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ABSTRACT

We present two space bounded random sampling algorithms
that compute an approximation of the number of triangles
in an undirected graph given as a stream of edges. Our first
algorithm does not make any assumptions on the order of
edges in the stream. It uses space that is inversely related to
the ratio between the number of triangles and the number of
triples with at least one edge in the induced subgraph, and
constant expected update time per edge. Our second algo-
rithm is designed for incidence streams (all edges incident to
the same vertex appear consecutively). It uses space that is
inversely related to the ratio between the number of triangles
and length 2 paths in the graph and expected update time
O(log |V | ·(1+s · |V |/|E|)), where s is the space requirement
of the algorithm. These results significantly improve over
previous work [20, 8]. Since the space complexity depends
only on the structure of the input graph and not on the num-
ber of nodes, our algorithms scale very well with increasing
graph size and so they provide a basic tool to analyze the
structure of large graphs. They have many applications, for
example, in the discovery of Web communities, the computa-
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tion of clustering and transitivity coefficient, and discovery
of frequent patterns in large graphs.

We have implemented both algorithms and evaluated their
performance on networks from different application domains.
The sizes of the considered graphs varied from about 8, 000
nodes and 40, 000 edges to 135 million nodes and more than
1 billion edges. For both algorithms we run experiments
with parameter s = 1, 000, 10, 000, 100, 000, 1, 000, 000 to
evaluate running time and approximation guarantee. Both
algorithms appear to be time efficient for these sample sizes.
The approximation quality of the first algorithm was vary-
ing significantly and even for s = 1, 000, 000 we had more
than 10% deviation for more than half of the instances.
The second algorithm performed much better and even for
s = 10, 000 we had an average deviation of less than 6%
(taken over all but the largest instance for which we could
not compute the number of triangles exactly).

Categories and Subject Descriptors: H.3 [Information
Systems]: Information Storage and Retrieval

General Terms: Algorithms, Theory, Performance.

Keywords: Streaming algorithms, graph algorithms, net-
work analysis.

1. INTRODUCTION
Graphs are fundamental structures for modeling complex

relationships between data in Web documents, chemical com-
pounds, XML, social networks etc. A basic tool to uncover
their structural design principles and to extract relevant in-
formation is to mine the most frequent interconnection pat-
terns occurring in the graph.

The computation of network indices based on counting the
number of certain small subgraphs is a basic tool in the anal-
ysis of the structure of large networks. The clustering coeffi-
cient [18] is defined as the normalized sum of the fraction of
neighbor pairs of a vertex of the graph that are connected.
The related transitivity coefficient of a graph [6], is defined
as the ratio between three times the number of triangles and
the number of length two paths in the graph. More recently,
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much attention has been devoted to the analysis of complex
networks arising in information systems, software systems,
overlay networks etc. Mining the most frequent subgraphs is
here aimed to identify the building blocks of universal classes
of complex networks [14]. As an example, the occurrence of
a very large number of certain dense subgraphs has been
observed in the Webgraph, the graph formed by Web pages
and hyperlinked connections [10], in the attempt of trac-
ing the emergence of hidden cyber-communities. A stochas-
tic model of the growth of the Webgraph [9], the ”copying
model”, has these dense subgraphs as building blocks of the
process of network formation.

Finding frequent graph patterns also finds application to
graph databases where the classical graph query problem
consists of finding all the graphs of the database containing
a given query pattern as a subgraph. A direct indexing of
the most frequent subgraphs, up to a maximum size, that
occur in the graph [19] has for instance been proposed as an
alternative to path indexing [16].

Counting the number of certain subgraphs in a large graph
is a challenging computational task. The current state of
the art provides methods that are either computational in-
feasible on large data sets or do not provide any guarantee
on the accuracy of the estimation. The best known meth-
ods for the solution of the simplest non trivial version of
this problem, i.e. counting the number of triangles in a
subgraph, reduces to matrix multiplication [3]. This is not
computational feasible even on graphs of medium size, be-
cause of time complexity and the space required to store
the whole graph and the related data structures in main
memory. Schank and Wagner [15] give an extensive experi-
mental study of the performance of algorithms for counting
and listing triangles in graphs.

A natural way to address the problem of computing with
massive data sets is to resort to the data stream model [7,
12]. In this model data arrives in a stream, one item at
a time, and the algorithms are required to use very little
space and per-item processing time. Secondary and slower
memory storage devices naturally produce data streams for
which multiple passes of computation are usually prohibitive
due to the volumes of stored data. In several network con-
texts, the application receive data without pace from remote
sources. Data stream computation allows also to compute
on-line relevant quantities without incurring a large cost for
organizing and storing data. We think for example of a
distributed crawler collecting Web pages and their links,
and performing structural analysis of the Webgraph prior
to transfer data to a storage device.

Data stream algorithms have been proposed for problems
like computation of frequency moments [1], histograms [5],
Wavelet transforms [4], and others. This large body of work
contrasts with a lack of efficient solutions of natural graph
problems in the streaming model of computation [7]. Bar-
Yosseff, Kumar and Sivakumar [20] give a first solution for
counting triangles in the data stream model. They consider
both the “adjacency stream” model where the graph is pre-
sented as a sequence of edges in arbitrary order and there
is no bound on the degree of a vertex, and the “incidence
stream” model where they consider only bounded-degree
graphs and all edges incident to a vertex are presented suc-
cessively. Their algorithms provide an ǫ approximation with
probability 1 − δ using a number of memory cells in some
cases smaller than a naive sampling technique algorithm.

The algorithms are obtained through a so called ”list” effi-
cient reduction to the problem of computing frequency mo-
ments [1]. Subsequently, more algorithms have also been
developed for the adjacency stream model [8]. These solu-
tions are still far from being practical for most real world
networks.

1.1 Our contribution
In this work we specifically present unbiased estimators

for the number of triangles in the graph and the number of
cliques of any size. Our data stream algorithms compute a
(1 + ǫ)-approximation with probability 1 − δ. A complete
overview of the application of our method to other classes
of subgraphs will be given in the full version of our work.

When estimating the number of triangles, if the graph is
given as a stream of edges in arbitrary order, the data struc-

ture uses O( 1
ǫ2
·log( 1

δ
)·(1+ |T1|+|T2|

|T3|
)) memory cells, where Ti

denotes the set of node-triples having i edges in the induced
subgraph. |T3| is therefore the measure we like to estimate.
This is always better than the naive sampling algorithm that

requires O( 1
ǫ2

log( 1
δ
)(1+ |T0|+|T1|+|T2|

|T3|
)) memory cells, while

it dramatically improves by a cubic factor the solution pro-
vided in [20]. Comparing our results in this model with the
previous work in [8], we obtain a one-pass algorithm that
achieves the same space bound and better update time as
the three pass algorithm from [8]. The two other algorithms
in [8] either require bounded maximum degree or are incom-
parable to our result because the space complexity depends
on different parameters (e.g., the number of cycles of length
4 and 6 in the graph). The number of memory cells used
by our algorithm still depends on the cardinality of T1, that
can be as large as O(|E| · |V |). Our method in the case of
graphs in arbitrary order is therefore of practical interest for
networks with a large enough number of triangles.

Of greater practical relevance is our method when the
graph is given as an incidence stream. The number of mem-
ory cells used by our data structure is O( 1

ǫ2
log( 1

δ
) log(|V |)(1+

|T2|
|T3|

)). To give a flavor of the quality of our result, observe

that |T3|
|T2|

is exactly equal to 1/3 of the inverse of the transi-

tivity coefficient of the graph, a universal measure closely re-
lated to the clustering coefficient, whose value for networks
of practical interest is hardly bigger than 105. Therefore,
the number of memory cells of our data structure depends,
for all practical purposes, only logarithmically on the size of
the network. Our algorithmic results improve by a quadratic
factor the result of [20] and always improves over the naive
sampling method.

Our method is suitable to be adapted to several other
classes of subgraphs. As an example, we provide, in the in-
cidence stream model, an algorithm to estimate the number

of cliques of size α that uses O( 1
ǫ2

log( 1
δ
) log(|V |)(1+ |Sα|

|Kα|
))

memory cells, where Sα is the number of stars of cardinality
α and Kα is the number of cliques of size α in the graph
(see [2] for details).

In the second part of this work, we provide an optimized
implementation of our data stream algorithms and test it
on networks of various sizes collected in different application
domains. Our dataset includes large webgraphs, graphs of
the largest online encyclopedia Wikipidia [11], graphs of col-
laborations between actors and authors. For all networks we
consider, a sample of size 104 already suffices to provide an
excellent approximation of the number of triangles in the in-
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cident stream model. The running times of our algorithms,
measured in terms of operations performed in main mem-
ory, is always lower than the running times measured on the
same computing platform for the best known implementa-
tion of several heuristics provided in [15]. For the model
with stream of edges in arbitrary order, our optimized im-
plementation shows that a sample of size 106 is sufficient
for a reasonable approximation of the number of triangles of
certain networks, whereas it is still too small for some net-
works for which the algorithm in the incident stream model
provides an excellent approximation with a sample of size
104.

1.2 Structure of the paper
We present in Section 2 the algorithm for counting the

number of triangles in the adjacent stream model, in sec-
tion 3 the model for counting the number of triangles in
the incidence stream model. Section 4 presents the opti-
mized implementations of the algorithms and Section 5 the
description of our dataset and the experimental results.

2. STREAMS OF EDGES IN ARBITRARY

ORDER
We consider undirected graphs without self-loops. Each

edge is an unordered pair of nodes (v, w) such that (v, w) =
(w, v). We assume that V = {1, . . . , n} and n is known in
advance. We have access to a stream consisting of all edges
in the graph. The edges appear in arbitrary order and no
edge is repeated in the stream. There is no bound on the
degree of the nodes.

2.1 3 Pass Algorithm
We will first present an algorithm which passes three times

over the stream. A different algorithm with the same space
complexity has been presented in [8]. However, our algo-
rithm has a significantly improved update time and as we
later show, we can combine the three passes to a one-pass
algorithm.

We introduce a streaming algorithm SampleTriangle,
which outputs a {0, 1} variable with expected value 3|T3|/(|T1|+
2 · |T2 |+3 · |T3 |). Using the property |T1|+2 · |T2 |+3 · |T3 | =
|E| · (|V | − 2) (Lemma 2.1) we can estimate |T3| using 1/ǫ2

parallel runs of algorithm SampleTriangle.

SampleTriangle

1st. Pass:

Count the number of edges |E| in the stream
2nd. Pass:

Sample an edge e = (a, b) uniformly chosen from E
Choose a node v uniformly from V \ {a, b}

3rd. Pass:

if (a, v) ∈ E ∧ (b, v) ∈ E then β = 1
else β = 0

return β

It is easy to see that each of the above passes can be
implemented in a single pass over the set of edges (i.e., the
input stream) using O(1) memory cells.

Lemma 2.1. Algorithm SampleTriangle outputs a value

β with expected value

E[β] =
3|T3|

|T1| + 2 · |T2| + 3 · |T3|

Furthermore |T3| = E[β] · |E| · (|V | − 2)/3.

Proof. We look at all triples of nodes in V . Each triple
belongs to one of the sets T0, T1, T2, or T3. The algorithm
chooses such a triple by choosing an edge e = (a, b) together
with one node v ∈ V \ {a, b}. Therefore, no triple from T0

is chosen.
Let us denote by t = {v, w, u} a fixed triple from T1.

Wlog. let (v,w) ∈ E and so (v, u), (w, u) /∈ E. The algo-
rithm chooses t, iff it samples edge (v, w) and vertex u.

Now assume t ∈ T2. Then t is chosen by SampleTri-

angle, iff one of the two edges in the triple is sampled
and v equals to the remaining node of the triple. For the
same reason, a triple in T3 is counted whenever one of its
three edges and the remaining vertex is chosen. Since there
are |E| · (|V | − 2) = |T1| + 2 · |T2| + 3 · |T3| choices for
the algorithm to sample an edge and a node, it follows
|T3| = E[β] · |E|(|V | − 2)/3.

A streaming algorithm which outputs a good estimate of
T3 easily follows: we start

s ≥
3

ǫ2
·
|T1| + 2 · |T2| + 3 · |T3|

|T3|
· ln(

2

δ
)

parallel instances of SampleTriangle. Each of these in-
stances outputs a value βi. We use 1

s

Ps
i=1 βi as an estima-

tor for
E[β] = 3·|T3|

|T1|+2·|T2|+3·|T3|
. We then return

fT3 :=

 

1

s

s
X

i=1

βi

!

· |E|(|V | − 2)
‹

3

as an estimation for the cardinalty of T3.

Lemma 2.2. With probability 1 − δ the following state-

ment holds:

(1 − ǫ) · |T3| < fT3 < (1 + ǫ) · |T3|

Proof. We use Chernoff’s Bounds:

Pr
ˆ1

s

s
X

i=1

βi ≥ (1 + ǫ)E[β]
˜

< e−ǫ2·E[β]·s/3
Pr
ˆ1

s

s
X

i=1

βi ≤ (1 − ǫ)E[β]
˜

< e−ǫ2·E[β]·s/2

For s ≥ 3
ǫ2

· |T1|+2·|T2|+3·|T3|
T3

· ln( 2
δ
) the sum of both prob-

abilities is bounded by δ. The lemma follows now from
Lemma 2.1 stating that |T3| = E[β] · |E| · (|V | − 2)/3.

Our next step is to consider the update time of our im-
plementation. If we implement the different instances of our
algorithm independently of each other, we require O( 1

ǫ2
·

log( 1
δ
) · (1+ |T1|+|T2|

|T3|
)) time to process each edge during the

third pass. We show how to reduce this to expected constant
time. Before we invoke the third pass, we collect all edge-
vertex pairs chosen by different instances of the algorithm.
For each pair with edge e = (a, b) and vertex v we would like
to find out whether (a, v) and (b, v) are in E. Therefore, we
construct a set M of missing edges that for each such edge-
vertex pair contains the edges (a, v) and (b, v). Next, we
construct a hash table for M using a uniform hash function
that requires linear space, as proposed in [13]. Now we can
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implement the third pass in the following way. For each
edge e, we lookup whether it is in the set M . If e ∈ M we
mark it. These steps can both be done in expected constant
time. In a postprocessing step we can then determine the
edge-vertex pairs that are triangles.

We summarize our result in the following theorem. We
remark that we significantly improve the update time over
the previously best result from [8] while achieving the same
space complexity. The update time in [8] is roughly propor-
tional to the space complexity compared to expected con-
stant time for our algorithm. Since our experiments show
that one still needs a relatively large amount of space this
is a significant improvement over the previous results.

Theorem 1. There is a 3-Pass streaming algorithm to

count the number of triangles in a stream of edges up to a

multiplicative error of 1 ± ǫ with probability at least 1 − δ,

which needs O( 1
ǫ2

· log( 1
δ
) · (1+ |T1|+|T2|

|T3|
)) memory cells and

constant expected update time.

2.2 A 1 Pass Algorithm
In this section we show that the previous 3-pass algorithm

can be implemented in one pass using the same amount of
space and constant expected amortized update time, if |E|
is significantly larger than the number of instances we run.

We first observe that we can find a random edge in one
pass by reservoir sampling [17], i.e. choosing the first edge as
a sample edge and replacing this edge by the ith edge of the
stream with probability 1/i. It is known that this method
can be implemented in O(log |V |) expected time per sample
(not counting the time to read the stream) by randomly
choosing the next index of the replacing edge according to
an appropriate probability distribution.

When we combine this with the third pass, it may hap-
pen that we sample an edge e = (a, b) of the stream together
with a node v, but we do not see the edge (a, v) or (b, v) in
the subsequent stream (because they appeared before the
edge e). In this case, we do not detect a, b, v as a trian-
gle. However, we detect a, b, v, iff (a, b) is the first edge of
the triangle that appears in the stream. This changes the
expected value of β by a factor of 3.

SampleTriangleOnePass

i ← 1
for each edge e = (u, w) in the stream do

Flip a coin. With probability 1/i do

a ← u; b ← w;
v ← Node uniformly chosen from V \ {a, b}
x ← false; y ← false

end do

if e = (a, v) then x ← true
if e = (b, v) then y ← true
i ← i + 1

end for

if x = true ∧ y = true then return β ← 1 else return β ← 0

Lemma 2.3. Algorithm SampleTriangleOnePass out-

puts a value β having expected value

E[β] =
|T3|

|T1| + 2 · |T2| + 3 · |T3|
.

The Proof is similar to the proof of Lemma 2.1

We now start

s ≥
3

ǫ2
·
|T1| + 2 · |T2| + 3 · |T3|

|T3|
· ln(

2

δ
)

parallel instances and return the value

fT3 :=

 

1

s

s
X

i=1

βi

!

· |E| · (|V | − 2)

This is a (1+ ǫ)-approximation of |T3|.with probability at
least (1 − δ)

By applying the reservoir sampling algorithm from [17] to
select the edge, the selection requires O(log |V |) expected
time for each instance of SampleTriangleOnePass. Ad-
ditionally we use the hash table approach from the previ-
ous chapter to efficiently find instances of SampleTrian-

gleOnePass which search for an edge in the stream. All-

together we get expected O(1 + s · log |E|
|E|

) update time per

edge in the stream.

Theorem 2. There is a 1-Pass streaming algorithm to

count the number of triangles in a stream of edges up to a

multiplicative error of 1 ± ǫ with probability at least 1 − δ,
which needs O(s) memory cells and expected update time

O(1 + s · log |E|
|E|

), where s ≥ 3
ǫ2

· |T1|+2·|T2|+3·|T3|
|T3|

· ln( 2
δ
) .

3. INCIDENCE STREAMS
In an incidence stream all edges incident to the same ver-

tex appear subsequently in the stream. That is, first arrive
all edges incident to vertex v1, followed by all edges incident
to v2, and so on. The ordering v1, . . . , vn of the vertices can
be arbitrary, i.e. determined by an adversary. We consider
undirected graphs and so each edge appears twice (within
the incidence list of both incident nodes). There is no bound
on the degree of the nodes (in contrast to [20]).

3.1 3 Pass Algorithm
We again will first develop a 3-pass algorithm, and later

combine the passes to get a one pass algorithm. Let di de-
note the degree of node vi. The 3-pass algorithm is presented
below.

SampleTriangle2

1st. Pass:

Count the number of paths of length 2 in the stream
2nd. Pass:

Uniformly choose one path using UniformTwoPath

Let (a, v, b) be this path
3rd. Pass:

Test if edge (a, b) appears within the stream
if (a, b) ∈ E then β = 1
else β = 0
return β

We observe that the number of paths of length 2 is exactly

P := |T2| + 3 · |T3| =
P|V |

i=1 di · (di − 1)/2. Thus we can
easily count the number of paths of length 2 by determining
the degree of each node. This is possible because the edges
appear as an incidence stream.

The second pass could be implemented using reservoir
sampling. However, we propose a different approach which
achieves slightly better amortized running time. The idea is
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as follows: if v is incident to the nodes w1, w2, ..., wd, we de-
fine an order for the possible triangles (v, wi, wj), i < j. We
order the triangles by the last component first, i.e. in the fol-
lowing way: (v, w1, w2), (v, w1, w3), (v, w2, w3), (v, w1, w4),
etc. We randomly choose a value of k and identify the k-th
pair wi and wj with respect to this order by computing the
two values i and j according to formulas given below (the
formulas use the simple fact, that there are j(j −1)/2 trian-
gles made of nodes v, w1, .., wj). The triple is chosen (if the
node v is in the middle of enough two paths. Otherwise we
search for the k-th two path within the next incidence list).

The algorithm is presented below.

UniformTwoPath

Select value k uniformly from the set {1, . . . , P}
For each node v in the incidence list do

If k > 0 then

Set j ←
lq

2k + 1
4

+ 1
2

m

Set i ← j − j2−j
2

+ k − 1
Pass over the complete incidence list of node v
If incidence list of v contains more than j edges then

a ← the ith node in the incidence list of v
b ← the jth node in the incidence list of v
w ← v

end if

d ← degree of node v

k ← k − d2−d
2

end if

end do

return edges (w, a) and (w, b)

Lemma 3.1. Algorithm SampleTriangle2 outputs a value

β with expected value

E[β] =
3 · |T3|

|T2| + 3 · |T3|

Proof. We look at all triples of nodes in V . Each triple
belongs to one of the sets T0, T1, T2, or T3. The algorithm
chooses such a triple by choosing a node v together with two
adjacent edges. Therefore the selected triples bekong to the
set T2∪T3. We select a triple from T2, if we choose the unique
node adjacent to both edges and the corresponding edges.
A triple from set T3 can be chosen in three different ways by
selecting one of the three nodes of the triple together with
both adjacent edges. Since each choice of a path of length
two has the same probability, the probability of choosing a
triple in T3 is exactly 3 · |T3|/(|T2| + 3 · |T3|) as stated.

We now start

s ≥
3

ǫ2
·
|T2| + 3 · |T3|

|T3|
· ln(

2

δ
)

parallel instances of UniformTwoPath and return the value

fT3 :=

 

1

s
·

s
X

i=1

βi

!

·

0

@

|V |
X

i=1

di · (di − 1)

1

A

‹

6 .

This is with probability at least (1−δ) a (1±ǫ)-approximation
of |T3|.

To get small amortized expected update time we proceed
as follows. Each time when the incidence list of a new ver-
tex starts, we compute the values i and j for every instance.

Then we insert the j-values into a global priority queue keep-
ing a pointer to the corresponding instance. When we now
process the incidence list of the current vertex we maintain
a global counter for the number of neighbors of the current
vertex we have seen. If this number is equal to the smallest
value stored in the priority queue we remove it and pro-
cess the corresponding instance. After the incidence list has
been processed, we empty the priority queue. This way, each
instance of the algorithm requires O(1) time per vertex. Ad-
ditionally, we need O(s · log |V |) time to process the removal
of the smallest element in the priority queue. Overall, the

amortized cost of the second pass is O(1 + s · |V |
|E|

), which is

constant for moderately large values of |E|. To implement
the third pass we use hashing in a similar way as in the al-
gorithm for adjacency lists. This leads to expected constant
update time for the third pass.

Theorem 3. There is a 3-Pass streaming algorithm to

count the number of triangles in incidence streams upto a

multiplicative error of 1 ± ǫ with probability at least 1 − δ,
which needs O(s) memory cells and amortized expected up-

date time O(1 + s · |V |
|E|

), where s ≥ 3
ǫ2

· |T2|+3·|T3|
|T3|

· ln( 2
δ
) .

3.2 1 Pass Algorithm
To get a one pass algorithm we will again combine the

passes of the algorithm stated before. The first pass only
counts the number P of paths of length 2 in the graph.
Instead of counting this number in advance, we will start
3 log |V | instances of the streaming algorithm, an instance

for each guess P̃ of the number of length-2-paths in the set
{1, 2, 4, 8, ..., |V |3}. In parallel we will count P . At the end

we can find one instance started with a value P̃ satisfying
P ≤ P̃ < 2P . We choose the result of this instance as the
result of our algorithm.

If the estimated number of nodes was too high then this
instance might not get a sample node at all; since the es-
timation of the number of nodes is at most twice the real
value, this failure happens with probability at most 1/2 and
will be detected. By running log(1/δ) parallel instances of
the algorithm, with probability 1 − δ at least one of these
algorithms will succeed.

To combine the second and third pass we test all edges
seen after drawing the sample. Therefore we miss an edge
when the incidence lists of both endnodes appear earlier
within the stream (i.e. the node v is the last of the tri-
angle nodes). Since this happens with probability 1/3, the
expected value of β decreases by a factor of 1/3.

Lemma 3.2. Algorithm SampleTriangleOnePass2 out-

puts a value β having expected value

E[β] =
2 · |T3|

|T2| + 3 · |T3|

We now start s ≥ 3
ǫ2

· |T2|+3·|T3|
|T3|

ln( 2
δ
) parallel instances

and return the value

fT3 :=

 

1

s
·

s
X

i=1

βi

!

·

0

@

|V |
X

i=1

di · (di − 1)

1

A

‹

4

We use techniques to reduce the amortized update time
as shown in the previous section. Since we start O(log V )

parallel instances for different guesses of P̃ , the amortized
update time increases by a factor of O(log V ).
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Theorem 4. There is a 1-Pass streaming algorithm to

count the number of triangles in incidence streams up to

a multiplicative error of 1 ± ǫ with probability at least 1 −
δ, which needs O(s · log |V |) memory cells and amortized

expected update time O(log(|V |) · (1 + s · ( |V |
|E|

))), where

s ≥ 3
ǫ2

· |T2|+3·|T3|
|T3|

ln( 2
δ
) .

4. OPTIMIZED IMPLEMENTATIONS
In Section 2 and 3 we provided a general overview of the

algorithms. This section describes some details of several
optimization steps used in the implementation. We instead
omit a detailed description of the use of memory blocks in
order to improve I/O efficiency. Rather than reading from
the hard disk edge by edge, a large amount of edges is read
from secondary memory and stored in main memory in a
block of fixed size. This also allows in the analysis to distin-
guish between processing time and reading time (the reading
time sometimes is larger than the processing time).

We first present the three main methods used for speeding
up the running times and then the algorithms that use such
methods.

Hash Functions. We use hash functions to quickly find ele-
ments in a set. We use one or two elements as keys for our
hash function. In case of two values u and v, we use hash
functions of the form h(u, v) = r1 · u + r2 · v mod 2r, where
r1 and r2 are two random generated numbers between one
and r (sample set size), and u < v. In case of only one
element, we use hash functions of the form h(u) = r1 · u
mod 2r. The size of the hash table is 2 · r.

Uniform Sample Selection. We use the following method to
select a sample set from a set RR (in our case RR will be
the set of edges) of unknown size that is presented as a data
stream. We would like to pick a sample of size r and its dis-
tribution should be (almost) uniform. The problem is that
we do not know |RR| in advance and we have to construct
our sample set on the fly when we pass over the stream. We
initially set M = r and m = 1. Samples are selected with
probability 1

m
until the number of samples taken reaches M .

When the number of seen elements reaches M , each sample
is evicted from the current sample set with probability 1/2,
and M and m are doubled. Samples selected in this fashion
are almost uniformly distributed. This technique avoids to
run different instances of the algorithm for different guesses
of the size of the set RR.

Draw Sample. We next observe that it is not very efficient
to throw a biased coin for every element in the data stream,
since the inverse of the probability 1/m that an element is
chosen is proportional to the length of the stream. Instead
of throwing a coin we use the probability distribution of
the position of the next element of the stream that is taken
into our sample set. This distribution depends only on the
current position in the stream and the value of m and can be
calculated as follows. Assume we want to draw each sample
with probability p. Then we choose a value α uniformly
at random from [0, 1]. Supposing the last sample selected
was the element at position ki in the data stream, then
the next sample will be the element with number ki+1 =

ki + ⌈(
log α−1

p−1

log(1−p)
+ 1)⌉.

procedure OptimizedOnePassSampling-ArbOrder(r)
1 s ← 0; A ← 0;
2 x ← 1; m ← 1; M ← r;
3 for each es = (as, bs) ∈ E do

4 a ← as;
5 b ← bs;
6 A ← A + 1;
7 if A = x then

8 s ← s + 1;
9 Ss

a ← a;
10 Ss

b ← b;
11 Ss

v ← v uniformly chose from V \ {a, b};
12 Ss

count ← 0;
13 inserIntotHash(a,v,s,pt);
14 insertIntoHash(b,v,s,pt);
15 x = nextSample(1/m, s);
16 end if

17 if A = M then

18 M ← M · 2;
19 m ← m · 2;
20 s ← cleanHalfSampleSet(S);
21 end if

22 checkTri();
21 end for

22 β ← 0;
23 for each s ∈ S
24 if Ss

count = 2 then β ← β + 1;

25 T̃3 ← β
|S|

· |N | · |E|;

end procedure

Figure 1: Pseudo-code for the one pass algorithm

considering an arbitrary list of edges.

4.1 One Pass Algorithm for Streams of Edges
in Arbitrary Order

This section presents details of the implementation of the
one pass algorithm considering an arbitrary order of the
edges of an undirected graph (presented in the subsection
2.2). Figure 1 presents the pseudo-code of the algorithm,
including the use of hashing functions, draw sampling and
random selection techniques. Moreover, the algorithm con-
siders the results for r samples, and not only one as pre-
sented before.

The main structures used by the algorithm are the sample
set, a hash function table and S, a vector of pointers to
structures of type sample. Lines 1 and 2 are initializations.
The size s of the sample set and the number of edges seen
are initialized with zero. The next sample x to be selected
is set to the first one, while variables M and m used for the
random sampling technique are set to one and r, the number
of samples requested by the user.

The loop from lines 3 to 21 analyzes each edge read from
the graph. The endpoints of the edge are identified in lines 3
and 4, and the counter of edges is incremented in line 6. If
the current edge is the one indicated by the draw sampling
technique (line 7), the sample is selected. The sample is
composed by two edges (the missing edges) and a counter
(lines 8 to 12) that it is used to later check if it is equal to
two, indicating that both missing edges were later seen in
the stream. Both edges are independently inserted in the
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hash function, together with the number of the sample and
a point to it. This information is used in the case that later
a sample changes position or is removed from the sample set.
Next, a new sample that later will be inserted in S is cal-
culated for the draw sample technique (line 15). When the
number of samples reaches M (line 17), the value of M and
m are doubled and the sample set is cleaned to about half
of it (lines 18 to 21). The procedure cleanHalfSampleSet

removes each sample with probability 1/2. The sample set is
rearranged to avoid having gaps, and their respective indices
s are updated.

The procedure checkTri verifies if the current read edge
(a,b) belongs to one or more current samples. The verifica-
tion is done hashing a and b. For each occurrence of this
arc found in the hash list, the correspondent counter is in-
crementing, indicating that one more of the missing edges
were found.

Finally, in lines 23 and 24, the counters of the s samples
is verified and in case it is two, it means that both missing
edges were seen in the stream and the sample corresponds
to a triangle. So the triangle counter β is incremented. The
estimated number of triangles T̃3 is calculated in line 25.

4.2 One Pass Algorithm for Incidence Streams
This section presents details on the optimized implemen-

tation of the one pass algorithm considering an incidence
list of the edges of an undirected graph (presented in the
subsection 3.2). Figure 2 presents the pseudo-code. that
uses the described optimizations and considers r samples,
instead of an unique sample.

The main structures used are the hash function and the
sets S and D. The former is used similarly as in the previous
algorithm, while D stores the current list of adjacent edges
being read.

The initializations are similar to the ones used by the
procedure OptimizedOnePassSampling-Arbitrary with the
difference that instead of A, the set of edges seen so far, this
algorithms uses P , the number of paths of length two seen
so far. Moreover, in line 3, the current source node of the
adjacent list of edges that is been read is reset to -1.

The loop from lines 4 to 26 analyzes the edges from the
graph, one by one. The loop from lines 5 to 15 reads edges
(a,b) (line 6 and 7), sets information of the corresponding
node to the adjacency list being read (lines 8 to 11), adds
the new node to the adjacency list (line 12), checks if this
edge closes triangles from the current samples (line 13) and
increments P (line 14). For each new edge that is seen, this
arc will form a path length 2 with each of the previous edges
from the current adjacency list.

When the value of P reaches x, the edge that forms a sam-
ple with the current edge read is calculated in line 17, edge
(w, v) that forms a triangle with the length 2-path w−a−v
is inserted into the hash table (line 18) and a new sample
index x is generated (line 19). This loop is executed while
P is larger than x. As in the previous algorithm, loop from
lines 21 to 25 certify that all samples are uniformly randomly
selected. Finally, the number of samples that represent tri-
angles is computed in line 27 and the expected number of
triangles is computed in line 28.

The hash functions used in this case store a condensed list
of edges, since a unique arc can close many triangles. Thus,
each arc is inserted only once in the lists, and each element
of the list stores a counter of the number of times this arc

procedure OptimizedOnePassSampling-Incidence(r)
1 s ← 0; P ← 0;
2 x ← 1; m ← 1; M ← r;
3 u ← NIL;
4 for each es = (as, bs) ∈ E do

5 while P < x do

6 a ← as;
7 b ← bs;
8 if a �= u then

9 D ← ∅;
10 u ← a;
11 end if

12 D ← D ∪ {b};
13 checkTri();
14 P ← P + |D| − 1;
15 end while

16 while P ≥ x do

17 w ← [|D| + x − P ]-th element from D;
18 insertIntoHash(w,b);
19 x = nextSample(1/m, s);
20 end while

21 while x ≥ M do

22 M ← M · 2;
23 m ← m · 2;
24 s ← cleanHalfSampleSet(S);
25 end while

26 end for

27 β ← calculateT();

28 T̃3 ← β·P
3·|S|

;

end procedure

Figure 2: Pseudo-code for the one pass algorithm

considering an incidence list of edges.

was involved in a current sample. When checking if an edge
closes triangles (line 13), it is recorded if it is the first or the
second occurrence of it since each edge (u, v) is seen twice
(in the incidence lists of u and v). Thus, for each arc that
closes triangles in the sample set, three counters are stored,
c1, c2 and c3, indicating in how many samples the arc is
involved when observing his first occurrence, in his second
occurrence and after the second occurrence. These values
are independently selected for being removed from the sam-
ple set (line 24), and the node from the list is exclude, if
selected for that, only when c1 = c2 = c3 = 0. Further-
more, when calculating the number of triangles (line 27),
c1 contributes twice to β, c2 once and c3 discarded. Even
when extra tests are done to correctly maintain the con-
densed hash functions, the algorithm runs faster than not
using these hash functions.

5. COMPUTATIONAL EXPERIMENTS
This section presents the computational experiments per-

formed by running the one pass algorithms for estimating
the number of triangles in the adjacency and incidence list
models.

The codes were written in C/C++, and compiled with
the gcc compiler version 3.2.2, using the -O3 optimization
option. The experiments were performed on a 2.4 GHz In-
tel Pentium IV computer with 512 MB of RAM, running
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Linux, and compiled with g++ version 3.3.2. Due to space
requirements, the experiments for the webgraph were per-
formed in a 2.8 GHz Intel Pentium IV computer with 1 GB
of RAM, running Linux. The implementations are available
upon request.

CPU times were measured with the system function
getrusage. The time for reading the graphs is not included
in the running times that are reported. It is interesting to
mention that, for both triangle counting algorithms (arbi-
trary and incidence list of edges), the typical running time of
our experiments is larger than the reading time only when
using 1,000,000 samples. On the other hand, the compu-
tation time is typically not much smaller than the reading
time. Hence, it worths the effort to reduce the processing
time of the algorithm.

We now describe the datasets used in the experiments.

5.1 Datasets
The datasets were divided in three subsets, all of them

are comprised of real world instances.
The first subset is composed of only one instance webgraph.

This instance is a webgraph of 135 million nodes and 1 bil-
lion edges obtained from a graph extracted in 2001 by the
WebBase project at Stanford [21] by removing the frontier
nodes, i.e, the nodes that have indegree equal to one and
outdegree equal to zero.

The second set of instances is composed of instances used
in the experiments reported in [15]. The instances are:

• actor2002 and actor2004: based on the Internet Movie

Database. In these instances, two actors (nodes) are
connected if they ever stared together in a movie.

• authors: based on the Computer Science Bibliography

at the University of Trier.

• google-2002: based on the 2002 Google contest.

• itdk0304: is the network of Internet routers (nodes)
and their connections (edges) collected by the Cooper-

ative Association for Internet Data Analysis (CAIDA).

The third set of instances is originated from the link struc-
ture of Wikipedia [11], from an old dump of June 13, 2004
[11]. Wikipedia is nowadays the largest online encyclope-
dia, available in more than 100 languages. In these graphs,
each article is a node and each hyperlink between nodes
identifies a directed arc. A graph is extracted from each
language. The experiments were performed considering the
graphs wikiEN, wikiDE, wikiFR, wikiES, wikiIT and wikiPT,
extracted from the English, German, French, Spanish, Ital-
ian and Portuguese languages, respectively.

The graphs are mostly sparse, and the dimensions vary
from less than ten thousand nodes to more than half million,
and from less than 100 thousand edges to more than 50
million edges.

5.2 One Pass Algorithm for Streams of Edges
in Arbitrary Order

In this section we report the results for the optimized ver-
sion of the one pass algorithm for streams of edges presented
in arbitrary order. Table 1 presents results for sample sizes
r of 10,000, 100,000 and 1,000,000. The table contains five
main columns, corresponding to the graph name, the results
for each of the sample sizes r = 10, 000, r = 100, 000, and

r = 1, 000, 000, the value T3

T1+2T2+3T3
computed for each

graph instance. For each sample size, three runs were ex-
ecuted with each instance. We report for each run the es-
timated number of triangles (T̃3), the quality of the result
Qlt(%) and the corresponding running time. The quality
of the result is measured as the percentage deviation from

the optimal, i.e. , Opt−T̃3

Opt
· 100. Thus, a negative number

in this context indicates that the estimated number of tri-
angles is sub-estimated, while a positive number indicates
a super estimation. If no one of the samples represents a
triangle, we set “-” in place of the percentage deviation. We
used the algorithm from [15] for computing in main memory
the exact number T3 of triangles (we report on the optimal
computation in [2]).

It can be observed in the table that no triangles were
found in some of the runs for a sample set of 10,000 sam-
ples. For all instances, but one, at least in one of the three
runs one or more triangles were identified for sample size of
100,000 and 1,000,000 samples. The instance google-2002

is actually a very sparse one and it has just a few triangles.
The probability of one sample to be a triangle is actually
only 0,00000023 (as reported in the fifth column of table 1).
was found, even considering a sample set of 1,000,000. Re-
sults are not presented for the webgraph since no triangles
were found in all the experiments we performed with our
first algorithm.

The computation time never exceeds 10 seconds in any
of the experiments for ≤ 10,000 samples. Time grows for
large sample sets, but its increase is not proportional to the
increase of the sample set. Note that the final sample size
is about 25% smaller than r because, when the sample set
reaches r, about half of the sample set is removed. So, the
sample size is between r/2 and r, in all cases. The average
sample sizes for r equal to 10,000, 100,000 and 1,000,000
were 7684, 61676 and 571065, respectively. Similar numbers
were found for the incidence list algorithm.

5.3 One Pass Algorithm for Incidence Streams
We present the results for the optimized version of the

one pass algorithm for incidence sstreams. Table 2 presents
results for a sample size of 10,000, 100,000 and 1,000,000
samples. The fifth column of the table reports the values

2T2

T2+3T3
for the considered graph instances.

As expected, the number of triangles found in all sample
sets is much larger then the numbers presented by the algo-
rithm for streams of edges in arbitrary order. For all runs of
all instances, considering the three sample sizes presented,
and also a sample size of 1,000 (not presented due to space
restrictions), always one or more triangles were found in the
sample. The average percentage deviation is very good, even
for sample size of 1,000 samples. Considering the absolute
values, the average percentage deviation for all instances,
but webgraph, are 17.72%, 5.10%, 2.17% and 0.85% for the
sample sizes of 1,000, 10,000, 100,000 and 1,000,000, respec-
tively.

We consider that an approximation of 5% is a very good
estimative, and so, for this algorithm, a sample set of size
10,000 provides already good results.

For the reading times, we observe that reading wikiPT

takes 0.07 seconds, while for reading actor2004 takes 58.02
seconds. For a single list of the arcs EUnD, it is spent in
reading time half of the time spent for Einc.
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Table 1: Results for the one pass algorithm for counting triangles in an undirected graph with edges listed

in arbitrary order. Samples of sizes of 10,000, 100,000 and 1,000,000 were considered.

Graph r=10,000 r=100,000 r=1,000,000
T3

T1+2T2+3T3

T̃3 Qlt(%) Time T̃3 Qlt(%) Time T̃3 Qlt(%) Time

actor2004 2,724,294,731 131.54 9.10 1,023,579,237 -13.01 12.45 1,152,018,942 -2.09 33.64 6.38977e-05

5,410,963,294 359.88 6.78 340,984,576 -71.02 12.77 1,089,794,401 -7.38 21.64

0 - 9.24 1,375,682,338 16.92 12.81 1,151,929,523 -2.10 21.64

google-2002 0 - 0.24 0 - 0.65 0 - 0.80 0.02316e-05

0 - 0.19 0 - 0.64 0 - 0.71

0 - 0.24 0 - 0.61 0 - 0.69

actor2002 1,561,913,432 350.36 6.23 392,150,057 13.07 13.28 299,102,547 -13.76 20.95 6.03383e-05

0 - 3.83 491,075,426 41.60 7.41 329,973,292 -4.86 14.27

0 - 5.60 293,726,779 -15.31 7.39 372,567,786 7.43 14.34

authors 0 - 0.36 4,932,982 196.19 0.94 923,913 -44.53 1.47 0.65034e-05

0 - 0.28 0 - 0.93 923,913 -44.53 1.32

0 - 0.38 4,890,123 193.62 0.92 1,539,855 -7.54 1.30

itdk0304 12,378,632 2620.20 0.28 3,089,228 578.86 0.69 384,488 -15.51 1.14 0.38865e-05

0 - 0.22 0 - 0.72 384,488 -15.51 0.91

0 - 0.33 0 - 0.73 384,488 -15.51 0.91

wikiEN 0 - 1.73 43,383,355 120.73 4.82 18,993,730 -3.36 9.48 1.13561e-05

0 - 1.27 65,255,967 232.02 2.92 24,457,688 24.44 7.15

0 - 1.78 0 - 2.96 19,029,320 -3.18 7.12

wikiDE 0 - 0.76 7,457,654 -7.69 1.52 6,744,665 -16.52 4.25 3.25277e-05

0 - 0.55 14,966,638 85.25 1.54 7,663,978 -5.14 3.36

0 - 0.83 11,168,455 38.24 1.54 10,217,203 26.47 3.40

wikiFR 0 - 0.28 3,102,916 -1.90 0.72 2,622,207 -17.10 1.05 11.47360e-05

5,496,153 73.76 0.21 4,813,794 52.19 0.76 2,923,116 -7.59 0.87

0 - 0.29 2,744,281 -13.24 0.71 2,966,103 -6.23 0.88

wikiES 1,745,767 119.19 0.12 547,117 -31.31 0.40 763,336 -4.16 0.40 10.73930e-05

887,301 11.40 0.12 545,260 -31.54 0.41 817,860 2.69 0.34

4,460,671 460.06 0.15 436,669 -45.17 0.39 790,598 -0.74 0.38

wikiIT 206,411 -37.12 0.10 210,023 -36.02 0.24 223,244 -31.99 0.23 16.08740e-05

211,966 -35.43 0.08 314,594 -4.16 0.23 354,564 8.01 0.21

645,909 96.76 0.10 289,070 -11.94 0.25 420,224 28.01 0.20

wikiPT 68,852 -1.70 0.05 69,160 -1.26 0.04 34,580 -50.63 0.06 16.94030e-05

70,548 0.72 0.04 86,450 23.42 0.06 43,225 -38.29 0.04

0 - 0.05 77,805 11.08 0.06 121,030 72.79 0.06

6. CONCLUDING REMARKS
We have proposed a methodology based on random sam-

pling for counting the number of cliques in data streams.
The algorithms provably achieve an arbitrarily good ap-
proximation with high probability, use a limited amount of
samples and memory cells and constant or at most logarith-
mic processing time per edge of the graph. We have also
detailed some of the features of our optimized implementa-
tion of the algorithms for counting the number of triangles
in a graph, and reported experimental results on networks
from several practical domains. The experimental results
show that our algorithms achieve an excellent estimation of
the exact values with 10, 000 samples in the incidence list
model, and with 1, 000, 000 samples in the model in which
the graph is presented as list of edges in arbitrary order.
These results are independent from the size of the networks
and only depend on the frequency of the subgraphs. We
plan to adapt this methodology to mining frequent patterns
occurring in protein networks, community detection in the
Web, construction of indexes in graph databases.
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Table 2: Results for the one pass algorithm for counting triangles in an undirected graph structured as an

incidence list. Samples of sizes of 10,000, 100,000 and 1,000,000 were considered.

Graph r=10,000 r=100,000 r=1,000,000
2T3

T2+3T3

T̃3 Qlt(%) Time T̃3 Qlt(%) Time T̃3 Qlt(%) Time

webgraph 7,991,057,264 - 153.78 7,541,370,749 - 393.78 7,993,479,298 - 490.56

6,461,924,928 - 153.55 7,384,193,673 - 392.20 8,097,287,808 - 490.00

9,977,868,646 - 153.69 8,337,706,066 - 393.92 7,591,170,489 - 491.28
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