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Counting Statistics of Single Electron Transport in a Quantum Dot
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We have measured the full counting statistics of current fluctuations in a semiconductor quantum dot
(QD) by real-time detection of single electron tunneling with a quantum point contact. This method gives
direct access to the distribution function of current fluctuations. Suppression of the second moment
(related to the shot noise) and the third moment (related to the asymmetry of the distribution) in a tunable
semiconductor QD is demonstrated experimentally. With this method we demonstrate the ability to
measure very low current and noise levels.
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Current fluctuations in conductors have been extensively
studied because they provide additional information com-
pared to the average current, in particular, for interacting
systems [1]. Shot noise measurements demonstrated the
charge of quasiparticles in the fractional quantum Hall
effect [2] and in superconductors [3]. However, to perform
such measurements for semiconductor quantum dots
(QDs) using conventional noise measurements techniques
is very challenging. This is because of the very low cur-
rents and the corresponding low noise levels in these
systems. Earlier experiments demonstrated the measure-
ment of shot noise in nontunable QDs [4,5], but to our
knowledge, no experiments have been reported in the
literature in which the tunnel barriers, and thereby the
coupling symmetry, could be controlled [6].

An alternative way to investigate current fluctuations,
introduced by Levitov et al., is known as full counting
statistics (FCS) [7]. This method relies on the evaluation of
the probability distribution function of the number of
electrons transferred through a conductor within a given
time period. In addition to the current and the shot noise,
which are the first and second moments of this distribution,
this method gives access to higher order moments. Of
particular interest is the third moment (skewness), which
is due to breaking the time reversal symmetry at finite
current. Experimentally, few attempts to measure the third
moment have been made in tunnel junctions [8].

The most intuitive method for measuring the FCS of
electron transport is to count electrons passing one by one
through the conductor. Real-time detection of single elec-
tron transport has been experimentally investigated only
very recently [9–11]. It is a challenging task since it re-
quires a very sensitive, low-noise, and noninvasive elec-
trometer, as well as a high-bandwidth circuit. Several de-
vices, such as the single electron transistor [9,10] and the
quantum point contact [12–16], have been demonstrated to
have high enough sensitivity to detect single electrons in a
QD. But, up to now, none of these experiments were able to
extract the full counting statistics of electron transport.
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Here we report on the real-time detection of single
electron tunneling through a QD using a quantum point
contact (QPC) as a charge detector. With this method, we
can directly measure the distribution function of current
fluctuations in the QD by counting electrons. To our
knowledge, this is the first measurement of the full count-
ing statistics for electrons in a solid state device. In addi-
tion, we can tune the coupling of the QD with both leads
and measure the respective tunneling rates. We show ex-
perimentally the suppression of the second and third mo-
ments of the current fluctuations when the QD is
symmetrically coupled to the leads.

Figure 1(a) shows the structure, fabricated on a GaAs-
GaAlAs heterostructure containing a two-dimensional
electron gas 34 nm below the surface [density 4:5�
1015 m2, mobility 25 m2�V s��1]. An atomic force micro-
scope (AFM) was used to locally oxidize the surface,
thereby defining depleted regions below the oxide lines
[17,18]. The measurements were performed in a 3He=4He
dilution refrigerator with an electron temperature of about
350 mK, as determined from the width of thermally broad-
ened Coulomb blockade resonances [6]. The charging
energy of the QD is 2.1 meV and the mean level spacing
is 200–300 �eV. The conductance of the QPC, GQPC, was
tuned close to 0:25� e2=h. We apply a dc bias voltage
between the source and the drain of the QPC, VQPC �

500 �V, and measure the current through the QPC, IQPC,
which depends on the number of electrons N in the QD.

In order to measure the current with a charge detector,
one has to avoid that electrons travel back and forth be-
tween the dot and one lead or to the other lead due to
thermal fluctuations [Fig. 1(b)]. This is achieved by ap-
plying a large bias voltage between source and drain, i.e.,
j � eV=2� Edj � kBT, where Ed is the electrochemical
potential of the dot and V is the symmetrically applied
bias; see Figs. 1(a) and 1(c). An example of a time trace of
the QPC current in this configuration is shown in Fig. 1(d).
The number of electrons in the QD fluctuates between N
and N � 1. Since this trace corresponds to the nonequilib-
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FIG. 2 (color online). Statistical distribution of the number n
of electrons entering the QD during a given time t0. The two
panels correspond to two different values of the tunneling rates,
obtained for different values of the gate voltage VG1. The time t0
is chosen in order to have the same mean value of number of
events, hni � 3, for both graphs. We have checked that this
choice does not affect the results. The line shows the theoretical
distribution calculated from Eqs. (1) and (2). The tunneling rates
are determined experimentally by the method described in
Fig. 1(e), and no fitting parameters have been used for the
theoretical curves.

FIG. 1 (color online). (a) AFM micrograph of the sample
consisting of a QD connected to two contacts S and D and a
nearby QPC. G1, G2, and P are lateral gates allowing the tuning
of the tunnel coupling to the source S, the coupling to the drain
D, and the conductance of the QPC. G1 and G2 are also used to
tune the number of electrons in the QD. A symmetric bias volt-
age V is applied between the source and the drain on the QD.
(b),(c) Scheme of the quantum dot in the case of equilibrium
charge fluctuations (b) and nonequilibrium charge fluctua-
tions (c). (d) Time trace of the current measured through the
QPC corresponding to fluctuations of the charge of the dot
between N and N � 1 electrons. The arrows indicate transitions
where an electron is entering the QD from the source lead.
(e) Probability density of the times �in and �out (see text)
obtained from time traces similar to the one in (d). The lines
correspond to the expected exponential dependence (see the
text), where the tunneling rates are calculated from 1=�S�D� �
1=�in�out� � h�in�out�i.
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rium regime, we can attribute each transition N ! N � 1
to an electron entering the QD from the source contact, and
each transition N � 1! N to an electron leaving the QD
to the drain contact. The charge fluctuations in the QD
correspond to a nonequilibrium process and are directly
related to the current through the dot [10]. Because of the
Coulomb blockade, only one electron at a time can enter
the QD, which allows one to count electrons traveling
through the system.

The first application of electron counting in the nonequi-
librium regime concerns the determination of the individ-
ual tunneling rates from the source to the QD, �S, and from
the QD to the drain, �D. Previous experiments determin-
ing the individual tunneling rates involved more than two
leads connected to the QD [19]. In the trace of Fig. 1(d), the
time �in corresponds to the time it takes for an electron to
enter the QD from the source contact, and �out to the time
it takes for the electron to leave the QD to the drain con-
tact. For independent tunneling events, the tunneling rates
can be calculated from the average of �in and �out on a
long time trace [14], 1=�S�D� � 1=�in�out� � h�in�out�i. To
check that the tunneling events are indeed independent, we
have compared the probability densities p�in

and p�out
with

the expected exponential behavior p��in�out�� � �S�D��
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exp���S�D��in�out��. Figure 1(e) shows good agreement
with our data. It is interesting to note that, in the case
shown in Fig. 1(e), the QD is almost symmetrically
coupled. We demonstrate here a very sensitive method to
determine the symmetry of the coupling alternative to
Ref. [20].

From traces similar to the one shown in Fig. 1(d), we can
directly determine the statistical properties of sequential
electron transport through the QD. We count the number n
of electrons entering the QD from the source contact dur-
ing a time period t0, i.e., the number of down steps in
Fig. 1(d) (see arrows). We obtain the distribution function
of n by repeating this counting procedure on m � T=t0
independent traces, T � 0:5 s being the total length of the
time trace. The resulting distribution functions are shown
for two different values of the tunneling rates in Figs. 2(a)
and 2(b).

The FCS theory allows one to determine the distribution
function of the number n of electrons traveling through a
conductor [7]:

P�n� �
Z �

��

d�
2�

e�S����n�; (1)

where S��� is the generating function, which has been
calculated for a single level QD for large bias voltage
j�eV=2� Edj � kBT [21]:

S���
t0
� 	�S � �D �

�����������������������������������������������������
��S � �D�

2 � 4�S�De�i�
q


: (2)

Here �S and �D are the effective tunneling rates, which
take into account any possible spin degeneracy of the levels
in the QD, and correspond to the tunneling rates we deter-
mine experimentally. We have calculated the theoretical
distribution functions for the tunneling rates measured in
the cases of Figs. 2(a) and 2(b) (solid lines). The agreement
with the experimental distribution is very good, in particu-
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FIG. 3 (color online). (a) Average number of electrons enter-
ing the QD, �, measured as a function of the gate voltage VG1

and the bias voltage V. Far from the edges of the Coulomb
blockade region, i.e., for j � eV=2� Edj � kBT, the fluctua-
tions of n are directly related to current fluctuations. The dashed
line corresponds to the cross section shown in panel (b).
(b) Three first moments of the fluctuations of n as a function
of the bias voltage V and at a given gate voltage VG1 �
�44 mV. The ground state (GS) as well as two excited states
(ES) are clearly visible. The moments are scaled so that �
corresponds to the number of electrons entering the QD per
second. In the gray region, the condition j � eV=2� Edj � kBT
is not valid, and the number of electrons entering the QD cannot
be taken as the current flowing through the QD. The width of this
region is 9� kBT=e � 300 �V, determined from the width for
which the Fermi distribution is between 0.01 and 0.99.
(c) Normalized second and third moments as a function of the
bias voltage V and at a given gate voltage VG1 � �44 mV.
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lar, given that no fitting parameters were used. Both graphs
show a clear qualitative difference: Fig. 2(b) shows a
broader and more asymmetric distribution than Fig. 2(a).
We will see later that this difference comes from the differ-
ent asymmetries of the tunneling rates.

In order to perform a more quantitative analysis, we
calculate the three first central moments given by � �
hni, and �i � h�n� hni�ii for i � 2; 3, where h� � �i repre-
sents the mean over T=t0 periods of length t0. The first
moment (mean) gives access to the mean current, I �
e�=t0, and the second central moment (variance) to the
shot noise, SI � 2e2�2=t0 (for t0 much larger than the
correlation time). We are also interested in the third central
moment,�3, which gives the asymmetry of the distribution
function around its maximum (skewness). An important
difference to previous measurements of the third cumulant
is that our method can be used to extract any higher order
cumulants. For the data presented here, the accuracy of the
higher cumulants is limited by the short length of the time
traces.

We first focus on the mean � of the distribution. By
measuring � as a function of the voltage applied on gate
G1 and the bias voltage V, we can construct the so-called
Coulomb diamonds [see Fig. 3(a)]. The Coulomb dia-
monds describe the charge stability of the QD, normally
measured in standard transport experiments [6]. Here, we
present a novel way of measuring Coulomb blockade
diamonds by time-resolved detection of the electrons using
a noninvasive charge detector. We observe clear Coulomb
blockade regions as well as regions of finite current. As we
increase the bias voltage, we see steps in the current. The
first step in Fig. 3(b) (see left arrow) corresponds to the
alignment of the chemical potential of the source contact
with the ground state in the QD, and the following steps
with excited states in the QD. From the resolution of the
Coulomb diamonds, we see that the sample is stable
enough such that background charge fluctuations do not
play a significant role [22].

In addition to the mean, we have calculated the second
and third central moments of the electron counting statis-
tics. These two moments are shown in Fig. 3(b) for VG1 �
�44 mV as a function of the bias voltage. The second
moment (blue dotted line) reproduces the steps seen in the
current. These two moments can be represented by their
reduced quantities �2=� (known as the Fano factor) and
�3=�, as shown in Fig. 3(c). Both normalized moments
are almost independent of the bias voltage, and correspond
to a reduction compared to the values �2=� � �3=� � 1
expected for classical fluctuations with Poissonian count-
ing statistics. Super-Poissonian noise [23] is not expected
in our configuration.

In a QD, one expects a reduction of the moments due to
the fact that when one electron occupies the QD, a second
electron cannot enter. This leads to correlations in the
current fluctuations and to a reduction of the noise. The
reduction is maximal when the tunnel barriers are sym-
07660
metric. For an asymmetrically coupled QD, the transport is
governed by the slow barrier and the noise recovers the
value for a single tunneling barrier. The normalized mo-
ments for a single level QD at large bias voltage can be
expressed as a function of the asymmetry of the tunneling
rates, a � ��S � �D�=��S � �D� [21]:

�2

� �
1

2
�1� a2� and

�3

�
�

1

4
�1� 3a4�: (3)

The second central moment recovers earlier calculations of
the Fano factor in a QD [24]. We see in these equations that
both moments are reduced for a symmetrically coupled QD
(i.e., a � 0), and tend to the Poissonian values for an
asymmetrically coupled QD (i.e., a � �1).

Reduction of the second moment (shot noise) due to the
Coulomb blockade has already been reported in the case of
asymmetrically coupled QDs [4,5]. In these experiments,
reduction of the shot noise occurs due to bias voltage
dependent effective tunneling rates [24]. Here we report
the reduction of the second as well as the third moment for
a fully controllable QD. In particular, we are able to con-
tinuously change the tunneling rates: by changing the gate
voltage VG1, we change the chemical potential in the QD,
and also the asymmetry of the coupling by changing the
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FIG. 4 (color online). (a) Second and (b) third normalized
central moments of the fluctuations of n as a function of the
asymmetry of the tunneling rates, a � ��S � �D�=��S � �D�. To
increase the resolution, each point at a given asymmetry is
obtained by averaging over about 50 points at a given voltage
VG1 and in a window of bias voltage 1:5< V < 3 mV. Error bars
correspond to the standard error of this averaging process and are
of the size of the points if not shown. The dashed lines are the
theoretical predictions given by Eq. (3). No fitting parameters
have been used, since the tunneling rates are fully determined
experimentally [see Fig. 1(e) and text]. Inset of (b): Variation of
the asymmetry of the tunneling rates, a, as a function of VG1.
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opening of the source lead. The tunneling rates can be
directly measured as described in Fig. 1(e), and the inset
of Fig. 4(b) shows the variation of asymmetry with gate
voltage in the region of interest. In Figs. 4(a) and 4(b), we
show the normalized second and third central moments
as a function of the asymmetry a. The experimental data
follow the theoretical predictions given by Eq. (3) very
well. We note, in particular, that no fitting parameters have
been used since the tunneling rates are determined
experimentally.

Our ability to measure the counting statistics of electron
transport relies on the high sensitivity of the QPC as a
charge detector. The counting process that we demonstrate
in this Letter was not possible in previous experiments with
the accuracy required for performing a statistical analysis
[10]. Given the bandwidth of our experimental setup,
�f � 30 kHz, the method allows one to measure currents
up to 5 fA, and we can measure currents as low as a few
electrons per second, i.e., less than 1 aA. The low-current
limitation is mainly given by the length of the time trace
and the stability of the QD, and is well below what can be
measured with conventional current meters. In addition, as
we directly count electrons one by one, this measurement
is not sensitive to the noise and drifts of the experimental
setup. It is also a very sensitive way of measuring low-
current noise levels. Conventional measurement tech-
niques are usually limited by the current noise of the
amplifiers (typically 10�29 A2=Hz) [2,4,5]: here we dem-
onstrate a measurement of the noise power with a sensi-
tivity better than 10�35 A2=Hz.

In conclusion, we have measured current fluctuations in
a semiconductor QD, using a QPC to detect single electron
traveling through the QD. We show experimentally the
reduction of the second and third moments of the distribu-
07660
tion when the QD is symmetrically coupled to the leads.
This ability to measure current fluctuations in a QD, as well
as the very low-noise level we demonstrate here, opens
new possibilities towards measuring electronic entangle-
ment in quantum dot systems [25,26].
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