solution {λ1 , . . . , λM} of the Bethe equations (2.3) to
be admissible if all the λk’s are finite and pairwise distinct (no two are equal), and if each
λk satisfies either

ℜe(λk) > 0 (2.4)

or

ℜe(λk) = 0 and ℑm(λk) > 0 . (2.5)

Note that, according to this definition, singular solutions {i/2 ,−i/2 , . . .} are not admissible.
As usual, due to the permutation symmetry of the system of Bethe equations, the order of
the λ’s in any solution {λ1 , . . . , λM} is irrelevant.

According to the Clebsch-Gordan theorem for su(2), the Hilbert space of the XXX chain,
the N -fold tensor product of spin-1/2 representations V 1

2
, has the decomposition

(
V 1

2

)⊗N
=

N/2⊕

j=0(1/2)

djVj , (2.6)

where the sum starts from j = 0 for even N and j = 1/2 for odd N . Moreover, Vj denotes
a spin-j irreducible representation of su(2), and the multiplicity dj is given by

dj =

(
N

N
2
− j

)
−
(

N
N
2
− j − 1

)
, dj = 0 for j >

N

2
. (2.7)

Each admissible solution {λ1 , . . . , λM} corresponds to a direct summand Vj in the de-
composition (2.6), with spin j = N

2
−M . Indeed, as in the case for the periodic XXX chain

[26], the Bethe states are su(2) highest-weight states and they can be constructed within
the algebraic Bethe ansatz, see (A.15) and (A.25). Moreover, we expect that there is a
one-to-one correspondence between distinct admissible solutions {λ1 , . . . , λM} and distinct
highest-weight vectors of spin j = N

2
−M . Hence, for given values of N andM , we conjecture

that the number N (N,M) of admissible solutions of the Bethe equations is given by

N (N,M) = dN

2
−M =

(
N

M

)
−

(
N

M − 1

)
. (2.8)
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N
M

0 1 2 3

2 1 1
3 1 2
4 1 3 2
5 1 4 5
6 1 5 9 5
7 1 6 14 14

Table 1: The number N (N,M) of admissible solutions of the XXX Bethe equations (2.3) for given
values of N and M .

For the periodic XXX chain, it is generally believed that the number of solutions of the
corresponding Bethe equations is also given by (2.8), see e.g. [26, 27]. However, the situation
there is actually more subtle due to the existence of physical singular solutions [28].

Since dimVj = 2j + 1, it is also natural to conjecture that the number or degeneracy
D(N,M) of eigenvalues of the transfer matrix, see its definition in (A.1) and (A.5) at q = 1,
corresponding to each admissible solution is given by

D(N,M) = dimVN

2
−M = N − 2M + 1 . (2.9)

The expressions (2.8) and (2.9) satisfy the well-known identity

⌊N

2
⌋∑

M=0

N (N,M)D(N,M) = 2N , (2.10)

signifying the completeness of the solution.

Using homotopy continuation [29] (see also [28] and references therein for further details),
we have solved (2.3) numerically up to N = 7. The admissible solutions up to N = 6 are
presented in Table 5. The numbers N (N,M) of admissible solutions that we have found
are reported in Table 1. (For M = 0, there are no Bethe roots but there is nevertheless an
eigenvector (A.16), so we define N (N, 0) = 1.) These numbers coincide with the conjectured
values (2.8). As an independent check, starting from the transfer matrix (A.1), (A.5) at q = 1
we have explicitly determined each of the transfer matrix eigenvalues Λ(u) as polynomials in
u 2; then, by solving the T-Q equation (A.18) for Q(u) and finally finding the zeros of Q(u),
we have obtained the corresponding Bethe roots. The results match with those obtained
by directly solving the Bethe equations. The number of eigenvalues corresponding to each
admissible solution also coincide with (2.9).

2Direct diagonalization of the (symbolic) transfer matrix t(u) does not yield the eigenvalues as polynomials
in u. We instead proceed by first finding the (numerical) eigenvectors |v〉 of the (numerical) matrix t(u0) for
some generic numerical value u0. Then, by acting with t(u) (whose matrix elements are polynomials in u)
on each |v〉, we read off the corresponding eigenvalue Λ(u) as a polynomial in u. Note that, by virtue of the
commutativity property (A.6), the eigenvalues do not depend on the choice of u0.
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3 XXZ: generic q

We now consider the Bethe equations (1.3) for generic values of q, i.e., when q is not a root of
unity. These equations have the reflection symmetry λk 7→ −λk (while keeping the other λ’s
unchanged), and the periodicity λk 7→ λk + iπ. We again exclude λk = 0, as well as λk =

iπ
2
.

(See Appendix A.) Hence, we define a solution {λ1 , . . . , λM} of the Bethe equations (1.3)
to be admissible if all the λk’s are finite and pairwise distinct (no two are equal), and if each
λk satisfies either

ℜe(λk) > 0 and − π

2
< ℑm(λk) ≤

π

2
(3.1)

or

ℜe(λk) = 0 and 0 < ℑm(λk) <
π

2
. (3.2)

The Hamiltonian (1.1) is invariant under the quantum group Uqsl(2), which is the sym-
metry of the model. This symmetry is generated by the S± and Sz operators that now
satisfy the quantum-group relations

[Sz, S±] = ±S±, [S+, S−] = [2Sz]q, [x]q ≡
qx − q−x

q − q−1
, (3.3)

which are just q-deformed versions of the usual relations of su(2), or rather Usl(2). The
Bethe vectors (A.15) are Uqsl(2) highest-weight states (A.25), (A.26). For generic values
of q, the irreducible representations of Uqsl(2) are isomorphic to those of Usl(2). (See
e.g. [30] and references therein.) The Hilbert space has the same decomposition as in the
XXX case (2.6), except that Vj is now a spin-j irreducible representation of Uqsl(2) with
dimension 2j + 1. We similarly expect that there is a one-to-one correspondence between
distinct admissible solutions {λ1 , . . . , λM} and distinct direct summands isomorphic to Vj

with j = N
2
−M . Hence, we conjecture that the number N (N,M) of admissible solutions of

the Bethe equations (1.3) for generic values of q is again given by (2.8); and that the number
D(N,M) of eigenvalues of the transfer matrix corresponding to each admissible solution is
again given by (2.9).

In order to check these conjectures, it is convenient to rewrite the Bethe equations (1.3)
in polynomial form

(qxk − 1)2N
M∏

j 6=k
j=1

(xk − q2xj)(xk xj − q2) = (xk − q)2N
M∏

j 6=k
j=1

(q2xk − xj)(q
2xk xj − 1) ,

k = 1 , 2 , . . . ,M , M = 0 , 1 , . . . ,
⌊N
2

⌋
, (3.4)

where
xk = e2λk . (3.5)
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For admissible solutions, each xk satisfies either

|xk| > 1 (3.6)

or

|xk| = 1 and 0 < arg(xk) < π . (3.7)

We have solved this system numerically with η = 0.1 up to N = 7. The admissible solutions
up to N = 6 are presented in Table 6. The numbers N (N,M) of admissible solutions that
we have found are reported in Table 2. These results are the same as for the XXX case,
and therefore coincide with the conjectured values (2.8). We have also confirmed that the
degeneracy of the eigenvalues is again given by (2.9). We have obtained similar results for
η = i/2, in which case |q| = 1 (and therefore the Hamiltonian is critical; although the
Hamiltonian is not Hermitian or even normal, it is nevertheless diagonalizable) but q is not
a root of unity.

N
M

0 1 2 3

2 1 1
3 1 2
4 1 3 2
5 1 4 5
6 1 5 9 5
7 1 6 14 14

Table 2: The number N (N,M) of admissible solutions of the Bethe equations (1.3), (3.4) for given
values of N and M and η = 0.1 (a generic value).

In view of the algebraic Bethe ansatz construction for the eigenstates (A.15), our conjec-
tures say that distinct Bethe states correspond to distinct admissible solutions of the Bethe
equations. Moreover, we also assume that, to each eigenvalue of the transfer matrix, there
corresponds a unique admissible solution. Indeed, in the case of generic q, for a given eigen-
value Λ(u), we expect that the T-Q equation (A.19) has a unique (up to rescaling) solution
Q(u), which implies a corresponding unique admissible solution {λk}. (We have checked this
numerically for small values of N . Indeed, as in the XXX case, the Bethe roots obtained in
this way match with those obtained by directly solving the Bethe equations.) If this is true,
that would imply that the spectrum of the transfer matrix on the Uqsl(2) highest-weight
states is non-degenerate. (For the periodic XXX chain, it has been shown that the spectrum
of the transfer matrix on sl(2) highest-weight states is non-degenerate [31].)

4 XXZ: q = eiπ/p

We now consider the Bethe equations (1.3) when q is a primitive 2pth root of unity: q = eiπ/p,
where p = 2, 3, 4, . . . Inspection of (3.4) shows that, for such cases, the top degree terms can
cancel, suggesting that the system is qualitatively different from the generic q case.
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A particularly interesting new feature is that the Bethe equations now admit continuous
solutions, in addition to the usual discrete solutions. For example, the following set of p
elements

{λ0 +
iπ

2p
(p− 1) , λ0 +

iπ

2p
(p− 3) , . . . , λ0 −

iπ

2p
(p− 3) , λ0 −

iπ

2p
(p− 1)} (4.1)

is an exact solution of the Bethe equations (1.3) with η = iπ/p and M = p, for arbitrary
values of λ0. Such solutions have been discussed in the context of periodic chains [21, 22,
23, 24], and are called “exact complete p-strings.” In the parlance of algebraic geometry,
such solutions have positive dimension. In contrast, the usual discrete solutions instead
have dimension 0. The solutions (4.1) are related to certain degeneracies of the model: the
corresponding energy (as well as eigenvalue Λ(u) obtained from the T-Q equation (A.19))
is the same as for the reference (pseudovacuum) state. Bethe states corresponding to such
solutions are prima facie null; a regularization scheme and a suitable limiting procedure are
needed to obtain non-null states (see [24] and references therein for the periodic case).

4.1 Admissible solutions

We restrict our attention here to the usual discrete solutions, which are sufficient to obtain
all the distinct eigenvalues of the transfer matrix.3 Indeed, the union s1 ∪ s2 of a discrete
solution s1 and an exact complete p-string solution s2 is again a solution; hence, adding a
p-string does not change the eigenvalue corresponding to the initial discrete solution.

We therefore define an admissible solution of the Bethe equations as before in (3.1) and
(3.2), except with the additional requirement that the solution should not contain the exact
complete p-string (4.1).

4.2 Generalized eigenvalues and tilting modules

As already noted in the Introduction, non-trivial Jordan-block structure for H appears at
roots of unity. Therefore, we now consider generalized eigenvalues of the transfer matrix
(and of the Hamiltonian); i.e., eigenvalues Λ(u) corresponding to generalized eigenvectors
|v〉 that are defined as (also called root vectors)

(
t(u)− Λ(u)1

)2|v〉 = 0 , (4.2)

or equivalently

t(u) |v〉 = Λ(u) |v〉+ |v′〉 and t(u) |v′〉 = Λ(u) |v′〉 . (4.3)

3The transfer matrix and the Hamiltonian generally have the same number of distinct eigenvalues. How-
ever, there are exceptions, such as the case p = 4 and N = 8, where the number of distinct eigenvalues
is 43 and 41 for the transfer matrix and Hamiltonian, respectively. In other words, for this case there are
43 admissible solutions: 39 solutions give (through Eq.(1.2)) 39 distinct energies, while 2 pairs of solutions
give equal values of the energy, for a total of only 41 distinct energies. Another exception is the case p = 2
and N = 9, where the number of distinct eigenvalues is 81 and 57 for the transfer matrix and Hamiltonian,
respectively. We expect that such “mismatches” occur for other values of p and N , but we have not made
an effort to study them systematically.

7



The power in (4.2) is 2 because there are Jordan cells of maximum rank 2, and here |v〉 and
|v′〉 belong to a Jordan cell of rank 2.4 So, we have the number of eigenvectors less than 2N

but the number of generalized eigenvectors is exactly 2N .

For q = eiπ/p, the N -fold tensor product of spin-1/2 representations decomposes into a
direct sum of certain indecomposable modules Tj of Uqsl(2) characterized by spin j. More
precisely, these direct summands Tj are so-called tilting Uqsl(2)-modules which are (i) com-
posed of the standard spin modules and (ii) satisfy a self-duality condition or invariance
under the adjoint ·† operation (see [32] for a short review in the context of open spin chains.)
These two properties usually lead to a complicated structure of indecomposable but reducible
modules, i.e., those having invariant subspaces but cannot be split onto a direct sum. The
structure of the tilting Uqsl(2)-modules was studied in many works [1, 33, 30, 34, 12] and
in brief it is the following: if 2j + 1 is bigger than p and not 0 modulo p then each Tj is
composed of the spin-j (or Vj in our notations) and the spin-(j − s(j)) modules, where5

s(j) = (2j+1) mod p, such that the former is a submodule; otherwise, Tj is irreducible. So,
in particular we have the dimensions

dimTj =

{
2j + 1, 2j + 1 ≤ p or s(j) = 0,

2(2j + 1− s(j)), otherwise.
(4.4)

Equipped with this information about Tj ’s we can write a decomposition of the XXZ
spin-1

2
chain as

(
V 1

2

)⊗N
=

N/2⊕

j=0(1/2)

d0jTj, (4.5)

where the sum starts from j = 0 for even N and j = 1/2 for odd N . The important
point is that the multiplicities d0j of these Tj modules can be explicitly computed using
representation theory [12] and are given by the dimensions d0j of irreducible representations
of the Temperley-Lieb (TL) algebra with the fugacity or loop parameter δ = 2 cos π

p
, see

Appendix B for definitions:

d0j =
∑

n≥0

dj+np −
∑

n≥t(j)+1

dj+np−1−2(jmod p) , (j mod p) 6= p− 1

2
,
p− 1

2
, (4.6)

where dj is given by (2.7), and

t(j) =

{
1 for (j mod p) > p−1

2
,

0 for (j mod p) < p−1
2

.
(4.7)

If (j mod p) = p− 1
2
, p−1

2
, then d0j = dj. Note that one can check

N/2∑

j=0(1/2)

d0j dimTj = 2N . (4.8)

4The function Eigenvalues[] in Mathematica computes generalized eigenvalues.
5(j mod p) is the remainder on division of j by p.
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Since the transfer matrix commutes with the generators of Uqsl(2), see (A.10), all the
(generalized) eigenvectors (4.2) in a given (direct summand isomorphic to the) tilting module
Tj have the same (generalized) eigenvalue of the transfer matrix. It is the indecomposable
but reducible tilting modules that are responsible for the Jordan cells structure in the Hamil-
tonian and the presence of the generalized eigenvectors |v〉: they live in heads of the tilting
modules while their partners |v′〉, see (4.3), live in the socle – the irreducible submodule
of Tj .

4.3 Main conjectures

Assuming that there is at most one admissible solution of the Bethe equations for the gener-
alized eigenvalue in each direct summand isomorphic to the Uqsl(2)-module Tj , the number
N (N,M) of admissible solutions of the Bethe equations (1.3) with η = iπ/p satisfies the
inequality

N (N,M) ≤ d0N
2
−M

, (4.9)

where d0j is given by (4.6)-(4.7), and we have used the relation j = N
2
−M stated in (A.29).

We argue in Appendix D that N (N,M) < d0N
2
−M

when two or more tilting modules become

degenerate in the sense that the generalized eigenvalues of the transfer matrix corresponding
to direct summands Tj and Tk in (4.5), for distinct j and k, are equal. This suggests that
the conjecture can be sharpened to the following:

N (N,M) = d0N
2
−M

− nN

2
−M , (4.10)

where nj is the number of direct summands Tj that are degenerate with other tilting modules
Tk with k > j in the decomposition (4.5). We note that exact complete p-string solutions
(4.1) are needed to construct the Bethe states corresponding to such degenerate tilting
modules.

We can similarly conjecture that the number or degeneracy D(N,M) of the generalized
eigenvalues of the transfer matrix corresponding to each admissible solution satisfies the
inequality6

D(N,M) ≥ dimTN

2
−M , (4.11)

where dim Tj is given by (4.4). We can also sharpen this conjecture by introducing njk,
which we define as the number of tilting modules Tk (with k < j) in the decomposition (4.5)
that are degenerate with Tj.

7 (We define njk = 0 for k ≥ j.) Then, we conjecture that

6We note that the numbers N (N,M) and D(N,M) depend also on p, as the dimensions of irreducible
TL representations and of tilting modules do, but we do not use this dependence in notations for brevity.

7If d0j > 1 (i.e., there is more than one copy of Tj) and njk is nonzero for some k < j, then it is implicit
that each copy of Tj is degenerate with njk copies of Tk. This assumption appears to be satisfied in all the
examples that we have considered.
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the degeneracy of an eigenvalue of the transfer matrix (corresponding to a given admissible
solution {λ1, . . . , λM}) equals8

D(N,M) = dimTj +
∑

k<j

njk dimTk , with j =
N

2
−M . (4.12)

It is not obvious that the degeneracy D(N,M) is the same for all admissible solutions with
a given value of M (as it is in the generic case), but it is so for the cases that we have
considered. We therefore further conjecture that the numbers D(N,M) (and also njk) do
not actually depend on a particular solution {λ1, . . . , λM}.

N
M

0 1 2 3 4

2 1 0
3 1 2
4 1 2 0
5 1 4 4 [5]
6 1 4 4 [5] 0
7 1 6 12 [14] 8 [14]
8 1 6 12 [14] 8 [14] 0
9 1 8 24 [27] 32 [48] 16 [42]

(a) q = eiπ/2

N
M

0 1 2 3 4

2 1 1
3 1 1
4 1 3 1
5 1 4 1
6 1 4 9 1
7 1 6 13 1
8 1 7 13 27 [28] 1

(b) q = eiπ/3

N
M

0 1 2 3 4

2 1 1
3 1 2
4 1 2 2
5 1 4 4
6 1 5 4 4
7 1 6 14 8
8 1 6 20 8 8

(c) q = eiπ/4

N
M

0 1 2 3 4

2 1 1
3 1 2
4 1 3 2
5 1 3 5
6 1 5 8 5
7 1 6 8 13
8 1 7 20 21 13

(d) q = eiπ/5

Table 3: The number N (N,M) of admissible solutions of the Bethe equations (1.3), (3.4) for given
values of N , M and q. Numbers within brackets are the values of d0N

2
−M

(4.6), when different

from N (N,M).

The two sets of integers {nj} and {njk} should be related by

nj =
∑

m≥0

(−1)m
N/2∑

j0,j1,...,jm=0(1/2)

d0jm njmjm−1
njm−1jm−2

· · ·nj0j ,

=

N/2∑

j0=0(1/2)

d0j0 nj0j −
N/2∑

j0,j1=0(1/2)

d0j1 nj1j0 nj0j + . . . (4.13)

8The sum in (4.12) is over all k < j in the decomposition (4.5); hence, it starts from k = 0 for even N
and k = 1/2 for odd N . Strictly speaking, the restriction k < j is not necessary since njk = 0 for k ≥ j, but
in this way we emphasize the relevant contributions.

10



The idea is that, if no more than two (non-isomorphic) tilting modules are degenerate, then
only the m = 0 term in (4.13) is nonzero; however, if 3 tilting modules are degenerate (e.g.
the case p = 2, N = 9, for which the modules T 9

2
, T 5

2
and T 1

2
are degenerate, see (D.8)), then

the m = 1 term in (4.13) provides a nonzero correction, etc. Indeed, one can verify that the
sum rule

⌊N

2
⌋∑

M=0

N (N,M)D(N,M) = 2N (4.14)

is satisfied using (4.10) for N (N,M), (4.12) for D(N,M), and the expression (4.13) for nj ,
with arbitrary njk, except that njk = 0 for k ≥ j (already noted above), and also that njk = 0
if (j − k) mod p 6= 0, which is discussed further below.

For the case p = 2, we have more explicit results. The number of admissible solutions
N (N,M) for general values of N and M is given by

N (N,M) =

{
(N−2)!!

M !(N−2−2M)!!
N = even

(N−1)!!
M !(N−1−2M)!!

N = odd
, (4.15)

as shown in Appendix C. We conjecture that the degeneracies D(N,M) for general values
of N and M are given by9

D(N,M) =

{
2⌊

N

2
⌋−M+1 , M < N

2
,

0 , M = N
2

and N = even .
(4.16)

Indeed, this formula reproduces the results in Table 4 (a) below; and, together with (4.15)
for N (N,M), satisfies the sum rule (4.14). Moreover, we propose that the integers njk in
(4.12) are given, for p = 2 and j and k integers, by

njk =

{(
j−1

1

2
(j−k)

)
2k
j+k

, j > k and (j − k) mod 2 = 0 ,

0 , j ≤ k , or (j − k) mod 2 6= 0 , or k = 0 ,
(4.17)

which do not depend on N . We note, as a curiosity, that n2j,2 for j > 1 is equal to the
jth Catalan number. For j and k half-odd integers, njk = nj+ 1

2
,k+ 1

2
. Indeed, these formulas

reproduce all the values of njk for p = 2 found in Appendix D, and satisfy (4.10) (with
N (N,M) and nj given by (4.15) and (4.13) , respectively)) as well as (4.12) (with D(N,M)
given by (4.16)).

The appearance of the extra degeneracies among different tilting modules at roots of
unity is not surprising, as we have an extra symmetry for the whole family of integrable

9In terms of the spin j = N
2
−M , the degeneracies are given by

Dj ≡ D(N,
N

2
− j) =

{
2⌊j⌋+1 , j > 0 ,

0 , j = 0 ,

which evidently do not depend on N .
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N
M

0 1 2 3 4

2 4 0
3 4 2
4 8 4 0
5 8 [6] 4 2
6 16 [12] 8 4 0
7 16 [8] 8 [6] 4 2
8 32 [16] 16 [12] 8 4 0
9 32 [10] 16 [8] 8 [6] 4 2

(a) q = eiπ/2

N
M

0 1 2 3 4

2 3 1
3 6 2
4 6 3 1
5 6 6 2
6 12 6 3 1
7 12 6 6 2
8 12 [9] 12 6 3 1

(b) q = eiπ/3

N
M

0 1 2 3 4

2 3 1
3 4 2
4 8 3 1
5 8 4 2
6 8 8 3 1
7 8 8 4 2
8 16 8 8 3 1

(c) q = eiπ/4

N
M

0 1 2 3 4

2 3 1
3 4 2
4 5 3 1
5 10 4 2
6 10 5 3 1
7 10 10 4 2
8 10 10 5 3 1

(d) q = eiπ/5

Table 4: The number D(N,M) of eigenvalues of the transfer matrix corresponding to each admis-
sible solution of the Bethe equations (1.3), (3.4) for given values of N , M and q. Numbers within
brackets are the values of dimTN

2
−M (4.4), when different from D(N,M).

Hamiltonians. For the case p = 2, this extra symmetry was identified in [13, Sec. 2.6.2
and 5] with the zero modes of the so-called lattice W-algebra. These modes W±,r

0 , with
r, s ∈ 2N0, are particular operators that commute with H and change the total spin Sz by
±2 and mix the distinct tilting Uqsl(2)-modules. These operators satisfy relations

[W+,r
0 ,W−,s

0 ] = 4W 0,r+s+2
0 − 4W 0,r+s

0 , (4.18)

[W 0,r
0 ,W+,s

0 ] = −8W+,r+s+2
0 + 8W+,r+s

0 , (4.19)

[W 0,r
0 ,W−,s

0 ] = 8W−,r+s+2
0 − 8W−,r+s

0 , (4.20)

where W 0,r
0 are spinless zero modes of the W-algebra. The relations resemble the loop

sl(2) algebra relations and the algebra of the zero modes W α,r
0 was indeed identified with

a subalgebra in it [13]. For higher roots of unity, there should exist a similar construction
of the zero modes of the lattice W-algebra, defined in [13] for all p, and these operators do
not commute with Sz but do commute with the Cartan Uqsl(2) generator K = q2S

z

. So, we
might expect a mixing of tilting modules in sectors by Sz equal modulo p.

We have solved the Bethe equations (3.4) with q = eiπ/p numerically for p = 3, 4, 5 up to
N = 8, see Tables 7-12. The numbers N (N,M) of admissible solutions that we have found
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are reported in Table 3.10 These values are consistent with the conjecture (4.9). Note that
N (N,M) is equal to the dimension d0N

2
−M

of the TL irreducible representation for most of

the values of N and M that we have considered. For the few cases that N (N,M) < d0N
2
−M

,

the values of d0N
2
−M

appear in the tables within brackets. We analyze these cases individually

in Appendix D, and we argue that they are consistent with the sharpened conjecture (4.10).

The numbers D(N,M) of eigenvalues of the transfer matrix (A.1) corresponding to each
admissible solution of the Bethe equations are reported in Table 4. These values are consis-
tent with the conjecture (4.11). Note that D(N,M) is equal to dimTN

2
−M for most of the

values of N and M that we have considered. For the few cases that D(N,M) > dimTN

2
−M ,

the values of dim TN

2
−M appear in the tables within brackets. We also analyze these cases

individually in Appendix D, and we argue that they are consistent with the conjecture (4.12).

5 Discussion

We have proposed formulas (2.8), (4.10), (4.15) for the number of admissible solutions of
the Bethe equations (1.3), as well as formulas (2.9), (4.12), (4.16) for the degeneracies of
the transfer matrix eigenvalues, including the root of unity cases q = eiπ/p with p ≥ 2.
These formulas are consistent with the completeness of the solution (2.10), (4.14). We have
checked these conjectures up to at least N = 8. We emphasize that we consider here all the
(admissible) solutions of the Bethe equations, not just those corresponding to “good” states
[1, 8]. The construction of all the Bethe states remains to be clarified. Work on this and
related questions is now in progress.

We have observed at p = 2 and p = 3 large degeneracies (in the spectrum of the transfer-
matrix) that cannot be explained just using the representation theory of the Temperley-Lieb
algebra or Uqsl(2) at roots of unity. We expect actually similar degeneracies for all integer
p ≥ 2 starting with sufficiently large N , for example, p = 4 and N ≥ 10. Such degeneracies
appear due to a very fine phenomena. It is similar to the periodic case where, at roots of
unity, there is a much bigger symmetry of H – the loop sl(2) algebra (at least for p = 2
[35]). This symmetry, additionally to the quantum group generators, mixes H-eigenvectors in
sectors modulo p. We expect a similar phenomena in the boundary case, and for p = 2 we do
have such an extra symmetry written explicitly in terms of W±,r

0 operators satisfying (4.18)-
(4.20), see the discussion in Sec. 4.3. For all integer values of p ≥ 2, we expect that this extra
symmetry commutes with the Cartan operator K = q2S

z

(and not with Sz). In particular,
tilting modules Tj and Tk might be degenerate only if |j − k| = 0 mod p. However, instead
of the loop sl(2) symmetry that appears in the periodic case, the extra symmetry in the open
case should be a subalgebra in the loop sl(2). This is expected to be in analogy with the
q-Onsager approach [36] to the open XXZ spin-chain with diagonal boundary conditions [37],
where the generating-spectrum algebra for the finite open chain – the q-Onsager algebra –
is a (co-ideal) subalgebra in the generating-spectrum algebra of the closed/periodic chain,

10The results for p = 2 were obtained using Eq. (C.7). The results for p ≥ 3 with N = 8 and M = 4 were
obtained only by solving the T-Q equations.
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which is the affine quantum algebra Uqŝl(2).

This work raises several interesting questions. Assuming that our conjectures are correct,
it would be interesting to find proofs and explore more the role of the lattice W-algebra
symmetry [13] in our context of open chains that may be responsible for the degeneracies
of the tilting modules, which could help to determine the values of njk in (4.12) for p > 2.
(For p = 2, see (4.17).) It would also be interesting to perform a similar analysis of related
models, such as the quantum group invariant XXZ chain with higher spin, and the periodic
XXZ chain.

In our view, it is remarkable that a system of polynomial equations can “know” so much
representation theory. It is evidence that Bethe ansatz provides deep links between algebraic
geometry, representation theory and quantum mechanics.
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A Transfer matrix and algebraic Bethe ansatz

We briefly review here the transfer matrix and algebraic Bethe ansatz for the model (1.1).
These results were first obtained for a more general model by Sklyanin [15]. The transfer
matrix t(u) is given by

t(u) = traK
+
a (u) Ta(u)K

−
a (u) T̂a(u) , (A.1)

where Ta(u) and T̂a(u) are the monodromy matrices

Ta(u) = Ra1(u) · · ·RaN (u) , T̂a(u) = RaN (u) · · ·Ra1(u) , (A.2)

the R-matrix is given by

R(u) =




sinh(u+ η) 0 0 0
0 sinh(u) sinh(η) 0
0 sinh(η) sinh(u) 0
0 0 0 sinh(u+ η)


 , (A.3)
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and the left and right K-matrices are given by the diagonal matrices

K+(u) = diag(e−u−η , eu+η) , K−(u) = diag(eu , e−u) , (A.4)

respectively.11 The transfer matrix commutes for different values of the spectral parameter

[t(u) , t(v)] = 0 , (A.6)

and it contains the Hamiltonian (1.1) 12

H = α t′(0) + β I , (A.7)

where

α = csch(2η) csch2(N−1) η , β = −(N + 1) cosh η + sech η . (A.8)

By taking higher derivatives of the transfer matrix, we obtain the higher conserved charges,
which commute with each other by virtue of (A.6)

Hn =
dn

dun
t(u)

∣∣∣
u=0

, [Hn , Hm] = 0 . (A.9)

The transfer matrix has Uqsl(2) symmetry [2]

[t(u) , Sz] = 0 ,
[
t(u) , S±

]
= 0 , (A.10)

where the Uqsl(2) generators S
z and S± are given by

Sz =
N∑

k=1

Sz
k , Sz

k =
1

2
σz
k ,

S± =
N∑

k=1

q−(Sz
1
+···+Sz

k−1
) S±

k q(S
z

k+1
+···+Sz

N
) , S±

k =
1

2
(σx

k ± iσy
k) , (A.11)

and satisfy (3.3). The Uqsl(2) symmetry of the Hamiltonian can therefore be understood as
a consequence of the symmetry of the transfer matrix (A.10) and the relation (A.7). The
transfer matrix also has the crossing symmetry [5]

t(u) = t(−u − η) . (A.12)

11For the XXX case, we first rescale u 7→ −iηu and R 7→ 1

−iηR before taking the limit η → 0. Hence, we
have

R(u) =




u+ i 0 0 0
0 u i 0
0 i u 0
0 0 0 u+ i


 , (A.5)

and K+(u) = K−(u) = I.
12For the case p = 2 (i.e., η = iπ/2), the first derivative of the transfer matrix is proportional to the identity

matrix; hence, the Hamiltonian is related to the second derivative of the transfer matrix, H = (−1)N 1

4
t′′(0).

15



The A, B, C, and D operators of the algebraic Bethe ansatz are obtained from the
operator U given by

Ua(u) = Ta(u)K
−
a (u) T̂a(u) =

(
A(u) B(u)

C(u) D(u) + sinh η
sinh(2u+η)

A(u)

)
, (A.13)

in terms of which the transfer matrix (A.1) is given by

t(u) = traK
+
a (u)Ua(u) . (A.14)

The Bethe states are defined by

|v1 . . . vM 〉 =
M∏

k=1

B(vk)|0〉 , (A.15)

where |0〉 is the reference state with all spins up

|0〉 =
(
1

0

)⊗N

, (A.16)

and v1 , . . . , vM remain to be specified. The Bethe states satisfy the off-shell relation13

t(u)|v1 . . . vM〉 = Λ(u)|v1 . . . vM〉+
M∑

m=1

Λm|u, v1 . . . v̂m . . . vM〉 , (A.17)

where Λ(u) is given by the so-called T-Q equation14

Λ(u) =
sinh(2u+ 2η)

sinh(2u+ η)
sinh2N(u+ η)

Q(u− η)

Q(u)
+

sinh(2u)

sinh(2u+ η)
sinh2N(u)

Q(u+ η)

Q(u)
, (A.19)

with

Q(u) =
M∏

k=1

sinh (u− vk) sinh (u+ vk + η) = Q(−u − η) . (A.20)

Moreover,

Λm = f(u, vm)

[
sinh2N (vm + η)

M∏

k 6=m
k=1

sinh(vm − vk − η) sinh(vm + vk)

sinh(vm − vk) sinh(vm + vk + η)

− sinh2N(vm)

M∏

k 6=m
k=1

sinh(vm − vk + η) sinh(vm + vk + 2η)

sinh(vm − vk) sinh(vm + vk + η)

]
, (A.21)

13Details of this computation can be found in e.g. [38].
14For the XXX case, the T-Q equation is

Λ(u) =
2

(2u+ i)
(u + i)2N+1Q(u− i)

Q(u)
+

2

(2u+ i)
u2N+1Q(u+ i)

Q(u)
, Q(u) =

M∏

k=1

(u− vk) (u+ vk + i) .(A.18)
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where

f(u, v) =
sinh(2u+ 2η) sinh(2v) sinh η

sinh(u− v) sinh(u+ v + η) sinh(2v + η)
. (A.22)

It follows from (A.17) that the Bethe state |v1 . . . vM〉 (A.15) is an eigenstate of the transfer
matrix t(u) in (A.1) with eigenvalue Λ(u) in (A.19) if all the Λm vanish; i.e., according to
(A.21), if v1 , . . . , vM satisfy

sinh2N(vm + η)
M∏

k 6=m
k=1

sinh(vm − vk − η) sinh(vm + vk)

= sinh2N (vm)
M∏

k 6=m
k=1

sinh(vm − vk + η) sinh(vm + vk + 2η) , m = 1, . . . ,M . (A.23)

These equations coincide with the Bethe equations (1.3) upon identifying

vm = λm − η

2
, m = 1, . . . ,M . (A.24)

The result (1.2) for the energy follows from (A.7) and (A.19).

In passing to (A.23), it was assumed that the factor f(u, vm) in (A.21) is regular. However,
f(u, v) has a pole at v = −η/2, as can be seen from (A.22). Hence, solutions of the Bethe
equations (A.23) containing vm = −η/2 must be discarded, since Λm will not vanish, and
therefore the corresponding Bethe state will not be an eigenstate of the transfer matrix.
Similarly, vm = −η/2 + iπ/2 must be excluded.

In other words, solutions of the Bethe equations (1.3) with λm = 0 or λm = iπ/2 must
be discarded, because they do not correspond to eigenstates of the transfer matrix. It has
also been argued [25] that such solutions should be discarded because the corresponding
coordinate Bethe ansatz wave function [14] vanishes identically.

For generic values of q, the on-shell (i.e., with Bethe equations satisfied) Bethe state
(A.15) is an Uqsl(2) highest-weight state [1, 3, 4]

S+|v1 . . . vM〉 = 0 , (A.25)

with

Sz|v1 . . . vM〉 =
(
N

2
−M

)
|v1 . . . vM〉 . (A.26)

The on-shell Bethe state (A.15) is therefore an eigenstate of the Casimir operator (see e.g. [1])

S2 = S−S+ +
([

Sz + 1
2

]
q

)2

−
[
1
2

]2
q
, (A.27)

with corresponding eigenvalue

S2|v1 . . . vM〉 =
([

j + 1
2

]2
q
−

[
1
2

]2
q

)
|v1 . . . vM〉 , (A.28)
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where [x]q is defined in (3.3) and the spin j is given by

j =
N

2
−M . (A.29)

The requirement j ≥ 0 implies that M ≤ N
2
. The lower-weight states (Sz < j) of the spin-j

representation of Uqsl(2) can be obtained by repeatedly acting on the highest-weight state
(Sz = j) by the S− operator defined in (A.11).

B Temperley-Lieb algebra

The Hamiltonian (1.1) can evidently be re-expressed (up to an additive constant) as [1]

H = −2
N−1∑

k=1

ek , (B.1)

where the ek are given by

ek = −1

2

(
σx
kσ

x
k+1 + σy

kσ
y
k+1

)
− 1

4
(q + q−1)

(
σz
kσ

z
k+1 − 1

)
+

1

4
(q − q−1)

(
σz
k − σz

k+1

)
. (B.2)

The ek can be shown to satisfy the Temperley-Lieb algebra [19]

e2k = δek ,

ekek±1ek = ek ,

ekej = ejek , |j − k| > 1 , (B.3)

where δ (the so-called fugacity or loop parameter) is given by

δ = q + q−1 . (B.4)

For q = eiπ/p, it follows that δ = 2 cos π
p
. For all values of q, including the roots of unity,

the Temperley-Lieb algebra is identified with the maximum algebra commuting with (or
centralizer of) Uqsl(2), see [33, 39].

C Bethe solutions at p = 2

The case p = 2 (i.e., η = iπ/2) is sufficiently simple to be analyzed analytically. The Bethe
equations (3.4) decouple and reduce to

(
ixk − 1

xk − i

)2N

= 1 , (C.1)
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since q2 = −1 and therefore the terms with
∏

j 6=k cancel. It follows that

ixk − 1

xk − i
= eiωl , ωl =

2πl

2N
, l = 0, 1, . . . , 2N − 1, (C.2)

and therefore

λk =
1

2
ln xk =

1

2
ln

(
ieiωl − 1

eiωl − i

)
. (C.3)

The admissible Bethe roots (recall (3.1) and (3.2)) appear as (λ , λ + iπ/2) (i.e., pairs of
roots that differ by iπ/2) corresponding to the following pairs of l values

(l , N − l) , l = 1, 2, . . . , lmax , (C.4)

where

lmax =

{
(N − 2)/2 N = even
(N − 1)/2 N = odd

. (C.5)

It follows that the number of solutions N (N,M) for M = 1 is given by

N (N, 1) = 2lmax =

{
N − 2 N = even
N − 1 N = odd

. (C.6)

In order to construct Bethe states (A.15) with M > 1, one would naively expect to be
able to choose any M roots from the N (N, 1) admissible roots. However, a Bethe vector
with two roots that differ by iπ/2 is an exact complete 2-string (4.1). Hence, any solution
of the Bethe equations that contains a pair of roots that differ by iπ/2 is not admissible.
Since the N (N, 1) admissible roots all come in pairs that differ by iπ/2, it follows that the
number of solutions for M ≥ 1 is given by (notice the double factorials)

N (N,M) =
N (N, 1)!!

M !(N (N, 1)− 2M)!!
=

{
(N−2)!!

M !(N−2−2M)!!
N = even

(N−1)!!
M !(N−1−2M)!!

N = odd
. (C.7)

The results for N = 2, . . . , 9 are displayed in Table 3 (a).

D Explanations of deviations

We consider here in detail the cases of the conjecture (4.10) for which N (N,M) < d0N
2
−M

,

and the cases of the conjecture (4.12) for which D(N,M) > dimTN

2
−M . We argue that

these deviations occur when two or more tilting modules become degenerate. The idea is
that we count the total degeneracies of generalized eigenvalues of the transfer matrix; and
by comparing them with dimensions of the tilting modules and using the Sz values for
corresponding generalized eigenstates, we infer which tilting modules are degenerate. As we
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do not construct a basis in these tilting modules explicitly, our arguments are rather indirect
but definitive.

We analyze below only the cases p = 2 and p = 3, because for higher values of p we would
need to go beyond N = 10 which exceeds the capabilities of our available computer resources.
For p = 2, we use known facts on representation theory of both the Temperley–Lieb and
Uqsl(2) algebras [33, 34, 13]:

1. For odd N , the TL algebra is semisimple and the Hamiltonian is diagonalizable – it is
the only semisimple/diagonalizable case at roots of unity. Hence, for this case all the
eigenvalues and eigenvectors are ordinary (i.e. not generalized). For even N , the TL
algebra is non-semisimple and the Hamiltonian has Jordan blocks of maximum rank 2.

2. For odd N , the tilting Uqsl(2)-modules Tj in (4.5) appear for half-integer j and are
irreducible. The Sz spectrum is then usual one {j, j − 1, . . . ,−j}. For even N , each
tilting Uqsl(2)-module Tj , where j is a positive integer, is indecomposable but reducible
and is composed of the spin-j and the spin-(j − 1) modules (recall the discussion
above (4.4)), where each spin-j module is also reducible but indecomposable and has
the unique submodule isomorphic to the head (or irreducible quotient) of the spin-
(j−1) module. The dimension of the head of the spin-j module is j+1 and we denote
the head by 〈j〉. In total, the sub-quotient structure of Tj in terms of the irreducible
modules 〈j〉 is

Tj :

〈j − 1〉

||②②
②②
②②
②②

""
❊❊

❊❊
❊❊

❊❊

〈j − 2〉

""
❊❊

❊❊
❊❊

❊❊

〈j〉

||②②
②②
②②
②②

〈j − 1〉

(D.1)

where arrows correspond to irreversible action of Uqsl(2) generators and we set 〈−1〉 =
0. In the decomposition (4.5), a direct summand Tj has S

z spectrum {j, 2×(j−1), 2×
(j − 2), . . . , 2× (−j + 1),−j} while each irreducible sub-quotient 〈j〉 has Sz spectrum
{j, j−2, . . . ,−j+2,−j}. We also note that it is only the states in the head of Tj – the
top sub-quotient 〈j − 1〉 in (D.1) – on which the Hamiltonian is non-diagonalizable.

D.1 p = 2 , N = 5

For p = 2 and N = 5, the decomposition (4.5) into tilting modules is given by

5T 1

2
⊕ 4T 3

2
⊕ T 5

2
.

We claim that T 5

2
and one of the T 1

2
are degenerate, and therefore n 5

2
, 1
2
= 1, n 1

2
= 1 (all

others are zero). Indeed, the subspace with energy E = 0 15, which includes the reference

15Strictly speaking, we should consider (generalized) eigenvalues of the transfer matrix. We consider in
this appendix instead (generalized) eigenvalues of the Hamiltonian, which are easier to report and give the
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state (M = 0 , j = 5
2
) belonging to T 5

2
, can be shown to have dimension 8. That is, the

number of E = 0 eigenstates is 8, which is the sum of dimensions of T 5

2
(6) and T 1

2
(2),

recall (4.4). This implies that

D(5, 0) = dimT 5

2
+ n 5

2
, 1
2
dim T 1

2
= 6 + 1 ∗ 2 = 8 ,

N (5, 2) = d01
2

− n 1

2
= 5− 1 = 4 , (D.2)

in agreement with Tables 4 and 3, respectively.

D.2 p = 2 , N = 6

For p = 2, N = 6, the decomposition (4.5) into tilting modules is given by

5T1 ⊕ 4T2 ⊕ T3 .

We claim that T3 and one of the T1 are degenerate, and therefore n3,1 = 1, n1 = 1 (all others
are zero). Indeed, the subspace with generalized H-eigenvalue E = 0, which includes the
reference state (M = 0 , j = 3) belonging to T3, can be shown to have dimension 16, which
is the sum of dimensions of T3 (12) and T1 (4). This implies that

D(6, 0) = dim T3 + n3,1 dimT1 = 12 + 1 ∗ 4 = 16 ,

N (6, 2) = d01 − n1 = 5− 1 = 4 . (D.3)

D.3 p = 2 , N = 7

For p = 2, N = 7, the decomposition (4.5) into tilting modules is given by

14T 1

2
⊕ 14T 3

2
⊕ 6T 5

2
⊕ T 7

2
.

We claim that T 7

2
and two of the T 3

2
are degenerate, and therefore n 7

2
, 3
2
= 2, n 3

2
= 2. Indeed,

the subspace with energy E = 0, which includes the reference state (M = 0 , j = 7
2
), can

be shown to have dimension 16, which can be now either the sum of dimensions of T 7

2
(8)

and two T 3

2
(2*4=8) or as dimT 7

2
+dimT 5

2
+dimT 1

2
or the sum dimT 5

2
+dimT 3

2
+2dimT 1

2
.

Looking at Sz-sectors for these 16 eigenstates:

Sz =
{
±7

2
,±5

2
, 3×

(
±3

2

)
, 3×

(
±1

2

)}

and recalling the discussion above (D.1), we identify precisely the tilting modules they belong
to as T 7

2
⊕ 2T 3

2
. This gives

D(7, 0) = dimT 7

2
+ n 7

2
, 3
2
dimT 3

2
= 8 + 2 ∗ 4 = 16 ,

N (7, 2) = d03
2

− n 3

2
= 14− 2 = 12 . (D.4)

same results.
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Moreover, we claim that each of the 6 T 5

2
are degenerate with 6 T 1

2
, and therefore n 5

2
, 1
2
= 1,

n 1

2
= 6. Indeed, we find that there are 6 energy eigenvalues (namely, ±3.60388, ±2.49396,

and ±0.890084) that are each 8-fold degenerate; while dim T 5

2
= 6 and dim T 1

2
= 2. This

implies that

D(7, 1) = dimT 5

2
+ n 5

2
, 1
2
dim T 1

2
= 6 + 1 ∗ 2 = 8 ,

N (7, 3) = d01
2

− n 1

2
= 14− 6 = 8 . (D.5)

D.4 p = 2 , N = 8

For p = 2, N = 8, the decomposition (4.5) into tilting modules is given by

14T1 ⊕ 14T2 ⊕ 6T3 ⊕ T4 .

We claim that T4 and two of the T2 are degenerate, and therefore n4,2 = 2, n2 = 2. Indeed,
the subspace with generalized H-eigenvalue E = 0, which includes the reference state (M =
0 , j = 4), can be shown to have dimension 32, which is either the sum of dimensions of T4

(16) and two T2 (2*8=16) or one of these sums dimT4+dimT3+dimT1 = dim T4+4dimT1 =
dimT4 + dimT2 + 2dimT1. Looking then at Sz-sectors for these 32 generalized eigenstates,
we find that the 24 Sz eigenvalues corresponding to ordinary eigenvectors are

Sz =
{
±4,±3, 4× (±2), 3× (±1), 6× 0

}

and the 8 Sz eigenvalues corresponding to generalized eigenvectors are

Sz =
{
±3, 3× (±1)

}
.

Recalling the discussion about tilting modules and their Sz spectrum (above (D.1)) we
identify precisely the tilting modules the 32 generalized eigenstates belong to as T4 ⊕ 2T2.
So, the Sz spectrum we found implies

D(8, 0) = dim T4 + n4,2 dimT2 = 16 + 2 ∗ 8 = 32 ,

N (8, 2) = d02 − n2 = 14− 2 = 12 . (D.6)

Moreover, we claim that each of the 6 T3 are degenerate with 6 T1, and therefore n3,1 = 1,

n1 = 6. Indeed, we find that there are 6 energy eigenvalues (namely, ±2
√

2 +
√
2, ±2

√
2,

±2
√

2−
√
2) that are each 16-fold degenerate; while dim T3 = 12 and dim T1 = 4. This

implies that

D(8, 1) = dim T3 + n3,1 dimT1 = 12 + 1 ∗ 4 = 16 ,

N (8, 3) = d01 − n1 = 14− 6 = 8 . (D.7)
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D.5 p = 2 , N = 9

For p = 2 and N = 9, the decomposition (4.5) into tilting modules is given by

42T 1

2
⊕ 48T 3

2
⊕ 27T 5

2
⊕ 8T 7

2
⊕ T 9

2
.

Using analysis similar to the previous cases, we claim that the nonzero njk are

n 9

2
, 5
2
= 3 , n 9

2
, 1
2
= 2 , n 7

2
, 3
2
= 2 , n 5

2
, 1
2
= 1 , (D.8)

and the nonzero nj are

n 5

2
= 3 , n 3

2
= 16 , n 1

2
= 26 . (D.9)

Hence,

D(9, 0) = dimT 9

2
+ n 9

2
, 5
2
dimT 5

2
+ n 9

2
, 1
2
dimT 1

2
= 10 + 3 ∗ 6 + 2 ∗ 2 = 32 ,

D(9, 1) = dimT 7

2
+ n 7

2
, 3
2
dimT 3

2
= 8 + 2 ∗ 4 = 16 ,

D(9, 2) = dimT 5

2
+ n 5

2
, 1
2
dimT 1

2
= 6 + 1 ∗ 2 = 8 , (D.10)

and

N (9, 2) = d05
2

− n 5

2
= 27− 3 = 24 ,

N (9, 3) = d03
2

− n 3

2
= 48− 16 = 32 ,

N (9, 4) = d01
2

− n 1

2
= 42− 26 = 16 , (D.11)

in agreement with Tables 4 and 3, respectively. One can also verify that the nj ’s (D.9) can
be obtained from the njk’s (D.8) using (4.13).

D.6 p = 3 , N = 8

For p = 3, N = 8, the decomposition (4.5) into tilting modules is given by

T0 ⊕ 28T1 ⊕ 13T2 ⊕ 7T3 ⊕ T4 .

We claim that T4 and one of the T1 are degenerate, and therefore n4,1 = 1, n1 = 1 (all
others are zero). Indeed, the subspace with energy E = 0, which includes the reference state
(M = 0 , j = 4), can be shown to have dimension 12, which is the sum of dimensions of T4

(9) and T1 (3). This implies that

D(8, 0) = dimT4 + n4,1 dimT1 = 9 + 1 ∗ 3 = 12 ,

N (8, 3) = d01 − n1 = 28− 1 = 27 . (D.12)

E Numerical results

Our numerical solutions of the Bethe equations up to N = 8 are presented in Tables 5-12.
These results were obtained using homotopy continuation [29] (see also [28] and references
therein for further details).
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N M number λ1 λ2 λ3

2 1 1 0.5

3 1
1 0.8660254037844386

2 0.2886751345948129

4 1

1 1.207106781186547

2 0.5

3 0.2071067811865475

4 2

1 0.7160149594491338 0.7160149594491338

+0.5125206553446844i -0.5125206553446844i

2 0.6683262276726571 0.2309546565991595

5 1

1 1.538841768587627

2 0.6881909602355868

3 0.3632712640026804

4 0.1624598481164532

5 2

1 1.115042120183109 1.115042120183109

+0.5450541101265968i -0.5450541101265968i

2 0.9704069411911774 0.1723800721632705

3 0.5137119304322965 0.5137119304322965

+0.4996020494993916i -0.4996020494993916i

4 0.9496686956332134 0.3969680639294287

5 0.4272945057154192 0.1793374003754359

6 1

1 1.866025403784439

2 0.2886751345948129

3 0.1339745962155613

4 0.5

5 0.8660254037844386

6 2

1 1.234440793585582 0.5389490693006668

2 0.8418003199559988 0.8418003199559988

+0.4947462450429116i -0.4947462450429116i

3 0.3905082158626772 0.3905082158626772

+0.5000053666355159i -0.5000053666355159i

4 1.277389814218266 0.1387104764546264

5 1.471796355306884 1.471796355306884

-0.5824072783212229i +0.5824072783212229i

6 0.591788951573015 0.3152209587092826

7 0.1457831570066063 0.3239416643695967

8 0.5975749352330829 0.1434644688717632

9 1.266274529052914 0.3019322716047725

6 3

1 0.7487200726653173 0.5881061192792989 0.5881061192792989

+0.5011583393895944i -0.5011583393895944i

2 0.9677400136112142 0.9476918141366062 0.9476918141366062

+0.9956807427853811i -0.9956807427853811i

3 0.774814166699722 0.35438 89174298362 0.1551499348511761

4 0.7901794336920558 0.148626658019744 0.7901794336920558

+0.5103219367879035i -0.5103219367879035i

5 0.7601147488943615 0.3341849467072039 0.7601147488943615

+0.5085412675384237i -0.5085412675384237i

Table 5: The admissible solutions of the XXX Bethe equations (2.3) up to N = 6.
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N M number x1 x2 x3

2 1 1 0.9950207489532265

+0.0996679946249558i

3 1

1 0.9851362571667408

+0.1717747211189849i

2 0.9983374903000208

+0.05763900989309033i

4 1

1 0.9713235174298164

+0.2377616968474302i

2 0.9950207489532265

+0.09966799462495615i

3 0.9991439299596814

+0.04136915789236264i

4 2

1 0.9911071329262735 0.9989343649801794

+0.1330663408329167i +0.04615337974239554i

2 1.096607956599227 1.096607956599227

+0.1576690437914444i -0.1576690437914444i

5 1

1 0.9538101147863981

+0.3004101611649615i

2 0.9905881296732647

+0.1368764309529703i

3 0.9973685392726434

+0.07249825424900729i

4 0.9994731533039727

+0.03245636801328048i

5 2

1 1.087533505007 09 1.08753350500709

+0.2455058557178879i -0.2455058557178879i

2 0.9821261824941047 0.996853923761068

+0.1882237011100266i +0.07926067550912498i

3 1.099298174842604 1.099298174842604

+0.1129555095638716i -0.1129555095638716i

4 0.9813430842510684 0.9994062436043682

+0.1922647939499075i +0.03445519183818567i

5 0.9963579374226493 0.9993575911189618

+0.08526934111909155i +0.03583859752984044i

6 1

1 0.9328105645067954

+0.3603671055250655i

2 0.9851362571667408

+0.1717747211189849i

3 0.9983374903000208

+0.05763900989309033i

4 0.9950207489532265

+0.09966799462495615i

5 0.9996416778201899

+0.02676781583984422i

6 2

1 1.075224471519206 1.075224471519206

+0.3236217054614372i -0.3236217054 614372i

2 0.9699960698659229 0.9942054556525597

+0.2431205965044173i +0.1074965671576824i

3 0.9930254383362942 0.9980164632164529

+0.1179002918444679i +0.06295346812466036i

4 1.10182556643507 1.10182556643507

+0.08593996563356507i -0.08593996563356507i

5 0.9684452798485436 0.9981790461343699

+0.2492262826009249i +0.06032074152627307i

6 1.088602293651335 1.088602293651335

+0.1841309747335413i -0.1841309747335413i

7 0.9979056525281584 0.9995755201710089

+0.06468623232458623i +0.02913382012124421i

8 0.9678938580855082 0.9996155034837294

+0.2513592637647361i +0.02772805790115951i

9 0.9928890635454395 0.9995888688063166

+0.1190433009113084i +0.02867217045339162i

6 3

1 1.094320030741045 0.9977671423426131 1.094320030741045

+0.167153344511961i +0.06678869411401678i -0.167153344511961i

2 1.093678036321473 0.9995582494860389 1.093678036321473

+0.1737932036777591i +0.02972046238546064i -0.1737932036777591i

3 0.9815106975959883 1.19864337246897 1.19864337246897

+0.1914072895807168i +0.2289583093421947i -0.2289583093421947i

4 0.9888241361234739 1.097821757712908 1.097821757712908

+0.1490866453431209i +0.1293812108099802i -0.1293812108099802i

5 0.9880520841223098 0.9974912917057552 0.9995188710316143

+0.1541203395453045i +0.07078928570895365i +0.03101655125392326i

Table 6: The admissible solutions of the XXZ Bethe equations (3.4) with η = 0.1 up to N = 6.
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N M number x1 x2 x3

2 1 1 3.732050807568877

3 1 1 2

4 1

1 1.628626279736931

2 -6.078116022520112

3 3.732050807568876

4 2 1 5.551933372263207 1.668669261292973

5 1

1 1.461818651603003

2 2.445124904035096

3 -3.574329190217507

4 8.73968131822042

5 2 1 1.495162537164605 2.744357057158133

6 1

1 1.366025403784439

2 2

3 -2.732050807568878

4 3.732050807568876

6 2

1 2.121740590131168 1.389071336983916

2 2.065764252710569 4.618645451098817

3 4.708465577106654 1.37980190200904

4 1.94185325885711 -6.956024177556002

5 7.06963925607305 -3.289527548618499

6 2.033456364524103 2.033456364524103

-3.572707112158111i +3.572707112158111i

7 -5.515508983877778 3.211606419543336

8 -11.72375959717719 -2.585294089372629

9 -7.397095726637462 1.354263271640707

6 3 1 2.184002431728489 7.103070621468425 1.399963454482446

7 1

1 1.303554144675824

2 1.770225971730896

3 -2.307585402462597

4 2.706596741879841

5 -11.05630589583649

6 6.245703131914746

7 2

1 1.836863203195035 1.319993390462937

2 2.970622089446266 1.818186625013599

3 1.316313662306279 2.990958243918946

4 9.876567762581274 2.793117991352707

5 1.288545404441192 -4.146370060660599

6 -3.574329190217507 2.445124904035096

7 4.053394950868378 -2.890714726422575

8 -2.178060016150124 -6.266169856419983

9 1.547869212009354 1.547869212009354

+2.679110191382225i -2.679110191382225i

10 -3.978767068330315 1.712236436628736

11 10.50224778955699 1.308224352206094

12 1.788230153989182 10.3328199011193

13 -2.40 322747023718 14.47572976817471

7 3 1 1.332957726595594 3.390479290658175 1.890753798751596

Table 7: The admissible solutions of the XXZ Bethe equations (3.4) with q = eiπ/3 up to N = 7.
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N M number x1 x2 x3

8 1

1 1.259483895472751

2 -2.051228571072364

3 2.256125795901561

4 3.732050807568876

5 1.628626279736931

6 -6.078116022520112

7 13.7129943488902

8 2

1 1.271706087581433 1.670954477097469

2 2.383355863629706 1.662783111291984

3 2.092100093244703 -2.803377889217483

4 1.244313600108916 -3.065339745176996

5 2.334010482862648 4.308939906210139

6 -2.979846773221015 1.57827840091033

7 4.370551169701395 1.651842067444984

8 5.648765724234609 -2.237015855424188

9 1.269930725213365 2.390822553996926

10 -1.947287265389223 -4.491074032089162

11 -2.520489596445147 3.031731530022549

12 4.397977764490689 1.266495115558148

13 1.271475306333206 1.271475306333206

+2.202304943896206i -2.202304943896206i

8 3

1 2.40873955875332 2.098628559113852 2.098628559113853

-3.660393653953999i +3.660393653953999i

2 1.282713105358393 2.554950754236945 1.70924265930685

3 2.283630889407069 2.28363088940707 1.664985843065564

-4.00022304697502i +4.00022304697502i

4 5.529918109991038 1.51881768033327 1.518817680333269

+2.631616151633382i -2.631616151633382i

5 7.414183066616086 -2.862682200630386 3.198078127975502

6 -5.511247175838946 3.650488595458813 2.240655749924518

7 3.340653884272446 -2.14255770445547 3.340653884272446

+5.919991271163282i -5.919991271163282i

8 -5.514779752344294 -2.023919611315855 10.8777019433327

9 1.68440705741468 5.423847662867905 2.467651140153592

10 1.213531067160599 1.213531067160599 -10.489730959 88394

-2.101911443901849i +2.101911443901849i

11 -6.301965974660797 3.766071521088686 1.26000911004235

12 4.885235830838998 -2.183128543959034 -9.430910891448477

13 2.060403901016193 -2.658376699449247 -12.74552761325145

14 1.278043319153198 1.693253474753915 5.596399575909029

15 2.149598643270218 7.839163284765999 -3.330352881033191

16 -11.81310452125254 -2.420711226941534 2.927550314738232

17 -8.654318296711313 1.652191871107661 1.266379443459761

18 -18.08314271073251 -1.91571801974974 -4.226460223694949

19 1.269639528011694 2.349438781357117 2.349438781357117

-4.1223176079197i +4.1223176079197i

20 5.471483838358137 2.476041590250572 1.276150039143275

21 8.069263317405973 -3.594881640653509 1.599026959755484

22 1.240656230548367 -2.889477062652692 -13.39895741005542

23 2.30700 4865853058 -7.830240072884703 1.642950953716392

24 1.264378468655506 2.315531519097134 -8.061533718602336

25 1.628626279736931 -6.078116022520112 3.732050807568877

26 1.250953755245463 8.175846591759141 -3.714015014705677

27 -2.812486479833951 -13.19173425438937 1.56692995698348

Table 8: The admissible solutions of the XXZ Bethe equations (3.4) with q = eiπ/3 and N = 8.
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N M number x1 x2 x3

2 1 1 2.414213562373095

3 1
1 1.628626279736931

2 6.078116022520107

4 1
1 2.414213562373095

2 1.414213562373095

4 2

1 1.45314130298278 3.20337817632093

2 2.668693617506732 2.668693617506733

-3.09600332629458i +3.09600332629458i

5 1

1 1.311033025558219

2 1.861000175046023

3 -8.277536750907217

4 3.652418494292248

5 2

1 1.339710835264441 2.046891922279901

2 7.305968916122279 1.320324940604242

3 1.91282417422196 6.940872062317657

4 2.064510526379247 2.064510526379247

-2.02993224151061i +2.02993224151061i

6 1

1 1.249688897773919

2 1.628626279736931

3 2.414213562373095

4 -4.663902460147015

5 6.078116022520107

6 2

1 1.71311584242839 1.269294065270789

2 1.683266313484753 2.811927386738288

3 1.554024547007536 1.554024547007536

+1.554715716529629i -1.554715716529629i

4 2.846518894544238 1.263542099556734

6 3

1 1.262878926307629 3.075549320798162 3.075549320798161

+3.542806348465251i -3.542806348465251i

2 1.771351991900205 3.826157503762062 1.281594555446714

3 3.211911541809374 2.26937708343367 2.269377083433669

+2.360695277629578i -2.360695277629579i

4 2.955672286788613 2.955672286788612 1.686278114645637

+3.365585528895605i -3.365585528895605i

7 1

1 1.208825798344529

2 1.498359634541009

3 1.986520161938681

4 3.161528726585875

5 -3.45462565368127

6 13.29830956633742

7 2

1 1.222821216951139 1.547297967647689

2 1.220472188780732 2.150322976591122

3 2.140605616819436 1.536617282908898

4 2.067053540613296 4.01059689676756

5 2.879021158753284 2.879021158753283

+2.956127592936119i -2.956127592936119i

6 4.108663475752145 1.520996638277984

7 4.148660960002176 1.215637366932319

8 6.571169436423152 -4.94785739884573

9 -7.468286858137201 2.959302735558985

10 1.331990680492124 1.331990680492124

+1.331978961361137i -1.331978961361137i

11 -8.92688858805227 1.488188528857897

12 1.205729430210374 -9.095642759167061

13 1.951628400529481 -8.521599164762728

14 -16.46493396710602 -3.167610405963212

7 3

1 2.29407542825786 2.29407542825786 1.223807335674004

-2.262286996783694i +2.262286996783694i

2 1.591961830774357 2.387325715651191 1.235084659761902

3 2.208206873312259 2.20820687331226 1.552672568630353

-2.183599412028467i +2.183599412028467i

4 2.258703430918202 1.923901682011331 1.923901682011331

-1.916321113803041i +1.91632111380304i

5 1.226752347088832 8.364492571528938 1.561591283662463

6 1.22436156832076 2.214765473037293 7.893846799575592

7 1.399715240410388 9.104198650298802 1.399715240410387

+1.399671218147326i -1.399671218147326i

8 2.204487438555672 7.745185417863576 1.550608398126798

Table 9: The admissible solutions of the XXZ Bethe equations (3.4) with q = eiπ/4 up to N = 7.
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N M number x1 x2 x3

8 1

1 1.179580427103275

2 1.414213562373095

3 1.765366864730179

4 2.414213562373095

5 -2.847759065022574

6 4.261972627395668

8 2

1 1.446403950334763 1.190016384385456

2 1.852238654657947 1.188864345375984

3 2.514682127062517 6.295143655976973

4 2.307514146628479 -4.564170333529112

5 -4.028001605777415 3.623598033160472

6 5.426177490883765 5.42617749088376

+6.696352141994065i -6.696352141994067i

7 -8.475234192916405 -2.578922392281056

8 9.913152718172503 -3.206182813379592

9 2.677671679899443 1.82428114777186

10 1.18672458699157 2.711553564494324

11 1.43539240503802 2.700777985799591

12 2.237470143268887 2.237470143268887

+2.232703480148387i - 2.232703480148388i

13 1.199443547942262 1.199443547942261

+1.199443691222013i -1.199443691222013i

14 1.441546045187176 1.848322534982018

15 1.423573997535758 6.679481637950619

16 -4.822615261912324 1.733667260375862

17 1.402547159199412 -4.948633639651279

18 6.730585662140516 1.182717881167556

19 -5.007962765238115 1.175606675111065

20 6.565048430866063 1.791824885481342

8 3

1 1.933808178839618 1.545539874804185 1.545539874804185

-1.545666045059988i +1.545666045059988i

2 1.347234359171865 1.347234359171865 3.304419901978651

-1.347240969937556i +1.347240969937556i

3 1.468276599483929 3.220895697334547 1.19694970312494

4 1.651830400488286 1.651830400488287 1.464153355718869

-1.6521877840048i +1.6521877840048i

5 1.200048659530 919 1.961718914285269 1.477882030590439

6 1.462678390951383 3.155365989103904 1.916232292792105

7 1.195184858596888 1.694235432921724 1.694235432921724

-1.694739206592311i +1.694739206592311i

8 3.174113422492026 1.92094315096371 1.195647766853818

Table 10: The admissible solutions of the XXZ Bethe equations (3.4) with q = eiπ/4 and N = 8.
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N M number x1 x2 x3

2 1 1 1.962610505505151

3 1
1 1.461818651603003

2 3.574329190217505

4 1

1 1.96261050550515

2 1.311033025558219

3 8.27753675090721

4 2

1 1.344028591243017 2.447657661838913

2 2.189055410994626 2.189055410994627

-1.71493838744667i +1.71493838744667i

5 1

1 1.23606797749979

2 1.618033988749895

3 2.618033988749894

5 2

1 1.749592331415895 1.259572013945332

2 1.667690311962022 3.974545391101193

3 1.724293088189099 1.724293088189099

+1.246431541912111i -1.246431541912111i

4 4.116005110398541 1.246284665265577

5 4.142310683532282 4.142310683532279

+4.35688110427138i -4.356881104271381i

6 1

1 1.190729200383194

2 1.461818651603003

3 1.96261050550515

4 3.574329190217505

5 -10.40659374764855

6 2

1 1.206790520429557 1.524710031541862

2 2.231459158071619 1.202712882967582

3 2.007446763339642 8.411463578743241

4 1.505088894154398 2.211779917490494

5 3.391097834451792 3.391097834451791

+2.137260009634191i -2.137260009634192i

6 1.429452052607576 1.429452052607576

+1.038668851613124i -1.038668851613125i

7 1.193470251543278 9.123706421008574

8 8.943547047241228 1.471698013592016

6 3

1 1.874104285363227 1.874104285363228 2.589407182559046

-1.378223914748844i +1.378223914748843i

2 1.205338345735675 2.435006504125385 2.435006504125385

+1.895623247953007i -1.895623247953007i

3 4.792019859888095 1.147122809503764 1.147122809503762

+4.191977909831017i -4.191977909831016i

4 1.217923140935344 2.813376407957134 1.572774650848652

5 2.352950008994888 2.352950008994887 1.52038626323149

+1.817348862908779i -1.81734886290878i

7 1

1 1.160202334045279

2 1.37099723775096

3 1.699473589729839

4 2.375165198312843

5 -5.721812045187025

6 5.148221975956501

7 2

1 1.408432222064447 1.171698991051096

2 1.401167728417128 1.805963656505584

3 1.812019057106945 1.170007362023291

4 1.279250449479749 1.279250449479748

+0.9294284209179594i -0.9294284209179595i

5 2.170715518398742 2.170715518398741

+1.586182712241336i -1.586182712241336i

6 1.762389509249143 2.822111962624334

7 1.166632159289219 2.888620018910967

8 2.868965063692831 1.390952988340999

7 3

1 2.618379654246318 3.748323531486734 3.748323531486732

+3.748017767598491i -3.748017767598492i

2 0.9827111074314028 3.402279 883618681 0.982711107431404

-3.262273894557891i +3.262273894557891i

3 1.44412440163796 1.975097530601085 1.182185195050447

4 1.639956241140929 1.639956241140929 1.92399300966388

+1.19052263024356i -1.19052263024356i

5 1.422694691325217 1.811547625097516 1.811547625097515

+1.312430925490274i -1.312430925490274i

6 1.865424819629057 1.865424819629057 1.175408810971523

+1.350217351171199i -1.3502173511712i

7 4.278808762679677 4.278808762679675 1.735950022329603

+4.435213551496066i -4.435213551496067i

8 4.482031924050006 4.482031924050003 1.163787451697995

+4.683990539341568i -4.683990539341569i

9 1.176249499108818 4.567826614400596 1.423871663317115

10 1.174464705246947 1.872470411706964 4.389889034358894

11 1.351963489253257 4.883627945846047 1.351963489253257

+0.9822482229626871i -0.9822482229 626871i

12 1.382220257632069 4.424719229653134 4.424719229653131

+4.614269329027579i -4.61426932902758i

13 1.865730317958417 4.331809157967312 1.416090213898351

Table 11: The admissible solutions of the XXZ Bethe equations (3.4) with q = eiπ/5 up to N = 7.
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N M number x1 x2 x3

8 1

1 1.138192552062957

2 1.311033025558219

3 1.96261050550515

4 1.554619032420834

5 2.893146291465051

6 -4.157155527220437

7 8.27753675090721

8 2

1 1.336088158806443 1.146789909509786

2 1.614712957660528 1.332716767162854

3 2.129163003251931 1.599504552643429

4 1.328550709738535 2.142233338886835

5 1.145952463660923 1.617263878227611

6 2.148429235497258 1.144427236851177

7 5.970673342816859 -6.807556417171186

8 1.186193082020218 1.186193082020218

+0.8618197338868376i -0.8618197338868376i

9 3.700975871220594 2.044413881921601

10 3.22254557647494 3.22254557647494

+2.442247793000595i -2.442247793000596i

11 1.816361993233109 1.816361993233108

+1.319263515796331i -1.319263515796331i

12 1.580119483569546 3.800019441082347

13 1.308213900461231 -10.8884292670433

14 -10.96882884583839 1.137180644939945

15 1.941451195793101 -10.35085068475084

16 3.844192024006444 1.320876365901175

17 -9.448193511791008 2.79024143505726

18 -10.71635263086061 1.547521808575225

19 1.141680918344861 3.864338139442635

20 -20.75089982455659 -3.747556189954495

8 3

1 1.152911608122782 1.521182841520322 1.521182841520321

+1.105269705773082i -1.105269705773082i

2 1.689476731560921 1.420511692843986 1.420511692843985

+1.032076474649996i -1.032076474649996i

3 2.116551646515748 3.190321178102575 3.190321178102574

+2.114684828886933i -2.114684828886935i

4 1.152031745303854 1.670604849464544 2.431584410448484

5 1.49131548027285 1.49131548027285 1.355505247355462

+1.083548228240326i -1.083548228240326i

6 1.153006146461386 2.457631476354184 1.354649410334471

7 1.155264412504946 1.696786869605106 1.361288361070377

8 1.301230331780993 1.301230331780993 2.520770703624886

+0.945400143152111i -0.945400143152111i

9 2.767507419138274 0.8536816467160973 0.8536816467160964

+2.639644349871746i -2.639644349871746i

10 1.667446266251631 2.420 923118070947 1.350646860029378

11 3.60404301030639 3.604043010306389 1.14351105004767

+2.298115335328595i -2.298115335328597i

12 2.17970199500867 8.743528394000164 1.611362131547616

13 9.641933706319058 1.629607621987226 1.147392392511266

14 3.466847839330259 3.466847839330258 1.595747808557541

+2.237018668690406i -2.237018668690407i

15 1.203999000879017 10.7917885753781 1.203999000879017

+0.8747565077890832i -0.8747565077890832i

16 1.91597854331014 9.300125780741034 1.91597854331014

+1.390808610142858i -1.390808610142858i

17 1.340380214566179 9.874749723055375 1.148237393071579

18 2.199876642321688 9.032424520308002 1.145845769779947

19 1.332719524956927 2.193418356684709 8.945501899172173

20 1.336967053063209 9.546671796790799 1.627009052110716

21 1.326274265652015 3.563336816528149 3.5 63336816528148

+2.279904684704862i -2.279904684704864i

Table 12: The admissible solutions of the XXZ Bethe equations (3.4) with q = eiπ/5 and N = 8.
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