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COUNTING SPANNING TREES IN PRISM
AND ANTI-PRISM GRAPHS∗

Weigang Sun1,†, Shuai Wang1 and Jingyuan Zhang1

Abstract In this paper, we calculate the number of spanning trees in prism
and antiprism graphs corresponding to the skeleton of a prism and an an-
tiprism. By the electrically equivalent transformations and rules of weighted
generating function, we obtain a relationship for the weighted number of span-
ning trees at the successive two generations. Using the knowledge of difference
equations, we derive the analytical expressions for enumeration of spanning
trees. In addition, we again calculate the number of spanning trees in Apollo-
nian networks, which shows that this method is simple and effective. Finally
we compare the entropy of our networks with other studied networks and find
that the entropy of the antiprism graph is larger.
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1. Introduction

Spanning trees have been widely studied in many aspects of mathematics, such as
algebra [17], combinatorics [12], and theoretical computer science [1]. An interesting
issue is calculation of the number of spanning trees, which has a lot of connections
with networks, such as dimer coverings [19], Potts model [14, 23], random walks
[5,15], the origin of fractality for scale-free networks [9,11] and many others [24,25].
In view of its wide range of applications, the enumeration of spanning trees has
received considerable attention in the scientific community [3,20]. For example, the
number of spanning trees is a crucial measurement of the network reliability.

However, counting spanning trees in a network is challenging. It is known that
the number of spanning trees of any finite graph is calculated by Kirchhoff’s matrix-
tree theorem [10], and this is a demanding and difficult task, in particular for larger
graphs. Presently there has been much interest in finding the effective methods
to obtain exact expressions for the number of spanning trees of some deterministic
graphs, such as grids [16], lattices [18], Sierpinski gaskets [4,6], and Petersen graphs
[8]. The methods of vertices decimation [26], recursive enumeration of subgraphs
[27], dual graphs [28], Laplacian spectrum [7], and matrix-tree theorem [2], have
often been used for calculating the number of spanning trees.

In our previous article [7], we apply the Laplacian spectrum to calculate the
number of spanning trees, while the involved calculations are complicated and this
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Figure 1. Wye-Delta-Wye transformations.

method is not valid for calculating the number of spanning trees of an antiprism
graph. The prism and antiprism graphs corresponding to the skeleton of a prism
and an antiprism belong to a family of generalized Petersen graphs. In this paper,
we apply the knowledge of electrical networks, where an edge-weighted graph is
regarded as an electrical network with the weights being the conductances of the
corresponding edges. By the electrically equivalent transformation and the rules of
the weighted number of spanning trees proposed in [21,22], we obtain a relationship
for the weighted number of spanning trees in the adjacent transformations and de-
rive the analytical solutions of the number of spanning trees in prism and antiprism
graphs. As an example, we again calculate the number of spanning trees of Apol-
lonian networks, which is consistent with that obtained in [13, 27, 28]. Finally, we
compare the entropy [12] of our models with other studied networks and show that
the entropy of the antiprism graph is larger.

2. Preliminaries

In this section, we provide the relationships between electrical networks and span-
ning trees. Let X be a graph (edge-weighted), X

′
be the corresponding electrically

equivalent graph, τ(X) denotes the weighted number of spanning trees of X. Using
the obtained results in [21,22], there have the following transformation rules:

• Parallel edges: If two parallel edges with conductances a and b in X are
merged into a single edge with conductance a + b in X

′
, then the weighted

number of spanning trees remains same, i.e., τ(X
′
) = τ(X).

• Serial edges: If two serial edges with conductances a and b are merged into a
single edge with conductance ab

a+b , then τ(X
′
) = 1

a+b · τ(X).

• Wye-Delta transformation: If a star graph with conductances a, b, c (see Fig.
1) is transformed into an electrically equivalent triangle with conductances
x = bc

a+b+c , y = ac
a+b+c and z = ab

a+b+c , then τ(X
′
) = 1

a+b+c · τ(X).

• Delta-Wye transformation: If a triangle with conductances x, y, z (see Fig. 1)
is changed into an electrically equivalent star graph with conductances a =
xy+yz+zx

x , b = xy+yz+zx
y and c = xy+yz+zx

z , then τ(X
′
) = (xy+yz+zx)2

xyz · τ(X).

3. Enumeration of spanning trees in 3-prism graph

3.1. Constructions of 3-prism graph

The algorithms of the 3-prism graph denoted by Gn are as follows: at generation
n = 1, its initial state is a triangle. For n ≥ 2, every existing node of the innermost
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Figure 2. The first three generations of Gn.
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Figure 3. The transformations from G2 to G1.

triangle in Gn−1 produces a new node and the three new nodes form a new triangle.
The first three generations of Gn are shown in Fig. 2.

3.2. Calculations of the number of spanning trees

In order to calculate the number of spanning trees, we need to find a relationship
between Gn and Gn−1 (n ≥ 2). By the electrically equivalent transformation, we
denote Gk as a graph consisting of k triangles and its innermost triangle has the
weights rk. Using the properties given in Section 2, we transform Gk to Gk−1 and
change the weights of the innermost triangle from rk to rk−1. For k = 2, we provide
the transformation process from G2 to G1, see Fig. 3.

By the Delta-Wye transformations, we obtain τ(X1) = 9r2τ(G2). Merging two
serial edges into a single edge, then τ(X2) = ( 1

1+3r2
)3τ(X1). Through the Wye-

Delta transformation, we obtain τ(X3) = 1+3r2
9r2

τ(X2). Finally we merge parallel
edges into a single edge and derive τ(G1) = τ(X3).

Combining the above four transformations, we obtain the relationship between
τ(G2) and τ(G1), that is,

τ(G2) = (1 + 3r2)
2τ(G1).

Further,

τ(Gn) =
n∏

k=2

(1 + 3rk)
2 · τ(G1) = 3r21[

n∏
k=2

(1 + 3rk)]
2, (3.1)
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where rk−1 = 4rk+1
3rk+1 (k = 2, 3, · · · , n). Its characteristic equation reads

3x2 − 3x− 1 = 0,

with two roots being x1 = 3−
√
21

6 and x2 = 3+
√
21

6 . Subtracting these two roots into

both sides of rk−1 = 4rk+1
3rk+1 yields

rk−1 −
3−

√
21

6
=

4rk + 1

3rk + 1
− 3−

√
21

6

=
5 +

√
21

2
·
rk − 3−

√
21

6

3rk + 1
, (3.2)

rk−1 −
3 +

√
21

6
=

4rk + 1

3rk + 1
− 3 +

√
21

6

=
5−

√
21

2
·
rk − 3+

√
21

6

3rk + 1
. (3.3)

Let ak =
rk− 3−

√
21

6

rk− 3+
√

21
6

and by Eqs. (3.2) and (3.3), we obtain

ak−1 =
23 + 5

√
21

2
ak

and

ak =
rk − 3−

√
21

6

rk − 3+
√
21

6

= (
23 + 5

√
21

2
)n−k · an.

Hence, the expression of rk reads

rk =
( 23+5

√
21

2 )n−k · 3+
√
21

6 an − 3−
√
21

6

( 23+5
√
21

2 )n−kan − 1
,

where

r1 =
( 23+5

√
21

2 )n−1 · 3+
√
21

6 an − 3−
√
21

6

( 23+5
√
21

2 )n−1an − 1
. (3.4)

Using this expression rn−1 = 4rn+1
3rn+1 and denoting An and Bn as the coefficients

of 4rn + 1 and 3rn + 1, we obtain

3rn + 1 = A0(4rn + 1) +B0(3rn + 1),

3rn−1 + 1 =
A1(4rn + 1) +B1(3rn + 1)

A0(4rn + 1) +B0(3rn + 1)
,

...
...

3rn−k + 1 =
Ak(4rn + 1) +Bk(3rn + 1)

Ak−1(4rn + 1) +Bk−1(3rn + 1)
, (3.5)

3rn−(k+1) + 1 =
Ak+1(4rn + 1) +Bk+1(3rn + 1)

Ak(4rn + 1) +Bk(3rn + 1)
, (3.6)
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...
...

3r2 + 1 =
An−2(4rn + 1) +Bn−2(3rn + 1)

An−3(4rn + 1) +Bn−3(3rn + 1)
,

τ(Gn) = 3r21[An−2(4rn + 1) +Bn−2(3rn + 1)]2, (3.7)

where A0 = 0, B0 = 1;A1 = 3, B1 = 1. By the relationship between rn and rn−1

and Eqs. (3.5) and (3.6), we obtain

Ak+1 = 5Ak −Ak−1; Bk+1 = 5Bk −Bk−1. (3.8)

The characteristic equation of Eq. (3.8) is

λ2 − 5λ+ 1 = 0,

with two roots being λ1 = 5+
√
21

2 and λ2 = 5−
√
21

2 . Then, the general solutions of
Eq. (3.8) are

Ak = a1λ
k
1 + a2λ

k
2 ; Bk = b1λ

k
1 + b2λ

k
2 .

Substituting the initial conditions A0 = 0, B0 = 1 and A1 = 3, B1 = 1 gives

Ak =

√
21

7
λk
1 −

√
21

7
λk
2 ; Bk =

7−
√
21

14
λk
1 +

7 +
√
21

14
λk
2 . (3.9)

If rn = 1, it means that Gn without any electrically equivalent transformation.
Inserting Eqs. (3.4) and (3.9) into Eq. (3.7), we finally obtain

τ(Gn) = 3r21(
14 + 3

√
21

7
λn−2
1 +

14− 3
√
21

7
λn−2
2 )2 (n ≥ 2).

When n = 1, the number of spanning trees of a triangle is 3, which satisfies the
above equation. Hence, we obtain the number of spanning trees in 3-prism graph,
that is,

τ(Gn) = 3r21(
14 + 3

√
21

7
λn−2
1 +

14− 3
√
21

7
λn−2
2 )2 (n ≥ 1), (3.10)

where r1 =
(18+4

√
21)( 23+5

√
21

2 )n−1+3−
√
21

(15+3
√
21)( 23+5

√
21

2 )n−1+6
, λ1 = 5+

√
21

2 and λ2 = 5−
√
21

2 .

4. Enumeration of spanning trees of 3-antiprism graph

4.1. Construction

As 3-prism graph, this antiprism graph Fn is also built in an iterative way. At
generation n = 1, F1 is a triangle. For n ≥ 2, Fn is obtained from Fn−1, where
every existing node of the innermost triangle in Fn−1 gives birth to a new node and
these three new nodes form a new triangle. Compared to the innermost triangle in
Fn−1, this new triangle is invertible, see Fig. 4.
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Figure 4. The first three generations of Fn.
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Figure 5. The transformations from F2 to F1.

4.2. Enumeration of spanning trees

Following the same method on calculating the number of spanning trees in 3-prism
graph, we use the electrically equivalent transformation to transform Fk to Fk−1.
The transformation between F2 and F1 is shown in Fig. 5.

By the Delta-Wye transformation, we have τ(Y1) = 9r∗2 · τ(F2). Using the Wye-
Delta transformation, we obtain τ(Y2) = ( 1

2+3r∗2
)3 · τ(Y1). Merging parallel edges

into a single edge, then τ(Y3) = τ(Y2). Using the Wye-Delta transformation again,

then τ(Y4) =
2+3r∗2
18r∗2

· τ(Y3). Finally we merge parallel edges into a single edge and

derive τ(F2−1) = τ(Y4).
Combing the above transformations gives

τ(F2) = 2(2 + 3r∗2)
2 · τ(F2−1).

Then,

τ(Fn) = 2n−1
n∏

k=2

(2 + 3r∗k)
2τ(F1) = 3 · 2n−1r∗1

2[
n∏

k=2

(2 + 3r∗k)]
2, (4.1)

where r∗k−1 =
5r∗k+3
3r∗k+2 (k = 2, 3, · · · , n). Its characteristic equation is

x2 − x− 1 = 0,
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whose two roots are x∗
1 = 1+

√
5

2 , x∗
2 = 1−

√
5

2 . Subtracting these two roots into this
equation, we obtain

r∗k−1 −
1 +

√
5

2
=

5r∗k + 3

3r∗k + 2
− 1 +

√
5

2

=
7− 3

√
5

2
·
r∗k − 1+

√
5

2

3r∗k + 2
, (4.2)

r∗k−1 −
1−

√
5

2
=

5r∗k + 3

3r∗k + 2
− 1−

√
5

2

=
7 + 3

√
5

2
·
r∗k − 1−

√
5

2

3r∗k + 2
. (4.3)

Let bk =
r∗k−

1+
√

5
2

r∗k−
1−

√
5

2

. From Eqs. (4.2) and(4.3), we obtain

bk−1 =
47− 21

√
5

2
bk

and

bk =
r∗k − 1+

√
5

2

r∗k − 1−
√
5

2

= (
47− 21

√
5

2
)n−kbn.

Finally we obtain the expression of r∗k,

r∗k =
(1−

√
5)(47−21

√
5

2 )n−kbn −
√
5− 1

2( 47−21
√
5

2 )n−kbn − 2
,

where

r∗1 =
(1−

√
5)( 47−21

√
5

2 )n−1bn −
√
5− 1

2( 47−21
√
5

2 )n−1bn − 2
. (4.4)

Denoting Ck and Dk be the coefficients of 5r∗n + 3 and 3r∗n + 2, we have

3r∗n + 2 = C0(5rn + 3) +D0(3r
∗
n + 2),

3r∗n−1 + 2 =
C1(5r

∗
n + 3) +D1(3r

∗
n + 2)

C0(5r∗n + 3) +D0(2 + 3r∗n)
,

...
...

3r∗n−k + 2 =
Ck(5r

∗
n + 3) +Dk(3r

∗
n + 2)

Ck−1(5r∗n + 3) +Dk−1(3r∗n + 2)
, (4.5)

3r∗n−(k+1) + 2 =
Ck+1(5r

∗
n + 3) +Dk+1(3r

∗
n + 2)

Ck(5r∗n + 3) +Dk(3r∗n + 2)
, (4.6)

...
...

3r∗2 + 2 =
Cn−2(5r

∗
n + 3) +Dn−2(3r

∗
n + 2)

Cn−3(5r∗n + 3) +Dn−3(2 + 3r∗n)
,

τ(Fn) = 3 · 2n−1r∗1
2[Cn−2(5r

∗
n + 3) +Dn−2(3r

∗
n + 2)]2, (4.7)
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where C0 = 0, D0 = 1;C1 = 3, D1 = 2. Using Eqs. (4.5) and (4.6) and r∗k−1 =
5r∗k+3
3r∗k+2 , we obtain the relationships of the coefficients Ck and Dk,

Ck+1 = 7Ck − Ck−1;Dk+1 = 7Dk −Dk−1, (4.8)

where the roots of the characteristic equation λ2 − 7λ+ 1 = 0 are λ∗
1 = 7+3

√
5

2 and

λ∗
2 = 7−3

√
5

2 .
Then, the general solution of Eq. (4.8) are

Ck = c1λ
∗
1
k + c2λ

∗
2
k;Dk = d1λ

∗
1
k + d2λ

∗
2
k.

Inserting the initial conditions of C0 = 0, D0 = 1 and C1 = 3, D1 = 2 into this
equation yields

Ck =

√
5

5
λ∗
1
k −

√
5

5
λ∗
2
k;Dk =

5−
√
5

10
λ∗
1
k +

5 +
√
5

10
λ∗
2
k. (4.9)

Setting r∗n = 1 and substituting Eqs. (4.4) and (4.9) into (4.7) gives

τ(Fn) = 3 · 2n−1r∗1
2(
25 + 11

√
5

10
λ∗
1
n−2 +

25− 11
√
5

10
λ∗
2
n−2)2 (n ≥ 2).

When n = 1, we have τ(F1) = 3, which is same as the number of spanning
trees in a triangle. Therefore, we obtain the analytical expreesion of the number of
spanning trees in 3-antiprism graph,

τ(Fn) = 3 · 2n−1r∗1
2(
25 + 11

√
5

10
λ∗
1
n−2 +

25− 11
√
5

10
λ∗
2
n−2)2 (n ≥ 1), (4.10)

where r∗1 =
(2

√
5−4)( 47−21

√
5

2 )n−1−1−
√
5

(
√
5−3)( 47−21

√
5

2 )n−1−2
, λ∗

1 = 7+3
√
5

2 and λ∗
2 = 7−3

√
5

2 .

5. Enumeration of spanning trees in Apollonian net-
works

The number of spanning trees in Apollonian networks have been calculated in [13,27,
28]. In this section, we use the electrically equivalent transformation to enumerate
spanning trees. Let ak be the weight of an edge in the outmost triangles of Pk(k =
0, 1, · · · , n) and bk be the weights of other edges. According to the transformation
illustrated in Fig. 6, we obtain

τ(Pk) = (3bk)
3k−1

τ(Pk−1) (5.1)

and

ak = ak+1 +
1

3
bk+1, bk =

5

3
bk+1. (5.2)

Setting an = bn = 1 gives

τ(Pn) =
n∏

k=1

(3bk)
3k−1

τ(P0) = 3
3n−1

2

n∏
k=1

b3
k−1

k τ(P0),
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Figure 6. The transformations from P2 to P1.

where ak = 1
2 (

5
3 )

n−k + 1
2 , bk = ( 53 )

n−k. Then the number of spanning trees in
Apollonian networks is

τ(Pn) = 3
3n−1

2 (b3
0

1 b3
1

2 · · · b3
n−1

n ) · τ(P0)

= 3
3n−1

2 · (5
3
)[n−1+3(n−2)+···+3n−2] · τ(P0)

= 3
3n−1

2 · (5
3
)

3n−2n−1
4 · τ(P0)

= 3
3n+2n−1

4 · 5
3n−2n−1

4 · τ(P0), (5.3)

where

τ(P0) = 3a20 = 3(a1 +
b1
3
)2 =

3

4
[(
5

3
)n + 1]2. (5.4)

Finally we obtain the number of spanning trees in Apollonian networks, i.e.,

τ(Pn) =
1

4
· 3

3n+2n+3
4 · 5

3n−2n−1
4 · [(5

3
)n + 1]2.

Compared to the methods used in [13,27,28], this method is simple and effective.

6. The entropy of spanning trees

Since the number of spanning trees grows exponentially, we can calculate the entropy
[12] of spanning trees, denoted by E(Gn), which is given by

E(Gn) = lim
n→∞

ln τ(Gn)

Vn
,

where Vn is the number of nodes in Gn. For the 3-prism and 3-antiprism graphs,
we have Vn = 3n. From Eqs. (3.10) and (4.10), we obtain

E(Gn) =
2

3
ln(

5 +
√
21

2
) ≈ 1.0445,

E(Fn) =
ln 2

3
+

2

3
ln(

7 + 3
√
5

2
) ≈ 1.5143,

E(Pn) =
1

2
(ln 3 + ln 2) ≈ 1.3540.
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It is noted that the entropy of 3-antiprism graph is larger than that of 3-prism
graph. In addition, the entropy of 3-prism graph is almost same as that of two-
dimensional Sierpinski gasket [4] with same average degree of nodes; while the en-
tropy of 3-antiprism graph is larger than that of Apollonian network [28] with same
average degree. Therefore studying the influence of other topological quantities on
the entropy remains open, e.g., the exponent of degree distribution in scale-free
networks.

7. Conclusions

In this paper, we calculate the number of spanning trees in some self-similar net-
works by electrically equivalent transformations, which avoids the computational
complexity of Laplacian spectrum. For the 3-prism and 3-antiprism graphs, we
obtain the exact solutions for the number of spanning trees verified by numeri-
cal simulations. Compared to the existing methods, this method is more effective,
specially for the difficulty in calculating Laplacian spectrum of some graphs. We
further calculate and compare the entropy of spanning trees of 3-prism graph and
3-antiprism graph. Future work regarding weighted generating function of spanning
trees in weighted networks is underway.
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